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Abstract

The conjecture will be stated, and put in its historical context and in the wider context of
the Langlands program. Serre’s level and weight of a 2-dimensional mod p Galois represen-
tation will be defined. Khare’s result will be stated. An overview will be given of what will
be treated in the seminar.

1 Historical context of Serre’s conjecture

Let us start by saying that Chapter 1 of the book [5] provides a very good introduction to this
matter, with much more details than this lecture.

The conjecture in question, in a rough qualitative form, dates from the early 1970’s, as one
can read in Serre’s article [6]. The conjecture is about 2-dimensional representations over finite
fields of the absolute Galois group of Q.

We let Q → Q be an algebraic closure of Q, for example the one that consists of all algebraic
numbers in C. Then Q is the union of all its finite dimensional Galois subextensions Q → K,
and thereforeGQ := Gal(Q/Q) = Aut(Q) is the projective limit of the Gal(K/Q). We consider
GQ with the topology that comes with the projective limit: it is the coarsest topology for which
all projections to the discrete Gal(K/Q) are continuous. With this topology, GQ is a compact
totally disconnected topological group. The open subgroups of GQ are precisely the stabilisers
of elements of Q; they form a basis of neighborhoods of 1.

Since Kronecker and Weber it is known that the maximal abelian extension of Q in Q is
the cyclotomic extension, obtained by adjoining all roots of unity to Q. Equivalently, the action
of GQ on Q×tors

∼= Q/Z gives a surjection GQ → Aut(Q×tors) = Ẑ× which turns out to be the
maximal abelian Hausdorff quotient.

Class field theory gives a description of the maximal abelian Hausdorff quotient of the ab-
solute Galois group GK for K any number field (or function field over a finite field). So in this
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case the Galois group of the maximal abelian extension of K is described, but we point out that
we do not know an explicit description of the maximal abelian extension itself.

The Langlands program, that was started in the end of the 1960’s, aims to generalise CFT
to the description of suitable representations of GQ on finite dimensional vector spaces, mainly
over C and over Ql. We will see more of this is this seminar, in the case of 2-dimensional
representations of GK with K totally real. I find Taylor’s article [7] an excellent introduction
into this matter. One of the aims of this seminar is also to learn more about the Langlands
program, as more or less all of it that is known in the GL2-case is used in Khare’s work (and
there has been really a lot of progress, recently).

The context of Serre’s conjecture is that of explicit descriptions of 2-dimensional continu-
ous representations of GQ over finite fields. In the case of CFT for Q the object to consider is
Gm(Q)tors. Typical objects that give 2-dimensional representations of GQ are E(Q)tors, for E an
elliptic curve over Q. The objects that play a role in Serre’s conjecture are modular forms, corre-
sponding to torsion points on jacobian varieties of curves of the form Γ\H with Γ a congruence
subgroup of SL2(Z), or of étale cohomology of certain locally constant sheaves on such curves.

As we said above, a qualitive form of Serre’s conjecture was made in the beginning of the
1970’s. Motivated by an application to Fermat’s Last Theorem, Serre formulated a very precise
conjecture in his article [6] of 1987. Let us recall this application (also described in detail in
Serre’s article).

Suppose that p ≥ 5 is prime, that ap + bp + cp = 0 and abc 6= 0, with a, b and c integers that
are relatively prime. Then one writes A = ap, B = bp and C = cp, permutes them such that 2|b,
and a = −1 (mod 4), and defines the elliptic curve:

EA,B,C : y2 = x(x− A)(x+B).

This elliptic curve is often called the “Frey elliptic curve” associated to the solution (a, b, c, p)

of Fermat’s equation. But in fact it had been considered before Frey by Hellegouarch in 1969,
and even (a bit implicitly) by Fricke and Klein (as mentioned in the book by Kubert and Lang on
modular units).

The elliptic curve E has good reduction at all primes l not dividing ABC, and it has mul-
tiplicative reduction at the primes dividing ABC. The discriminant of a minimal Weierstrass
equation for E is 2−8(abc)2p.

Frey’s new idea was to relate EA,B,C to the conjecture that all elliptic curves over Q are mod-
ular, i.e., can be mapped with a finite kernel to the jacobian of a suitable modular curve. Frey’s
exact idea of showing that EA,B,C cannot be modular, by using groups of connected components
of Néron models, turned out to be wrong. But Frey’s idea motivated Serre to make his rough con-
jecture more precise, and to have sufficiently many tests done by Mestre in order to be convinced
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of what this precise version should be. The Galois representation in question here is E(Q)[p].
The very special property that it has is that it is unramified outside 2p, semi-stable at 2, and is
“finite at p”. We will see in the next section what consequences this has.

2 Statement of the conjectures

The rough form of the conjecture is quite easy to state.

2.1 Conjecture. (Serre, weak form) Let p be a prime number and ρ : GQ → GL2(Fp) be a con-
tinuous odd representation (odd meaning that det ρc = −1, where c is any complex conjugation).
Then ρ can be obtained from a modular form.

In the next lecture modular forms will be defined, and a precise statement will be given about
modular forms giving rise to Galois representations.

In order to state the precise version, giving the minimal type of the modular form of which ρ
can be obtained, we need more terminology.

Let p be prime, and ρ : GQ → GL2(Fp) continuous. As the image of ρ is finite, we take a suit-
able power q of p such that ρ lands in GL2(Fq). Serre then associates two positive integers N(ρ)

and k(ρ) to ρ, called the level and the weight of ρ, and a character ε(ρ) : (Z/N(ρ)Z)× → F×p
called the character of ρ.

The level N(ρ) is by definition prime to p, and given by the usual formula for the Artin
conductor for a Galois representation. Let G := ρGQ = Gal(K/Q), and let V := F2

p with its
GQ-action via ρ. Let l 6= p be a prime, and choose a place of K above l, i.e., a maximal ideal
m of the ring of integers OK . The decomposition group G−1 of G is the stabiliser of m, and
the ramification group Gi (i ≥ 0) is the kernel of G−1 → Aut(OK/m

i+1). The subgroup G0

is called the inertia group at l, and the p-group G1 is called the wild inertia subgroup. We have
G1/G0 = AutFl

(OK/m); this group is cyclic, generated by the Frobenius element Frobp that
sends x to xp. In this notation, we have:

N(ρ) =
∏
l 6=p

ln(l,ρ), n(l, ρ) =
∑
i≥0

1

#(G0/Gi)
dim(V/V Gi).

We note that from the formula it is not clear at all that n(l, ρ) is an integer (it is clear if ρG1 is
trivial, in which case we have n(l, ρ) = dim(V/V G0)). We note that n(l, ρ) = 0 if and only
if ρ is unramified at l, i.e., if ρG0 is trivial. We have N(ρ) = 1 if and only if ρ is unramified
outside p. Although the formula for N(ρ) is just a formula, and not a very nice one, I want to
mention that the conductor of a continuous representation GQ → GLn(C) shows up naturally in
the functional equation of its L-function.
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The next step is to define ε(ρ), and the class of k(ρ) modulo p− 1. For this, we consider the
character det ρ from GQ to F×p . This character factors via the cyclotomic character : GQ → Ẑ×

that we have seen above. Comparing the formula for n(l, ρ) with that for n(l, det ρ), and noting
that n(p, det ρ) ≤ 1 (because it is tame and of dimension one) it follows that det ρ factors through
(Z/N(ρ)pZ)× = (Z/N(ρ)Z)× × F×p . Then ε(ρ) is by definition the character induced on the
first factor, and k(ρ) mod p−1 is by definition the element of Z/(p−1)Z such that the character
induced on the second factor is raising to the power k(ρ) − 1. A simple characterisation of this
is that for l not dividing N(ρ)p we have:

det ρFrobp = ε(l)lk(ρ)−1.

As the level N(ρ) reflects the ramification of ρ outside p, the weight k(ρ) reflects the rami-
fication at p, but the definition is more involved, and is given in terms of a recipe that as far as I
know can only be motivated by looking at the properties of Galois representations associated to
modular forms. For the best understanding as of today of this matter the reader is invited to look
this up in the recent work of Fred Diamond on weights in the context of Hilbert modular forms.

Let Z be the integral closure of Z in Q. Let us choose a surjection Z → Fp (these are
permuted transitively by GQ). Then we have a sequence of subgroups:

Ip C I CGp ⊂ GQ,

whereGp is the decomposition subgroup, I the ramification subgoup, and Ip the wild ramification
subgroup. We can identify Gp with Gal(Qp/Qp), Gp/I with Gal(Fp/Fp), and It := I/Ip (the
tame ramification group) with Gal(Qtr

p /Qunr
p ) and with lim

←−
F×pn . A character φ : It → F×p is said

to be of level n if n is the smallest integer such that φ factors through F×pn . The n characters
It → F×pn → F×p that are induced by embeddings of fields Fpn → Fp are called the fundamental
characters of level n. We let χ : GQ → F×p denote the cyclotomic character giving the action on
the pth roots of unity: σ(ζ) = ζχ(σ).

Let ρp : Gp → GL(V ) be any continuous 2-dimensional representation on a Fp-vector space.
Let V ss be the semi-simplification of V with respect to the action of Gp. Then Ip acts trivially
on V ss and the action of It on V ss is given by two characters φ, φ′ : It → F×p . Since Gal(Fp/Fp)

acts by conjugation on It it follows that {φp, φ′p} = {φ, φ′}. This means that there are two cases:

1. φ and φ′ are both of level 1, ρp is reducible.

2. φ and φ′ are both of level 2, φp = φ′, φ′p = φ, and ρp is irreducible.

The representation ρp is called finite at p if it comes from the representation of Gp of the form
W (Qp) where W is a finite locally free groupscheme over Zp (for more details see [6], or
section 8 of [2]).
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Serre now associates an integer k(ρp) to ρp as follows.

1. Suppose that φ and φ′ are of level 2. We have:

ρp|I ∼=

(
φ 0

0 φ′

)

After interchanging φ and φ′ if necessary, we have (uniquely) φ = ψa+pb = ψaψ′b and
φ′ = ψ′aψb with 0 ≤ a < b ≤ p−1. We set k(ρp) = 1 + pa+ b.

2. Suppose that φ and φ′ are of level 1.

(a) If ρp|Ip is trivial then we have:

ρp|I ∼=

(
χa 0

0 χb

)

with 0 ≤ a ≤ b ≤ p−2. We set k(ρp) = 1 + pa + b if (a, b) 6= (0, 0) and k(ρp) = p

if (a, b) = (0, 0).

(b) Suppose that ρp|Ip is not trivial. We have:

ρp|I ∼=

(
χβ ∗
0 χα

)

for unique α and β with 0 ≤ α ≤ p−2 and 1 ≤ β ≤ p−1. We set a = min(α, β),
b = max(α, β). If χβ−α = χ and ρp ⊗ χ−α is not finite at p then we set
k(ρp) = 1 + pa + b + p − 1 if p 6= 2 and k(ρp) = 4 if p = 2; otherwise we set
k(ρp) = 1 + pa+ b.

2.2 Remark. In [2] I defined a variant k′(ρp) of k(ρp) that is adapted to a slightly more general
kind of modular forms mod p (so-called Katz modular forms, defined geometrically in charac-
teristic p, and not by reduction from characteristic zero). By comparing the definitions of k(ρ)
and k′(ρ) one sees that always k′(ρ) ≤ k(ρ) and that they differ only in two cases. In both cases
φ and φ′ are of level 1. In the first case ρp|Ip is trivial and a = 0 = b: then k′(ρ) = 1 and
k(ρ) = p. In the second case p = 2, ρp|Ip is non-trivial, α = 0, β = 1 and ρp is not finite at p:
then k′(ρ) = 3 and k(ρ) = 4.

We can now state the precise version of Serre’s conjecture. We state it in what is called the
“epsilon” form, the strong version of Serre’s conjecture is then the conjunction of the weak and
the epsilon conjectures.
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2.3 Conjecture. (Serre, epsilon conjecture) Let p be a prime number and ρ : GQ → GL2(Fp)

be an irreducible continuous odd representation. Suppose that ρ can be obtained from a modular
form. Then it can be obtained from a modular form of level N(ρ) and weight k(ρp).

2.4 Remark. The reader will notice that now ρ is required to be irreducible. Reducible ρ are
known to come from Eisenstein series (easy, if one knows enough), but formulating a correct
epsilon conjecture for them seems to be more involved. Anyway, one would then first have to
choose if one wants to consider arbtitrary irreducible representations, or only semi-simple ones
(i.e., direct sums of two characters). Maybe one can find more on this in the work of Skinner and
Wiles.

2.5 Remark. One can also try to specify the character ε(ρ) of the modular form. This can be
done but leads to some problems. See [3], or [1], or the comments on [6] in volume 4 of Serre’s
collected works.

3 Known cases and some applications

The first application is of course the obvious one:

modularity plus epsilon implies Fermat.

More precisely, let EA,B,C be the elliptic curve associated to a solution of Fermat’s equation, as
above. Then it is known by work of Mazur that the odd representation ρ of GQ on EA,B,C(Q)[p]

is irreducible. We haveN(ρ) = 2 and k(ρ) = 2. So ifEA,B,C is modular (STW conjecture!) then
the epsilon conjecture above implies that ρ comes from a modular form of level 2 and weight 2,
quod non.

In 1987, when [6] appeared, already enough of epsilon had been proved by Mazur and Ribet
(see [4]) so that Fermat was a consequence of the modularity conjecture for elliptic curves over Q
with semistable reduction over Z.

The epsilon conjecture has also played an important role in the work of Wiles, because it
allowed him to reduce his problem to the special case where the level is minimal.

For a proof of the following result, see the appendix by Buzzard in [5] and the references in
there.

3.1 Theorem. (many people) The epsilon conjecture as stated above is true except possibly in
the case where p = 2, ρ is unramified at 2 and ρ(Frob2) scalar.
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So, apart from these remaining cases, the strong and weak form of Serre’s conjecture are equiv-
alent. Much less is known about the remaining conjecture: are all representations as above
modular?

Let us note for example, that as all elliptic curves E over Q are known to be modular, all
representations of the form E(Q)[p] are modular.

The result of Khare that is the subject of this seminar is about this question. It says the
following.

3.2 Theorem. (Khare) Serre’s conjecture is true for ρ such that N(ρ) = 1, i.e., for odd contin-
uous ρ : GQ → GL2(Fp) that are unramified outside p.

An interesting consequence of this is that there exist no irreducible finite flat group schemes of
type (p, p) over Z; this corresponds to the fact that the space of cupsidal modular forms of weight
two and level one is zero.

Khare’s result gives me hope that the general case of Serre’s conjecture will be proved in the
not so far future. This would mean a big step in our understanding of 2-dimensional representa-
tions of GQ. Of course, Khare’s result should be seen in the context of all developments in this
field since 20 years. It is fair to say that his methods use all techniques that have been developed
in that period: deformation theory, Wiles’s “R=T” type theorems, Taylor’s potential modularity
etc. The study of its proof is a very good opportunity to learn more about this subject.

4 Program of the seminar

How can this be described better than giving the list of lectures (of course, the complete program
is on my homepage):

• September 23, Utrecht

– Bas Edixhoven: Introduction to Serre’s conjecture.

– Johan Bosman: Galois representations associated to modular forms.

– Gunther Cornelissen: Theorem G of Taylors article Remarks on a conjecture of
Fontaine and Mazur.

• October 7, Leiden

– Sander Dahmen: Lower bounds for discriminants.

– Frits Beukers: Upper bounds for discriminants.
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– Bas Edixhoven: Overview of Khare’s proof.

– Johan de Jong: Kloosterman lecture, Rational points and rational connectivity.

• October 14, Amsterdam (UvA)

– Gerard van der Geer: Hilbert modular forms and Hilbert modular varieties.

– Bart de Smit: General theory of deformations of Galois representations.

– Johan de Jong: Rational points and rational connectivity, II.

• November 11, Leiden

– Gebhard Boeckle: Deformation rings of Galois representations in nice cases

– Fabio Mainardi: Automorphic theory for GL2.

– Theo van den Bogaart: Construction of Galois representations in cohomology of
Shimura curves.

– Johan de Jong: Rational points and rational connectivity, III.

• November 25, Nijmegen

– Johan de Jong: Strictly compatible families of Galois representations.

– ????: Overview of modularity lifting.

– ????: Taylor’s potential modularity, I.

– Johan de Jong: Rational points and rational connectivity, IV.

• December 9, Utrecht

– ????: Taylor’s potential modularity, II

– Luis Victor Dieulefait: Existence of minimal lifts and the proof in the weight 2 case.

– Jean-Pierre Wintenberger: Khare’s proof in the general case.
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