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These are notes from a talk given at an intercity seminar arithmetic geometry. The main reference
is [1], where more details and further references can be found.

1 Modular forms

1.1 Definitions

Consider the complex upper half plane h := {z ∈ C : =z > 0}. On it we have an action of SL2(Z)
by (

a

c

b

d

)
z :=

az + b

cz + d
.

We can also add cusps to h. The cusps are the points in P1(Q) = Q ∪ {∞}. We will denote the
completed upper half plane by h∗, so h∗ = h ∪ P1(Q). It is clear how to extend the action of
SL2(Z) on h to an action on h∗: use the same fractional linear transformation.

We will focus on two subgroups of SL2(Z): define for a positive integer N ,

Γ0(N) :=
{(

a

c

b

d

)
∈ SL2(Z) : c ≡ 0 modN

}
and, even more interesting,

Γ1(N) :=
{(

a

c

b

d

)
∈ SL2(Z) : c ≡ 0 modN, a ≡ d ≡ 1 modN

}
.

Clearly, Γ1(N) is a subgroup of Γ0(N). It is actually a normal subgroup and

Γ0(N)/Γ1(N) ∼= (Z/NZ)∗ by
(

a

c

b

d

)
7→ d.

Now, let k and N be positive integers. In this talk, a modular form of weight k and level N is a
holomorphic function f : h → C satisfying the following conditions:

• f(az+b
cz+d ) = (cz + d)kf(z) for all

(
a
c

b
d

)
∈ Γ1(N).

• f is holomorphic at the cusps. Roughly, this means that f should not behave too wildly if
z approaches a cusp. More precisely, for any matrix

(
a
c

b
d

)
∈ SL2(Z), the function (cz +

d)−kf(az+b
cz+d ) should be bounded in the region {z ∈ C : =z ≥ M} for some M > 0.

The set of modular forms of weight k and level N is denoted by Mk(Γ1(N)). From this notation
the reader is able to guess correctly what Mk(Γ0(N)) and Mk(SL2(Z)) mean. Now, Mk(Γ1(N))
is a vector space over C which is known to be of finite dimension. If f is not only holomorphic at
the cusps, but even vanishes at the cusps, by which we mean that for each element of SL2(Z) the
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function (cz + d)−kf(az+b
cz+d ) should approach 0 if =z approaches infinity, then f is called a cusp

form. The subspace of Mk(Γ1(N)) of cusp forms is denoted by Sk(Γ1(N)).

Note that
(

1
0

1
1

)
∈ Γ1(N) for all N . If we plug this matrix into the transformation property of a

modular form f , then it follows that f(z + 1) = f(z). In other words, f is periodic with period 1.
Hence f is a holomorphic function of

q := e2πiz.

We therefore have a power series expansion

f(z) =
∑
n≥0

an(f)qn,

the so-called q-expansion of f . The nonexistence of terms with nonnegative exponent is equivalent
with f being holomorphic at ∞. If f is a cusp form, then it vanishes at ∞ and hence a0(f) = 0.
Be aware of the fact that a0 = 0 does not in general imply that f is a cusp form because there are
other cusps than ∞.

Let’s give some examples of modular forms of level 1 now. Note that in this case Γ1(N) = SL2(Z).
There are no nonzero modular forms of odd weight here. This can be seen by plugging in the
matrix

(
−1
0

0
−1

)
, which yields the identity f(z) = (−1)kf(z). If k ≥ 4 is even, then

Ek(z) = −Bk

2k
+

∑
n≥1

σk−1(n)qn

is a modular form of weight k, the so-called normalized Eisenstein series. Here Bk is the k-th
Bernoulli number and σk−1(n) =

∑
d|n dk−1. The lowest weight were we have a cusp form is

k = 12 (for higher levels, however, there are cusp forms of lower weight):

∆(z) = q
∏
n≥1

(1− qn)24.

This form is called the discriminant modular form and generates the space S12(SL2(Z)). If we
write it out as a series

∆(z) =
∑
n≥1

τ(n)qn,

then τ(n) is called the Ramanujan tau function.

1.2 Diamond and Hecke operators

The group Γ0(N) acts on Sk(Γ1(N)) by(
a

c

b

d

)
f := (cz + d)−kf

(
az + b

cz + d

)
.

Note that this does not define an action of the whole group SL2(Z) on Sk(Γ1(N)) since the resulting
function need not be an element of Sk(Γ1(N)) in that case. Now, the action of the subgroup Γ1(N)
is trivial so this defines an action of (Z/NZ)∗ on Sk(Γ1(N)):

〈d〉f :=
(

a

c

b

d

)
f

only depends on d and not on the other entries of the matrix in Γ0(N). The operator 〈d〉 is called
a diamond operator.
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Let ε : (Z/NZ)∗ → C∗ be a character. Then we define the subspace Sk(N, ε) of Sk(Γ1(N)) as

Sk(N, ε) := {f ∈ Sk(Γ1(N)) : 〈d〉f = ε(d)f for all d ∈ (Z/NZ)∗}

and call it the ε-eigenspace of Sk(Γ1(N)). Note that if ε is the trivial character, then Sk(N, ε) =
Sk(Γ0(N)). It is a fact that

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)∗→C∗
Sk(N, ε).

Now, we will define Hecke operators. Let p be a prime number, not dividing N . Let Mp ∈ M2(Z)

be any matrix of determinant p that is of the form
(

ap
Np

b
p

)
. Define

S :=
{(

1
0

j

p

)
: j ∈ {0, . . . , p− 1}

}
∪ {Mp} . (1)

Later, in section 2.2, we will see where this set of matrices comes from. For f ∈ Sk(Γ1(N)), we
define

Tpf(z) := pk−1
∑
γ∈S

(cz + d)−kf

(
az + b

cz + d

)
.

The operator Tp is called a Hecke operator. It follows from the transformation property of f that
this definition of Tp is independent of the choice of Mp. One can show that Tpf ∈ Sk(Γ1(N)) for
f ∈ Sk(Γ1(N)) and also that Tpf ∈ Sk(N, ε) for f ∈ Sk(N, ε). Furthermore, the Hecke operators
commute with each other and with the diamond operators:

TpTq = TqTp and Tp〈d〉 = 〈d〉Tp

for all d, p, q coprime to N .

One can decompose Sk(Γ1(N)) into subspaces that are simultaneous eigenspaces for the Tp and
〈d〉 operators. Actually, we already mentioned above that we can do this decomposition for the
diamond operators, and we can extend this decomposition to eigenspaces for the Hecke operators
as well. In particular, an eigenform always lies in a space Sk(N, ε) and we call ε the character of
the eigenform.

If a simultaneous eigenspace for the diamond and Hecke operators has dimension 1, then it has a
generator f =

∑
anqn with a1 = 1. Such an f is called a newform. This terminology is explained

as follows. If M | N and d | N/M , then we have a map

αd : Sk(Γ1(M)) → Sk(Γ1(N)) : f(z) 7→ f(d · z).

Now, if M 6= N and f is an eigenform in Sk(Γ1(M)), then the αd(f) all lie in the same eigenspace
of Sk(Γ1(N)), so this eigenspace has dimension greater than 1. We call this an old eigenspace
because it can be constructed from a modular form that already appeared in a lower level than
N . It can be shown that the new eigenspaces, that is the ones that cannot be constructed this
way, have dimension 1. This phenomenon is refered to as multiplicity one.

A newform f has the property that Tpf = apf for all primes p - N , i.e. the eigenvalue of Tp is
exactly the coefficient ap of the q-expansion. Actually one can also define Tp for p | N , and then
for a newform the relation Tpf = apf . The point however is that if we allow these Tp then we have
no decomposition into eigenspaces anymore. So the coefficients of a modular form are not just
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things that exist by analysis, but have an actual meaning as eigenvalues of interesting operators.
Furthermore, the coefficients of a newform satisfy

amn = aman if gcd(m,n) = 1,
apr+1 = apapr − ε(p)pk−1apr−1 if p - N,

apr = ar
p if p | N.

The coefficients an of a newform f generate a field Kf := Q(a1, a2, . . .) over Q which is known
to be a number field and contains all the values of ε. We can view Kf as an abstract number
field (i.e. not embedded in C) and ε as a character with values in µ(Kf ), the group of roots of
unity of Kf . This view is justified by the fact that for any embedding σ : Kf ↪→ C the function
σf =

∑
σ(an)qn is a newform, with character σε.

1.3 Galois representations

It is a conjecture of Ramanujan and Petersson that for a newform f of weight k, the inequality

|ap| ≤ 2p(k−1)/2

holds for all primes p - N . Later, Serre refined this conjecture to a more delicate conjecture, which
was eventually proved by Deligne for weights k ≥ 2 and Deligne and Serre for k = 1. In this
section we will state this proven conjecture of Serre.

Let f be a newform and let Kf be the coefficient field of f . Choose a rational prime ` and a prime
λ of Kf lying over `. Then there is a continuous representation

ρ = ρf,λ : Gal(Q/Q) → GL2(Kf,λ)

satisfying a set of properties that we are about to describe. Here, as usual, Gal(Q/Q) has the
Krull topology and GL2(Kf,λ) has the λ-adic topology.

First of all, ρ is unramified outside N`. This means that each finite extension of Q that sits
in the fixed field Qker(ρ)

of ker(ρ) is unramified above each prime p - N`. Knowing this, for
each prime p - N` we can do the following. Choose an embedding Q ↪→ Qp. This induces an
embedding Gal(Qp/Qp) ↪→ Gal(Q/Q). We surject Gal(Qp/Qp) onto Gal(Fp/Fp) in the obvious
way. Now, Gal(Fp/Fp) contains the element Frobp that sends x to xp for all x. We can lift Frobp to
Gal(Qp/Qp) and from there put it into Gal(Q/Q). By abuse of language we will call this element
of Gal(Q/Q) also Frobp. Note that Frobp ∈ Gal(Q/Q) is not uniquely determined but depends
on two choices, namely the lift to Gal(Qp/Qp) and the embedding Gal(Qp/Qp) ↪→ Gal(Q/Q). We
want ρ(Frobp) to be well-defined up to conjugation in GL2(Kf,λ). This is implied by the fact that
ρ is unramified outside N` together with the fact that different embeddings of Gal(Qp/Qp) into
Gal(Q/Q) lead to conjugate subgroups of Gal(Q/Q). In particular the trace and the determinant of
ρ(Frobp) are well-defined, hence also its characteristic polynomial. Now comes the most interesting
property of ρ:

tr(ρ(Frobp)) = ap,
det(ρ(Frobp)) = ε(p)pk−1.

So the characteristic polynomial of ρ(Frobp) is equal to X2 − apX + ε(p)pk−1. The interesting
thing is that the complex roots of this polynomial have absolute value equal to p(k−1)/2. This is
a consequence of a famous result of Deligne, namely the Riemann Hypothesis part in his proof of
the Weil Conjectures. It is clear that this implies the conjecture of Ramanujan and Petersson, as
the trace is the sum of the roots of the characteristic polynomial.

In the case k > 2, the construction of ρ and the proof that it satisfies the above mentioned
properties is quite technical and uses étale cohomology, therefore we will not give it in these notes.
However, if k = 2 it is a lot easier than in the general case. In the remainder of these notes we
will explain how to construct ρf,λ if f is a newform of weight 2 and some level N .
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2 Modular curves

2.1 Preliminaries

One can divide out the group action of Γ1(N) on h to get the so-called modular curve

Y1(N) = Γ1(N)\h.

We can add the cusps to Y1(N) to compactify it and obtain the modular curve

X1(N) = Γ1(N)\h∗.

The topology that we use in h∗ is not the inherited topology of C. We do take the inherited
topology of C on h, but as a basis of open neighbourhoods of the cusps we take the following sets:

{γ ({z : =z > M} ∪ {∞}) : γ ∈ SL2(Z),M ∈ R>0}

It turns out that X1(N) has a model X1(N)Q over Q. If N > 3, then for each field K/Q we have
the following moduli-description of the K-valued points of Y1(N)Q ⊂ X1(N)Q:

Y1(N)Q(K) ∼= {(E,P ) : E elliptic curve over K, P ∈ E(K) torsion point of order N} /∼=K
. (2)

If K = C then we can make this description more concrete: the point Γ1(N)τ corresponds to the
pair

(C/(Zτ + Z), 1/N mod(Zτ + Z)) .

We can attach to the modular curve X1(N) its jacobian

J1(N) := Jac(X1(N)),

which is also defined over Q. As a group,

J1(N) ∼= (divisors of degree 0 on X1(N))/(principal divisors on X1(N)).

We have a very nice description of J1(N) as a complex torus. Let g be the genus of X1(N). The
space S2(Γ1(N)) is isomorphic to the space of holomorphic differentials on X1(N) by f 7→ f dq

q .
In particular it is of dimension g. Choose a basis f1, . . . , fg of S2(Γ1(N)). Then define a lattice
Λ ⊂ Cg by

Λ =
{∫

γ

(
f1

dq

q
, . . . , fg

dq

q

)
: [γ] ∈ H1(X1(N), Z)

}
,

so we integrate our basis over all closed paths in X1(N). Now, it can be shown that

J1(N) ∼= Cg/Λ.

This isomorphism is obtained as follows. We can write a degree 0 divisor as
∑

i(Pi −Qi). This is
mapped to ∑

i

∫ Pi

Qi

(
f1

dq

q
, . . . , fg

dq

q

)
modΛ.

This map is well-defined in the sense that the result in Cg/Λ does not depend on the chosen divisor
nor on the chosen paths from Qi to Pi. It is called the Abel-Jacobi isomorphism.
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2.2 Diamond and Hecke operators

Not only on Sk(Γ1(N)) but also on J1(N) we can define diamond and Hecke operators. We can
give a very neat description in terms of the moduli interpretation (2). On points (E,P ) we define

〈d〉(E,P ) = (E, dP ),
Tp(E,P ) =

∑
C⊂E

(E/C, P modC),

where this sum is taken over all cyclic subgroups C of E of order p. As endomorphisms of J1(N),
the diamond and Hecke operators are defined over Q. Over C these operators are defined by exactly
the same matrices that are used in defining them on Sk(Γ1(N)). In particular this clearifies the
choice of S in (1).

The operators 〈d〉 and Tp induce an action on the integral homology

H1(J1(N), Z) ∼= H1(X1(N), Z) ∼= Λ,

which we will also denote by 〈d〉 and Tp. We have a pairing

H1(X1(N), Z)×
(
S2(Γ1(N))⊕ S2(Γ1(N))

)
→ C : (γ, ω) 7→

∫
γ

ω

(in this notation a modular form is identified with the corresponding differential on X1(N)). If
we tensor the left factor of the pairing with C it becomes a perfect pairing. A particularly nice
property is that ∫

Tpγ

f
dq

q
=

∫
γ

Tpf
dq

q
.

Furthermore, on S2(Γ1(N)) there is a perfect pairing for which 〈d〉 and Tp are self-adjoint.
This implies that the decomposition of S2(Γ1(N)) into eigenspaces induces a decomposition of
H1(X1(N), C) into eigenspaces, but beware that here the eigenspaces have twice the dimension
of their counterparts in S2(Γ1(N)). Since the eigenvalues of the diamond and Hecke operators
are algebraic numbers, we can find the full decomposition already in H1(X1(N), Q). For a new-
form f , the eigenvalues of the operators 〈d〉 and Tp are in Kf , so we can find its corresponding
2-dimensional eigenspace inside H1(X1(N),Kf ).

2.3 Tate modules

Let ` be a prime number. For all positive integers n we consider J1(N)[`n], the group of `n-torsion
points on J1(N). This is a free Z/`nZ-module of rank 2g, equipped with an action of Gal(Q/Q).
For all n there is a map

J1(N)[`n+1] ·`→ J1(N)[`n]

and we can take the projective limit

T`(J1(N)) := lim
←−

J1(N)[`n].

This T`(J1(N)) has a natural Z`-module structure and is called a Tate module. It has an action
of Gal(Q/Q), 〈d〉 and Tp on it. One can show that for p - N` the following relation holds in
EndZ`

T`(J1(N)):
Tp = Frobp +〈p〉Verp = Frobp +〈p〉p Frob−1

p .

This relation is called the Eichler-Shimura relation.

Now,

J1(N)[`n] ∼=
1
`n

Λ/Λ ∼= Λ/`nΛ ∼= H1(X1(N), Z/`nZ).
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Hence also
T`(J1(N)) ∼= H1(X1(N), Z`).

The advantage of using Tate modules instead of homology is that we have a Galois action. The
price we pay for having this action is very low: we only have to replace the coefficient module Z
of the homology by Z`, where we can even choose the ` we like best.

We have a decomposition of T`(J1(N))⊗Z`
Q` into Hecke eigenspaces in the same way as we have

with H1(X1(N), Q). Let f be a newform in S2(Γ1(N)), with coefficient field Kf . Let λ | ` be a
prime of Kf lying above `. The decomposition into eigenspaces, together with multiplicity one,
shows that

Wf,λ := {v ∈ T`(J1(N))⊗Z`
Kf,λ : Tp(v) = ap(f)v for all p and 〈d〉v = ε(d)v for all d}

is a 2-dimensional subspace of T`(J1(N)) ⊗Z`
Kf,λ. Here, of course, the diamond and Hecke

operators act via the left factor of the tensor product and the scalar multiplication is defined via
the right factor.

Using the fact that 〈d〉 and Tp are defined over Q, one can show that Wf,λ is invariant under
the action of Gal(Q/Q). In particular, the action of Gal(Q/Q) on Wf,λ gives a 2-dimensional
representation

ρf,λ : Gal(Q/Q) → AutKf,λ
(Wf,λ) ∼= GL2(Kf,λ).

This last isomorphism invokes a choice of basis and is therefore not canonical. One can show that

tr(ρ(Frobp)) = ap and det(ρ(Frobp)) = ε(p)pk−1, (3)

hence this gives the Galois representation associated to f . Be aware of the easily made mistake that
(3) would immediately follow from the Eichler-Shimura relation: the characteristic polynomial of
ρ(Frobp) need not equal the minimal polynomial.
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