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Abstract

An overview will be given of Khare’s proof of Serre’s conjecture in level one. Those
who will not attend the rest of the seminar will have an idea of Khare’s proof, and it is hoped
that those who will attend the rest of the seminar will now be sufficiently motivated to digest

the more technical parts that are to come.

1 Khare’s result

A good reference for this lecture is Khare’s survey in his preprint [9]. We should note that
Taylor’s results in [14] and [15] play an essential role in the papers [8], [9], [10], [6] and [5] by
Khare, Khare-Wintenberger and Dieulefait. Let us start by recalling Khare’s result.

1.1 Theorem. (Khare) Let p be a prime number, and let p: G = Gal(Q/Q) — GLy(F,) be a
continuous odd representation that is unramified outside p. Then p comes from a modular form:
there is an eigenform f = > a,q" of some level N, weight k and character ¢, such that for all |
not dividing Np the characteristic polynomial of pFroby is 22 — ayz + (1)I*1.

We note that in the case of a reducible p (that may be ramified outside p) the form f can be taken
to be an Eisenstein series (easy). So, if we want, we can assume p to be irreducible. Moreover,
if p is irreducible and the image pGg is solvable, then results of Langlands and Tunnell ([11]
and [16]) show that such a p (that may be ramified outside p) comes from a modular form, so
we may even assume that pGg is not solvable. Finally, because of the results by Tate and Serre
explained in the previous two lectures by Dahmen and Beukers, we may assume that p > 5.

In what follows, we will not try to state all intermediate results in the generality in which
they are known, but instead we will just focus on the strategy of the proof of Thm. 1.1. We will

assume that p > 5 and that pGg is not solvable.



2 Minimal lifts

After replacing p with some p ® X}, we may assume that 2 < k(p) < p + 1; this is a well-known
property of Serre’s definition of k().

A lift of p is then a continuous representation p: Gg — GL2(O), with O the ring of integers
in a finite extension of ,, such that p induces p via O — ﬁp. We note that it is a priori not clear
at all if lifts exist. Such a lift p is called minimal if p is unramified outside p and satisfies the
following property at p (i.e., after restriction to a decomposition group G, at p):

1. if k(p) # p + 1 then p|g, is crystalline of weights (0, k(p) — 1);

2. if k(p) = p + 1 then p|g, is semistable and non-crystalline of Hodge-Tate weights (0, 1),
or is crystalline of Hodge-Tate weights (0, p).

Some explanation is in order here, concerning the minimality property at p. If k(p) = 2 then
the condition means that p can be realised as the (,-representation associated to a p-divisible
group over Z, (compare with the equivalence “k(p) = 2 iff p finite at p”). Properties such as
“crystalline” and “‘semi-stable” are defined with the help of certain functors of Fontaine that go
from p-adic G,-representations to (Q,-vector spaces with additional structure (such as Frobenius
operator, filtration, monodromy operator). These functors transform p-adic étale cohomology
into de Rham type cohomologies (and vice versa if possible). The condition “crystalline” (resp.
“semi-stable”) can then be intuitively described as “is as cohomology of a projective smooth
(semi-stable) Z,-scheme. For precise statements see [4].

In the case k(p) = p + 1 we can give an explicit description of the minimality condition at p
(see section 2 of [10]). In that case, 15|Gp is a wildly ramified extension of an unramified character
e by €X,. A lift p is then semi-stable at p iff p|¢, is an extension of an unramified character &
by £x,. A lift p is crystalline of Hodge-Tate weights (0, p) if its restriction to intertia at p is an
extension of 1 by x7.

The first step in the proof of Thm. 1.1 is the following result, Theorem 2.1 of [10].

2.1 Theorem. Assume that k(p) # p. Then a minimal lift exists. If k(p) = p + 1 then minimal
lifts of both types at p exist.

The proof of this theorem starts by considering the minimal deformation theory for p. First, one
fixes a finite subfield F C T, such that pGg is contained in GLy(F), and one lets W be the
ring of Witt-vectors of F. Then (as we will see in the lecture by Bart de Smit in this seminar)
there exists a universal deformation p"™": Gg — GLg(R"™Y) that has the property that for any
artinian W-algebra R with residue field I and for any minimally ramified p: Gg — GLa(R)



that induces p via R — [ there exists a unique "™ — R such that p"™ induces a conjugate
of p via R"™Y — R. (In the case k(p) = p + 1 such a ring exists for each of the two types of
minimal lifts.) The WW-algebra R"™" is known to be a quotient of some W {[x1, ..., z,]].

In order to prove Theorem 2.1 it suffices to know that R"™V is flat as W'-module. Gebhard
Bockle has shown in [2] (using techniques that are more or less standard since Wiles) that R

has a presentation of the form:
R™ = W(xy,...,z)]/(fi,. .., fs), withs <7

In view of this, it then suffices to prove that Runiv / pR™Y is finite, because in that case
(fi,..., fs) gives a regular sequence in F[[xy,...,x,]], hence also in W{[z1,...,z,]], and so
the quotient R"™" is finite and free as ¥ -module.

To explain what is happening here it is a good moment to say a few words on the so-called
Fontaine-Mazur conjecture from [7]. According to one of their conjectures, every continuous
p: Gog — GLy(O) that is unramified outside a finite set of primes and that has some good
behaviour at p such as “crystalline of different Hodge-Tate weights” or “semi-stable” comes from
“geometry”, which means in this case that up to a twist by a power of ,, it comes from a modular
form. This conjecture then implies that the 1/ -algebra R"™" above is then isomorphic to a
suitable Hecke algebra (the algebra generated by Hecke operators on a suitable space of modular
forms as we have seen in Johan Bosman’s lecture). In particular, one always expects for R as
above R[1/p] to be finite dimensional as 1V |[1/p|-vector space. It was Wiles and Taylor-Wiles
who first gave important evidence for this conjecture by Fontaine and Mazur by establishing
“R = T-theorems”. The point now is that for those “R = T'-theorems” (also called modularity
lifting theorems) one always has to assume modularity of the p that is being deformed.

It was Taylor who realised, in [14] and [15], that Wiles’s trick using the primes 3 and 5 could
be generalised in a very useful way by accepting to get a result only over a totally real field of
which the degree is not under control. More on this will be said later in the seminar.

Concerning the proof of Theorem 2.1 Taylor shows that for an appropriate totally real ex-
tension Q — F the analogously defined ring R¥W"" is isomorphic to a Hecke algebra and hence
has the property that R /pR¥ is finite. From the fact that G has finite index in Gy it then
easily follows (a result of Johan de Jong) that R*™Y /pR"™Y is finite. (It follows from the fact that
the image of G in GLo( R™Y /pR"™") is finite, plus the fact that W -algebra R™Y is generated
by the traces of elements of Gg.)



3 Hilbert modular forms

In order to give the audience an idea of what is going on, I just want to mention that what
we have seen in Johan Bosman’s lecture about Galois representations associated to modular
forms, can be generalised from Q to totally real fields /. The action of the group GLs(R) on
P}(C) — PL(R) is then replaced by the action of GLy(R ® F) = GLy(RY) = GLy(R)? on
(PY(C) — P'(R))%, where d = dimg F. The congruence subgroups of GLy(Z) are then replaced
by congruence subgroups of GLs(Op). All formulas are similar, but more complicated, and
in order to get a comprehensible description of Hecke operators, it becomes necessary to work
with the adeles of F. The modular forms arising in this context are called Hilbert modular
forms, and the varieties that generalise the modular curves are called Hilbert modular varieties.
More on this in two of the lectures on October 14. On November 11 two lectures are devoted
to the construction of Galois representations associated to Hilbert modular forms, and some
automorphic theory necessary for that construction. For f a normalised eigenform, and A a
prime of the ring of integers of the field of coefficients, the associated representation of G is

denoted py .

4 Taylor’s potential modularity results

We just state here the results relevant to our situation: the proof of Thm. 1.1. So, the assumptions
are as before: p > 5, pG is not solvable, 2 < k(p) < p+ 1 and k(p) # p. The reference for the
result stated here is [10, Prop. 2.5].

4.1 Theorem. (Taylor) There exists a totally real field F' and a Hilbert modular eigenform f
“over I’ of level one and weight k(p) with the following properties. The extension Q — F'is
Galois and unramified at p, and even split at p if p|¢,, is irreducible. The representation p|¢, has
nonsolvable image. There is a place p over p of the coefficient field E of f such thatp; , = pla,.
If k(p) = p + 1 then there is also a form f with level p and weight 2 such thatp;, = ﬁilcp-

Proof. We just say a few words on the proof. More details should be given in the 2 lectures on
this subject later in the seminar. The fact that pG r is nonsolvable is a consequence of F' being
totally real: pG'r contains the image of complex conjugation (which has eigenvalues 1 and —1),
as well as all its conjugates.

The main idea is to show that there exists an abelian variety A over some totally real number
field F, with multiplications by O, for some totally real field M such that dimg M = dim(A),
such that for some place p of M over p one has X}, ® pla, = A(Q) [p] for a suitable i such that



det(Y, ® pla,) = X, (this is possible because det p is an odd power of ), and with A(Q)[)]
dihedral (i.e., induction of a character of a quadratic extension) for some place A of M over a
prime [ different from p and 2. Such an abelian variety A/F is proven to exist by the theorem
explained to us in the lecture by Gunther Cornelissen, applied to a Hilbert-Blumenthal moduli
space associated to M, defined over Q, of a suitable level, and suitably twisted. We recall that
we have no control on dimg F', but the choice of M depends only on the choice of a finite field
IF such that pGo C GLy(F).

Then a generalisation of the results of Wiles and Taylor-Wiles, by Wiles, Skinner, Diamond,
Fujiwara, Taylor, Jarvis (and probably others that I forget), shows that A[A*°] is modular, from
which follows existence of f. This last part also involves level lowering in the context of Hilbert

modular forms. O

As said above, we do not mention the other results of Taylor on this subject concerning L-
functions; let us suffice to say that he extended Artin’s results on complex representations (hence
with finite image) to a lot of 2-dimensional p-adic Galois representations, in particular, mero-

morphic continuation with the expected functional equation.

5 Compatible families of Galois representations

We now know that p|,, is modular. This then gives an “R = T-theorem” over F'. In particular,
any minimally ramified lift p of p as in Thm. 2.1 is modular over F'.

Let now p be a minimally ramified lift as in Thm. 2.1, and let f be the Hilbert modular
eigenform of level 1 that gives p, say at a place p of its field of coefficients £. Then any finite
place A of E gives us a A-adic representation py : Gp — GLy(E)), and this whole system of
Galois representations is what one calls a compatible system (e.g., characteristic polynomials
of Frobenius elements at unramified places do not depend on J\; stronger conditions can be
formulated at all places using the so-called Weil-Deligne group (this will be explained, hopefully,
in the lecture by Johan de Jong on compatible families)).

Now py, = pla, can be extended to the 2-dimensional representation p of Gg, which means
that f has the extra symmetry under the action of Gal(F/Q) needed to correspond to a modular
form over Q. Unfortunately, not enough has been proved on this at the moment, in order to be
able to conclude that p is modular. But the known case of solvable base change ([1]) implies that
p is modular over subfields of the form F'# with H a solvable subgroup of Gal(F/Q).

Using Brauer’s result that says that every representation of Gal(F/Q) over Q is a finite linear
combination with Z-coefficients of representations of the form Indflal(F/ Yy with H a solvable
subgroup of Gal(F/Q) and x: H — Q" a one-dimensional representation, one can show that

5



there exists a compatible family py: Gog — GLo(E)). For a detailed statement, we refer to
Thm. 3.1 of [10]. This result of existence of compatible families was first proved by Dieulefait
in [6], and, independently, by Wintenberger in [17]. At this point we would also like to note that
Dieulefait had all necessary ideas to prove Serre’s conjecture in the case of level one and weight
two, except for the use of Boeckle’s result mentioned above; see [5] and the references therein.

6 Khare’s induction on primes

At this point we have enough ingredients to explain Khare’s strategy for proving Thm. 1.1. We
note that already some parts of this were already achieved in [10].

A way to think about what has to be done is to consider the pairs (p, k) in Z? with p prime
and 2 < k < p? — 1 together with (2,4) (the range of possible weights for p: Gg — GLo(F,)).
For each such pair (p, k) we must check that every odd irreducible p: Gg — GLy(F,) that is
unramified outside p with k() = p is modular. This unramifiedness implies that det p = X;, for
some 7, and the oddness of 5 then implies that k(p) is even. So we only need to consider even k.

Forp: Gg — GLQ(FI,) the property of being modular is invariant under twisting by powers
of x,, (this holds in fact for twisting p-adic representations with characters with finite image,
because modular forms can also be twisted). As we already said, for each p there is an ¢ such
that 2 < k(p ® X;,) < p + 1. This means that in order to prove the conjecture for all (p, k) for a
given p, it suffices to prove the result for the even k£ with2 < k < p+ 1.

As explained in the two preceding lectures, we know the conjecture to be true for p in {2, 3}.
Let us now start working in the horizontal direction, i.e., varying p. We first do this for £ = 2.
So let p > 3 and assume that p: Go — GLy(TF,) is odd, irreducible and of weight 2 (actu-
ally, according to Serre’s conjecture, these should not exist, as the space Sy(I'1(1)) is zero, so
we should arrive at a contradiction). Let now p be a p-adic lift of p as given by Thm. 2.1:
p: Gg — GL2(Og) is unramified outside p and is given by a p-divisible group over Z, (i.e, p
is crystalline of weight 2). Let (p,) be the compatible system as in the previous section. Then
consider the residual representation p; at some place of £ over 3. By what we already know, ps
is reducible and therefore modular, and a modularity lifting result by Skinner and Wiles proves
that the 3-adic representation ps is modular. But then the p-adic representation p is modular, and
therefore p is.

The same argument shows that if we know the conjecture for (p, k) with k& < p + 1, then we
know it for all (¢, k) with & < ¢ + 1. This depends of course on the modularity lifting results

that are available as of today, so let us here state such results (Theorem 6.2 of [9]).



6.1 Theorem. (“many people) Let p > 2 and p: Gg — GLo(IF,) be continuous, odd, not
necessarily irreducible, with 2 < k(p) < p+ 1. Let p be a lift of p to a p-adic representation.

1. If p is unramified outside p and crystalline of weight k with 2 < k < p + 1, then p is
modular.

2. If p is unramified outside p, and either semistable of weight two at p or Barsotti-Tate at p,
then p is modular.

3. If ¢ # p is prime and p is unramified outside pq and Barsotti-Tate at p, then p is modular.

The next case to treat is (5,6). For details, see Theorem 4.1 of [9]; this case was already
treated in [10]. We also note that this is the first case that Moon and Taguchi cannot treat without
assuming GRH in [12]. So assume p: Gg — GLy(Fs) be of that type: continuous, odd, irre-
ducible, unramified outside 5 and with k(p) = 6. Then (using Thm. 2.1) let p: Ggp — GL2(O) be
a H-adic lift of p that is unramified outside 5 and semistable of weight 2 at 5. Then Taylor’s result
Thm. 4.1 implies that there is an abelian variety A over Q, such that p is isomorphic to A(Q)[5*].
This A has good reduction outside 5 and semistable reduction at 5. But by a result of Brumer
and Kramer [3] (see also Schoof [13]) such a non-zero abelian variety does not exist (the method
of proof of those results is an extension of the method that we have seen for 2 and 3 exploiting
groupscheme structures for getting better upper bounds for discriminants). This contradiction
proves what we need.

The next case to treat is (7, 8); also this case was already treated in [10] but in a different way.
This case is more complicated, but it shows very well the general strategy, so it will be the last
case that we speak of (for details see [9, Section 8]); details will be given in the last two lectures
of the seminar. Suppose 5: Gg — GLs(F;) is continuous, odd, irreducible, unramified outside 7
and with k(p) = 8. Then 5|, is a wildly ramified extension of 1 by Y. Let p be a 7-adic lift
as in Thm. 2.1 that unramified outside 7, semistable of weight 2 at 7. Then p|;, is an extension
of 1 by x7. Let (p,) be a compatible family as in the previous section. Take a 3-adic p; (i.e.,
choose a place over 3 of the coefficient field of (p,)), and let 7’ := p;: Gg — GLy(F3). Then
k(p') = 2 and 7' is unramified outside 3-7. If 7 has solvable image then it is modular (trivially
in the reducible case and otherwise by Langlands-Tunnell) and by Thm. 6.1 p3 is modular and
hence p and p are. So we assume that 7’ has nonsolvable image. If ¢’ is unramified at 7, then it is
reducible by the results for 2 and 3 so this is not the case. Properties of compatible families show
that 7’|, is a nontrivial extension of 1 by 1 (think of the 7 and 3-adic Tate-modules of an elliptic
curve over QQ that has multiplicative reduction at 7). We lift o’ to a 3-adic p’ that is Barsotti-Tate
at 3 and such that o[, is w2 & 1 (with wy: Gg — (Z/7Z)*—Q " a Teichmiiller lift of ;). This
step is the main innovation in [8] with respect to [10]; see Thm. 6.1 of [9], the existence of such a
lift is an analog of what is called Carayol’s lemma on the modular form side that says that when



one wants to lift a mod p modular form f to a characteristic zero form f, in almost all cases one
can choose the character £(f) among all characters reducing to £(f) mod p. Note that in this case
indeed w? has order 3 hence reduces to the trivial character mod 3. The improvement that has
been achieved now is that p’|;, has finite image of order 3, whereas ps|7, has infinite image. Let
(p,) be a compatible family as in Section 5. The final miracle is now that p, either has solvable
image or satisfies k(p5) € {4,6}, so that in all cases we can deduce that p’, is modular.

The general method is precisely like this. In the most complicated case one lifts p-adically,
gets a compatible family, reduces modulo a smaller prime p’, twists and changes to a different

p’-adic lift, and passes to the compatible p-adic representation that leads to a smaller weight.
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