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Abstract

The automorphic representation associated to an eigenform will be described, as well
as its local factors at the places of F. The statement that the local factor of the automorphic
representation determines the local Galois representation (after F-semisimplification) will be
explained, and an explicit description will be given in at least the case of a principal series
local representation.

The main reference used in this text is Saito’s preprint, of which we try to follow the no-
tation. We have Q → F totally real, n := dimQ(F ), I := Hom(F, R) and we fix a bijection
{1, . . . , n}−̃→I .

1 Hilbert modular forms, before adèles

We begin by recalling some parts of the 2 hours by van der Geer in this seminar. We have H the
complex upper half plane, with its action by SL2(R). Then on Hn we have an action by SL2(R)n,
and SL2(OF ) embeds as a discrete subgroup into SL2(R)n using all n disctinct embeddings of
F into R. Hence any congruence subgrioup Γ of SL2(OF ) acts on Hn. Let k = (k1, . . . , kn) be
in Zn. Then a Hilbert modular form on Γ, of weight k, is a holomorphic function:

f : Hn −→ C,

such that, for all γ = ( a b
c d ) in Γ and all z in Hn we have:

f(γz) = (cz + d)kf(z),

where (cz + d)k = (c1z1 + d1)
k1 · · · (cnzn + dn)kn . If F = Q, one asks moreover f to be

“holomorphic at the cusps”. Equivalently: f gives a section of some holomorphic line bundle on
a compactification Γ\Hn (and compactifying is not necessary for n > 1).
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2 Adèlic description

We let G := ResF/QGL2,F , the Q-group scheme obtained by restricting GL2 from F to Q. This
means that for every Q-algebra A we have G(A) = GL2(A⊗Q F ). In particular, we have:

G(R) = GL2(R⊗ F ) = GL2(Rn) = GL2(R)n.

We let X := P1(C)− P1(R), the “double half plane”, with its natural GL2(R)-action. Then we
have the space of cuspidal weight k forms (over C):

S
(k)
C = {f : Xn ×G(Afin) −→ C | certain conditions},

where Afin denotes the topological Q-algebra of finite adèles of Q; for the precise conditions the
reader is referred to the notes by van der Geer, or the preprint of Saito.

The space S
(k)
C has a natural action by G(Afin) given by right translations. One of the con-

ditions on elements f of S
(k)
C is that the stabiliser of f in G(Afin) is open. Representations with

this property are called smooth. It follows that:

S
(k)
C =

⋃
K

(S
(k)
C )K ,

where K runs over the open compact subgroups of G(Afin). Each space (S
(k)
C )K can also be seen

as:
(S

(k)
C )K = H0(G(Q)\(Xn ×G(Afin)/K),L(k)(−cusps)),

where L(k) is a holomorphic line bundle and L(k)(−cusps) its coherent subsheaf of sections
vanishing at the cusps. In particular, the spaces (S

(k)
C )K are finite dimensional.

Sometimes it is a good idea to treat the Archimedean places of Q in the same way as the
finite ones. Then one writes:

S
(k)
C = {f : G(A) −→ C | more conditions},

using the fact that Xn = G(R)/K∞, with K∞ = (C×)n. The conditions are then that the
elements should be invariant under right translation by K∞, and that the induced function on
Xn ×G(Afin) satisfies the conditions above.

3 Hecke operators

A general question is the following: what operators does the G(Afin)-action on S
(k)
C induce on

the spaces (S
(k)
C )K?
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Let us first discuss what happens for finite groups. Let G be a finite group, and H and K

subgroups. Then we have the functor taking H-invariants:

(·)H : Z[G]−Mod −→ Z−Mod, V 7→ V H = HomH(1, VH) = HomG(1G
H , V ).

The identities show that (·)H is represented by the induced representation 1G
H = Z[G/H], the

free Z-module on the set G/H . By Yoneda’s lemma, we then have:

Hom((·)H , (·)K) = HomG(1G
K , 1G

H) = (1G
H)K = Z[K\G/H].

Concretely, the map from V H to V K given by an element KgH of K\G/H is the map
v 7→

∑
i giv, where KgH is the disjoint union of the giH .

In our case, of compact open subgroups K and H of G(Afin) and smooth representations, this
theory works in exactly the same way; indeed, each KgH decomposes as a finite union of giH ,
as KgH is open and compact.

Let us state a few simple basic properties of compact open subgroups of G(Afin).
Up to conjugacy, there is exactly one maximal open compact subgroup of G(Afin):

K0 =
∏

v GL2(OFv), where v runs through the set of finite places of F . (The proof of this uses
the facts that K0 is the stabiliser of the standard lattice Ô2 of A2

fin, that each compact subgroup of
G(Afin) stabilises some lattice, and that G(Afin) acts transitively on the set of all lattices). If K

and K ′ are open compact, then K ∩K ′ is open in each of K and K ′, and hence of finite index.
Hence:

K =
∏
a.a. v

GL2(OFv)×R

where the first product is over almost all v and where R is open compact in the product of the
remaining GL2(OFv).

It follows that on (S
(k)
C )K we have, for the almost all v above, standard Hecke operators Tv

and Rv, given by the double K-cosets of ( t−1
v 0
0 1

) and ( t−1
v 0

0 t−1
v

), where tv is a uniformiser of OFv .

4 Representation theory

We just list some facts.
The representation S

(k)
C is completely reducible, i.e., the direct sum of irreducible represen-

tations, and each irreducible representation occurs at most once. The irreducible representations
that occur are called cuspidal automorphic representations of weight k of GL2(AF,fin). They are
infinite dimensional.

Each irreducible representation V in S
(k)
C contains a certain well-defined one-dimensional

subspace of the form (S
(k)
C )K1(nf ) with the subgroup K1(nf ) defined as in van der Geer’s lecture,
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with nf a non-zero ideal of OF , maximal for the property that (S
(k)
C )K1(nf ) is non-zero. This

subspace contains a unique element f whose first coefficient c(1, f) equals 1; this f is called
the (normalised) newform of V and nf is called the level of f or also the conductor of V . The
representation V is then simply the C-span of the set of gf , with g in G(Afin). We now write the
decomposition of S

(k)
C as:

S
(k)
C = ⊕fπf ,

where the sum runs over the set of normalised newforms of weight k.
Each πf itself can be decomposed as a so-called restricted tensor product over the finite

places of F , corresponding to the fact that AF,fin is the restricted product of the Fv over the finite
places v of F . Let us make this precise. For each finite set S of finite places of F we consider
the subspace of S

(k)
C of elements invariant under the subgroup K1(nf )

S :=
∏

w 6∈S K1(nf )w. This
subspace is a representation of

∏
v∈S GL2(Fv), which turns out to be irreducible, and is therefore

given as a tensor product:
⊗v∈Sπf,v, πf,v = V K1(nf )v

.

Then we have:
πf = ⊗′

vπf,v,

where the notation ⊗′
v means the direct limit of the finite tensor products, for the maps given by

the inclusions into πf as subspaces of invariants for the corresponding subgroups.

5 Analogy with GL1

In this section F is not necessarily totally real, as class field theory works for arbitrary number
fields. So we let

χ : F×\A×
F −→ C×

be a continuous character, decomposed as χ =
∏

v χv, with the condition that on the infinite
places χv is given by some algebraic formulas: on F×

v = R× > 0 it should send t to tn for some
integer n, and for F×

v = C× it should send z to znzm for some integers n and m. Such characters
are called algebraic Hecke characters (unless I’m mistaken).

Now CFT (class field theory) gives a surjection:

F×\A×
F −→ Gal(F ab/F ),

where F → F ab is the maximal abelian subextension of F → Q. Under this map, the connected
components of the F×

v at the infinite places are sent to 1, hence χ cannot directly correspond to
a representation of Gal(F ab/F ).
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The image of χ restricted to the finite adèles AF,fin is contained in a number field L, and for
every finite place λ of L we get, by changing χ at the v|l∞, a continuous character χλ of F×\A×

F

to L×λ that factors through Gal(F ab/F ). The way to change χ at the v|l∞ is (probably) to choose
an isomorphism between Ql and C, in order to get a bijection between the embeddings of F into
Ql and into C. For details the reader is referred to Serre’s book “Abelian l-adic representations
and elliptic curves”.

6 Galois representations

Let f and πf be as above. Let L ⊂ Q ⊂ C be the field of definition of the weight k: the group
Gal(Q/Q) acts on Hom(F, Q), hence on Z[Hom(F, Q)] of which k is an element, so L, with its
embedding into Q, corresponds to k.

Then S
(k)
C has a natural L-structure, i.e., there exists an L-vector space S

(k)
L , with an action

of G(Afin), such that:
S

(k)
C = C⊗L S

(k)
L .

In order to prove this, one uses the moduli interpretation of the Hilbert modular varieties, and
shows that the “geometry giving rise to S

(k)
C ” is defined over L.

Let L(f) be the field of definition of πf (this is a finite extension of L, determined by Fourier
coefficients, or by Hecke eigenvalues if one wants). With these definitions, we have the following
theorem, due to “many people”.

6.1 Theorem. Let λ be a finite place of L(f). Then there is a unique continuous representation

ρf,λ : Gal(Q/F ) −→ GL2(L(f)λ),

unramified at all v not dividing nf l, and such that for such v the characteric polynomial of the
Frobenius det(1 − Tρf,λ(Frobv)) is given by a suitable formula in terms of the Tv and Rv-
eigenvalues and the weight k of f .

Moreover, for all v not dividing l, the restriction ρf,λ,v of ρf,λ to Gal(F v/Fv) is, after F-
semisimplification (this notion will be explained below), determined by πf,v via a suitably nor-
malised local Langlands correspondence:

′ρF−s.s.
f,λ,v = σ̌h(πf,v).

Moreover, if f can be realised in the cohomology of a Shimura curve, then the same is true
for all v dividing l, but then the definition of ′ρF−s.s.

f,λ,v involves Fontaine’s Dpst-functor.
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The very last statement of this theorem will be explained somehow in the lecture by Johan de
Jong, later in the seminar. This is the main result of [1].

Let us explain the notion of F-semisimplicity. The representation ρf,λ,v is called F-semisimple
if for each character α such that α⊗ρf,λ,v is unramified, α⊗ρf,λ,v(Frobv) is semisimple. Conjec-
turally, all representations coming from cohomology of algebraic varieties are F-semisimple, but
we only know it in the cases coming from H0 (finite image) and H1 (related to abelian varieties).
In general, one has a functor that F-semisimplifies.

7 Some examples of the local theory: Galois side

Let λ and v be as above, with v not dividing l. Let:

ρ : Gal(F v/Fv) −→ GL2(Ql)

be continuous, and F-semisimple. Then one has the following classification.

1. ρ is decomposable: ρ = α⊕ β with α and β characters of Gal(F v/Fv).

2. ρ is reducible but indecomposable: ρ ∼= ( αχl ∗
0 α ), where χl : Gal(F v/Fv) → Z×

l is the
l-adic cyclotomic character.

3. ρ is irreducible and one of the following is true:

(a) ρ is the induced of a character of Gal(F v/K) with Fv → K a quadratic extension.

(b) wild inertia acts irreducibly. This can only occur if v divides 2, and in this case the
representation is called extraordinary. For Fv = Q2 these have been classified by
André Weil in his article “exercices dyadiques”.

This classification as stated is not so hard to prove. The special form of the two diagonal char-
acters in part 2 comes from the structure of semi-direct product of the tame quotient of the local
Galois group. For the last part, one uses that an irreducible representation over C of a finite
p-group has dimension a power of p.

8 Some examples of the local theory: GL2 side

On this side, we will only sketch the representations that correspond to the first two cases above
on the Galois side. Not surprisingly, these are obtained in terms of characters of F×

v . Let λ be as
above, and let χ1 and χ2 be continuous characters from F×

v to C×. Let B be the Borel subgroup
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of GL2(Fv) consisting of the upper triangular matrices, and let (χ1, χ2) be the character of B

given by ( x y
0 z ) 7→ χ1(x)χ2(z). Then we let V (χ1, χ2) be the representation of GL2(Fv) given

by right-translation on the space of functions: f : GL2(Fv) → C whose stabiliser in GL2(Fv) is
open, and such that for all ( x y

0 z ) in B and all g in GL2(Fv) we have:

f(( x y
0 z )g) = χ1(x)χ2(z)f(g).

This representation V (χ1, χ2) is called the (naive) parabolic induction of the representation
(χ1, χ2), and is (at least) sometimes denoted Ind

GL2(Fv)
B (χ1, χ2). It satisfies the following ad-

joint property (Frobenius reciprocity) in the category of smooth representations of GL2(Fv):

HomGL2(Fv)(π, Ind
GL2(Fv)
B (χ1, χ2)) = HomB(π|B, (χ1, χ2)).

With these notations one has the following (not so hard to prove) theorem.

8.1 Theorem. 1. If χ1χ
−1
2 6∈ {1, |·|2} then V (χ1, χ2) is irreducible, called principal se-

ries. Moreover, V (χ1, χ2) ∼= V (χ′1, χ
′
2) if and only if (χ′1, χ

′
2) = (χ1, χ2) or

(χ′1, χ
′
2) = (χ2|·|, χ1|·|−1).

2. If χ1 = χ2 then we have a short exact sequence:

0 −→ Cχ1 ◦ det −→ V (χ1, χ2) −→ χ1 ⊗ Sp −→ 0,

where Sp is irreducible and called the special representation of GL2(Fv).

3. If χ1χ
−1
2 = |·|2 then we have a short exact sequence:

0 −→ (χ1|·|−1)⊗ Sp −→ V (χ1, χ2) −→ χ1|·|−1 −→ 0.

To finish, let us show the following result.

8.2 Proposition. Let χ1 and χ2 be continuous characters from F×
v to C×, let V := V (χ1, χ2)

and let K := GL2(OFv). Then V K 6= 0 if and only if χ1 and χ2 are unramified. Sup-
pose that V K 6= 0, and let t be a uniformiser of OFv . Recall that we have Hecke operators
R = K( t−1

v 0

0 t−1
v

)K and T = K( t−1
v 0
0 1

)K. Then V K is of dimension one, C·f , say, and have
Rf = χ−1

1 (t)χ−1
2 (t)f , and Tf = (χ−1

1 (t) + (|·|−1χ−1
2 )(t))f .

Proof. We recall that V is the space of functions f : GL2(Fv) → C whose stabiliser for right
translations is open, and such that for all ( x y

0 z ) in B and all g in GL2(Fv) we have:

f(( x y
0 z )g) = χ1(x)χ2(z)f(g).
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Hence V K is the set of such functions f that are invariant under right translations by GL2(OFv).
Now we can use the well known fact that GL2(Fv) = BK, a kind of non-archimedean version
of Gramm-Schmidt. A very nice way to see that one has this is to note that B\GL2(Fv) is the
same as P1(Fv), compatibly with the action of GL2(Fv), and that P1(Fv) = P1(OFv), so that the
action of GL2(OFv) on B\GL2(Fv) is transitive. Let now f ∈ V K . Then we have, for all k ∈ K

and all b = ( x y
0 z ) ∈ B that f(bk) = χ1(x)χ2(z)f(1), where 1 denotes the two by two identity

matrix. In particular, dim(V K) ≤ 11, and, as the stabiliser in B of the image of 1 in GL2(Fv)/K

is B ∩K, we have V K 6= 0 if and only if χ1 and χ2 are trivial on O×
Fv

.
Let now f ∈ V K , and suppose that f 6= 0. By the above, we may as well assume that

f(1) = 1.
As the element r := ( t−1 0

0 t−1 ) defining R is central, we have KrK = rK, and hence:

(Rf)1 = f(1·r) = χ1(t
−1)χ2(t

−1)f(1), hence Rf = χ1(t
−1)χ2(t

−1)f.

To compute Tf we note that:

K( t−1 0
0 1 )K = ( t−1 0

0 1 )K
∐∐

a

( 1 at−1

0 t−1 )K

where the union is disjpoint (as indicated in fact) and where a runs through a list of representa-
tives of the quotient OFv → kv. Therefore:

(Tf)1 = f( t−1 0
0 1 ) +

∑
a

f( 1 at−1

0 t−1 ) = χ−1
1 (t)f(1) + #kvχ2(t

−1)f(1)

=
(
χ−1

1 (t) + (|·|−1χ−1
2 )(t)

)
f(1).

�
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