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These notes sketch a construction of the Galois representations associated to
Hilbert modular forms, using the cohomology of Shimura curves. For the most
part, this text is based on a preprint of Saito, see [Sa].

The notes belong to a talk I gave at the Dutch intercity seminar on arith-
metic geometry, which in the fall of 2005 had as aim to give an overview of the
work of Khare on Serre’s conjecture. Before me others already talked about
Hilbert modular forms, a part of the local Langlands program and the Jacquet-
Langlands correspondence; so I will assume some familiarity with these things.
See [www] for more information about the seminar and for the texts of the other
speakers.

Please inform me if there are any errors, misunderstandings, clumsy con-
structions, etc.

1 Introduction, notation

Start with a Hilbert cusp form f over a totally real field F , and suppose that
f is an eigenform for all Hecke operators. A statement which already has come
up in this seminar a few times is that associated to f there is a representation
of the Galois group Gal(F/F ). The most general form of this statement is still
conjectural, but a lot has been proved already. See the introduction of [Ta] for
a short overview.

Our goal is to deal with a particular, but already very general, situation
where one can give an explicit geometric construction of the Galois representa-
tion.

Fix the following:

• A totally real number field F of degree n > 1 over Q.

• An ordering of the set I := Hom(F,R) = {τ1, . . . , τn} of real embeddings
of F .

• A prime v of F (this prime is only relevant if n is even).
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• A sufficiently large number field L. To be precise: it must contain a
splitting field F spl of F and it must split the quaternion algebra that is
ramified at τ2, . . ., τn if n is odd, and at τ2, . . ., τn, v if n is even. (See
section 3 for an explanation of this.)

• A multi-weight k = (k1, . . . , kn, w) ∈ Zn+1, such that w ≥ ki ≥ 2 and
w ≡ ki (mod 2) for all i.

Let us recall some things from the talks by Van der Geer and Edixhoven
(see [www]). Let Sk

C be the C-vector space of all Hilbert cusp forms over F of
weight k and arbitrary level. It is a representation of GL2(A

f
F ) and as such it

decomposes into a sum
⊕

f πf of irreducible subrepresentations, called cuspidal
automorphic representations. This sum is indexed by the normalized newforms
and is multiplicity free, which means πf ' πf ′ ⇐⇒ f = f ′. Each factor
decomposes as a restricted tensor product πf =

⊗′
p πf,p indexed by the primes p

of F , where each πf,p is an irreducible smooth representation of GL2(Fp). The
representation Sk

C has a natural model over F spl. For each f , there is a finite
extension F spl(f) of F spl over which πf and each πf,p are defined; it is obtained
by adjoining to F spl the eigenvalues of all the Hecke operators acting on f . We
write L(f) for the compositum of F spl(f) and L.

Let λ be a prime of L(f) and let

Gal(F/F )
ρ−→ GL2(L(f)λ)

be a representation that is continuous for the λ-adic topology on the right and
the Krull topology on the left. Then ρ is the representation associated to f if “ρ
is compatible with the representations obtained from πf via the local Langlands
correspondence.” For this talk, the precise meaning of this phrase is not so
important. In fact, we can think of this as a criterium for the restrictions of ρ to
the decomposition groups at primes p that do not divide the level of f and do not
divide `, where ` ∈ Z is the prime that λ divides. For such p the compatibility
condition is that ρ is unramified p and that the characteristic polynomial of a
Frobenius element has a prescribed form, in terms of the p-Hecke eigenvalues
of f . (See Van der Geer’s talk ([www]) for the precise statement.) Alternatively,
one can use L-functions. The full local Langlands correspondence is explained
in the talks by Edixhoven and J. de Jong. To give a precise definition: ρ is
compatible with the representation obtained from πf via the local Langlands
correspondence if for every prime p of F

′(ρ|Gal(F p/Fp))
F -ss = σ̌h(πf,p).

On the left we take ρf,λ which we subsequently restrict to a decomposition
group in p, replace by the associated representation of the Weil-Deligne group
and F -semi-simplify. On the right we take the representation of the Weil-Deligne
group associated to πf,p by the local Langlands correspondence using the Hecke
normalisation. (As said, the meaning of these words is not so important in this
text.)
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The main theorem reads:

Theorem. Let f be a Hilbert cusp form over F of weight k, which is a
normalized newform. If n is even, assume that πf,v is not a principal series rep-
resentation. Then for every prime λ of L(f) there exists a unique representation

Gal(F/F )
ρf,λ−→ GL2(L(f)λ)

which is continuous for the λ-adic topology on L(f)λ and which is compatible
with the representations obtained from πf via the local Langlands correspon-
dence.

This theorem was proved, in increasing generality, by Eichler, Shimura,
Deligne, Langlands, Ohta, Carayol and Saito. See [Sa] for further details. In the
seminar we will also need a version of this theorem where we lift the assumption
on πf,v if n is even. This has been obtained in [Ta], starting with the above
theorem and using congruences between modular forms of different level.

In this text, we will construct ρf,λ that appears in the theorem, but there
will not be given a proof that it is compatible with the representations obtained
from the local Langlands correspondence. We will however see that ρf,λ is non-
zero. The cases F = Q and F 6= Q turn out to be somewhat different. In
the next section there is a very rough account of the first case. Starting from
section 3, we will assume F 6= Q.

2 Classical modular forms

As a motivation, there now follows a sketch of the construction of the Galois
representation if F = Q. In most respects — but not all — this is the easier
case. We take L = Q in this section.

Let X = P1C − P1R be the union of the upper and lower complex half
plane. Let K ⊂ GL2(Af ) be a compact open subgroup. If K is small enough,
the double quotient space

YK(C) = GL2(Q)\(X ×GL2(Af )/K)

has the structure of a, not necessarily connected, smooth variety of dimension 1.
It is the moduli space of elliptic curves with a certain level structure (depending
on K). Using this moduli description, we obtain a model YK of YK(C) defined
over Q. The variety YK is a smooth (non-connected) curve which is not proper.
There is a standard way to compactify it to a proper scheme XK . The non-
compactness of YK is a feature that does not appear for the curves we need for
the other real fields. Therefore, we will not elaborate on the subtleties that turn
up because of this. The space of all cusp forms of weight k can be described as
the space

Sk
Q = lim−−→

K

H0(XK ,LK),

where LK is a line bundle on XK that depends on k, and where we take the limits
over smaller and smaller compact open subgroups. As we are only interested in

3



these kinds of limits we can conveniently assume K to be “sufficiently small” in
the things that follow.

There is the universal elliptic curve f :E → YK , The local system FK =
Symk−2 R1f∗Q on YK(C) encodes information about the fundamental groups
of the elliptic curves in the family. In the same way, there is a constructible
`-adic sheaf F`,K = Symk−2 R1f∗Q` on the étale site of YK,et, which encodes
the `-torsion of the elliptic curves. This last sheaf allows us to make a contin-
uous Galois representation H1

par(YK,Q,et,F`,K). Here “par” means that we use
parabolic cohomology, which is the image of compactly supported cohomology
in ordinary cohomology.

Taking the direct limit we obtain a space

H` = lim−−→
K

H1
par(YK,Q,et,F`,K)

with commuting actions of GL2(Af ) and Gal(Q/Q) on it. The representa-
tion ρf,λ that we want can now be “cut out” as

ρ∨f,λ = HomQ(f)λ[GL2(Af )]

(
πf ⊗Q(f) Q(f)λ,H` ⊗Q`

Q(f)λ

)
.

To show that this representation is non-zero (and, in fact, 2-dimensional), we
need Hodge theory. This identifies HC := lim−−→K

H1(XK(C),FK) with two copies
of Sk

C.

In principle, the above recipe can also be used if F 6= Q, using Hilbert
modular varieties. But it gives the wrong representation. For one thing, as
the Hilbert modular variety has a model over Q one obtains a representation
of the absolute Galois group of Q instead of F . Also, as the dimension of the
Hilbert modular variety is greater then 1, the degree of the cohomology will not
be right. In fact: this representation can be obtained from the right one by
forgetting information, i.e., by using induction and tensor constructions.

To overcome this problem we will use the Jacquet-Langlands correspondence
to switch to Shimura curves defined by quaternion algebras. These have the
advantage that they are defined over the right field and that they have the
right dimension. Unfortunatly, they have not as nice a moduli interpretation as
Hilbert moduli varieties.

3 The Shimura curve

From now on we will assume n = dimQ F > 1.
Recall that a quaternion algebra over F is uniquely determined by the set of

places where it ramifies. The subsets of places of F which turn up in this way
are exactly the finite sets which have an even number of elements. Now if n is
odd, define B to be the quaternion algebra that ramifies at the infinite places
τ2, ,. . . , τn. If on the other hand n is even, we need in addition to fix a finite
place v to make the number of places even: in this case, B is the quaternion
algebra ramifying at τ2, . . . , τn and v.
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Let G be B× considered as an algebraic group over Q. So G(Q) = B×,
G(Af ) = (B ⊗F Af

F )× and

G(R) ' GL2(R)×H× × · · · ×H×,

where on the right there appear n − 1 copies of the multiplicative group of
non-zero elements of the classical Hamiltonian quaternions H.

Let S be C× considered as algebraic group over R. Consider the space of
homomorphisms S → GR. On it, G(R) acts via conjugation. Let X be the
orbit of the element that on real points is given by

h: C∗ −→ G(R) = GL2(R) × H × · · · × H

x + yi 7→
( (x

y
−y
x

)
, 1 , . . . , 1

)
.

It is easily seen that there is an isomorphism X ' P1C − P1R such that
the action of G(R) on P1C is the usual one, and such that h corresponds
to i ∈ P1C. The weight homomorphism w:Gm,R → GR associated to h is
given by w(r) = (r−11, 1, . . . , 1) (where r ∈ R); note that it is not defined
over Q.

In the remaining part of this sections, we will describe the Shimura variety
corresponding to the datum (G, X). We will list some standard facts from the
theory of Shimura varieties, see for example [Del1] or [Mil] for the proofs.

First we introduce some notation. Let Gad be the adjoint group associated
to G, which, as G is reductive, is the quotient by G by its center. There is
the canonical map G → Gad. Let Gad(R)+ be the connected component of 1
in the real topology, and let G(R)+ be the inverse image of Gad(R)+. In fact,
G(R)+ is just the connected component of G(R). (Note that an element sits in
the connected component if and only if the determinant of its GL2(R)-part is
positive.) Finally, we set G(Q)+ = G(Q) ∩G(R)+.

Let K ⊂ G(Af ) be a compact open subgroup. Fix a set C of double coset
representatives of G(Q)\G(Af )/K. It is a finite set (the proof of this uses
the strong approximation theorem). The action of G(R) on X factors through
Gad(R). Let X+ ⊂ X be the connected component containing h, which is
isomorphic to the complex upper half plane. Then Gad(R)+ stabilizes this
component. The topological space

MK(C) := ShK(G, X)(C) := G(Q)\
(
X ×G(Af )/K

)
decomposes into a finite disjoint union

MK(C) =
⊔
g∈C

Γg\X+,

where Γg is the image of Γ′g := gKg−1 ∩ G(Q)+ under the canonical map
G(R) → Gad(R). If Γg is torsion free —which happens if K is small enough —
it acts freely on X+ and in that case Γg\X+ has a unique structure of a complex
manifold such that X+ is its universal covering space. In fact, Γg\X+ has the
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structure of a connected Riemann surface with fundamental group Γg. If Γg also
has no non-trivial unipotent elements, the quotient Γg\X+ is compact. This
happens in our situation, as G(Q) = B − {0} and B is a division algebra.

An inclusion K ′ ⊂ K induces a morphism MK′ → MK ; in this way we
obtain a projective system (MK(C))K . Multiplication in G(Af ) from the right
by an element g ∈ G(Af ) induces a morphism MK(C) → Mg−1Kg(C). In this
way we obtain a right action of G(Af ) on the system (MK(C))K .

The main theorem in the theory of Shimura varieties says (in our situation)
that (MK(C))K has a canonical model over F . This is a projective system
of schemes MK over F on which G(Af ) still acts. See the literature for the
meaning of the word “canonical”; it is not essential for the understanding of
this text.

Remark: The curve used in the previous section, and more generally Hilbert
modular varieties, are of PEL-type. This means that they have a suitable de-
scription as moduli spaces of abelian varieties with additional structures. In
these situations, the canonical models and the sheaves that one needs can all be
defined using this moduli interpretation.

In the present case, unfortunately, the fact that the weight homomorphism w
is not defined over Q implies that we cannot expect a description of MK(C)
as a moduli space. (The reason is that if MK(C) where a moduli space, we
could describe h as given by the Hodge structure of an abelian variety; which
is rational.) Hence there is no straightforward way to construct the canonical
model or the sheaves we need. Therefore, we will adopt an ad-hoc method
and use explicit double quotient constructions; and fall back on the general
theory of Shimura varieties whenever we need to descend to a number field.
There is, however, a method to link MK(C) to Shimura varieties which do have
a moduli interpretation using an imaginary quadratic extension of Q. This
explains better the constructions we make; and it also helps to prove things
about models. See [Sa] or [Oh] for this.

4 Construction of certain sheaves

Our goal is to define a vector bundle V and a local system F on the Shimura
curve, both depending on the weight k. For this, we start constructing G(Q)-
equivariant bundles over P1

C, which we restrict to X. We then take the double
quotient, and pass to a model over a number field. The method to do this is
described in [Mil] (in much greater generality).

Recall that L ⊂ C is a number field for which GL ' (GL2,L)I . We want
to produce certain objects with a GL action on it, and this we will do for each
factor GL2,L seperately.

For 1 ≤ i ≤ n, define the GL2(L)-representation

Wi = Symki−2 L2 ⊗L det(w−ki)/2 .
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Form the product representation W =
⊗n

i=1 Wi of (GL2(L))I . Viewing W as a
vector group over L, we can form the constant vector bundle W = W ×L P1

L =⊗
Wi on P1

L. This vector bundle is (GL2,L)I -equivariant, if we let (GL2,L)I act
on P1

L via the first projection (GL2,L)I → GL2,L.
Let TautP1

L
be the tautological line bundle on P1

L. It can be obtained as
a subbundle of the constant bundle L2 ×L P1

L. On L-valued points, the fibre
above [a : b] ∈ (L2−{0})/L× = P1L is spanned by (a, b) ∈ L2. By construction,
GL2,L acts equivariantly.

Define a (GL2,L)I -equivariant vector bundle V on P1
L as the product bundle

V =
⊗n

i=1 Vi with
V1 = Taut⊗(k1−2)

P1
L

⊗L det(w−k1)/2

and Vi = Wi. There is a canonical embedding V ↪→ W of equivariant bundles.
By base change we get bundles V(C) ↪→ W(C) on P1C equivariant under

the action by G(C) ' (GL2(C))I . For the descent argument later on it is
important to remember that these equivariant bundles are definable over L.

Before we look at bundles over our Shimura curve, we need a small inter-
mezzo on Hodge structures. Let us first consider certain Hodge decompositions
of W ⊗L C. For z = x + iy ∈ C×, put hg(z) = g

(x
y
−y
x

)
g−1 ∈ GL2(R). Let

GL2(R) act via GL2(C) on W1 ⊗L C, and trivially on Wi ⊗L C for i > 1. For
p, q ∈ Z, define the subspace W p,q

g as the space of w ∈ W ⊗L C for which
hg(z)w = zpz̄qw for all z ∈ C×.

Proposition. Put α = (w − k1)/2 and let s = gi ∈ P1C. If p lies outside
[α, α + k1 − 2], or if p + q 6= w − 2, then W p,q

g = 0. Furthermore, Wα,α+k1−2
g is

the fibre of V(C) above s viewed as a subspace of Ws = W .

Proof: We can assume n = 1, thus ignoring all Sym-terms except the
first. The eigenvalues of hg(z) in Aut(W ⊗L C) are (x+ iy)p(x− iy)w−2−p with

p ∈ [α, α+k1−2] and corresponding eigenvectors
(

i
1

)⊗p⊗
(−i

1

)⊗(w−2−p)
(recall

that we have twisted the natural action by det(w−k1)/2). q.e.d.

Recall that X is a G(R)-conjugacy class of maps S → GR. So if L ⊂ R, we
would naturally get a variation of real Hodge structure on the constant sheaf
on X defined by W ⊗L R. Unfortunately, this is not the case and we have
to do a little trick. Let W ′ be W considered as an L ∩ R-vector spaces. It
has a natural G(L ∩ R)-action on it. To each map h:S → GR corresponds
a real Hodge structure on W ′ ⊗R∩L R. Fix such an h ∈ X ⊂ P1C. The
decomposition C.

(
i
1

)
⊗C.

(−i
1

)
= C⊕C ' C⊗R R2 induces an isomorphism

W ⊗L C ⊕W ⊗L C ∼→W ′ ⊗L∩R C. The Hodge structure is now described by
the previous proposition; in particular (W ′

C)α,α+k1−2
h = Vh ⊕ Vh.

Fix a connected component Γ\X+ of MK(C), where as above X+ ⊂ X ⊂
P1C is a connected component of X and Γ is the image of Γ′ = gKg−1∩G(Q)+
under the canonical map G(R)+ → Gad(R)+. Let Zc(Q) be the subgroup of
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the center F× of G(Q) given as the kernel of the norm. Consider the following
diagram

Zc(Q) _? // F×
NF/Q //

?�

��

Q×
?�

��
ZG(Af ) // (Af )×

where the top row is exact, the square is commutative and the lower map is
continuous. The set Q× is a discrete subset of (Af )×. Therefore, using the
diagram we see that there exists an open neighbourhood U ⊂ G(Af ) of 1 such
that U ∩Z(Q) = Zc(Q). By shrinking K if necessary, we may assume that K is
contained in U . As a consequence, the kernel of Γ′ → Γ is contained in Zc(Q).

Now note that Zc(Q) acts trivially on the vector spaces V and W that where
the starting points of the constructions we made so far.. Therefore, they carry
an action of Γ. But for K small enough, Γ is the fundamental group of Γ\X+.
So the holomorphic vector bundle V(C)|X+ can be divided out by Γ to give a
bundle on Γ\X+. Doing so for all components, we get a vector bundle VK(C)
on MK(C).

There is a correspondence between local systems and vector bundles with
connection (see [Del2]). In particular, the constant sheaf on P1(C) associated
to W ⊗L C corresponds to W(C) with the trivial connection. In the same way
as before, we get a vector bundle WK(C) on MK(C) with a flat connection ∇.
In turn this corresponds to a local system FK,C. As the map V(C) ↪→ W(C)
is equivariant, it induces an embedding VK(C) ↪→WK(C) = FK,C ⊗C OMK(C)

of vector bundles.
In fact, there is another way to make FK,C. The fundamental groups Γ of

Γ\X+ acts on W , hence gives a locally constant sheaf FK of L-vector spaces
on MK(C). Of course FK,C = FK ⊗L C.

We can algebraize this second construction. Let λ be a prime of L. Note that
the representations Γ → AutL(W ) we use are continuous if we use the λ-adic
topology on the right and the profinite topology on the left. So we can complete
and obtain representations of the étale fundamental groups of the connected
components of MK,C. These define a constructible λ-adic sheaf Fλ,K,C on
(MK ×L C)et (c.f. SGA 5 VI 1). The analytification of Fλ,K,C is FK ⊗L Lλ.

The last step is to pass from the complex setting to models over number
fields.

Choose Z`-sheaves corresponding to Fλ,K,C for all K. Then for every n ≥ 1
the mod-`n reduction of this sheaf is constant for K small enough. Hence Fλ,C

is constant in the limit over all K, hence it descends to the contant λ-adic
sheaf Fλ on M = lim←−−K

MK over F . The final step now is to note that for K

small, M is a Galois cover of MK .
The descent for vector bundles is a lot harder. Recall that V is defined

over L. Choose F ↪→ L. There is a canonical way to construct a vector bundle
VK over MK ×F L, which is a model of VK(C) (this last bundle is algebraic by
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GAGA). The construction of these models is sketched (in much greater gener-
ality) in [Mil]; the basic ideas of the proof are the same as in the proof of the
existence of a canonical model of a Shimura variety.

All these constructions again work in the context of projective systems with
a G(Af )-action. We will not botter to spell this out. What we eventually need
is that the cohomologies of the sheaves we have constructed form direct systems
equipped with G(Af )-actions.

5 Hodge theory

The next theorem is the analogue of the Eichler-Shimura isomorphism.

Theorem. For every K, there is an isomorphism

H1(MK(C),Fk
K ⊗L C) '

H0(MK(C),Vk
K ⊗OMK (C) Ω1

MK(C))⊕H0(MK(C),Vk
K ⊗OMK (C) Ω1

MK(C)).

These isomorphisms are compatible with the direct systems we obtain we let let
K vary; as well as with the G(Af )-action on these systems.

Proof: In the proof, we will erase K and some C’s from the notations,
put O = OM(C) and Ω1 = Ω1

M(C).
By the properties of a Shimura variety, the real local system F ′ carries a

variation of real Hodge structure, which in the fibre above h ∈ X+ is the one
defined by h and W ′ ' F ′h as above.

The complex local system F ′⊗RC = F⊗R∩LC is associated with the vector
bundle W ′ = F ′ ⊗R O and the connection

W ′ ∇−→ W ′ ⊗O Ω1.

We regard this as a complex R• of sheaves of C-vector spaces. The complex R•

is a resolution of F ′ ⊗R C and therefore

H1(M(C),F ′ ⊗R C) ' H1(M(C), R•),

where on the right we use hypercohomology.
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The variation of Hodge structure on F ′ puts a filtration on R•:

R• : W ′ ∇−→ W ′ ⊗O Ω1
O

|| || ||
Filα R• : FilαW ′ −→ Filα−1W ′ ⊗O Ω1

∪ ∪ ||
Filα+1 R• : Filα+1W ′ −→ FilαW ′ ⊗O Ω1

∪ ∪ ∪
...

...
...

∪ ∪ ∪
Filα+k1−2 R• : Filα+k1−2W ′ −→ Filα+k1−3W ′ ⊗O Ω1

∪ ∪ ∪
Filα+k1−1 R• : 0 −→ Filα+k1−2W ′ ⊗O Ω1

∪ ∪ ∪
Filα+k1 R• : 0 −→ 0,

where α = (w− k1)/2. The fact that ∇(FiliW ′) ⊂ Fili−1W ′ ⊗O Ω1 is Griffiths
transversality.

This filtration induces a spectral sequence

Ep,q
1 = Hp+q(M(C),Grp R•) ⇒ Hp+q(M(C), R•).

Here Grp R• is the complex

Grp R0 ∇−→ Grp R1.

If α < p < α + k1 − 1 the map ∇ appearing here is an isomorphism. If we
had a moduli interpretation, this would be the Kodaira-Spencer isomorphism;
here one needs to check it by hand. So for these p, the complex is homotopy
equivalent to the zero complex and hence Ep,q

1 = 0 for every q.
Now let p = α + k1 − 1. As Filp−1W ′ = Grp−1W ′ ' V ⊕ V, we see that

Ep,1−p
1 = H0(M(C),V ⊗O Ω1)⊕H0(M(C),V ⊗O Ω1).

By Serre duality Eα,−α+1
1 is isomorphic to Ep,1−p.

Also Eα,−α
1 = Ep,2−p

1 = 0, which one sees by proving H1(M(C),V ⊗O Ω1) =
0 (again by Serre duality, this suffices). For this one can use induction over
the ki’s, where in the case of a line bundle there is the usual degree argument.

For the other pairs (p, q), always Ep,q
1 = 0 for dimension reasons. It follows

that the spectral sequence degenerates at E1. So

H1(M(C),F ′ ⊗R C) =
(
H0(M(C),V ⊗O Ω1)⊕H0(M(C),V ⊗O Ω1)

)2
.

The theorem now follows using F ⊕ F ' F ′ ⊗R C. q.e.d.
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6 Using the Jacquet-Langlands correspondence

Consider the G(Af )-representations

S′kL = lim−−→
K

H0(MK,L,Vk
K ⊗OMK,L

Ω1
MK/L)

and S′kC = S′kL ⊗L C. The last one decomposes into a product of irreducible
representations, which are called automorphic representations (of fixed weight k)
of (B⊗F Af

F )×. Each factor π′ is a restricted tensor product
⊗′

p π′p indexed by
the primes p of F . Each factor π′p is a smooth irreducible representation of B×p .

The Jacquet-Langlands correspondence was explained in an earlier talk. It
says that there is a bijection

cuspidal automorphic represen-
tations π of GL2(A

f
F ) such that

πv is not a principal series

 −→

automorphic rep-
resentations of
(B ⊗F Af

F )×)

 ,

which maps π to an irreducible component π′ of S′kC and which “respects the
local Langlands correspondence”. In particular, let p be a prime of F that, if
n is even, is not equal to v. Choose an isomorphism GL2(Fp) ' B×p . Then πf,p

and π′f,p are isomorphic.
From the correspondence it follows that the irreducible components of S′kC

are indexed by the newforms f of weight k that, if n is even, has the right
behaviour at v. It also follows that each factor π′f is defined over L(f) and that
π′f = π′g if and only if f = g.

The Lλ-vector space

Hk
λ = lim−−→

K

H1(MK,F ,et,F
k
λ,K)

has actions of Gal(F/F ) and G(Af ) on it and these actions commute. Therefore,
the space

Wf,λ′ = HomG(Af )−repr.(π
′
f ⊗L(f) L(f)λ′ ,H

k
λ ⊗Lλ

L(f)λ′).

carries a Gal(F/F )-action. There is also the complex vector space

Wf,C = HomG(Af )−repr.(π
′
f ⊗L(f) C,Hk ⊗L C);

it of course carries no natural Galois action, but by the above theorem combined
with the multiplicity-one result we know that it has dimension 2. To compare
these two spaces, we employ the comparison theorems for étale cohomology. It
follows that Wf,λ′ is of dimension 2.

The representation Wf,C is the dual of the representation ρf,λ we wanted to
construct.
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