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The writing of this syllabus is in progress, as one can see from the title above. In the ‘studiegids’
it is advertised as follows.

In this course we will study various kinds of geometrical objects, such as differentiable
varieties, analytic varieties and algebraic varieties. These objects occur in many ar-
eas of mathematics, ranging from physics (general relativity, conformal field theory,
mechanics) and analysis (Lie groups, differential equations) to algebra and number
theory (arithmetic algebraic geometry). The course starts with definitions and ex-
amples of such varieties and the right kind of maps between them. Then we study
tangent bundles, vector bundles, tensor constructions, differential forms, integration.
Two goals will be to establish the basic properties of de Rham cohomology, and to give
the description of what a space-time is in general relativity. The aim of the course is
to provide the students with the fundamentals of geometry, and to prepare for more
advanced algebraic geometry. Each week exercises will be handed out, and one hour of
the course will be used to discuss them. As the teacher (Edixhoven) is new in Leiden,
he does not know too much what kind of audience to expect. So the course will be
adapted to its public, meaning that more details will always be given if needed, and
that the goals can be adjusted if necessary.

The syllabus is based on one that was used in Rennes in 1996, and which can be downloaded in
various formats (ps, ps.gz, pdf) at:

http://www.maths.univ-rennes1.fr/~edix/cours/dea9697.html

together with a syllabus by Looijenga that is used in Utrecht:

http://www.math.ruu.nl/people/siersma/difvar.html

Regularly, new sections will be handed out, including exercises. These sections will also be put on
the webpages for this course. It is probably a good idea to print out Looijenga’s syllabus, but not
the old Rennes syllabus by Edixhoven (unless one does not care about wasting paper).
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1 Differentiable varieties

We are going to study various kinds of geometrical objects, such as differentiable varieties, analytic
varieties and algebraic varieties. These objects occur in many areas of mathematics, ranging
from physics (general relativity, conformal field theory, mechanics) to algebra and number theory
(algebraic geometry) and analysis (Lie groups, differential equations). Students taking this course
are invited to look for further details or other points of view in text books. Some books I can think
of at this moment are: Spivak’s series of books (differential geometry), the book by Bott and Tu
(differential forms in algebraic topology), Lang’s book (differentiable manifolds) and Bourbaki’s
book (variétés différentielles et analytiques: fascicule de résultats). A good idea is to look in the
library under the appropriate AMS subject classifications (differential geometry is 53, algebraic
geometry is 14, Lie groups is 22, analytic geometry: 32, geometry: 51, manifolds: 57 and 58).

We begin with differentiable varieties, also called manifolds. These are usually defined in terms
of charts. Intuitively, they are objects that “locally” look like Rn for some n. We begin by making
that precise.

1.1 Definition. Let X be a set. An atlas for X then consists of the following data: a set I,

for each i in I a subset Xi of X, an integer ni ≥ 0, an open subset Ui of Rni and a bijection

φi : Ui → Xi. These data are required to satisfy the following conditions. Firstly, the Xi cover X,

that is, ∪iXi = X. Secondly, the charts φi are compatible, in the sense that we will now explain.

For i and j in I let Xi,j be Xi ∩ Xj , and let Ui,j be φ−1
i Xi,j . Then φi induces a bijection, still

denoted φi, from Ui,j to Xi,j . Saying that φi and φj are compatible means that Ui,j is open in

Ui, Uj,i open in Uj , and the bijection φ−1
j ◦ φi : Ui,j → Uj,i is differentiable.

Some remarks are in order here. First of all, the differentiability of φ−1
j ◦ φi in the definition can

mean various things. When we just say differentiable, we mean in fact infinitely differentiable,
that is, the nj R-valued functions making up φ−1

j ◦ φi are C∞-functions on Ui,j . But we could
also consider functions of class Ck for some k ≥ 0; in that case we will say that the atlas is Ck.
Note that the terminology “differentiable” is misplaced in the case k = 0; in that case we speak
of a topological atlas. The second remark concerns the integers ni.

1.2 Definition. Let k ≥ 0 be an integer or ∞. A variety or manifold of class Ck is a set X

equipped with a Ck-atlas. Notation: (X, I, n, U, φ).

For X a Ck-variety and x in X, all ni for i such that Xi contains x are equal; this integer is
called the dimension of X at x; we denote it by dimX(x), so that we can view dimX as a Z-valued
function on X. (For k > 0 the equality of the ni is easy to prove (consider derivatives and use
linear algebra); for k = 0 one needs some algebraic topology.) Most of the time we will just
consider the C∞ case. As usual, defining the objects to study is not too interesting; we should
also say what maps between them we want to consider. For example, we want to say what it
means that two manifolds are isomorphic.

1.3 Definition. Let (X, I, n, U, φ) and (Y, J,m, V, ψ) be manifolds. Let f be a map from X to Y .

Let x be in X. Then f is called differentiable at x if for every (i, j) such that x ∈ Xi and

f(x) ∈ Yj the subset φ−1
i ((f−1Yj) ∩Xi) ⊂ Rni contains an open neighborhood of φ−1

i (x) and the

map ψ−1
j fφi from φ−1

i ((f−1Yj) ∩ Xi) ⊂ Rni to Rmj is differentiable at φ−1
i (x). The map f is

called differentiable, or a morphism of manifolds, if it is differentiable at all x in X.
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Note that this definition does not change if we require the openness and differentiability at x only
for one pair (i, j). If f : X → Y and g : Y → Z are morphisms, then g ◦ f : X → Z is also a
morphism. So we have the category of manifolds: we have objects, morphisms, composition of
morphisms, the composition is associative and each object X has an identity morphism idX . A
morphism f : X → Y is called an isomorphism if and only if there exists a morphism g : Y → X

such that fg = idY and gf = idX . Equivalently: a map f : X → Y is an isomorphism if and only
it is bijective and f and f−1 are differentiable. Let us look at some examples of manifolds.

Let n ≥ 0. Then Rn with the atlas consisting of the chart idRn is a manifold, that we will
denote by Rn. In the same way, every open subset of some Rn becomes a manifold. If X and
Y are manifolds (we have already dropped the atlas from the notation), then X × Y is easily
equipped with an atlas (take K := I × J , Wi,j := Ui × Vj , etc.). We leave it as an exercise to the
reader to verify that the two projections prX and prY from X × Y to X and Y are differentiable,
and that (X ×Y,prX ,prY ) has the following universal property: for Z a manifold and morphisms
f : Z → X and g : Z → Y there exists a unique morphism h : Z → X×Y such that f = prXh and
g = prY h. Let V be a finite dimensional R-vector space, say of dimension n. Then an isomorphism
of R-vector spaces φ : Rn → V makes V into a manifold. It is clear that two such isomorphisms
φ 6= φ′ give different atlases but that idV is an isomorphism between the manifolds.

For n ≥ 0 the subset GLn(R) of Mn(R) consisting of invertible n by n matrices with co-
efficients in R is an open subset (it is det−1(R − {0})). It is easy to check that the maps
m : GLn(R)×GLn(R)→ GLn(R) and i : GLn(R)→ GLn(R) given by m(x, y) = xy and i(x) = x−1

are differentiable (for i, use the formula for x−1 in terms of the matrix of cofactors and det(x)).
In general, a group G equipped with an atlas such that the multiplication and inversion are
differentiable is called a Lie group. We will see more examples soon.

Our next example is in a sense more interesting, because it is not isomorphic to an open subset
of Rn for any n. We consider the circle S1 in R2: it is the set of (x, y) such that x2 + y2 = 1.
One way to make an atlas is the following. The projection on the first coordinate gives a bijection
from {(x, y) ∈ S1 | y > 0} to the open interval ] − 1, 1[; the same holds for {(x, y) ∈ S1 | y < 0}.
We also have the projections on the second coordinate from the sets {(x, y) ∈ S1 |x > 0} and
{(x, y) ∈ S1 |x < 0}. The four inverses of these maps form an atlas. Another atlas is obtained
by restricting the map (sin, cos) from R to R2 to suitable subsets of R. Yet a third atlas is given
by projection from points of S1. For t in R consider the line through (t, 0) and (0, 1). This line
intersects S1 in (0, 1) and a unique other point: (2t/(t2 + 1), (t2 − 1)/(t2 + 1)). This map gives a
bijection from R to S1−{(0, 1)}. Considering lines through (0,−1) gives a second chart. The map
idS1 is an isomorphism between all three atlases for S1 that we have just seen. It is interesting to
note what kind of functions we get from the charts and transition maps (i.e., the φ−1

j φi) in these
three cases. In the first case the charts and the transition maps are algebraic functions (they are
built up from rational functions and square roots). In the second case the charts are given by the
transcendental functions sin and cos, but the transition maps are just translations in R. In the
third case all functions are rational functions.

We could treat the n-sphere Sn in a similar way (it is defined as the subset of (x0, . . . , xn) in
R
n+1 such that x2

0 + · · · + x2
n = 1). In particular, the first and third methods we used for n = 1

are easily adapted (not the second method, as far as I can see; it has to do with the fact that Sn

is simply connected for n ≥ 2 (well, of course, one has the usual spherical coordinates r, θ and
φ, but it is not as nice)). But it is more useful to develop a systematic way to make subsets of
R
n that are defined by suitable equations into manifolds. In order to do this we need the implicit
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function theorem. We will state this theorem in a quite general context, so that it will suffice for
the whole course.

1.4 Theorem. Let K be either R or C. Let X, Y and Z be normed K-vector spaces, with Y

complete. Let U be an open subset of X × Y , k ≥ 1 and f : U → Z a Ck-map. Let (x, y) be

in U such that the derivative (D2f)(x, y) : Y → Z of f with respect to the second variable is an

isomorphism of topological vector spaces (i.e., it is bijective and its inverse is continuous). Then

there exist open neighborhoods V of x in X and W of y in Y such that V ×W ⊂ U and for every

v in V there exists a unique w in W with f(v, w) = f(x, y). The map g : V → Y thus defined

is Ck. Moreover, if X and Y are finite dimensional and f analytic, then g is analytic.

For a proof the reader is referred to the standard text books, or to course notes from analysis
courses. In the complex case, i.e., K = C, we say that f : U → Z is Ck if it is so when we view X,
Y and Z as R-vector spaces. When we want to talk about differentiability in the complex sense,
we will allways explicitly say so. The reason for this terminology is that a function f : U → C,
with U ⊂ Cn open, is analytic if and only if it is C1 in the complex sense.

Let us now consider the following situation. We have positive integers n and m, we have an
open subset U of Rn and a Ck map f from U to Rm, for some k ≥ 1. Let X be the set of zeroes
of f : X := {x ∈ U | f(x) = 0}. We want to equip X with an atlas, in some natural way (for
example, the charts should be Ck-maps to Rn). It turns out that at least some conditions have
to be satisfied for this to be possible. For example, consider the function f : R2 → R given by
f(x, y) = xy. Then X is the union of the two coordinate axes; consequently, X, with its induced
topology, cannot be a C0-manifold, since no neighborhood of (0, 0) is homeomorphic to an open
interval in R. Note that (0, 0) is special, since both partial derivatives of f vanish at that point,
i.e., f has derivative zero at (0, 0). So, in the situation above, we assume that for all x in X the
derivative (Df)x is surjective (i.e., f is a submersion at all x in X). Let now x be in X. Let V be
the kernel of the linear map (Df)x : Rn → R

m. Let V ⊥ be the orthogonal of V (for the standard
inner product on Rn). We view R

n as the product V × V ⊥, and hence U as an open subset of
V × V ⊥. In this situation we can apply Theorem 1.4, since (D2f)x is an isomorphism from V ⊥

to Rm. We get an open subset V ′ ⊂ V and a Ck-map g : V ′ → V ⊥ such that x is in V ′ × V ⊥

and for all v in V ′ we have f(v, g(v)) = 0. Hence the map φ : V ′ → X defined by φ(v) = (v, g(v))
is a chart at x. We can obviously cover X with such charts (for example, take one chart for
each x). These charts are compatible because φ−1 is just the orthogonal projection on V . Note
that dimX(x) = dimV = n−m.

1.5 Exercise. Suppose that we have U ⊂ Rn open, and Ck-maps f : U → R
m and f ′ : U → R

m′ ,
defining the same X and both submersions at all x in X. Then show that any two atlases obtained
from the construction above are such that idX is an isomorphism between them.

We can now easily give some more examples of Lie groups: the classical matrix groups.

1.6 Example. Let n ≥ 1. The group special linear group SLn(R) is defined as the kernel of the
morphism of groups det : GLn(R)→ R

∗. We have to show that for all x in SLn(R) the derivative
(D det)x is non-zero. So we have to “compute” det(x+ εy) for small ε in R and any y in Mn(R).
We have:

(1.6.1) det(x+ εy) = det(x(1 + εx−1y)) = det(x) det(1 + εx−1y) = 1 + εtr(x−1y) +O(ε2),
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with tr(x−1y) the trace of x−1y. It follows that ((D det)x)y = tr(x−1y). This cannot be zero for
all y, since x−1 is invertible. (We note that the “standard” inner product on Mn(R) is given by
(a, b) 7→ tr(at b).)

1.7 Example. Let again n ≥ 1. The orthogonal group On(R) is the subgroup of x in GLn(R)
that preserve the standard scalar product of Rn, i.e., the x such that xt x = 1. The special
orthogonal group is the subgroup SOn(R) of x in On(R) with det(x) = 1. We consider the map
f : GLn(R)→ Mn(R)+ given by f(x) = xt x− 1, where Mn(R)+ denotes the set of real symmetric
n by n matrices. We have to show that this map is submersive at all x in On(R). For x in On(R),
y in Mn(R) and small ε in R we have (with z := x−1y):

(1.7.1)
f(x+ εy) = f(x(1 + εz)) = (1 + εz)txt x(1 + εz)− 1 = (1 + εzt)(1 + εz)− 1 =

= ε(zt + z) +O(ε2).

It follows that ((Df)x)y = zt + z,which clearly shows that (Df)x is surjective. So On(R) is
now a manifold. Our computation above also shows that it has everywhere the same dimension,
namely (n2− n)/2 = dimR(Mn(R))−, the dimension of the R-vector space of anti-symmetric n by
n matrices. For every x in On(R) we have 1 = det(xt x) = det(x)2, hence det(x) = ±1. There are
x in On(R) with det(x) = −1, hence we have a short exact sequence:

(1.7.2) 1→ SOn(R)→ On(R)→ {±1} → 1.

This sequence is split: send −1 to the diagonal matrix diag(−1, 1, . . . , 1), for example. If n is
odd, we even have a splitting with image in the center: send −1 to −1; hence for odd n we have
an isomorphism of Lie groups from On(R) to SOn(R) × Z/2Z. For even n there is not such a
splitting, and one cannot do better than say that On(R) is isomorphic to the semi-direct product
SOn(R) ×α Z/2Z, with α : Z/2Z → Aut(SOn(R)) the morphism of groups that sends −1 to the
inner automorphism given by conjugation by diag(−1, 1, . . . , 1).

1.8 Example. Again, n ≥ 1. The symplectic group Sp2n(R) is the subgroup of GLn(R) that
preserves the “standard” alternating bilinear form on R2n that is given by the matrix ψ := ( 0 −1

1 0 ),
in which the coefficients are n by n matrices. One computes easily that Sp2n(R) is the subset of
GL2n(R) of the x that satisfy xtψx = ψ. So we consider the map f from GL2n(R) to M2n(R)−

given by f(x) = xtψx − ψ. Let x be in Sp2n(R), y in M2n(R) and ε in R. Put z := x−1y. Then
we have:

(1.8.1) f(x+ εy) = f(x(1 + εz)) = (1 + εzt)ψ(1 + εz)− ψ = ε(ztψ + ψz) +O(ε2).

This shows that ((Df)x)y = ztψ + ψz, so we have to show that the map z 7→ ztψ + ψz from
M2n(R) to M2n(R)− is surjective. To do this, we compute its kernel (this is interesting anyway,
since this kernel is what is called the Lie algebra of Sp2n(R)). So write z as a two by two matrix
of n by n matrices: z = ( a bc d ). Then a short computation gives:

(1.8.2) ztψ + ψz = 0 ⇐⇒ (ct = c and bt = b and d = −at).

It follows that the kernel has dimension 2n2+n. The dimension of M2n(R)− equals ((2n)2−(2n))/2.
Linear algebra then implies that our map z 7→ ztψ + ψz is surjective.
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1.9 Exercise. Let n ≥ 1. Show that the Lie groups SLn(R), SOn(R) and Sp2n(R) are connected
(the last one is more difficult to do). Show also that Sp2n(R) is contained in SL2n(R).

1.10 Exercise. Let n ≥ 1. Show that GLn(C) is a manifold (i.e., make it into one, in the right
way). The unitary group Un(R) is the subgroup of GLn(C) consisting of those x that preserve the
standard scalar product on Cn (the one that sends (v, w) to v1w1 + · · ·+ vnwn), or, equivalently,
the x with xt x = 1. Make Un(R) into a manifold. Compute its dimension. Show that it is
connected and compact. Do the same things for its subgroup SUn(R) consisting of those x with
det(x) = 1.

We have already quite a few examples at our disposal, and it seems a good moment to do something
about the foundations again. The reader is certainly aware that up to now each time we had various
atlases on one set X, they had the property that idX was an isomorphism between them. There
should be a much more natural way to express this. In fact, we should replace the atlases by
something else, giving us an equivalent category (this will be made precise). For example, when
one studies groups, it is very clumsy to deal only with groups in terms of generators and relations.
So we look for an object associated to an atlas for X such that two atlases such that idX is an
isomorphism between them give exactly the same object. We do this by considering a topology
on X and the notion of differentiable functions on open subsets of X.

Let X be a set equipped with a Ck-atlas (some k ≥ 0) (I, n, U, φ). Then we can define a
topology on X by saying that a subset V of X is open if and only if for all i in I the subset
φ−1
i (V ∩Xi) is open in Rni . (The verification that this works is left to the reader, and also that of

the following assertion.) A subset V of X is open if and only if for all x in V there exists an i such
that x ∈ Xi and the subset φ−1

i (V ∩Xi) of Rni contains an open neighborhood of φ−1
i (x). Suppose

now that V ⊂ X is open. Then a function f : V → R is called of class Ck if and only if for all i
the function f ◦ φi on φ−1

i (V ∩Xi) is Ck. The reader will verify that f : V → R is Ck if and only
if for all x in V there exists i such that f ◦φi on φ−1

i (V ∩Xi) is Ck. The set of Ck functions on V
will be denoted by CkX(V ); it is clearly an R-algebra, usually of infinite dimension. For an open
subset W contained in V we have the restriction map res(V,W ) : CkX(V )→ CkX(W ), that sends a
function f on V to its restriction f |W to W . It is clear that for Z an open subset contained in
W we have res(V,Z) = res(W,Z)res(V,W ). Such a collection of sets CkX(V ) and maps res(V,W )
is what one calls a presheaf on the topological space X, denoted CkX (a concise reference for the
notions of presheaf and sheaf is Hartshorne’s book “Algebraic Geometry” (GTM 52, Springer)).
A very important property of this presheaf CkX is the following direct consequence of the local
nature of a function being Ck: if we have an open subset V of X, and a covering of V by open
subsets Vj with the j in some set J , and for each j an element fj of CkX(Vj) such that for all j
and j′ we have res(Vj , Vj ∩ Vj′)fj = res(Vj′ , Vj ∩ Vj′)fj′ , then there exists a unique f in CkX(V )
such that res(V, Vj)(f) = fj for all j. (I apologize for the long sentence.) In general, a presheaf
that satisfies this glueing condition will be called a sheaf. For the moment, the notions of sheaf
and presheaf are just convenient for us for notational matters; we won’t do anything complicated
with sheaves for some time.

Given a set X with an atlas, the object we associate to it is the pair (X,CkX), consisting
of a topological space and a sheaf of rings on it. Such objects are called ringed spaces, and all
geometrical objects we will consider in this course will be ringed spaces. Let us now look at what
it means for a map to be a morphism in terms of these sheaves.
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1.11 Proposition. Let k ≥ 0. Let X and Y be Ck-manifolds, and let f : X → Y be a map (of

sets). Then f is a morphism of Ck-manifolds if and only if f is continuous and for each open U

in Y and g ∈ CkY (U) the function gf is in CkX(f−1U).

Proof. Suppose that f is a morphism of Ck-manifolds, i.e., f is Ck. Then it follows directly
from the definitions, and the fact that compositions of Ck-maps are Ck, that f is continuous and
that for each open U in Y and g ∈ CkY (U) the function gf is in CkX(f−1U).

Suppose now that f is continuous and that for each open U in Y and g in CkY (U) the function
gf is in CkX(f−1U). Then Xi ∩ f−1Yj is open in Xi, hence φ−1

i (Xi ∩ f−1Yj) is open in Ui, hence
in Rni . We have to show that the map ψ−1

j fφi from φ−1
i (Xi ∩ f−1Yj) to Vj ⊂ Rmj is Ck. It is

equivalent to show that the mj coordinate functions xkψ−1
j fφi of this map are Ck. Now xkψ

−1
j

is in CkY (Yj), hence xkψ−1
j f is in CkX(f−1Yj). It follows that xkψ−1

j fφi is differentiable. �

We are now ready to formulate a new, improved definition of the category of Ck-manifolds. Note
that a morphism of Ck-manifolds f : X → Y induces, for every open U in Y , a morphism of
R-algebras f∗(U) : CkY (U) → CkX(f−1U). In the language of sheaves, this is just a morphism of
sheaves from CkY to f∗CkX . For f : X → Y a morphism of topological spaces and F a sheaf on X,
f∗F is the sheaf defined by (f∗F )(U) = F (f−1U). A morphism of ringed spaces from (X,OX) to
(Y,OY ) is a pair (f, φ) with f a continuous map from X to Y and φ a morphism of sheaves from OY
to f∗OX . Let (f, φ) be a morphism from (X,OX) to (Y,OY ) and (g, γ) a morphism from (Y,OY )
to (Z,OZ). Then k := gf : X → Z is continuous, and for every open U ⊂ Z we have a morphism
of rings κ(U) from OZ(U) to OX(k−1U) obtained by composing γ(U) : OZ(U) → OY (g−1U)
and φ(g−1U) : OY (g−1U) → OX(f−1g−1U). In the case where X, Y and Z are obtained from
manifolds as above, these maps are just the maps that do pullback of functions. Anyway, one
easily verifies that κ is a morphism of sheaves (i.e., the κ(U) are compatible with the restriction
maps) so that (k, κ) is a morphism of ringed spaces. This composition of morphisms gives us a
category: the category of ringed spaces. So now we also have the notion of isomorphisms between
ringed spaces.

But in fact all this is not exactly what we need at this moment. Our ringed spaces (X,CkX)
are somehow special: the sheaf CkX is a sheaf of R-valued functions. If (X,OX) and (Y,OY ) are
topological spaces with sheaves of R-valued functions, we define a morphism from (X,OX) to
(Y,OY ) to be a continuous map f : X → Y such that for all U ⊂ Y open and all g in OY (Y ) the
function f∗g := gf is in OX(f−1U). One checks immediately that this also gives us a category
(let us call it the category of topological spaces with a sheaf of R-valued functions), hence also a
notion of isomorphism. For (X,OX) a topological space with a sheaf of R-valued functions, and
U ⊂ X open, we have the ringed space (U,OX |U ), with OX |U (V ) = OX(V ) for all open V ⊂ U ;
this topological space with a sheaf of R-valued functions is called the open subspace U of X. We
can now state our improved definition of manifolds.

1.12 Definition. Let k ≥ 0. A Ck-manifold is a topological space with a sheaf of R-valued

functions (X,CkX), that is locally isomorphic (in the category of topological spaces with sheaves

of R-valued functions) to some (U,CkU ), with U an open subset of some Rn and CkU the sheaf

of Ck-functions on U . (Note that n may vary.) A morphism from a Ck-manifold (X,CkX) to a

Ck-manifold (Y,CkY ) is a morphism in the category of topological spaces with a sheaf of R-valued

functions.
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Let us now see what it means that this definition is equivalent to the older one. So let, for a
moment, Man and Man′ denote the categories of Ck-manifolds in the old and the new sense,
respectively. Then we have a functor F from Man to Man′ that sends a set X with a Ck-atlas to
the space (X,CkX) as explained above, and sends a morphism f : X → Y in Man to the morphism
(f, f∗) in Man′. By saying that our two definitions are equivalent, we mean that F is induces an
equivalence of categories from Man to Man′. By definition, this means that there is a functor
G from Man′ to Man such that GF and FG are isomorphic to idMan′ and idMan, respectively.
General category nonsense says that such a G exists if and only if F is full and faithful (i.e, for
all X and Y in Man F gives a bijection from HomMan(X,Y ) to HomMan′(F (X), F (Y ))) and
essentially surjective (i.e., every (X,OX) in Man′ is isomorphic to the image under F of some
object of Man). Proposition 1.11 means that F is full and faithful. It remains to show that F is
essentially surjective. So let (X,OX) be an object of Man′. Then we can cover X by open sets
Xi such that the (Xi,OX |Xi) are isomorphic to some (U,CkU ) with U open in some Rn. These
isomorphisms form an atlas on X for which one easily verifies that it induces the sheaf OX .

We can give another interpretation of the manifold structure on sets of zeroes of equations
that we defined just after Theorem 1.4. The situation is the following: we have an open subset
U of some Rn, a Ck-map (some k ≥ 1) f : U → R

m such that (Df)x is surjective for all x in
X := f−10. Note that X is a closed subset of U . Let Z be any closed subset of U . Then we get
a sheaf CkZ of R-algebras on Z by letting CkZ(V ) be the set of g : V → R such that for all v ∈ V
there exists an open neighborhood V ′ of v in U and an h ∈ Ck(V ′) such that g = h on V ∩ V ′.
It is left to the reader to show that for X as above, this space (X,CkX) is in fact the manifold
obtained by the construction mentioned above. (I realize that in this last part I really skipped a
lot of details.)

After these generalities (general nonsense), let us consider some more examples: projective
spaces and Grassmannians.

1.13 Example. Let k be a field, and V a k-vector space. Then we define the projective space P(V )
associated to V to be the set of 1-dimensional subspaces of V (i.e., the set of lines through the
origin). Clearly, we have a bijection (V −{0})/k∗ → P(V ) induced by the map that sends v 6= 0 to
the subspace kv. For n ≥ 0 we define Pn(k) to be P(kn+1). An element in Pn(k) will be denoted as
(a0 : a1 : · · · : an) with ai ∈ k not all zero; in this notation we have (a0 : · · · : an) = (b0 : · · · : bn)
if and only if there exists λ ∈ k∗ with bi = λai for all i. Clearly, P0(k) consists of just the one
point (1). We can describe P1(k) as follows: it is the disjoint union of the set {(a : 1) | a ∈ k}, that
we can identify with k, and the point (1 : 0) “at infinity”. In the same way, Pn(k) is easily seen
to be the disjoint union of k0, k1, . . . , kn. If we want to equip Pn(k) with an atlas (say for k = R

or C), then these disjoint unions are not so useful: we need “open subsets”. So we consider the
covering of Pn(k) by the sets Pn(k)i := {a0 : · · · : an | ai 6= 0}, for 0 ≤ i ≤ n. For each i we have a
bijection φi from kn to Pn(k)i, sending (x1, . . . , xn) to the point (a0 : · · · : an) such that ai = 1,
aj = xj for j > i and aj = xj+1 for j < i. The inverse of φi sends (a0 : · · · : an) to the ntuple of
aj/ai with j 6= i. So, in the usual notation for charts, we have Ui = kn for all i. For j > i the
subset Ui,j of Ui = kn is the set {x ∈ kn |xj 6= 0}, which is an open subset if k = R or k = C.
The map φ−1

j φi from Ui,j to kn sends (x1, . . . , xn) to the ntuple consisting of the xl/xj with l < i,
1/xj , and the xl/xj with j 6= l ≥ i. Clearly, these maps are differentiable if k = R or C.
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1.14 Exercise. Show that the Pn(R) and Pn(C) are connected and compact. Show that P1(R)
is isomorphic to S1 and that P1(C) is isomorphic to S2.

1.15 Example. For k a field, V a k-vector space and d ≥ 0, let Grd(V ) be the set of d-dimensional
subspaces of V . Define Grd,n(k) := Grd(kn). Note that Gr1(V ) = P(V ) and Gr1,n(k) = P

n−1(k).
For k = R or C, we want to make the Grd,n(k) into manifolds. We will do this in two ways: first
by making charts, then by considering Grd,n(k) as a quotient of GLn(k) by a certain subgroup (in
this case we can define charts, or a topological space with a sheaf of functions).

Let n ≥ 0, d ≥ 0 and a field k be given. Let V be a k-vector space of dimension n. Let x be in
Grd(V ), i.e., x is a d-dimensional subspace of V . Choose a subspace y of V such that V = x⊕ y.
Let Grd(V )x be the subset {z | z ∩ y = {0}} of Grd(V ). For each z in Grd(V )x the projection
from z to x along y is an isomorphism. It follows that we have a bijection φx from Homk(x, y) to
Grd(V )x sending f to im(idx+f). Note that x = φx(0). We view the set Homk(x, y) as a k-vector
space in the usual way. We leave it to the reader to study the maps φx and to verify that, for
k = R or C, they form an atlas. It might be a good idea to look first at what happens when one
takes various y’s for one x, and then to take one y for various x’s. Anyway, it is not necessary to
do this, since the next method we use shows that the charts are compatible.

Let us now study Grd,n(k) from a different point of view. The group GLn(k) acts on the vector
space kn, hence on Grd,n(k): an element g sends x to gx, the image of x under g. It is easy to
see that GLn(k) acts transitively on Grd,n(k) (for a given x, choose a basis for x and extend it to
a basis of kn). Let x0 be the subspace ke1 + · · ·+ ked of kn, where e denotes the standard basis
of kn. The stabilizer P := GLn(k)x of x is the subgroup of GLn(k) consisting of those g such that
gi,j = 0 for all (i, j) with j ≤ d < i. Hence we get a bijection from GLn(k)/P to Grd,n(k). Suppose
now that k = R or C. It suffices to equip GLn(k)/P with a differentiable structure in order to do
so for Grd,n(k). As already said above, we can make an atlas for GLn(k)/P , but we can also make
GLn(k)/P into a topological space with a sheaf of functions, directly. Since we have already seen
numerous atlases, let us first construct the ringed space. For the sake of notation, let G := GLn(k),
X := G/P and π : G→ X be the quotient map. We equip X with the quotient topology: a subset
U of X is open if and only if π−1U ⊂ G is open. Then we equip the topological space X with the
sheaf of functions that are P -invariant. Note that for U ⊂ X open, P acts on C∞G (π−1U) by the
formula (pf)(g) = f(gp). For a set S with a P -action, let SP be the set of elements fixed by P .
The we define a sheaf C∞X on X by: C∞X (U) := C∞G (π−1U)P . Of course, now we have to verify that
the topological space with sheaf of functions (X,C∞X ) is a manifold. To do this, we have to show
that every point has an open neighborhood that is isomorphic to some (U,C∞U ) with U some open
subset of some Rn. This is of course almost the same as to make an atlas. Let g be in G. Then the
translate gP of P is the orbit of g under P . Let T be the subspace of Mn(k) consisting of the m
with mi,j = 0 if i ≤ d or j > d. Then Mn(k) is the direct sum of T and the tangent space of P at 1.
Let Ug := T and φg : Ug → X be given by φg(t) = π(g(1+ t)) (note that 1+ t is in G). One verifies
that φg induces an isomorphism between (T,C∞T ) and (Xg, C

∞
X |Xg ) with Xg = π(g(1 + T )P )

open since (1 + T )P is exactly the set of g in G with det((gi,j)1≤i,j≤d) 6= 0. What makes this
method work is the fact that the map f : T × P → G, (t, p) → (1 + t)p, is an isomorphism from
T × P to the open subset Ge of G consisting of the g in G with det((gi,j)1≤i,j≤d) 6= 0. That
this is so follows from the simple computation ( 1 0

t 1 )( a b0 d ) = ( a b
ta tb+d ). We make this a bit more

explicit. It is clear from the computation that the image of f is contained in Ge. Let now ( u v
w x )

be in Ge, and let us solve the equation ( a b
ta tb+d ) = ( u v

w x ). One finds: a = u, b = v, t = wu−1,
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d = x − wu−1v. This shows that indeed the image of f is Ge, that f is injective, and that the
inverse map f−1 : Ge → T × P is given by:

( u v
w x ) 7→

((
0 0

wu−1 0

)
,
( u v

0 x−wu−1v

))
.

It follows that f makes P -invariant open subsets of Ge correspond to open subsets of T , and P -
invariant C∞ functions on a P -invariant open subset of Ge to C∞ functions on the corresponding
open subset of T . Hence we have an isomorphism between (Xe, C

∞
X |Xe) and (T,C∞T ). One gets

similar isomorphisms for all (Xg, C
∞
X |Xg ) by using the action of G on itself by left translation.

Let us finish by noting that the charts obtained here and above are in fact the same, so we
have now also shown that the charts above are compatible.

1.16 Remark. We note that our definition of manifold is somewhat more general than the one
mostly encountered in textbooks, mainly for two reasons that both concern the underlying topo-
logical space. Often, manifolds are required to be Hausdorff (also called separated), i.e., distinct
points lie in disjoint open neighborhoods. The second difference is a finiteness property: one often
demands that a manifold has a countable basis for its topology (or, weaker, that it is paracompact
(we will encounter this notion later)). We will state these types of assumptions when they are
needed. Another difference is that most texts demand the dimension of a manifold, which is a
locally constant function in our terminology, to be actually constant. Even worse, some texts
demand manifolds to be connected.

1.17 Exercise. Give an example of a C∞-manifold of which the dimension is not bounded.

1.18 Definition. Let k ≥ 0. A morphism of Ck-manifolds f : X → Y is called an open imm-
mersion if it induces an isomorphism from X to an open submanifold of Y . More explicitly, this

means that fX is open in Y , that f induces a homeomorphism from X to fX (equipped with

the topology induced from that of Y ), and that for every open subset U of fX the map f∗ is an

isomorphism from CkY (U) to CkX(f−1U).

1.19 Exercise. Manifolds can be “glued” along open subsets. Let I be a set, and k ≥ 0. For
every i in I, let Xi be a Ck-manifold. For every i and j in I, let Xi,j be an open subset of Xi,
and let fi,j be an isomorphism from Xi,j to Xj,i. Suppose that for every i we have Xi,i = Xi

and fi,i = id, that for every i and j we have fj,i = f−1
i,j , and that for every i, j and l we have

f−1
i,j (Xj,i∩Xj,l) = Xi,j ∩Xi,l and fi,l = fj,lfi,j on Xi,j ∩Xi,l. Show that there is a Ck-manifold X,

and open immersions gi from Xi in X, such that X is the union of the giXi, and such that for all
i and j one has gj ◦ fi,j = gi on Xi,j .

1.20 Exercise. Give an example of a C∞-manifold that it not Hausdorff. (See Looijenga’s syl-
labus if necessary.)

1.21 Exercise. Give an example of a C∞-manifold that does not admit a countable basis for its
topology.
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2 Vector bundles

Before defining what a vector bundle is, let us study a most important example: the tangent
bundle of a manifold. So first we recall what the tangent spaces of a manifold at its points are.

2.1 Tangent spaces

Let k ≥ 1 and let (X,CkX) be a Ck-manifold. For x in X we want to define its tangent space.
There are several ways to do this (which are of course equivalent). For a detailed discussion of all
of those I know, see Spivak’s book, Volume I, Chapter 3. We will discuss some of them. Intuitively,
the tangent space of X at a point x in X is the first order approximation of X at x. We need it
in order to speak of the derivatives of morphisms of manifolds.

Suppose that we have an atlas (X, I, n, U, φ) for X. Let x be in X. A tangent vector v at x
will then be a compatible system of pairs (i, vi), with vi in Rni , for the i in I such that x is in Xi.
The compatibility is defined as follows. Let i and j be in I with x ∈ Xi and x ∈ Xj . Then the
transition isomorphism φ−1

j φi from Ui,j to Uj,i has the property that:

(2.1.1) (D(φ−1
j φi))(φ−1

i x) sends vi to vj .

Since for every such pair (i, j) the map (D(φ−1
j φi))(φix) is an isomorphism of R-vector spaces from

R
ni to Rnj , it is clear that a compatible system of (i, vi) is determined by any of its elements,

and that such an element can be arbitrary in Rni . So to give such a compatible system, it is
equivalent to give, for one i in I with Xi 3 x, an element vi of Rni . In particular, the set of
such compatible systems, that we call the tangent space of X at x and that we denote TX(x),
has a natural structure of R-vector space and is, via this construction, isomorphic to the R-vector
space Rni .

Our second description of TX(x) uses parametrized curves, and does not require charts. Let
x be in X. A parametrized curve at x is a differentiable map c : U → X with U ⊂ R an open
interval containing zero and with c(0) = x. We want to define the tangent space at x as the set of
equivalence classes of such curves, where c1 and c2 are to be equivalent if and only if they give the
same tangent vector. Of course, we do not want to use the previous definition in terms of charts,
so we want another way to say that c1 and c2 define the same tangent vector. One way to do this
is the following. Let c : U → X be a parametrized curve at x, and f in CX(V ) with V an open
neighborhood of x. Then, after shrinking U if necessary, c∗f := fc is a differentiable function
on U ; let (fc)′(0) be its derivative at 0. Then we say that c1 and c2 are equivalent if for all open
neighborhoods V of x in X and all f in CX(V ) we have (fc1)′(0) = (fc2)′(0). Now we have
some work to do: we have to show that this relation is an equivalence relation, and that the set
of equivalence classes is in some natural way (this will be made precise below) an R-vector space
and as such isomorphic to the one defined above. The relation is clearly an equivalence relation.
Let c be a parametrized curve at x, and i in I with Xi 3 x. Then φ−1

i c is defined at 0; we get
an element vi := (D(φ−1

i c))0 of Rni . One checks immediately that this is a compatible system of
(i, vi) in the sense explained above. If c1 and c2 are equivalent, then they give the same vi (view
φ−1
i as an nituple of functions). Suppose now that c1 and c2 give the same vi. We want to show

that c1 and c2 are equivalent. For doing this, we may suppose that X = Ui and that φi = idX .
Then we know that (Dc1)0 = (Dc2)0 (consider partial derivatives). But then we have, for f in
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CX(V ), that

(2.1.2) (fc1)′0 = ((Df)x)((Dc1)0) = ((Df)x)((Dc2)0) = (fc2)′0.

This shows that, as a set, the set of equivalence classes of c is the same as TX(x) as above, so
we will use the same notation for both. The R-vector space structure on TX(x) has the following
interpretation (we denote the class of a curve c by [c]): [c1] + [c2] = [c3] if and only if for all V
and f we have (fc1)′(0) + (fc2)′(0) = (fc3)′(0). Likewise: a[c1] = [c2], for a in R, if and only
if a(fc1)′(0) = (fc2)′(0) for all f . So indeed we have a description of TX(x) that does not use
charts.

From the previous description it is just a small step to the third and last one. But in order
to define it, it is really convenient to use the notions of germ and stalk. So here follows a short
intermezzo.

Suppose that X is a topological space, F a sheaf (of sets) on X and x an element of X. The
stalk Fx of F at x is then defined as the direct limit lim−→F (U) taken over all open neighborhoods U
of x (see for example in Hartshorne’s book for the notion of direct limit). Concretely, this means
that Fx is the set of equivalence classes of pairs (U, s), with U an open neighborhood of x and s in
F (U), for the following equivalence relation. Two such pairs (U1, s1) and (U2, s2) are equivalent
if and only if there is an open neighborhood V of x contained in U1 ∩ U2, such that the elements
s1|V and s2|V are equal. The elements of Fx are called germs of sections of F , and the class sx of
(U, s) is called the germ of s at x. If F is a sheaf of R-algebras, then Fx is an R-algebra.

Let us now go back to our tangent spaces. So X is again a Ck-manifold with k ≥ 1, and x is
in X. For c a parametrized curve at x, we get a map ∂c : CkX,x → R defined by: ∂c(f) = (fc)′0
(note that this makes sense). This map satisfies the following properties:

1. it is R-linear;

2. ∂c(fg) = f(x)∂c(g) + g(x)∂c(f) (Leibniz’s or product rule);

3. ∂c(f) = 0 if (φ∗f)y = o(||y||), for φ a chart at x such that φ−1(x) = 0.

For A a commutative ring, B a commutative A-algebra and M a B-module, an A-linear derivation
from B to M is an A-linear map D : B → M satisfying D(bb′) = D(b)b′ + b′D(b) for all b and b′

in B. The set DerA(B,M) of such maps is clearly a B-module: (bD + D′)b′ = bD(b′) + D′(b′).
Hence the first two of the properties of ∂c above say that ∂c is in DerR(CkX,x,R).

We let Der′
R
(CkX,x,R) be the set of maps ∂ : CkX,x → R that satisfy:

1. ∂ is R-linear;

2. ∂(fg) = f(x)∂(g) + g(x)∂(f);

3. ∂c(f) = 0 if (φ∗f)y = o(||y||), for φ a chart at x such that φ−1(x) = 0.

To emphasize the third condition, we use the notation Der′ in stead of Der. Since Der′
R
(CkX,x,R)

is closed under R-linear combinations, it is an R-vector space.
By definition, we have an injective R-linear map from TX(x) to Der′

R
(CkX,x,R), sending [c]

to ∂c. We claim that this map is an isomorphism. To prove that, it suffices to show that every
element of Der′

R
(CkX,x,R) is of the form ∂c. Since everything is defined intrinsically, and the

question is local, we may suppose that X is an open subset of Rn and that x = 0. Let ∂ be in
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Der′
R
(CkX,0,R). We claim that ∂ =

∑n
i=1 ∂(xi)∂i, with ∂i be the element of Der′

R
(CkX,0,R) that

sends f to its ith partial derivative at 0. The elements ∂i are linearly independent because of the
relations ∂ixj = δi,j (where xj is the jth coordinate function, and δi,j the Kronecker symbol). To
prove the identity, let f be in CkX,0. Rewriting the equality:∫ 1

0

(
d

dt
f(tx)

)
dt = f(x)− f(0),

with x in some neighborhood of 0, gives:

f(x) = f(0) +
n∑
i=1

xi

∫ 1

0

(Dif)(tx)dt = f(0) +
n∑
i=1

∂i(f)xi+
n∑
i=1

xigi(x) = f(0) +
n∑
i=1

∂i(f)xi+g(x),

with Di the ith partial derivative, and gi(x) =
∫ 1

0
((Dif)(tx)− (Dif)(0))dt. As g is the difference

of two Ck-functions, it is Ck. Since the Dif are Ck−1-functions, the gi are Ck−1. As gi(0) = 0,
we see that g(x) = o(||x||). Applying ∂ to the last identity gives the desired result:

∂ =
n∑
i=1

∂(xi)∂i.

Now we know that the ∂i form a basis of Der′
R
(CkX,0,R). It follows that our map from TX(x) to

Der′
R
(CX,x,R) is an isomorphism.

In the case k = ∞, the gi above are C∞-functions, hence, without assuming that ∂ satisfies
property 3, one can apply ∂ to the gi, and get that ∂(xigi) = 0 for all i, and hence the same
conclusion: ∂ =

∑n
i=1 ∂(xi)∂i. Hence in the C∞-case we see that TX(x) = DerR(C∞X,x,R).

Let now f : X → Y be a morphism of Ck-manifolds, with k ≥ 1, and x in X. Then we get
an R-linear map Tf (x) : TX(x) → TY (fx) as follows. In the first description of tangent spaces,
the map is (D(ψ−1

j fφi))(φ−1
i x) (in the notation of Definition 1.3). In the second description it is

the map that sends [c] to [fc]. In the last description it is the map that sends ∂ to ∂ ◦ f∗, with
f∗ : CY,fx → CX,x given by g 7→ gf . It is left to the reader to show that these three maps are
compatible with respect to the identifications between the various kinds of tangent spaces. The
map Tf (x) is called the tangent map of f at x, or also the derivative of f at x. One can say that
the main purpose of defining tangent spaces is just to have these tangent maps. In the same way,
the main purpose of defining the tangent bundle is to have a tangent map Tf for all x at once.

2.1.3 Exercise. Let n and m be positive integers, and k ≥ 1. Let U ⊂ R
n be open, and

f : U → R
m be a Ck-map. As in Section 1, let X := f−10, suppose that f is a submersion at all

x in X, and consider X as a Ck-manifold. Let i : X → U be the inclusion map. Show that for x
in X the map Ti(x) identifies TX(x) with ker(Tf (x)).

2.2 Vector bundles, the tangent bundle

Let X be a Ck-manifold with k ≥ 1. We want to make an object TX , called the tangent bundle
of X, that combines all the TX(x). As a set, TX is just the disjoint union of all the TX(x), x ∈ X.
But in order to have something useful, for example second derivatives of morphisms of manifolds,
we need to equip TX with the structure of a manifold, reflecting the fact that it is a disjoint union
of vector spaces. The notion of vector bundle is made exactly for doing this. Note that we have a
canonical map p : TX → X, such that the fibre p−1{x} over x is TX(x). The following definition
is meant to be a warming up for what comes after it.
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2.2.1 Definition. Let k ≥ 0 and p : E → X be a morphism of Ck-manifolds. Then p is called a

Ck-fibration if for every x in X there exists an open neighborhood U , a Ck-manifold F and an

isomorphism φ : F ×U → p−1U such that p ◦ φ is the projection F ×U → U . The triple (U,F, φ)
is called a trivialization over U . A fibration is called trivial if there exists such an isomorphism

with U = X.

2.2.2 Remark. The reader is supposed to understand what a product such as F × U is. See
Section 1.

2.2.3 Example. The Möbius strip with its map to the circle is a non-trivial fibration with fibre
the open interval ]− 1, 1[. Another example is the Hopf fibration S3 → S2 with fibre S1, obtained
from the identifications of P1(C) with S2, of (C2 − {0})/R∗>0 with S3, and C∗/R∗>0 with S1.

Roughly speaking, a vector bundle is a fibration in which all the fibres are vector spaces (say
over R), such that there are local trivializations compatible with the vector space structures.

2.2.4 Definition. Let k ≥ 0 and X a Ck-manifold. A real vector bundle over X is a five tuple

(E, p, 0,+, ·) with p : E → X a Ck-fibration, (0,+, ·) the structure of R-vector space on all fibres

of p, such that for all x in X there exists a local Ck-trivialization φ : F ×U → p−1U , with U 3 x,

respecting the vector space structures. A complex vector bundle is defined analogously.

2.2.5 Remark. If one wants to give a set theoretic meaning to the triple (0,+, ·) above, it is the
following. The element 0 is a section of p, i.e., it is a map from X to E such that p ◦ 0 = idX .
The element + is a map from the fibred product E×X E to E. The fibred product E×X E is the
subset of elements (e1, e2) of E ×E with p(e1) = p(e2), i.e., it is the set of pairs of elements of E
that lie in the same fibre over X. The map + is then of course the sum map of the vector space
structure on the fibres. The element · is a map from R× E → E that gives the multiplication in
the fibres.

It is certainly possible to equip the sets above with the structure of manifolds, in a natural
way. The maps 0, + and · are then morphisms of manifolds.

Now that we know what a vector bundle is, let us construct tangent bundles. So let X be a
Ck-manifold with k ≥ 1. As a set, TX is the disjoint union of the TX(x), for x in X. The map
p from TX to X is the unique map such that p−1x = TX(x) for all x. Suppose that we have an
atlas (X, I, n, U, φ). Then we get an atlas for TX as follows. For i in I, let TX,i := p−1Xi. Put
Vi := R

ni × Ui and define ψi : Vi → TX,i by: ψi(v, x) = [(i, v)] ∈ TX(x), where [(i, v)] denotes
the compatible system corresponding to (i, v) as in our first description of TX(φix). These ψi are
easily seen to form a Ck−1-atlas, since

(2.2.6) ψ−1
j ψi : Rni × Ui,j → R

nj × Uj,i, (v, x) 7→ (((D(φ−1
j φi))(x))v, (φ−1

j φi)x).

The Ck−1-manifold thus obtained does not depend on the choice of the atlas (verification left to
the reader). It remains now to show that the five tuple (TX , p, 0,+, ·) is a vector bundle, i.e, that
it has local trivializations as in Definition 2.2.4. But such trivializations are given by our maps ψi.

Suppose that f : X → Y is a morphism of Ck-manifolds, with k ≥ 1. Let Tf : TX → TY
be the map that is Tf (x) on TX(x). Then Tf is a morphism of Ck−1-manifolds, it induces a
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commutative diagram:

(2.2.7)

TX
Tf−→ TY

↓pX ↓pY

X
f−→ Y

and it is R-linear on the fibres. This motivates the following definition.

2.2.8 Definition. Let f : X → Y be a morphism of Ck-manifolds, and let pE : E → X and

pF : F → Y be Cl-vector bundles (with l ≤ k of course). A Cl-morphism from E to F over f is

then a morphism of Cl-manifolds g : E → F with pF g = fpE that is a morphism of vector spaces

on the fibres.

It is clear that morphisms of vector bundles can be composed, and that we get a category of vector
bundles. So finally we can say that associating to a manifold its tangent bundle, and to morphisms
their derivative, is a functor T from the category of manifolds to the category of vector bundles.

2.3 Vector bundles as sheaves of modules

In this section we are interested in vector bundles over a fixed manifold X. A morphism of vector
bundles over X is a morphism as in (2.2.7) with f = idX .

Let p : E → X be a real Cl-vector bundle over a Ck-manifold X (with k ≥ l, of course). In
practice one is very often more interested in the sections of E then in E itself. A Cl-section of E
over an open subset U of X is a morphism of Cl-manifolds s : U → E such that ps = idU . The set
of Cl-sections of E over U will be denoted E(U). (For example, TX(X) is the set of Ck−1-vector
fields on X.) If V ⊂ U is an inclusion of open subsets of X, then we have a restriction map from
E(U) to E(V ). These restriction maps clearly make the system of E(U)’s into a sheaf that we will
still denote by E. Consider a set E(U). It has the structure of R-vector space, and as such it is
usually infinite dimensional. But it also has the structure of a module over the R-algebra ClX(U).
This structure is compatible with the restriction maps, hence the following definition says that
the sheaf E is a sheaf of ClX -modules.

2.3.1 Definition. Let X be a Ck-manifold, and l ≤ k. A sheaf of ClX -modules (or just a ClX -

module) is then a sheafM on X together with the structure, for all open U in X, of ClX(U)-module

on M(U), compatible with the restriction maps. A morphism of ClX -modules is a morphism of

sheaves such that on each open subset U of X it gives a morphism of ClX(U)-modules.

Associating to a vector bundle its sheaf of sections is a functor from the category of Cl-vector
bundles to the category of ClX -modules. We will show that this functor induces an equivalence of
categories from the category of Cl-vector bundles to the full subcategory of ClX -modules that are
“locally free of finite rank”.

IfM is a ClX -module and U ⊂ X an open subset, then the restrictionM|U is a ClU -module. For
M1 andM2 two ClX -modules we define a presheafM1⊕M2 by: (M1⊕M2)U =M1(U)⊕M2(U).
This presheaf is in fact a sheaf (exercise), of ClX -modules (trivial), with canonical morphisms from
M1 and M2 to it, such that it is the direct sum of M1 and M2 in the category of ClX -modules
(exercise). The same then works of course for arbitrary finite direct sums. A finite direct sum
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of ClX -modules has projection morphisms to its components, making it into the direct product of
those (exercise).

Suppose now thatM is a ClX -module, and that we have global sections m1, . . . ,mr of it. Then
we get a morphism from (ClX)r := ⊕ri=1C

l
X to M such that for all open U ⊂ X and all f1, . . . , fr

in ClX(U) the element (f1, . . . , fr) of (ClX)r(U) is sent to f1m1 + · · ·+frmr inM(U) (we omit the
restriction maps). The sequence (m1, . . . ,mr) is said to be a basis of M if this morphism is an
isomorphism. A ClX -moduleM is called free of rank r if it is isomorphic to (ClX)r, or, equivalently,
if it has a basis with r elements. A ClX -moduleM is called locally free of rank r (with r a locally
constant function on X) if every x in X has an open neighborhood U such that M|U is a free
ClU -module of rank r(x).

2.3.2 Exercise. Let E be a real Cl-vector bundle on X. Show that its sheaf of sections E is
locally free of finite rank as ClX -module. Show that for U ⊂ X open and e1, . . . , er in E(U) the
sequence (e1, . . . , er) is a basis for E|U if and only if for all x in U the sequence (e1(x), . . . , er(x))
is a basis for the fibre E(x) of E at x.

2.3.3 Theorem. Let X be a Ck-manifold, and let l ≤ k. The functor that sends a Cl-vector

bundle to its sheaf of sections, viewed as a ClX -module, is an equivalence from the category of

Cl-vector bundles to the full subcategory of the category of ClX -modules consisting of the ClX -

modules that are locally free of finite rank. A quasi-inverse of this functor is described in the proof

below.

Proof. We will first describe a functor G from the category of locally free ClX -modules of finite
rank to the category of Cl-vector bundles on X and then show that it is a quasi-inverse of the
functor F mentioned in the Theorem (i.e., FG and GF are isomorphic to the identity funtors of
the two categories in question).

So let M be a locally free ClX -module of finite rank r. Let x be in X. We consider the stalk
ClX,x of ClX at x and the stalkMx ofM at x. It follows from the definition of stalk thatMx is a
ClX,x-module. Since M is locally free of rank r, its stalk Mx is a free ClX,x-module of rank r(x).
Let ClX,x → R be the map that sends f to f(x). It is a morphism of R-algebras; let mx ⊂ ClX,x
be its kernel. Then we define:

E(x) :=Mx/mxMx = R⊗ClX,xMx, E :=
∐
x∈X

E(x).

By construction, we get a map p : E → X, such that p−1x = E(x). The E(x) are clearly R-vector
spaces. Let U be an open subset of X on which M is trivial; let m := (m1, . . . ,md) be a basis
of M|U . For x in U and s in M(U), let s(x) be the image of s in E(x). Then for all x in U , the
mi(x) form an R-basis of E(x). Hence we get a bijection:

φU,m : Rd × U → p−1U, (λ, x) 7→ (
∑
i

λimi, x).

This bijection gives p−1U the structure of a Cl-manifold. One checks that this structure does not
depend on the choice of the basis m, since if m′ is another basis, one has a (unique) element g
in GLd(ClX(U)) such that m′i = gmi for all i. It is now clear that p : E → X, with the R-vector
space structures on the E(x), is a Cl-vector bundle. From the construction it is also clear that a
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morphism between ClX -modules that are locally free of finite rank induces a morphism of Cl-vector
bundles on X. We have thus defined our functor G.

To finish the proof, we have to show that GF (resp., FG) is isomorphic to the identity functor
of the category of Cl-vector bundles (resp., the category of locally free ClX -modules of finite rank).

Let E be a Cl-vector bundle on X. Then F (E) is the sheaf of sections of E. From the
definition of F (E) and the definition of stalk, it follows that we have a map F (E)x → E(x)
that sends s to s(x). This map of ClX,x-modules is surjective and its kernel is mxF (E)x (use a
local trivialization of E at x). Hence E(x) is canonically isomorphic to F (E)x/mxF (E)x, i.e.,
to (GF (E))(x). It is left to the reader to verify that this fibre wise isomorphism between E and
(GF )E is an isomorphism of Cl-vector bundles, and that it is functorial.

Let M be a locally free ClX -module of finite rank. Let U be an open subset of X, and s

in M(U). For x in U , let s(x) be the image of s in (GM)(x). Then x 7→ s(x) is a Cl-section
of GM over U (the verification of this, which can be done locally, is left to the reader). Hence
we have a map from M(U) to (FGM)U . It is again left to the reader to check that these maps
define an isomorphism of ClX -modules, and that this isomorphism is functorial. �
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3 Tensor constructions

In multi-linear algebra, there are constructions that associate, to a given collection of vector
spaces, a vector space. For example, to a k-vector space V (k a field) one can associate its dual
V ∨ := Homk(V, k). For k-vector spaces V and W , one has Homk(V,W ) and V ⊗k W . We will
show that the constructions in the examples carry over to vector bundles, and to their sheaves of
sections. Before we do that, we recall some facts about tensor products, the symmetric algebra
and the exterior algebra, mainly for free modules over a ring (that is assumed to be commutative,
as usual). As a reference for multi-linear algebra one can consult any algebra book, for example
Lang’s “Algebra”, Bourbaki, or Jacobson’s “Basic algebra I and II”.

3.1 Multi-linear algebra

Let A be a commutative ring. For A-modules M and N we have the A-module M ⊗A N , called
the tensor product of M and N over A. This A-module M ⊗A N is defined as follows: we have
a universal A-bilinear map M × N → M ⊗A N , denoted by (m,n) 7→ m ⊗ n. (This means that
for all A-bilinear maps b : M ×N → P , there exists a unique A-linear map b : M ⊗A N → P such
that b(m,n) = b(m⊗ n) for all (m,n).) If M and N are free, with bases mi, i ∈ I, and nj , j ∈ J ,
then M ⊗A N is free and mi ⊗ nj , (i, j) ∈ I × J , is a basis. For an A-module M we define M∨ to
be the A-module HomA(M,A).

3.1.1 Proposition. Let A be a commutative ring, and M and N A-modules. Then we have an

A-linear map M∨ ⊗A N → HomA(M,N) that sends l ⊗ n to m 7→ l(m)n. If M is free of finite

rank, then this map is an isomorphism of A-modules.

Proof. Since m 7→ l(m)n is bilinear in l and n, the required map exists and is unique. Assume
now that M is free of some rank r. To prove that the map is an isomorphism, we may suppose
that M = Ar, because the map is functorial in M . But then we may identify M∨ with Ar, via
the dual basis of the standard basis. Hence M∨ ⊗A N = Ar ⊗A N = Nr. On the other hand,
HomA(Ar, N) = Nr. We leave it to the reader to see that our map is this identification. �

3.1.2 The tensor algebra

Let A be a commutative ring, and M an A-module. For i ≥ 0 let Ti(M) := M⊗i be the ith
tensor power of M . One way to define Ti(M) is to say that we have a universal i-linear map
M i → Ti(M), sending (m1, . . . ,mi) to m1 ⊗ · · · ⊗mi. We define the tensor algebra of M to be
the A-module T(M) := ⊕i≥0Ti(M), with the A-algebra structure defined as follows. Let i and
j be ≥ 0. Consider the map M i ×M j = M i+j → Ti+j(M). Since this map is i-linear in the
first variable, it induces a map Ti(M)×M j → Ti+j(M) that is linear in the first variable. This
last map is j-linear in the second variable, hence induces a map Ti(M) × Tj(M) → Ti+j(M)
that is bilinear and defines our multiplication map. The reader will check that T(M) becomes an
associative graded A-algebra. We have T0(M) = A and T1(M) = M . Let B be an associative
A-algebra, and φ : M → B a morphism of A-modules. Then there exists a unique morphism of
A-algebras φ̃ : T(M)→ B such that the restriction of φ̃ to T1(M) is φ. This situation gives us an
example of adjoint functors: we have a functor F from the category of associative A-algebras to
the category of A-modules, that sends B to B viewed as an A-module, and the functor T in the
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other direction, such that

HomA−mod(M,F (B)) = Homass−A−alg(T(M), B),

functorially in M and B. If M is a free A-module of rank n, then Ti(M) is free of rank ni (the
reader will provide a basis).

3.1.3 The symmetric algebra

Let again A be a commutative ring, and M an A-module. We define the symmetric algebra S(M)
to be the quotient of T(M) by the ideal generated by all x⊗ y − y ⊗ x with x and y in M . Since
T(M) is generated, as A-algebra, by M , S(M) is a commutative A-algebra. Since the kernel of
T(M) → S(M) is generated by homogeneous elements, the grading on T(M) induces a grading
on S(M). For i ≥ 0, Si(M) is called the ith symmetric product of M , and denoted Symi

A(M). As
in the case of the tensor algebra, the functor S, from the category of A-modules to the category
A-alg of commutative A-algebras, is the left-adjoint of the forget functor in the opposite direction:

HomA−mod(M,B) = HomA−alg(S(M), B).

If M is free of rank n, say with basis m1, . . . ,mn, then the morphism of A-algebras from the
polynomial ring A[x1, . . . , xn] to S(M), sending xi to mi, is an isomorphism (use the universal
property of S(M) to define the inverse). In particular, Si(M) has basis mi1

1 · · ·min
n , i1+· · ·+in = i,

hence Si(M) is free of rank
(
i+n−1
n−1

)
. It is left as an exercise to see that, for any A-module M , the

map M i → Si(M) that sends (m1, . . . ,mi) to m1 · · ·mi is a universal symmetric i-linear map.

3.1.4 The exterior algebra

This section is somewhat less trivial than the previous two, since as a special case we construct
the determinant of a square matrix. Let again A be a commutative ring, and M an A-module.
The exterior algebra Λ(M) of M is then defined to be the quotient of T(M) by the ideal generated
by the x ⊗ x, with x in M . Then Λ(M) is a graded associative A-algebra. We have Λ0(M) = A

and Λ1(M) = M . We claim that Λ(M) is what is called “graded-commutative”:

yx = (−1)ijxy, for all i, j ≥ 0, x in Λi(M), y in Λj(M).

To see this, we first note that this is true when i and j are both equal to one, since then
0 = (x+ y)(x+ y)− xx− yy = xy + yx. Then it follows for all i and j, since M generates Λ(M).
The product in Λ(M) is called the wedge product, and is sometimes denoted (x, y) 7→ x ∧ y. The
exterior algebra Λ(M) has the following universal property: if φ : M → B is an A-linear map
from M to an A-algebra B, such that φ(m)φ(m) = 0 for all m in M , then there exists a unique
morphism of A-algebras φ̃ from Λ(M) to B whose restriction to M is φ. We leave it as an exercise
to show that the map M i → Λi(M) that sends (m1, . . . ,mi) to m1 · · ·mi is a universal alternating
i-linear map. If M is free of rank n, say with basis m1, . . . ,mn, then Λi(M) is free of rank

(
n
i

)
,

and mj1 · · ·mji , j1 < · · · < ji, is a basis. Since this is not so obvious, we will give a proof.
So assume that m1, . . . ,mn is a basis of M . Let i ≥ 0. It is clear that the mj1 · · ·mji ,

j1 < · · · < ji, generate Λi(M), so it remains to show that they are linearly independent. This
follows if we can construct, for all j = (j1, . . . , ji), with j1 < · · · < ji, an A-linear map φj from
Λi(M) to A, such that for all k = (k1, . . . , ki) with k1 < · · · < ki we have φj(mk1 · · ·mki) = δj,k.
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Note that Ti(M) has basis ml1 · · ·mli , lk ∈ {1, . . . , n}. Define an A-linear map φj from Ti(M) to
A by:

φj(ml1 · · ·mli) = 0 if {l1, . . . , li} 6= {j1, . . . , ji},

φj(ml1 · · ·mli) = ε(σ) if {l1, . . . , li} = {j1, . . . , ji},

where σ is the permutation sending jk to lk (ε is the sign of a permutation). Then φj induces the
desired alternating i-linear form on M .

3.1.5 Exercise. Let k be a field, V a k-vector space and d ≥ 0 an integer. Recall that we
have defined the Grassmannian Grd(V ) of d-dimensional subspaces of V , with the structure of
C∞-manifold if k = R and V is finite dimensional.

Let W be a d-dimensional subspace of V , and let w1, . . . , wd be a basis of W . Then we get an
element w1 · · ·wd of Λd(V ). Show that this element is non-zero, and that its image in P(Λd(V ))
only depends on W . Hence we have a map φ from Grd(V ) to P(Λd(V )). Show that this map is
injective. It is called the Plücker embedding.

3.2 Tensor products of vector bundles and locally free sheaves

Let X be a Ck-manifold (k ≥ 0), and p : E → X a real (or complex) Cl-vector bundle on it (with
l ≤ k). Then we define the dual E∨ of E, which is also a real (or complex) Cl-vector bundle,
as follows. As a set, E∨ is the disjoint union of the E(x)∨, x in X. Let q : E∨ → X be the
map with q−1x = E(x)∨. To give E∨ the structure of a Cl-vector bundle, choose a covering of
X by open subsets Xi, and trivializations φi : Fi × Xi → p−1Xi of E. Then, for x in Xi, we
have an isomorphism of vector spaces φi(x) : Fi → E(xi). Consequently, we have an isomorphism
ψi(x) := (φi(x)∨)−1 from F∨i to E∨(xi). For all i, we have a bijection ψi : F∨i × Xi → q−1Xi.
These bijections give E∨ the structure of a Cl-vector bundle. One checks that this structure does
not depend on the choice of the Xi and the φi. Defined like this, we have, for each x in X, a
bilinear map 〈·, ·〉x from E∨(x) × E(x) to R (or C), given by evaluation. For U ⊂ X open, s in
E(U) and t in E∨(U), the function 〈t, s〉U on U that sends x to 〈t(x), s(x)〉x is in ClX(U). We
want to show that these maps define an isomorphism from the ClX -module E∨ to the dual of E,
as ClX -module. But in order to do this, we first have to define what such a dual is supposed to be.

3.2.1 Definition. Let (Y,OY ) be a ringed space,M and N be OY -modules. Then we define the

presheaf HomOY (M,N ) as follows:

HomOY (M,N )(U) = HomOY |U (M|U ,N|U ), U ⊂ Y open,

with the obvious restriction maps. This presheaf is actually a sheaf (the rather long verification is

left to the reader), and moreover a OY -module. The OY -module HomOY (M,OY ) is called the

dual of M and will be denoted M∨.

We will now first define a morphism of ClX -modules from the sheaf of sections of E∨ to the sheaf
HomClX

(E,ClX), and then show that it is an isomorphism. So let U ⊂ X be open, and t in E∨(U).
Let V ⊂ U be open, and s in E(V ). Then we have 〈t|V , s〉V in ClX(V ). This defines a morphism
of ClX(U)-modules from E∨(U) to HomClX |U

(E∨|U , ClX |U ). One verifies that we get indeed a
morphism from E∨ to HomClX

(E,ClX) as desired. Let us now show that it is an isomorphism. So
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let U ⊂ X be open and let φ be in HomClX
(E,ClX)(U). Then, for each x in U , φ induces, via the

equivalence between vector bundles and sheaves of modules (that is, Theorem 2.3.3), an element
φ(x) of E∨(x). It is easy to check that these φ(x) form an element of E∨(U).

So we have now seen that the operation E 7→ E∨ on Cl-vector bundles corresponds to
E 7→ HomClX

(E,ClX) on ClX -modules. Our next goal is to define tensor products, on both
sides. Let us first treat the case of vector bundles. So let E and F be Cl-vector bundles on X.
We define a vector bundle E ⊗ F as follows. As a set, it is the disjoint union of the vector spaces
E(x) ⊗ F (x), for x in X. The map from it to X is clear. Then E ⊗ F is given the structure of
Cl-manifold via local trivializations of E and F . Let U ⊂ X be open, s in E(U) and t in F (U).
For each x in U we get s(x)⊗ t(x) in (E ⊗ F )(x). These define an element s⊗ t of (E ⊗ F )(U).
The map from E(U)× F (U) to (E ⊗ F )(U) sending (s, t) to s⊗ t is ClX(U)-bilinear. Varying U ,
we get a ClX -bilinear map from E × F to E ⊗ F . We will prove a bit further that this map is the
universal ClX -bilinear map from E ×F to ClX -modules. Before that, we define the tensor product
on the side of sheaves.

3.2.2 Definition. Let (Y,OY ) be a ringed space, M and N locally free OY -modules of finite

rank. By definition, every y in Y has an open neighborhood U on which M and N are free, say

of ranks m and n. For such open subsets U we put: T (U) := M(U) ⊗OY (U) N (U). For V an

open subset of such a U we have a restriction map T (U)→ T (V ) (note that indeedM and N are

free on V ). Choosing, for such a U , isomorphisms (OY |U )m →M|U and (OY |U )n → N|U , we see

that V 7→ T (V ) is a OY |U -module. The next lemma implies, among other things, that there is a

unique OY -moduleM⊗OY N on Y such that for all U as above we have (M⊗OY N )(U) = T (U).
This OY -module is locally free of finite rank.

3.2.3 Lemma. Let X be a topological space, U a collection of open subsets of X that covers X

and that is a sieve on X (i.e., U ∈ U and V ⊂ U open imply V ∈ U). A presheaf on U is defined

to be a contravariant functor from U (morphisms are just the inclusions) to the category of sets.

A presheaf F on U is called a sheaf if, for all U in U , F defines a sheaf on U . Let Sh(X) and

Sh(U) denote the categories of sheaves on X and U , respectively. Then the functor F 7→ F |U from

Sh(X) to Sh(U) is an equivalence of categories. A quasi-inverse is described in the proof.

Proof. Let F be a sheaf on U . Let V be an open subset of X. Let U|V be the set of U in U
with U ⊂ V . We define F+(V ) to be the projective limit lim

←
F (U), taken over the U in U|V .

Concretely, this means that an element of F+(V ) is a compatible system of sU in F (U), indexed
by U|V . Since the restriction of F to any U in U is a sheaf, we see that F+(U) = F (U) for such U .
It is left to the reader to define the restriction maps for F+, and to verify that F+ is a sheaf. The
verifications that F 7→ F+ is a functor, and that it is a quasi-inverse of G 7→ G|U , are left to the
reader. �

3.2.4 Proposition. Let (Y,OY ) be a ringed space and let M and N be OY -modules. Let U be

the sieve on X consisting of the U on which bothM and N are trivial. Lemma 3.2.3 implies that

the maps:

M(U)×N (U)→M(U)⊗OY (U) N (U) = (M⊗OY N ) (U)

define a morphism of sheavesM×N →M⊗OY N on X. This morphism is a universal OY -bilinear

map from M×N to OY -modules.
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Proof. Everything but the universality is clear. So let P be a OY -module and b a bilinear map
from M×N to P. Then, for each U in U , we get a unique morphism of OY (U)-modules from
(M⊗OY N )(U) to P(U) that, composed with the universal bilinear map from M(U) × N (U),
is b(U). Lemma 3.2.3 shows that these maps give the desired unique morphism of OY -modules
from M⊗OY N to P that, composed with the bilinear map from M×N , is b. �

Let us now go back to our manifolds and tensor products of vector bundles: we had a Ck-
manifold X and Cl-vector bundles E and F . We have already defined the Cl-vector bundle
E ⊗ F . It is easy to check that, for an open subset U of X on which E and F are trivial, we
have (E ⊗ F )U = E(U) ⊗ClX(U) F (U) (or, more precisely, the natural map between them is an
isomorphism). Lemma 3.2.3 tells us that (the sheaf of sections of) E ⊗ F is the same as (more
precisely, uniquely isomorphic to) E ⊗ClX F .

From what we have done up to now, it is clear how to define, for a Cl-vector bundle E on a
manifold X, the bundle analogs T(E), S(E) and Λ(E) of the tensor algebra, the symmetric algebra
and the exterior algebra, and that these constructions coincide with their analogs for ClX -modules
that are locally free of finite rank. (Here we forget for a moment that vector bundles, as we have
defined them, have finite dimension.)

In order to consider complex Cl-vector bundles on a Ck-manifold X it suffices to consider the
sheaf ClX,C of complex valued Cl-functions on X, where, as explained in §1, a C-valued function
on X is called Cl if both its real and imaginary part are. Before indulging in differential forms
and de Rham cohomology we take a brief look at metrics on vector bundles.

3.3 Metrics on vector bundles

Let X be a Ck-manifold, with k ≥ 0, and E a Cl-vector bundle on X. There are various ways
to describe what a metric on E is. Viewing E as a bundle, a metric on E is a collection of
non-degenerate symmetric bilinear forms 〈·, ·〉x on the E(x), “varying Cl with x”. This last
condition means that after local trivialization, the coefficients of the matrix describing the 〈·, ·〉x
are Cl-functions. Equivalently, for U open in X and s and t in E(U), 〈s, t〉U : x 7→ 〈s(x), t(x)〉x
is in ClX(U). Viewing E as a locally free ClX -module, a metric is a symmetric bilinear map
b : E × E → ClX such that, for all x in X, the symmetric bilinear form b(x) on E(x) is non-
degenerate. Equivalently, b induces an isomorphism of ClX -modules from E to E∨. Or also: a
metric on E is a symmetric isomorphism of ClX -modules from E to E∨. Considering the universal
symmetric bilinear form on E, one sees that a metric on E is an element b of S2(E)∨(X) such
that all b(x) are non-degenerate. To conclude: all various equivalent descriptions of symmetric
bilinear forms that one sees in a linear algebra course work in the contexts of vector bundles and
ClX -modules. For example, a metric b on E has a signature, which is a locally constant function
s : X → Z

2 such that s(x)1 (resp., s(x)2) is the number of positive (resp., negative) coefficients of
b(x) in any diagonal form.

Usually when working with vector bundles with a metric, the metric comes naturally with the
vector bundle. But sometimes it is useful to just choose a metric on a given vector bundle, if one
exists (for example, if one wants to split short exact sequences of vector bundles). So a natural
question to ask is: under what conditions does a vector bundle E admit a metric b (say with a
fixed signature)? We will see, when discussing partitions of unity, that, for X paracompact (i.e.,
X is separated and every open cover has a locally finite refinement), every vector bundle has a
positive definite metric. This has to do with the fact that the set of positive definite symmetric
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bilinear forms on Rn is convex. On the other hand, there are topological obstructions against the
existence of metrics of signature (1, 1), because the set of symmetric bilinear forms on R2 of that
signature is homotopically equivalent to the circle. For example, it can be seen that the tangent
bundle of the two-sphere S2 does not admit a metric of signature (1, 1) (namely, from such a
metric one can construct a nowhere zero vector field on S2, and everybody knows that the sphere
can’t be combed).

Before going on, let us look a bit at what is happening here. So let E be a vector bundle of
constant rank r on a manifold X, and let s be a fixed signature. For x in X, the set of metrics
of signature s on E(x) is an open subset Y (x) of S2(E(x))∨. The Y (x) are all (non-canonically)
isomorphic, as manifolds, to the open subset F of S2(Rr)∨ consisting of metrics of signature s.
Using that E is locally trivial, it is easy to equip the disjoint union Y of the Y (x) with the structure
of a fibration over X with fibre F . The question of whether or not E has a metric of signature s
is then the same as the question of whether or not this fibration has a section. Let us now give
two fibrations, with non-empty fibre, that have no section. The first example is the complement
of the zero section of the Möbius strip, viewed as a fibration over S1 with fibre [−1, 1]−{0}. The
other example is the Hopf fibration of S3 over S2; it is obtained as follows. View P

1(C) as the
two-sphere S2. Then S2 is the quotient of C2 − {0} by the action of C∗. View S3 as the quotient
of C2 − {0} by the subgroup R∗>0 of C∗. Then we see that S2 is the quotient of S3 by the group
C
∗/R∗>0, which is isomorphic to the subgroup S1 of C∗. Since the action of C∗ on C2−{0} is free,

the action of S1 on S3 is so too. Hence we have our fibration. To see that there is no section, note
that if there is a section, we get an isomorphism from S1 × S2 to S3, but the first of these two is
not simply connected whereas the second is.

3.3.1 Definition. Let X be a Ck-manifold, with k ≥ 1. A Riemannian metric on X is then a

positive definite metric on TX .

As we have said, we will show later that every paracompact manifold has a Riemannian metric.
Suppose now that X is a Ck-manifold and that 〈·, ·〉 is a Riemannian metric on it. Suppose that
c : I → X is C1, with I = [a, b] some non-empty closed interval in R. Then we can define the
length of c as follows:

(3.3.2) length(c) :=
∫ b

a

‖c′(t)‖c(t) dt,

with ‖ · ‖ the norm associated to 〈·, ·〉. The reader should note that when X is Rn and 〈·, ·〉 is
the standard Riemannian metric, this definition of length coincides with the standard one. An
important fact is that if c1 := c ◦ φ with φ : J → I a diffeomorphism of closed intervals, say with
J = [a1, b1], then the length of c1 equals that of c:

(3.3.3)
∫ b1

a1

‖c′1(s)‖c1(s) ds =
∫ b1

a1

|φ′(s)| ‖c′(φ(s))‖c(φ(s)) ds =
∫ b

a

‖c′(t)‖c(t) dt.

This implies that the length of a curve c is independent of the choice of the parametrization.
Suppose now moreover that X is connected. Then X is arcwise connected, hence we can define a
real valued function d on X ×X by:

(3.3.4) d(x, y) := inf{length(c) | c a smooth curve from x to y}.

It is quite clear that d is symmetric and that it satisfies the triangle inequality. One can show
without too much pain that if X is separated, then one has d(x, y) = 0 if and only if x = y. See

24



for example Chapter 9 of Spivak, Volume 1. The problem of finding the shortest path between
two given points leads to variational calculus and to the definition of a geodesic.

Not all metrics that arise naturally are positive definite. For example, in the theory of gen-
eral relativity one studies four-dimensional manifolds with a metric of signature (1, 3); so-called
Lorentzian manifolds. The path from x to y that corresponds to a free fall is then a path of
maximal length from x to y (of course one only considers paths that do respect the speed limit
imposed by the speed of light, because otherwise the square root in the definition of ‖ · ‖ becomes
imaginary). There is an excellent book on this matter, by Sachs and Wu, with the title “General
relativity for mathematicians”.

To finish this section: not even all bilinear forms that occur naturally on vector bundles
are symmetric. For example, anti-symmetric bilinear forms, also called symplectic forms, play
an important role in classical mechanics (Hamilton systems). Here the reader should think of
formulas such as

∑
i dpi ∧ dqi.

3.4 Differential forms

Let X be a Ck-manifold, with k ≥ 1. Then we have the Ck−1-vector bundle TX on X. The
dual T∨X of TX is called the bundle of 1-forms on X, and is denoted Ω1

X . Note that with our
conventions, Ω1

X also denotes the sheaf of sections of Ω1
X . We define ΩX to be Λ(Ω1

X). This
ΩX is a graded-commutative Ck−1

X -algebra, and its degree i component ΩiX is called the sheaf or
bundle of i-forms. We will do two important things in the next two sections: we define the usual
morphisms of sheaves d : ΩiX → Ωi+1

X that give us the de Rham complex of X, and we define what
integration of forms of top degree is.

Our first step is to define a map d : CkX → Ω1
X . But even to do this, we have to go back to

TX itself: namely, we have to give an interpretation of TX(U) for U ⊂ X open. So let U ⊂ X

open, and let ∂ in TX(U). We will show that ∂ defines a derivation from CkX |U to Ck−1
X |U . So let

V ⊂ U be open, and let f be in CkX(V ). Let x be in V . Then we have ∂(x) a tangent vector at
x, and fx in the stalk CkX,x. We define: (∂f)x := ∂(x)fx, which is in R. No matter how we view
tangent vectors, this number is simply the derivative at x of f in the direction ∂(x). Looking in
a chart, it is clear that the function ∂f from V to R is in Ck−1

X (V ), that ∂ is indeed a morphism
of sheaves from CkX |U to Ck−1

X |U and that it is a derivation: ∂(fg) = f∂(g) + ∂(f)g. Moreover,
for every x in U , the map ∂(x) : CkX,x → R that sends f to (∂f)x is in Der′

R
(CkX,x,R) (notation

as in Section 2). We define Der′
R
(CkX , C

k−1
X ) to be the sheaf on X whose sections over U are the

morphisms of sheaves ∂ : CkX |U → Ck−1
X |U that are R-derivations such that for every x in X the

map CkX,x → R, f 7→ (∂f)(x), is in Der′
R
(CkX,x,R). Then the construction that we have just given

is an isomorphism of Ck−1
X -modules:

TX −→ Der′
R
(CkX , C

k−1
X ).

We can now define our map d : CkX → Ω1
X . Let U ⊂ X be open and let f be in CkX(U).

By construction, Ω1
X(U) is equal to HomCk−1

X
(TX , Ck−1

X )(U). We define df to be the element
in Ω1

X(U) that sends ∂ in TX(V ), with V ⊂ U open, to ∂f . The reader will verify that d is a
morphism of sheaves, that it is R-linear and that it satisfies:

(3.4.1) d(fg) = f dg + g df,

for U open in X and f and g in CkX(U). Intuitively, the expression (df)x can be thought of as a
measure for the infinitesimal rate of change of f at x in an unspecified direction, and that, when
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evaluated on a tangent vector at x, it gives the derivative at x of f in that direction. The map d

itself can be thought of as a universal derivation from CkX to Ck−1
X -modules satisfying the third

property in the definition of Der′
R
(CkX,x,R) at all x. One should note that the morphism of sheaves

d : CkX → Ω1
X is not a morphism of vector bundles (except in the case where Ω1

X is zero, of course),
because it is not CkX -linear (it is a derivation, after all).

3.4.2 Proposition. Let X be a Ck-manifold with k ≥ 1. Let U ⊂ X be an open set and

x1, . . . , xn local coordinates on U , i.e., the xi are in CkX(U) and the map x : U → R
n sending u to

(x1(u), . . . , xn(u)) is an isomorphism of Ck-manifolds from U to an open subset V of Rn. Then

Ω1
X |U is a free Ck−1

U -module and (dx1, . . . , dxn) is a basis. This basis is the dual basis of the basis

D1, . . . , Dn of TX |U given by the partial derivatives. For f in CkX(U) we have the formula:

df =
n∑
i=1

(Dif)dxi.

Proof. The fact that the Di form a basis of TX |U was proved, point-wise, in §2.1. By construc-
tion, the dxi form the dual basis. The formula above follows from evaluating both sides on the Dj .
�

3.4.3 Corollary. Let X be a Ck-manifold with k ≥ 1. Let U ⊂ X be open, x1, . . . , xn local

coordinates on U , and r ≥ 0 an integer. Then ΩrX |U is a free Ck−1
U -module and the dxi1 · · · dxir

with i1 < · · · < ir form a basis.

3.4.4 Proposition. Let X be a C∞-manifold. There exists a unique morphism of sheaves

d : ΩX → ΩX such that:

1. d is R-linear and maps ΩiX to Ωi+1
X ;

2. the restriction of d to Ω0
X is d : C∞X → Ω1

X ;

3. for U ⊂ X open, x in ΩrX(U) and y in ΩsX(U), we have d(xy) = (dx)y + (−1)rxdy;

4. d2 = 0.

Proof. Since Ω1
X generates ΩX as a C∞X -algebra, there exists at most one such morphism. Be-

cause of this uniqueness, it suffices to prove the existence locally. So we may and do assume that
X is an open subset of Rn. Let r ≥ 0 be an integer. The dxi1 · · · dxir with i1 < · · · < ir form a
C∞X -basis of ΩrX . Conditions 2 and 4 of the proposition we are proving imply that we must define

(3.4.5) d(fdxi1 · · · dxir ) = df dxi1 · · · dxir =
n∑
i=1

(Dif)dxidxi1 · · · dxir .

Let us now show that the morphism d defined by this formula satisfies all the conditions of the
proposition. Conditions 1 and 2 are clearly satisfied. Let us now do 4. One computes:

d(d(fdxi1 · · · dxir )) = d(
∑
i

(Dif)dxidxi1 · · · dxir ) =
∑
i

d(Dif)dxi dxi1 · · · dxir =

=
∑
i

∑
j

Dj(Dif)dxj dxi dxi1 · · · dxir =

=

∑
i,j

Dj(Dif)dxi dxj

 dxi1 · · · dxir = 0.
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To prove 3, we may write x = fdxi1 · · · dxir and y = gdxj1 · · · dxjs . One computes:

d(xy) = d(fgdxi1 · · · dxir dxj1 · · · dxjs) = (fdg + gdf)dxi1 · · · dxir dxj1 · · · dxjs =

= df dxi1 · · · dxir gdxj1 · · · dxjs + (−1)rfdxi1 · · · dxir dg dxj1 · · · dxjs =

= dx y + (−1)rxdy.

�

3.4.6 Remark. Note that the previous Proposition only talks about the C∞-case. It is certainly
possible to formulate an analogous result for k ≥ 2, but I find that too much of a hassle.

Let us consider the case where X is open in R
3. For f in CkX(X) with k ≥ 1 one has

df = (D1f)dx1+(D2f)dx2+(D3f)dx3, which is just an expression for the gradient of f . The reader
should verify that d(f1dx1 +f2dx2 +f3dx3) gives the curl and d(f1dx2dx3 +f2dx3dx1 +f3dx1dx2)
the divergence. Usually, in calculus, the gradient of a function is a vector field, and not a one-form;
this comes from the identification between TX and Ω1

X given by the standard Riemannian metric.
Likewise, in calculus one applies divergence to vector fields, not to two-forms; here one uses that
the multiplication Ω2

X × Ω1
X → Ω3

X is a perfect pairing (i.e., it identifies both sides with the dual
of the other). A similar remark holds for the curl.

3.4.7 Exercise. Let X be a Ck-manifold with k ≥ 0. Show that X is the disjoint union (as
a topological space) of its arcwise connected components; let π0(X) denote the set of connected
components of X. Assume now that k ≥ 1. Show that the kernel of d : CkX → Ω1

X is the constant
subsheaf RX of CkX (i.e., the subsheaf of locally constant functions). Conclude that:

ker(d : CX(X)→ Ω1
X(X)) = R

π0(X).

3.4.8 Remark. We will see later that the complex of sheaves (ΩX , d) is exact in all degrees i > 0.
This means that (ΩX , d) is a resolution of the sheaf RX . We will show that the sheaves ΩiX are
acyclic for the functor Γ(X, ·) when X is paracompact. It follows that under that condition, the
complex (ΩX(X), d) computes the cohomology of RX . Since the cohomology of this complex is by
definition the de Rham cohomology, we see that the de Rham cohomology of X is the cohomology
of RX .

3.5 Volume forms, integration and orientation

Thinking about what kind of objects one can expect to be able to integrate over manifolds, one
comes to the following definition.

3.5.1 Definition. Let V be a finite dimensional R-vector space, say of dimension n. Let W be

an R-vector space. A volume form on V with values in W is then a map v : V n →W such that:

1. v(vσ(1), . . . , vσ(n)) = v(v1, . . . , vn), for all v1, . . . , vn in V and σ in Sn;

2. v(λv1, v2 . . . , vn) = |λ|v(v1, . . . , vn), for all v1, . . . , vn in V and λ in R;

3. v(v1 + v2, v2, . . . , vn) = v(v1, . . . , vn), for all v1, . . . , vn in V .
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All volume forms as in the definition are obtained as follows (proof left to the reader). Let w
be in W and l in Λn(V )∨. Then the map v defined by v(v1, . . . , vn) := |l(v1, . . . , vn)|w is a
volume form. It follows that for v a volume form, v1, . . . , vn in V and g in GL(V ), we have
v(g(v1), . . . , g(vn)) = |det(g)| v(v1, . . . , vn). The set Vol(V,W ) of W -valued volume forms on V

his itself an R-vector space (sum and scalar multiplication are defined as usual). For f : W →W ′

an R-linear map of R-vector spaces, we get an R-linear map f∗ from Vol(V,W ) to Vol(V,W ′), that
sends v to f ◦ v. In fact, Vol(V, ·) is a covariant functor.

3.5.2 Lemma. Let V be a finite dimensional R-vector space, and let n be its dimension. Then

the functor Vol(V, ·) is representable, by a one-dimensional R-vector space that we denote |Λn(V )|.
Equivalently, we have a universal volume form V n → |Λn(V )|.

Proof. Take l to be a non-zero element of Λn(V ), and consider the R-valued volume form |l|.
The discussion above shows that this volume form is universal. �

The set of R-valued volume forms on V is |Λn(V )|∨. An R-valued volume form is called positive
if all its values are ≥ 0. We have a map Λn(V )∨ → |Λn(V )|∨ that sends l to |l| := | · | ◦ l. The
image of this map is the set of positive volume forms.

3.5.3 Definition. An orientation on a one-dimensional R-vector space L is a connected compo-

nent of L − {0}. The union of this component with {0} will be denoted L+ and it will be called

the positive component.

It is clear from the definition that |Λn(V )|∨ has a given orientation, for which the positive com-
ponent consists of the positive volume forms. We are now ready to apply the notion of a volume
form to manifolds.

3.5.4 Definition. Let X be a Ck-manifold, for some k ≥ 1. We define the vector bundle VolX
of volume forms on X to be the Ck−1-vector bundle with VolX(x) = |ΛdimX(x)TX(x))|∨ for all x

in X, with local trivializations induced by those of TX . For W a finite dimensional R-vector space

W ⊗R VolX is defined to be the Ck−1-vector bundle with fibres (W ⊗R VolX)(x) = W ⊗R VolX(x)
for all x in X, with local trivializations induced by those of TX . For U ⊂ X open and l ≤ k − 1,

a Cl-section of W ⊗R VolX over U is called a W -valued volume form on U .

3.5.5 Remark. The sheaf of Ck−1-sections of W ⊗R VolX is WX ⊗RX VolX , where WX and RX
denote the constant sheaves on X associated to W and R.

It follows immediately from the definitions that, for U ⊂ X open with local coordinates
x1, . . . , xn, every element of (W ⊗RVolX)(U) can be uniquely written in the form w · |dx1 · · · dxn|,
with w : U →W a Ck−1-function.

The finite dimensionality of W is there just because we have decided that vector bundles should
have finite rank (they have to be manifolds themselves). Working with sheaves, there is no problem
whatsoever to allow W to have infinite dimension.

3.5.6 Definition. Let X be a topological space, F a sheaf of abelian groups on X and f an

element of F(X). The support of f , denoted Supp(f), is defined to be the set {x ∈ X | fx 6= 0};
it is a closed subset of X.
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We will now be concerned with defining the integral of continuous W -valued volume forms with
quasi-compact support (recall that a topological space is called quasi-compact if every open cover
of it has a finite subcover). Intuitively, the integral of such a form is the sum of all its values (which
are elements of W ). More precisely, one should think of Riemann sums; the volume form itself tells
us how to measure the size of “small cubes”. But the terms “cube” and “block” do not make much
sense in X. So first we explain what we want to do locally; after that we set up an administration
system to make sure that everything gets counted exactly once. I should also admit that the usual
definition of integration of volume forms is in terms of paritions of unity. In this course I want
to show that there is another definition that is closer to the way one actually computes integrals,
and which does not need that the manifold is separated. Of course, both definitions give the same
result for separated manifolds. We will probably need the usual definition do prove some general
results on integration (such as Stokes’s theorem).

So let X be a Ck-manifold, with k ≥ 1. Let W be a finite dimensional R-vector space and
v a W -valued volume form on X. Let φ : U → X be a chart, with U ⊂ R

n open. For all
u in U , Tφ(u) is an isomorphism from TU (u) to TX(φ(u)). This gives us isomorphisms from
(W ⊗R VolU )(u) to (W ⊗R VolX)(φ(u)), and hence a W -valued volume form φ∗v on U . We have,
uniquely, φ∗v = w|dx1 · · · dxn|, with w : U →W a Ck−1-map. Let V ⊂ U be a measurable subset
(in the sense of Lebesgue) of U whose closure U in Rn is compact and contained in U (for example,
a bounded closed subset of Rn that is contained in U , or an open subset of such a closed subset).
Then we define: ∫

V

φ∗v :=
∫
V

w,

where the last integral is in the sense of Lebesgue. To make things a bit more concrete: if
(w1, . . . , wd) is a basis for W , and w =

∑
i fiwi, then

∫
V
w =

∑
i(
∫
V
fi)wi. We are now ready to

define the integral on X itself.

3.5.7 Construction. Let X be a Ck-manifold with k ≥ 1. Let W be a finite dimensional R-
vector space. Let v be a W -valued volume form on X with quasi-compact support. Suppose
that we have an integer m ≥ 0, charts φi : Ui → X, 1 ≤ i ≤ m, Vi ⊂ Ui compact such that
Supp(v) ⊂ ∪iφiVi. Then we define the integral of v over X, with respect to these data, to be:∫

X

v :=
m∑
r=1

(−1)r+1
∑

i1<···<ir

∫
Vi1,...,ir

φ∗i1v,

where Vi1,...,ir := φ−1
i1
∩rj=1 φijVij .

The sum over r, and the signs in it, are there to make that we do not count the intersections twice,
etc.; it is called the inclusion exclusion principle, easily understood in terms of the characteristic
functions of the Vi. Note that the Vi1,...,ir are indeed measurable subsets of Ui1 : φi1Vi1 ∩ φi2Ui2
is open in φi1Vi1 , and φi1Vi1 ∩ φi2Vi2 is closed in φi1Vi1 ∩ φi2Ui2 , etc. Let us show how charts φi
and compact subsets Vi of Ui with Supp(v) ⊂ ∪iφiVi can be obtained. For each x in Supp(v),
choose a chart φx : Ux → X and a compact neighborhood Vx of φ−1

x x in Ux. Since Supp(v) is
quasi-compact, it is covered by a finite number of the Vx. Numbering those x gives the desired
charts and measurable subsets. Of course, in practice one usually tries to take the Vi disjoint, or
at least such that the Vi ∩ Vj have measure zero for i 6= j.

3.5.8 Proposition. The integral of v as defined in Construction 3.5.7 does not depend on the

choice of the charts φi and the sets Vi.
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Proof. Suppose we have two sets of data: m, m′, φi, φ′j , etc. Then we construct two new sets of
data as follows: m′′ := mm′, Ui,j := φ−1

i (φiUi∩φ′jU ′j), φi,j := φi|Ui,j , U ′i,j := (φ′i)
−1(φiUi∩φ′jU ′j),

φ′i,j := φ′j |U ′i,j , Vi,j := φ−1
i (φiVi ∩ φ′jV ′j ), V ′i,j := (φ′i)

−1(φiVi ∩ φ′jV ′j ). Let us first argue that these
new two sets of data give the same integral. For that purpose, consider a pair (i, j). Let U := Ui,j

and U ′ := U ′i,j . Then f := φ′j
−1
φi defines an isomorphism from U to U ′, such that V := Vi,j has

image V ′ := V ′i,j . Let us write φ∗i v = v|dx1 · · · dxn| and φ′j
∗
v = v′|dx′1 · · · dx′n|. The partial deriva-

tives ∂/∂xi, 1 ≤ i ≤ n form a basis of TU , and likewise for ∂/∂x′j for TU ′ . Written in this basis,
the tangent map Tf is given by the matrix whose (i, j)th coefficient is ∂fj/∂xi, where f is written
(f1, . . . , fn). Note that |dx1 · · · dxn| is a basis for VolU , and that |dx′1 · · · dx′n| is one for VolU ′ . Let
u be in U and put u′ := f(u). Then Tf (u) induces an isomorphism from VolU (u) to VolU ′(u′).
Using the defitions of VolU (u) and VolU ′(u′), one sees that under this isomorphism |dx′1 · · · dx′n| is
mapped to |det(Tf (u)| |dx1 · · · dxn|. By construction, this isomorphism sends v′(u′)|dx′1 · · · dx′n|
to v(u)|dx1 · · · dxn|, hence we get v′(u′)|det(Tf (u))| = v(u). The “change of variables formula”
from vector calculus says:∫

V ′
v′ =

∫
V ′
v′|dx′1 · · · dx′n| =

∫
V

(v′ ◦ f)|df1 · · · dfn| =
∫
V

(v′ ◦ f)|det(Tf )|.

So, from what we have just seen, it follows that
∫
V ′
v′ =

∫
V
v. This equality is also valid for

V := V(i1,j1),...,(ir,jr) and V ′ := V ′(i1,j1),...,(ir,jr). That means that indeed our two new sets of data
for integration give the same result.

It remains now to be shown that two sets of data, one of which is a refinement of the other,
give the same integral. In order to see this, let us reconsider what happens for just one set of data
m, φi and Vi. Considering all possible intersections of the Vi and their complements gives us 2m

subsets that partition X. All these subsets are contained in some Vi, except one: the complement
of the union of the Vi. Note that on this last set v is zero. So on each of our subsets we can
integrate v, and the sum of these integrals equals the integral of v over X relative to the set of
data m, φi, Vi. (To see that, use that f 7→

∫
Rn
f is additive.) Of course, what we are doing here

is the standard game with the boolean algebra generated by the characteristic functions of the Vi.
Now suppose that we have a refinement m′, φ′j , V

′
j . The 2m

′
subsets of X obtained from the V ′j

give a partition of X that refines the partition obtained from the Vi. Then our claim is clear. �

Now that we know how to integrate volume forms (i.e., sections of VolX), let us discuss the relation
between volume forms and differential forms of top degree, i.e., sections of ΩdimX

X .

3.5.9 Definition. Let X be a manifold and L a rank one vector bundle on X. An orientation

of L is a collection of orientations of all L(x), x ∈ X, which is locally constant. If X is Ck with

k ≥ 1, then an orientation of X is an orientation of ΩdimX

X .

Some examples. The trivial line bundle R ×X has a standard orientation. The same is true for
VolX , but not always for ΩdimX

X . If ω is a global section of ΩdimX

X such that ω(x) 6= 0 for all x in
X, then ω is a basis for ΩdimX

X , hence gives an isomorphism from R×X to ΩdimX

X , hence gives an
orientation on ΩdimX

X .

3.5.10 Remark. It is not true in general that all orientations on a line bundle L come from a
trivialization of it (example: take X to be two copies of R, glued via the identity along R− {0},
and take an ugly line bundle). If X is paracompact, then all orientations come indeed from
trivializations.
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3.5.11 Proposition. Let X be a Ck-manifold with k ≥ 1. An orientation on X induces a unique

isomorphism from VolX to ΩdimX

X , such that, at each x in X, it coincides with the map from

ΩdimX

X (x) to VolX(x) that sends l to |l|. Conversely, an isomorphism from VolX to ΩdimX

X with

this property induces an orientation on X and the two constructions are inverses.

Proof. Let x be in X, V := TX(x), n := dim(V ), L := ΩdimX

X (x) = (Λn(V ))∨, and finally
L′ := VolX(x) = |Λn(V )|∨. Recall that we have the map | · | : L→ L′ that sends l to |l|. This map
is, of course, not linear. We get a linear map as follows: choose l in L+ non-zero and send λl, for
λ in R, to λ|l|. Check that this map does not depend on the choice of l, that it coincides with | · |
on L+ and that it is the only linear map with that property. �

It is now clear that for X an oriented Ck-manifold we can integrate sections of ΩdimX

X that have
quasi-compact support, by using the isomorphism corresponding to the orientation to transform
these sections in volume forms. The procedure to integrate a differential form of top degree ω
with quasi-compact support is then the same as in Construction 3.5.7, except that one should
take charts that are compatible with the orientation on X and the standard orientation on Rn.
The standard orientation on Rn is the one such that dx1 · · · dxn (in this order!) is positive. Of
course, if W is an R-vector space, then we can also integrate sections with quasi-compact support
of W ⊗R ΩdimX

X .
To finish this section, let us define a canonical volume form on a Riemannian manifold. So

suppose that X is a Ck-manifold, with k ≥ 1, and that 〈·, ·〉 is a metric on TX . Let x be in X.
Suppose that v1, . . . , vn is an orthonormal basis of TX(x). Let v(x) be the volume form on TX(x)
such that (v(x))(v1, . . . , vn) = 1. One checks that this does not depend on the orthonormal basis
chosen. Hence it defines a volume form v on X.

To give some example where one uses this, note that a submanifold of a Riemannian manifold
inherits the structure of Riemannian manifold. For example, consider the group SO3(R) as a
compact submanifold of R9 with its standard Riemannian metric. Then one can ask: what is the
volume of SO3(R)?

3.6 Pullback of vector bundles and of differential forms

Let us first discuss pullback of vector bundles. Let f : X → Y be a morphism of manifolds, and let
E be a vector bundle on Y . Then we define a vector bundle f∗E on X by: (f∗E)(x) := E(f(x))
for all x in X, and the local trivializations of f∗E are induced by those of E. For U ⊂ Y open,
and s in E(U), we get an element f∗s of (f∗E)(f−1U), defined by: (f∗s)(x) := s(f(x)) for all x
in f−1U . (Note the special case E = R×Y , where s is just a function and f∗s = s◦f .) The sheaf
of sections of f∗E is the tensor product CX ⊗f−1CY f

−1E, where f−1 is pullback of sheaves. For
an arbitrary CY -module M, its pullback as a module is defined as f∗M := CX ⊗f−1CY f

−1M.
Hence on the side of locally free sheaves of modules this operation corresponds to the pullback of
vector bundles.

Suppose now moreover that F is a vector bundle on X, and that g : F → E is a morphism
of vector bundles (see Definition 2.2.8). We claim that such a g corresponds naturally to a
morphism from F to f∗E of vector bundles on X. The proof is trivial, because, for all x in X,
(f∗E)(x) = E(f(x)).

In particular, the morphism Tf from TX to TY corresponds to a morphism, also written Tf ,
from TX to f∗TY . Dualizing gives us a morphism f∗ : f∗Ω1

Y → Ω1
X . Doing our tensor operations
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gives us f∗ : f∗ΩY → ΩX . One easily verifies that this f∗ is a morphism of sheaves of graded
algebras, and that for U ⊂ Y open and ω in ΩY (U) one has f∗dω = d(f∗ω); it suffices to prove
this for forms of degree one, where one has:

(f∗dg)∂ = (dg)(Tf∂) = (dg)(∂ ◦ f∗) = (∂ ◦ f∗)g = ∂(g ◦ f) = (d(f∗g))∂.

Suppose now that dimX(x) = dimY (f(x)) for all x in X. Then one has f∗ : f∗VolY → VolX
and f∗ : ΩdimY

Y → ΩdimX

X . If f is an isomorphism from X to an open subset U of Y , and v is in
VolY (Y ) with quasi-compact support contained in U , then one has

∫
Y
v =

∫
X
f∗v.

3.7 Some exercises

Let G be a Lie group, i.e., G is a C∞-manifold, with a C∞-group structure. Let e be its unit
element. We consider the following group actions. The (left) action of G on itself by left trans-
lations: for x in G we have lx : G → G sending y to xy. The (right) action of G on itself by
right translations: rx : y 7→ yx. The action of G on itself by conjugation: cx : y 7→ xyx−1. The
action of G×G on G by translations on both sides: bx,y : z 7→ xzy−1. Let l denote the morphism
of groups from G to AutMan(G) given by the action by left translations. Similarly, we have the
anti-morphism r from G to AutMan(G) given by the right translations, the morphism b from G×G
to AutMan(G) and the morphism c from G to the group AutLie(G) of automorphims of G as Lie
group.

We denote the tangent space TG(e) by Lie(G) and by L. For every x in G we have the two
isomorphisms Tlx(e) and Trx(e) from L to TG(x). These two isomorphisms need not be the same.
Show that in fact Trx(e)−1Tlx(e) is the automorphism Tcx(e) of L. (By the way, L is called the Lie
algebra of G; we will discuss the structure of Lie algebra on L a bit further.) Show that x 7→ Tcx(e)
defines an action of G on L by linear maps; this action is called the adjoint representation of G.
Show that both l and r define isomorphisms, still denoted l and r, from the trivial vector bundle
L×G to TG. In particular, all Lie groups have a trivial tangent bundle, and are orientable.

Let us consider the vector space TG(G) of vector fields on G. The group G acts on it via l, r
and c; G×G acts via b. A vector field ∂ on G is called left-invariant if it is invariant for the action
given by l; similarly, it is called right-invariant if it is invariant under r, and bi-invariant if invariant
under b. Explicitly: ∂ is left-invariant if and only if for all x in G one has ∂(x) = Tlx(e)∂(e). Show
that ∂ 7→ ∂(e) gives an isomorphism from the vector space of left-invariant vector fields on G to L.
Show the same with left replaced by right. Show that the space of bi-invariant forms is isomorphic
in this way to the subspace of L on which G acts trivially via its adjoint representation.

Before we define the Lie algebra structure on L we need a general result on derivations. Let k
be a field and A a k-algebra. Then we have the A-module of k-derivations Derk(A) := Derk(A,A).
One verifies immediately that for ∂1 and ∂2 in Derk(A), the commutator [∂1, ∂2] := ∂1∂2 − ∂2∂1

is in Derk(A). We apply this to vector fields. Let X be a Ck-manifold (with k ≥ ∞, remember?),
U ⊂ X open, ∂1 and ∂2 vector fields on U . Then we may view ∂1 and ∂2 as elements of DerR(CkU )
(recall that we have a canonical isomorphism between TX and DerR(CX)). Hence we get [∂1, ∂2]
in TX(U). (Assuming that U is an open subset Rn, compute explicitly what this operation looks
like.)

We go back to our Lie group G. Show that for ∂1 and ∂2 two left-invariant vector fields on
G, [∂1, ∂2] is left-invariant too. (Of course the same holds for right-invariance; one should in fact
prove a lemma concerning ∂1 and ∂2 on a manifold X that are invariant under an automorphism
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σ of X.) Because the space of left-invariant vector fields is just L (via ∂ 7→ ∂(e)), we get a map
[·, ·] from L×L→ L. This map is called the Lie bracket. Show that it is bilinear, alternating and
that it satisfies Jacobi’s identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A vector space L with such an operation is called a Lie algebra. We will compute the Lie algebras of
the Lie groups that we have seen in §1. We start with the group G := GLn(R) (some n ≥ 0). Since
G is an open subset of Mn(R), we identify the TG(x) with Mn(R). Let a be in L = Te(G) = Mn(R).
We wish to describe explicitly the left-invariant vector field ∂a on G such that ∂a(e) = a. Verify
that for g in G we have ∂a(g) = ga. Now we compute ∂axi,j , where the xi,j are the coordinate
functions on Mn(R). For g in G, (∂axi,j)(g) is by definition the derivative of xi,j at g in the
direction given by ∂a(g), i.e., in the direction ga. So we compute:

xi,j(g + εga) = (g + εga)i,j = gi,j + ε(ga)i,j = xi,j(g) + ε
∑
k

gi,kak,j .

It follows that ∂a(xi,j) =
∑
k xi,kak,j . Applying this formula twice gives:

(∂a∂b)xi,j = ∂a(
∑
k

xi,kbk,j) =
∑
k,k′

xi,k′ak′,kbk,j =
∑
k′

xi,k′(ab)k′,j = ∂abxi,j .

From this we get:
[∂a, ∂b]xi,j = ∂[a,b]xi,j , and [∂a, ∂b] = ∂[a,b],

since the xi,j are linearly independent over R. So the Lie bracket for GLn(R) is just the ordinary
commutator of matrices. The reader should check that if we had used right-invariant vector
fields to define the Lie bracket, we would have found the opposite result (use that x 7→ x−1

induces multiplication by −1 on L). Let us now reconsider the subgroups of GLn(R) that we
considered in §1. From the computations we did there, it follows that Lie(SLn(R)) is the subspace
of Mn(R) consisting of the elements with trace zero, that Lie(SOn(R)) = Mn(R)−, the space of
anti-symmetric matrices, and that Lie(Sp2n(R)) is the space of ( a bc d ) with ct = c, bt = b and
d = −at. From the construction of the Lie bracket it follows that the Lie bracket for any of these
subgroups is just the restriction of the one for Mn(R) in the first two cases and M2n(R) in the
last.

Let us now look at differential forms on Lie groups. Just as for vector fields, we have the notions
of left-invariant, right-invariant and bi-invariant elements of ΩiG. Of particular importance are bi-
invariant differential forms of top degree, since those give us bi-invariant volume forms. Show, by
pure thought, that SOn(R) has such a non-zero bi-invariant form (use that SOn(R) is compact
and connected). Show that O2(R) has a non-zero bi-invariant volume form, but not a non-zero
bi-invariant 1-form. Show that GLn(R) and SLn(R) both have non-zero bi-invariant forms of top
degree (use that the commutator subgroup of SLn(R) is SLn(R) itself).

Of particular fun should be the following exercise. Compute explicitly the bi-invariant volume
form v on G := SO3(R) for which G has volume one. Compute the distribution g, with respect
to v, of the angles of rotation, say in the interval [0, π], of the elements of G. More precisely, let
f be the function G→ [−1, 1] that sends x to (tr(x)− 1)/2; determine the continuous function g

on ]− 1, 1[ such that for every continuous h : [−1, 1]→ R one has:∫
G

f∗(h)v =
∫ 1

−1

gh.
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In the same way, compute the distribution g2 for the function f2 from G to [−1, 1] that sends x
to (tr(x2)− 1)/2. Why is the result so remarkable? (Hint: it might be useful to use the following
chart for G; let U := {x ∈ R3 | 0 < ‖x‖ < π} and let ψ : U → G be the map that sends a to the
rotation of angle |a| with (oriented) axis Ra.)
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4 De Rham cohomology

4.1 Definition. A differential graded-commutative R-algebra is an R-algebra A with a grading

A = ⊕i∈ZAi, which is graded-commutative (i.e., for x in Ai and y in Aj one has yx = (−1)ijxy),

and which is equipped with a differential d of degree one (i.e., an R-linear map d from A to A

such that d2 = 0, d(Ai) ⊂ Ai+1 and d(xy) = (dx)y + (−1)ixdy for x in Ai and y in A).

We have a contravariant functor X 7→ (ΩX(X), d) from the category of C∞-manifolds to that of
differential graded-commutative R-algebras. Note that the vector spaces ΩX(X) tend to be very
big (the typical dimension is |R|). Although this functor does transform morphisms of manifolds
into R-linear maps, it does not really simplify the study of the category of C∞-manifolds. For
example, a compact manifold X can be reconstructed from Ω0

X(X) alone (the points of X corre-
spond to the maximal ideals, the topology is the Zariski topology, etc.). But, if one composes the
functor X 7→ (ΩX(X), d) with the functor that takes homology of differential graded-commutative
algebras, then a miracle happens. This composed functor, called de Rham cohomology, has rea-
sonable finiteness properties, and, most importantly, is homotopy invariant. Before proving that,
let us write down the definitions in detail.

4.2 Lemma. Let A be a differential graded-commutative R-algebra. Then its homology H(A),
defined as ker(d)/im(d), has an induced structure of graded-commutative R-algebra.

Proof. Details are left to the reader. Show that ker(d) is a graded-commutative subalgebra of
A, in which im(d) is a homogeneous ideal. �

4.3 Definition. Let X be a paracompact C∞-manifold. Then the de Rham cohomology of X is

the graded-commutative R-algebra HdR(X) := H(ΩX(X), d). Hence one has:

Hi
dR(X) =

ker(d : ΩiX(X)→ Ωi+1
X (X))

im(d : Ωi−1
X (X)→ ΩiX(X))

.

As explained above, HdR(·) is a contravariant functor from the category of manifolds to that of

graded-commutative R-algebras. For f : X → Y we will write f∗ for the morphism HdR(f) from

HdR(Y ) to HdR(X).

4.4 Remark. Of course we could define de Rham cohomology for arbitrary C∞-manifolds (i.e.,
not necessarily paracompact), but that would not give the results we want. In the general case one
should consider the so-called hypercohomology HdR(X) := H(ΩX , d) of the complex of sheaves ΩX .

4.5 Theorem. The de Rham cohomology of paracompact C∞-manifolds is homotopy invariant,

i.e., if f0 and f1 from X to Y are homotopic, then the two maps f∗0 and f∗1 from HdR(Y ) to

HdR(X) are equal.

Proof. By definition of homotopy, we have a morphism of C∞-manifolds F : X × I → Y with
I an open interval containing 0 and 1, such that F |X×{0} = f0 and F |X×{1} = f1. (It would be
enough to have F a C1-morphism such that its restrictions to all X × i with i in I are Ck, but
let us not bother.) We will construct a homotopy from 0 to f∗0 − f∗1 , i.e., a sequence of R-linear
maps Ki : ΩiY (Y ) → Ωi−1

X (X) such that f∗0 − f∗1 = dK + Kd. In order to construct this K, we
need to consider ΩX×I more closely. Let pX and pI denote the projections from X × I to X and
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I, respectively. (More generally, one should consider the vector bundle of differential forms on a
product of two manifolds.) At a point (x, i) of X × I, the tangent space TX×I(x, i) is canonically
isomorphic to the direct sum TX(x)⊕ TI(i). On the level of vector bundles this gives us:

TX×I = p∗XTX ⊕ p∗ITI .

Dualizing this gives:
Ω1
X×I = p∗XΩ1

X ⊕ p∗IΩ1
I .

We suggest to the reader to prove that for a ring A and A-modules M1 and M2 one has

Λi(M1 ⊕M2) =
⊕
j+k=i

Λj(M1)⊗A Λk(M2).

In fact, Λ(M1⊕M2) and Λ(M1)⊗AΛ(M2) with its grading obtained by “convolution” are naturally
isomorphic, as they have the same universal property: to give a morphism of graded A-algebras
to a graded-commutative A-algebra B is to give morphisms of A-modules φ1 : M1 → B1 and
φ2 : M2 → B2. It follows that we have a natural isomorphism:

ΩiX×I = p∗XΩiX ⊕
(
p∗XΩi−1

X ⊗ p∗IΩ1
I

)
.

In local coordinates, this means the following. Suppose that x1, . . . , xn are coordinates on U ⊂ X,
and let t be the coordinate on I. Then ΩiU×I has the basis:{

dxj1 · · · dxji , 1 ≤ j1 < · · · < ji ≤ n,
dxj1 · · · dxji−1dt, 1 ≤ j1 < · · · < ji−1 ≤ n.

For ω in ΩiX×I(X × I) we can write uniquely ω = ω1 + ω2 dt, with ω1 in p∗XΩiX(X × I) and ω2

in p∗XΩi−1
X (X×I). This decomposition of the ΩiX×I also induces a decomposition of the differential

dX×I on ΩX×I : we have, uniquely, dX×I = dX + dI , with dX increasing the degree with respect
to X by one, and dI the same for I. (For an arbitrary product, this displays the complex ΩX×Y
as the total complex associated to the double complex p∗XΩX ⊗ p∗Y ΩY .)

We can now define our homotopy operators Ki
1 from ΩiX×I(X × I) to Ωi−1

X (X); the operator
K we want to have will be K1 ◦ F ∗. With the notation as above (ω = ω1 + ω2) we define:

(4.5.1) Ki
1ω := (−1)i

∫ 1

0

ω2 dt.

Since the object to be integrated does not look like a function that one usually integrates, let us
write it a bit more explicit. Let x be in X. Then (Ki

1ω)(x) = (−1)i
∫ 1

0
ω2(x, t) dt, and ω2(x, t) is

an element of the vector space Ωi−1
X (x) that does not depend on t. This means that the integral

is exactly of the kind we considered in the previous section: we integrate a vector space valued
volume form (namely: ω2 |dt|) over a compact subset [0, 1] of the manifold I. Let i0 and i1 denote
the inclusions of X into X × I that send x to (x, 0) and (x, 1), respectively. Then we claim that
for all ω in ΩiX×I(X × I) we have:

(4.5.2) (dKi
1 +Ki+1

1 d)ω = i∗0ω − i∗1ω.

To prove this identity, note that it is a local problem on X, and that both sides are additive
in ω. Hence we may assume that x1, . . . , xn are local coordinates on X and that ω is of the
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form fdx1 · · · dxi or gdx1 · · · dxi−1dt with f and g in CX×I(X × I). Let us first consider the case
ω = fdx1 · · · dxi. Then Ki

1ω = 0 because ω2 = 0. On the other hand,

dω = dfdx1 · · · dxi = (dXf)dx1 · · · dxi + (dIf)dx1 · · · dxi.

It follows that:

K1dω = (−1)i+i+1K1((∂f/∂t)dx1 · · · dxidt) = −
(∫ 1

0

(∂f/∂t)dt
)
dx1 · · · dxi = i∗0ω − i∗1ω.

One should note that the last identity is exactly the fundamental theorem of calculus. Let us now
consider the second case: ω = gdx1 · · · dxi−1dt. Now we have: ω = ω2, hence:

Ki
1ω = (−1)i

(∫ 1

0

g dt

)
dx1 · · · dxi−1 = (−1)iGdx1 · · · dxi−1,

where G is the function on X defined by G(x) =
∫ 1

0
g(x, t) dt. It follows that:

dKi
1ω = (−1)idGdx1 · · · dxi−1.

On the other hand, dω = (dXg)dx1 · · · dxi−1dt. Hence:

(−1)i+1Ki+1
1 dω =

(∫ 1

0

(dXg) dt
)
dx1 · · · dxi−1 = d

(∫ 1

0

g dt

)
dx1 · · · dxi−1 =

= (dG)dx1 · · · dxi−1,

where the middle equality is the theorem in calculus that says that the derivative with respect
to parameters of an integral is the integral of the derivative. So we find that (dK1 +K1d)ω = 0.
This is just what we need, since i∗0(dt) = d(i∗0t) = d(0) = 0, and also i∗1(dt) = 0.

To finish the proof of the theorem, define Ki := Ki
1 ◦ F ∗ and note that, for ω in ΩiY (Y ),

i∗0F
∗ω = f∗0ω and i∗1F

∗ω = f∗1ω. �

We can now compute the de Rham cohomology for some manifolds. The empty manifold gives
the zero ring, and a one point manifold gives the R-algebra R itself. Now suppose that X is a
contractible Ck-manifold (i.e., there is a point x in X such that the constant map f : X → X

that sends every element of X to x is homotopic to the identity morphism idX of X. Then f∗

induces the identity endomorphism of HdR(X). But we can write f = ix ◦ p, with ix the inclusion
of {x} in X and p the unique map X → {x}. But then we see that i∗x and p∗ are inverses, hence
HdR(X) = R.
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5 The exact sequence of Mayer–Vietoris

Let X be a Hausdorff paracompact C∞-manifold. Suppose that X is the union of two open subsets
U and V :

X = U ∪ V.

Then we have a diagram:

(5.1)
0 −→ Ω(X) i−→ Ω(U)⊕ Ω(V ) r−→ Ω(U ∩ V ) −→ 0

ω 7→ (ω|U , ω|V )
(α, β) 7→ α|U∩V − β|U∩V

It is clear that this diagram is exact at Ω(X) and at Ω(U) ⊕ Ω(V ), and that the maps i and r

commute with the differentials d on each of the terms. In order to obtain the long exact sequence
of Mayer–Vietoris, we need that r is surjective. It is for proving this surjectivity that the hypoth-
esis that X is paracompact and Hausdorff is used. We need a so-called partition of unity subject
to the cover of X by U and V : elements f and g in C∞(X) such that 1 = f + g and Supp(f) ⊂ U
and Supp(g) ⊂ V . It is a bit technical to show, but on our paracompact Hausdorff C∞-manifold
partitions of unity subject to any open cover do exist (see for example Definition 7.9, Proposi-
tion 7.10 and Theorem 7.8 of my syllabus “Géométrie Variable”, out of which this course is more
or less extracted, except this section and the next). In this course, we will admit the existence of
f and g above.

5.2 Proposition. The map r in (5.1) is surjective.

Proof. Let f and g be as above. Let ω be in Ω(U ∩ V ). Then g = 0 on X − V and f = 0 on
X −U . It follows that gω can be extended by zero to U because gω is a section of Ω on the open
part U ∩V of U with support contained in that open part. Explicitly: there is a unique α in Ω(U)
such that α|U∩V = gω and α(x) = 0 for all x in U −U ∩V . Similarly, fω can be extended by zero
to an element β of Ω(V ). But then r((α,−β)) = ω. �

5.3 Remark. We note that the map ω 7→ (gω,−fω) from Ω(U ∩ V ) to Ω(U) ⊕ Ω(V ) does not
necessarily commute with d, because df and dg are not necessarily zero. Hence our splitting of
the exact sequence (5.1) of vector spaces is not necessarily a splitting of an exact sequence of
complexes.

5.4 Proposition. Let (A, d), (B, d) and (C, d) be complexes (of R-vector spaces, say). Let:

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of complexes. Then we get maps ∂i : Hi(C) → Hi+1(A), for all i in Z,

characterised by the following property.

Let c ∈ Ci with dc = 0, let b ∈ Bi with gb = c, then g(db) = dc = 0, hence there is

a unique a ∈ Ai+1 with fa = db. As f(da) = d(fa) = d2b = 0, and f is injective, we

have da = 0, and a defines an element of Hi+1(A). This element is the image under ∂

of the element in Hi(C) given by c.
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Together with the morphisms f : H(A) → H(B) and g : H(B) → H(C) induced by f and g, the

boundary maps ∂ give a long exact sequence:

· · · → Hi−1(B)→ Hi−1(C)→ Hi(A)→ Hi(B)→ Hi(C)→ Hi+1(A)→ · · ·

Proof. This is a long but simple verification that we will not write out. Any book on homological
algebra or on algebraic topology should contain this statement. A lemma often used as ingredient
for this proof is the so-called “Snake Lemma”. This lemma is then be applied to the commutative
diagram with exact rows:

Ai/dAi−1 −→ Bi/dBi−1 −→ Ci/dCi−1 −→ 0
↓ ↓ ↓

0 −→ (Ai+1)d=0 −→ (Bi+1)d=0 −→ (Ci+1)d=0,

where the notation (Ai+1)d=0 stands for ker(d : Ai+1 → Ai+2). �

5.5 Theorem. (Mayer–Vietoris) Let X be a paracompact Hausdorff C∞-manifold, covered by

two open subsets U and V . Then the diagram in (5.1) gives, via Proposition 5.4, a long exact

sequence:

· · · → Hi−1
dR (U)⊕Hi−1

dR (V )→ Hi−1
dR (U ∩V )→ Hi

dR(X)→ Hi
dR(U)⊕Hi

dR(V )→ Hi
dR(U ∩V )→ · · ·

Proof. This is a direct application of Propositions 5.2 and 5.4. �

Now we can combine our two tools (homotopy invariance and Mayer–Vietoris) in order to de-
termine the de Rham cohomology for some manifolds, such as the spheres Sn, the projective
spaces Pn(C) and Pn(R), compact surfaces and C minus a finite set of points.

5.6 Theorem. Let n ≥ 1. Then Hi
dR(Sn) is zero if i 6∈ {0, n}, H0

dR(Sn) = R, and Hn
dR(Sn) is

one-dimensional, generated by any ω in Ωn(Sn) with
∫
Sn
ω 6= 0. In other words: let 1 ≤ i ≤ n

and ω in Ωi(Sn); then there exists η in Ωi−1(Sn) such that ω = dη if and only if dω = 0 and, if

i = n,
∫
Sn
ω = 0.

Proof. Induction on n. Let n ≥ 1. First we prove the statements concerning the dimen-
sion of the Hi

dR(Sn). On Sn we have the two points N := (0, . . . , 0, 1) (the North pole) and
S := (0, . . . , 0,−1) (the South pole). We let U := Sn − {S} and V := Sn − {N}. Then U and
V are isomorphic (as C∞-manifolds) to Rn, and U ∩ V is homeomorphic to Sn−1 × R, hence
homotopic to Sn−1. We note that S0 is the disjoint union of two points. As Sn is connected,
we have H0

dR(Sn) = R, by construction. For 2 ≤ i < n both terms surrounding Hi
dR(Sn) in the

Mayer–Vietoris sequence are zero, hence Hi
dR(Sn) = 0. For i = 1 we have the exact sequence:

H0
dR(U)⊕H0

dR(V ) −→ H0
dR(U ∩ V ) −→ H1

dR(Sn) −→ H1
dR(U)⊕H1

dR(V ),

which is the sequence:

R⊕ R −→ R −→ H1
dR(Sn) −→ 0

(x, y) 7→ x− y

if n ≥ 2, and the sequence:

R⊕ R −→ R
2 −→ H1

dR(Sn) −→ 0
(x, y) 7→ (x− y, x− y)
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if n = 1. It follows that Hi
dR(Sn) = 0 for 0 < i < n, and that H1

dR(S1) is one-dimensional. Suppose
now that n ≥ 2. Then the exact sequence:

Hn−1
dR (U)⊕Hn−1

dR (U) −→ Hn−1
dR (U ∩ V ) −→ Hn

dR(Sn) −→ Hn
dR(U)⊕Hn

dR(V )

reads:
0 −→ Hn−1

dR (Sn−1) −→ Hn
dR(Sn) −→ 0.

Hence all the dimensions are as claimed. In the exercises of last week it was shown that for all η in
Ωn−1(Sn) we have

∫
Sn
dη = 0, hence dΩn−1(Sn) is in the kernel of

∫
Sn

. As both
∫
Sn

: Ωn(Sn)→ R

as Ωn(Sn)→ Hn
dR(Sn) are 1-dimensional quotients, they are equal. �

5.7 Theorem. Let n ≥ 0. Then Hi
dR(Pn(C)) is of dimension one if i is even and 0 ≤ i ≤ 2n, and

zero otherwise.

Proof. Let n ≥ 0. Let P := (0 : 0 · · · : 1) in Pn(C). Let

U := P
n(C)− {P}, V := {(a0 : · · · : an−1 : 1) ∈ Pn(C) | |ai| < 1 for all i}.

Then V is contractible hence homotopic to a point, and V ∩U = V −{P} is homotopic to S2n−1.
The map:

F : U × R→ U, ((a0 : · · · : an−1 : an), t) 7→ (a0 : · · · : an−1 : tan)

gives a homotopy from the identity on U to the projection to the subspace Pn−1(C) (the hyperplane
at infinity) of Pn(C). Summarizing:

HdR(U) = HdR(Pn−1(C)), HdR(V ) = HdR(·), HdR(U ∩ V ) = HdR(S2n−1).

Hence the Mayer–Vietoris sequence reads:

· · · → Hi−1
dR (S2n−1)→ Hi

dR(Pn(C))→ Hi
dR(·)⊕Hi

dR(Pn−1(C))→ Hi
dR(S2n−1)→ · · ·

It follows that for i 6= 2n the map Hi
dR(Pn(C))→ Hi

dR(Pn−1(C)) is an isomorphism, and that the
map H2n−1

dR (S2n−1)→ H2n
dR(Pn(C)) is an isomorphism. �

5.8 Theorem. Let n ≥ 0. Then Hi
dR(Pn(R)) is R if i = 0, one-dimensional if i = n and n is odd,

and zero otherwise.

Proof. Let ι : Sn → Sn be the antipodal map. Then the obvious map Sn → P
n(R) is the quotient

for the action of the group 〈ι〉. Hence the de Rham complex (Ω(Pn(R)), d) is the subcomplex of
ι-invariants of the de Rham complex (Ω(Sn), d) of Sn. The direct sum decomposition:

(Ω(Sn), d) = (Ω(Sn), d)+ ⊕ (Ω(Sn), d)−,

shows that in the direct sum decomposition HdR(Sn) = HdR(Sn)+ ⊕HdR(Sn)− we have:

HdR(Sn)+ = H((Ω(Sn), d)+), HdR(Sn)− = H((Ω(Sn), d)−).

It remains to show that ι∗ : Hn
dR(Sn) → Hn

dR(Sn) is multiplication by (−1)n−1 if n ≥ 1. This is
left as an exercise to the reader. Of course, one can also obtain the result of this theorem using
appropriate Mayer–Vietoris arguments. �
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Without proof we state two results that are easily proved using the techniques above.

5.9 Theorem. Let r ≥ 1 and P1, . . . , Pr be r distinct points of S2. Put X := S2 − {P1, . . . , Pr}.
Then H0

dR(X) = R, dim H1
dR(X) = r − 1, Hi

dR(X) = 0 for i ≥ 2.

5.10 Theorem. Let X be a compact orientable connected C∞-manifold of dimension two. The

classification of such surfaces says that X can be obtained by adding a certain number of handles

to S2. This number of handles, g say, is called called the genus of X. One has: H0
dR(X) = R,

dim H1
dR(X) = 2g, dim H2

dR(X) = 1, and Hi
dR(X) = 0 for i > 2.

We end this section with some naive experiment that turns out to be very successful. We recall
that the C-algebra of meromorphic functions on P1(C) = C ∪ {∞} is the field of fractions C(t)
of C[t].

Let r ≥ 0 be an integer, and a1, . . . , ar be r distincs elements of C. We want to consider
X := P

1(C)−{∞, a1, . . . , ar} as a complex algebraic variety, which, for us, at this moment, means
that we consider the C-algebra O(X) of global functions on it to be the C-algebra of rational
functions f ∈ C(t) that have no pole outside {∞, a1, . . . , ar}. We have:

O(X) = C[t, 1/(t− a1), . . . , 1/(t− ar)].

A C-basis of O(X) is given by the tn with n ≥ 0 together with the (t− ai)ni with 1 ≤ i ≤ r and
ni < 0. The algebraic de Rham complex Ω(X) is then:

0 −→ O(X) d−→ O(X)·dt −→ 0,

with f in O(X) mapping to f ′·dt, with f ′ the usual derivative of f . Using the C-basis given above,
it is easy to compute that H0(Ω(X)) = C and H1(Ω(X)) is of dimension r, and represented by the
forms (t − ai)−1dt. Surprisingly, we have H(Ω(X)) = C ⊗R HdR(X), with HdR(X) the de Rham
cohomology of X viewed as a (real) C∞-manifold.

This example is no coincidence. It is in fact true for any affine non-singular complex algebraic
variety X that H(Ω(X)) = C⊗R HdR(X) (a theorem due to Grothendieck). The proof of that is
quite complicated, and uses resolution of singularities.
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6 Cohomology with compact supports, and Poincaré dual-

ity

One of the fundamental results concerning de Rham cohomology is Poincaré duality. In some
examples that we have seen (the Sn and the Pn(C)) one notes that Hi

dR(X) and Hj
dR(X) have the

same dimension if i + j = dimX . On the other hand, this is not so for Rn. We will see that this
comes from the non-compactness of Rn.

In order to set up Poincaré duality, we need a version of de Rham cohomology: the one with
compact supports.

6.1 Definition. Let k ≥ 0, X a Ck-manifold and E a Ck-vector bundle on X. Then, for U ⊂ X
open, we let Ec(U) denote the sub-R-vector space of E(U) consisisting of the sections with compact

support. In particular, on a C∞-manifold we have the complex (Ωc(X), d).

6.2 Definition. Let X be a paracompact Hausdorff C∞-manifold. Then we define HdR,c(X),
the de Rham cohomology with compact supports, to be the homology of the complex (Ωc(X), d).
Explicitly, for i ≥ 0 one has:

Hi
dR,c(X) =

ker(d : Ωic(X)→ Ωi+1
c (X))

im(d : Ωi−1
c (X)→ Ωic(X))

.

Of course, if X is compact, then Ωc(X) = Ω(X), and HdR,c(X) = HdR(X).

We note that a pullback of a differential form with compact support need not have compact sup-
port. Hence X 7→ (Ωc(X), d) is not a contravariant functor via pullback for arbitrary morphisms
between C∞-manifolds. Of course, if f : X → Y is such that the inverse image of a compact subset
of Y is compact, then f does induce a morphism f∗ of differential graded-commutative R-algebras
from Ωc(Y ) to Ωc(X).

6.3 Definition. A morphism f : X → Y of topological spaces is called proper if for every compact

subset K of Y the inverse image f−1K is compact.

With this definition it is obvious that:

HdR,c is a contravariant functor for proper morphisms.

As often happens, when you lose something (such as pullback functoriality for arbitrary mor-
phisms), you gain something else. Here it is:

on a Hausdorff space, taking sections with compact support is covariant for open
immersions.

Explicitly, let U ⊂ V be open, with V a Hausdorff manifold, let E be a vector bundle on V and
s in Ec(U). Then the extension of s by zero is in Ec(V ) (note that Supp(s) is closed in V hence
that s is zero in the neighborhood V − Supp(s) of V − U). We will denote the extension by zero
of s again by s.

We will now establish the analogs for de Rham cohomology with compact supports of the
Mayer–Vietoris sequence and the homotopy invariance. We start with the Mayer-Vietoris sequence.

42



Let X be a paracompact Hausdorff C∞-manifold. Suppose that X is the union of two open
subsets U and V :

X = U ∪ V.

Then we have a diagram:

(6.4)
0 −→ Ωc(U ∩ V ) i−→ Ωc(U)⊕ Ωc(V ) s−→ Ωc(X) −→ 0

(α, β) 7−→ α+ β

ω 7−→ (ω,−ω)

It is clear that this sequence is exact, except possibly at Ωc(X). The next proposition takes care
of that.

6.5 Proposition. The map s (for sum) in (6.4) is surjective.

Proof. Let f and g be a partition of 1 subject to the cover of X by U and V , as in the previous
section. Let ω be in Ωc(X). Then fω has support in U , hence is in Ωc(U). Likewise, gω is
in Ωc(V ). It follows that (fω, gω) is mapped to ω under s. �

As i and s above are morphisms of complexes, (6.4) is a short exact sequence of complexes, hence
by the results of the previous section, we get a long exact sequence (Mayer–Vietoris for de Rham
cohomology with compact supports).

6.6 Theorem. Let X be a paracompact Hausdorff C∞-manifold, covered by two open subsets U

and V . Then the diagram in (6.4) gives, via Proposition 5.4, a long exact sequence:

→ Hi−1
dR,c(U ∩V )→ Hi−1

dR,c(U)⊕Hi−1
dR,c(V )→ Hi−1

dR,c(X)→ Hi
dR,c(U ∩V )→ Hi

dR,c(U)⊕Hi
dR,c(V )→

Let us now give the analog of homotopy invariance. We should say first of all that HdR,c is not
homotopy invariant. For example, one computes directly that H1

dR,c(R) = R (via integration),
and H0

dR,c(R) = 0. Let X be a paracompact Hausdorff C∞-manifold. Let pX : R × X → X be
the projection. Then p∗X does not map Ωc(X) to Ωc(R ×X), but integration along the fibers, as
we will explain, does send Ωc(R × X) to Ωc(X), and lowers the degree by one. We recall from
section 4 that for every i we have a direct sum decomposition:

Ωi
R×X = p∗XΩiX ⊕

(
p∗XΩi−1

X ⊗ p∗
R
Ω1
R

)
.

In local coordinates, this means the following. Suppose that x1, . . . , xn are coordinates on U ⊂ X,
and let t be the coordinate on R. Then Ωi

R×U has the basis:{
dxj1 · · · dxji , 1 ≤ j1 < · · · < ji ≤ n,
dxj1 · · · dxji−1dt, 1 ≤ j1 < · · · < ji−1 ≤ n.

For ω in Ωic(R × X) we can write uniquely ω = ω1 + ω2 dt, with ω1 in p∗XΩic(R × X) and ω2

in p∗XΩi−1
c (R×X). With this notation, we define:

(6.7) pX,! : Ωc(R×X) −→ Ωc(X), ω 7−→
∫
R

ω2 dt.
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6.8 Theorem. Let X be a paracompact Hausdorff C∞-manifold. The map pX,! above is a mor-

phism of complexes, and induces isomorphisms pX,! : Hi
dR,c(R × X) → Hi−1

dR,c(X). An inverse is

induced by the morphism of complexes i : Ωc(X) → Ωc(R × X), ω 7→ ωe, with e in Ω1
c(R) such

that
∫
R
e = 1.

Proof. It is clear that pX,!i is the identity on Ωc(X). So it suffices now to show that ipX,! is
homotopic to the identity on Ωc(R×X). The homotopy operator is the following:

ω = ω1 + ω2 dt 7−→
(

(a, x) 7→
∫ a

∞
i∗xω2 dt−

(∫ a

−∞
e

)(∫
R

i∗xω2 dt

))
,

where ix : R → R × X is the map a 7→ (a, x). (I take this on faith from Bott and Tu.) The
verification of this is left to the reader. �

6.9 Theorem. Let n ≥ 0. Then Hi
dR,c(Rn) = 0 if i 6= n and Hn

dR,c(Rn) = R via the map

Ωnc (Rn)→ R, ω 7→
∫
Rn
ω.

Now we have the right prerequisites to formulate and prove Poincaré duality.

6.10 Theorem. (Poincaré duality) Let X be a paracompact Hausdorff C∞-manifold with a

given orientation, of dimension n. Then the pairings:

Ωi(X)× Ωn−ic (X) −→ R, (ω, η) 7−→
∫
X

ωη

induce isomorphisms:

Hi
dR(X) −→ Hn−i

dR,c(X)∨.

Proof. First we note that, as X is oriented, we have
∫
X

: Ωnc (X)→ R. Secondly, for ω ∈ Ωi(X)
and η ∈ Ωn−ic (X) we have ωη in Ωnc (X). Hence the pairings exist. As d(ωη) = (dω)η+ (−1)iωdη,
ωη is closed if ω and η are closed. If ω = dω′ and η is closed, then d(ω′η) = ωη and

∫
X
ωη = 0. If

ω is closed and η = dη′, then d(ωη′) = (−1)iωη and
∫
X
ωη = 0. Hence we get induced pairings:

Hi
dR(X)×Hn−i

dR,c(X) −→ R.

These pairings induce morphisms:

Hi
dR(X) −→ Hn−i

dR,c(X)∨.

It remains to show that these morphisms are isomorphisms. We will only prove this for X that have
a finite good cover. For the general case, the reader is referred to the reference given in Bott and
Tu: Greub, Halperin and Vanstone, “Connections, curvature, and cohomology”, vol. 1, Academic
Press, New York, 1972. We also note that a Poincaré duality statement for singular homology
and singular cohomology with compact support that does not need the hypotheses Hausdorff and
paracompact can be found in Massey’s book on singular homology.

A good cover of X is a family Ui, i ∈ I (with I an arbitrary set), such that for all non-
empty finite subsets J of I, the intersection UJ := ∩i∈JUi is diffeomorphic to Rn or empty.
Each paracompact Hausdorff manifold admits a good cover. The idea to prove this is to choose a
Riemannian metric on X (via a partition of 1 subject to a cover by charts), and to use geodesically
convex neighborhoods of points. For some details, see Bott and Tu. Compact X have finite good
covers. Good covers are useful for computing cohomology using Mayer-Vietoris sequences.
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Now assume that X has a finite good cover U1, . . . , Ur. Then we will prove by induction on r

that the Poincaré duality morphisms are isomorphisms. For r = 0 or 1 this follows from our
knowledge of the cohomology of ∅ and of Rn. Now let U := U1 ∪ · · · ∪ Ur−1, and let V := Ur.
Then we know that the Poincaré duality morphisms for U and V are isomorphisms. We have a
morphism between long exact sequences (checking the commutativity is left to the reader):

Hi−1
dR (U ∩ V ) → Hi

dR(X) → Hi
dR(U)⊕Hi

dR(V ) → Hi
dR(U ∩ V )

↓ ↓ ↓ ↓
Hn−i+1

dR,c (U ∩ V )∨ → Hn−i
dR,c(X)∨ → Hn−i

dR,c(U)∨ ⊕Hn−i
dR,c(V )∨ → Hn−i

dR,c(U ∩ V )∨

The four vertical arrows surrounding the Poincaré duality morphisms for X are isomorphisms.
The five lemma below finishes the proof. �

6.11 Lemma. Suppose we have a commutative diagram (of modules over some ring, say) with

exact rows:
A −→ B −→ C −→ D −→ E

↓ ↓ ↓ ↓ ↓
F −→ G −→ H −→ I −→ J

such that the four outer vertical arrows are isomorphisms, then C → H is an isomorphism.

Proof. An ordinary diagram chase. �

The proof of Theorem 6.10 also proves the following result.

6.12 Theorem. Let X be a Hausdorff manifold with a finite good cover. Then the vector spaces

HdR(X) and HdR,c(X) are finite dimensional. In particular, this holds for compact X.

6.13 Example. Let X := R
2−Z. Then H1

dR,c(X) has a basis indexed by Z (think of small loops
around the integers). But H1

dR(X) is the dual of this space, and hence of dimension |R|.

6.14 Remark. We note that Poincaré duality can be formulated on a non-orientable manifold if
one uses the orientation sheaf ΩdimX

X ⊗Vol∨X . See the book “Cohomology of sheaves” by Iversen.

There is some space left on this page. We use it to state one last theorem about de Rham
cohomology: the Künneth formula for the cohomology of a product.

6.15 Theorem. (Künneth) Let X and Y be paracompact C∞-manifolds. Then the maps in-

duced by the projections pX and pY :

HdR(X)⊗HdR(Y ) −→ HdR(X × Y ), HdR,c(X)⊗HdR,c(Y ) −→ HdR,c(X × Y )

are isomorphisms of graded-commutative algebras (possibly without unit in the second case).

For a proof we refer to Bott and Tu.
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Opgaven week 1 (2002/09/09)

Maak tenminste vier van de volgende sommen, en lever die in op maandag 09/16 (of eerder).

1. Bewijs de uitspraken over een product X×Y die in de tekst gedaan worden, d.w.z., geef een
atlas, en laat zien dat (X × Y,prX ,prY ) de genoemde universele eigenschap heeft.

2. Laat zien dat de cirkel S1 niet homeomorf is met een open deelverzameling van een Rn.

3. Laat zien dat R niet homeomorf is met Rn, voor n verschillend van 1.

4. Opgave 1.17 uit de tekst.

5. Opgave 1.21 uit de tekst.

6. Zij n ≥ 1. Laat zien dat SLn(R) samenhangend is.

7. Zij n ≥ 1. Laat zien dat SOn(R) samenhangend is.

8. Zij n ≥ 1. Laat zien dat Sp2n(R) samenhangend is.



Opgaven week 2 (2002/09/16)

Maak tenminste vier van de volgende sommen, en lever die in op maandag 09/23 (of eerder).

1. Laat f de afbeelding van R3 naar R2 zijn gegeven door: f(x, y, z) = (xy, xz). Bepaal
expliciet bij welke (x, y, z) in R3 f een submersie is. Geef een atlas voor de f−1{(a, b)} met
(a, b) 6= (0, 0) in R2. Is f−1{(0, 0)} (met de van R3 gëınduceerde topologie) een topologisch
manifold?

2. (Inverse functie stelling.) Laat k ≥ 1, n ≥ 0, U ⊂ R
n open, en f : U → R

n een Ck-
afbeelding. Laat x in U zijn, en neem aan dat (Df)x : Rn → R

n bijectief is. Bewijs dat er
open deelverzamelingen V ⊂ U en W ⊂ Rn zijn, en een Ck-afbeelding g : W → V , zodat x
in V is, en f : V →W en g inversen van elkaar zijn. Hint: pas de impliciete functie stelling
toe (op de afbeelding F : Rn × U → R

n, (b, a) 7→ f(a)− b).

3. (Lokaal model van submersies.) Laat n,m ≥ 0, k ≥ 1, U ⊂ Rn open, en f : U → R
m een

Ck-afbeelding. Laat x in U zijn, en neem aan dat (Df)x : Rn → R
m surjectief is, d.w.z., f

is een submersie in x.

Laat zien dat er een Ck-isomorfisme φ : W → V is met W open in Rn en V een open
omgeving van x in U , zodat f ◦ φ : W → R

m de projectie op de eerste m coordinaten is.
(Een submersie ziet er lokaal, in geschikte coordinaten, uit als een lineaire projectie.)

Hint: na een geschikte hernummering van de coordinaten van Rn is het zo dat de afbeeld-
ing F : U → R

n, y 7→ (f(y), ym+1, . . . , yn) bijectieve afgeleide heeft in x (gebruik lineaire
algebra). Neem voor φ een locale inverse van F zoals gegeven door de vorige opgave.

4. (Lokaal model van immersies.) Laat k ≥ 1, n,m ≥ 0, U ⊂ Rn open en f : U → R
m een

Ck-afbeelding. Laat x in U zijn, en neem aan dat (Df)xRn → R
m injectief is, d.w.z., f is

een immersie in x. Bewijs dat er open deelverzamelingen V en W in Rm zijn, met f(x) ∈ V ,
en een Ck-isomorfisme φ : V →W , zodat voor alle y in f−1V geldt:

(φ ◦ f)(y1, . . . , yn) = (y1, . . . , yn, 0, . . . , 0).

In geschikte lokale coordinaten is een immersie dus een injectieve lineaire afbeelding.

Hint: na een geschikte hernummering van de coordinaten van R
m heeft de afbeelding

F : U × Rm−n → R
m, (y, z) 7→ (f(y), z) bijectieve afgeleide in (x, 0).

5. Laat n,m ≥ 0. Laat U ⊂ Rn open zijn, en f : U → R
m een C1-afbeelding met (Df)(x)

surjectief voor alle x in U (d.w.z., f is een submersie). Laat zien dat f een open afbeelding
is, d.w.z., dat voor alle V ⊂ U open fV open is in Rm.

6. Laat f : X → Y een surjectief open morfisme van topologische ruimten zijn, met Y samen-
hangend, en zodat de vezels van f , d.w.z. de f−1{y} met y in Y (met hun gëınduceerde
topologie) samenhangend zijn. Bewijs dat X samenhangend is. Hint: laat U een open en
gesloten deelverzameling van X zijn, bewijs dat fU en f(X − U) lege doorsnede hebben.

7. Laat k ≥ 0. Laat X een verzameling zijn met een Ck-atlas (I, n, U, φ). Bewijs dat de collectie
deelverzamelingen V van X met de eigenschap dat, voor alle i in I, φ−1

i V open in Rni is,
een topologie is. Laat zien dat dit de fijnste topologie is waarvoor alle kaarten φi continu
zijn.



Opgaven week 3 (2002/09/30)

Maak tenminste drie van de volgende vier sommen, en lever die in op donderdag 10/10 (of eerder).
(Deze week is anders vanwege het Leidens ontzet; donderdag 3 october is er geen college.)

1. Laat k ≥ 0. Geef een functie van R naar R die Ck is, maar niet Ck+1.

2. Som 1.19 van de tekst.

3. Som 1.20 van de tekst.

4. Laat F een eindig lichaam zijn, en q := |F|. Bereken |Pn(F)| voor alle n ≥ 0, en |Gr2(F4)|.
Hint: gebruik de bijectie GL4(F)/P → Gr2(F4) uit de tekst, en tel aantallen elementen in
deze twee groepen.



Opgaven week 4 (2002/10/07)

Maak de volgende vier sommen, en lever die in op maandag 10/14 (of eerder).

1. Som 1.14 uit de tekst, in de context van topologische manifolds. Dat wil zeggen, laat
zien dat P1(R) homeomorf is met S1, en P1(C) met S2. Gebruik bijvoorbeeld één-punts
compacitifaties. In de volgende twee opgaven maken we in het laatste geval een mooie
afbeelding (zelfs algebräısch).

2. (Quaternionen algebra.) Laat H de deelverzameling van M2(C) bestaande uit de elementen
van de vorm ( a −b

b a
).

(a) Laat zien dat H een R-deel-algebra van M2(C) is. Dus H is een associatieve R-algebra
met eenheidselement. Merk op dat H niet commutatief is.

(b) Laat zien dat h 7→ h∗ := h
t

(getransponeerde van de complex geconjugeerde) een
involutie van H is (dus: (h∗)∗ = h, (λ1h1 + λ2h2)∗ = λ1h

∗
1 + λ2h

∗
2, (h1h2)∗ = h∗2h

∗
1,

voor alle h, h1, h2 in H, λ1, λ2 in R). Voor h ∈ H definiëren we tr(h) := h + h∗

(het spoor) en N(h) := hh∗ (de norm). Laat zien dat dit elementen van R zijn, dat
h2 − tr(h)h+ N(h) = 0, en dat N(h1h2) = N(h1)N(h2) voor alle h1 en h2 in H.

(c) Laat zien dat H een delingsalgebra is: ieder element ongelijk aan nul is inverteerbaar.
Geef een formule voor de inverse van een element h 6= 0 in termen van h∗ en N(h).

(d) Laat zien dat (1, i, j, k) een R-basis van H is, met 1 = ( 1 0
0 1 ), i = ( i 0

0 −i ), j = ( 0 −1
1 0 ),

k = ij. Ga na dat ji = −ij en i2 = j2 = −1. Bereken k2, ik, ki, jk, kj door de
associativiteit in H te gebruiken.

3. We bekijken de actie van de vermenigvuldigingsgroep H
∗ van H op H door conjugatie:

(h, x) 7→ hxh−1.

(a) Laat zien dat de baan H∗·i van i de verzameling van h is met tr(h) = 0 en N(h) = 1.
(Hint: dit kan door lineaire algebra te gebruiken (diagonalisatie eigenschappen van
unitaire matrices).) Concludeer dat H∗·i de verzameling van bi+ cj + dk is met b, c, d
in R en b2 + c2 + d2 = 1. Kortom, H∗·i is S2, en h 7→ hih−1 is een afbeelding van H∗

naar S2. Schrijf deze afbeelding expliciet uit voor h = a + bi + cj + dk met a, b, c, d
in R.

(b) We bekijken de afbeelding C→ H, a+ bi 7→ a+ bi (a en b in R). Laat zien dat dit een
injectief morfisme van R-algebras is, en dat het beeld gelijk is aan de centralisator van
i in H, d.w.z., de verzameling van h zodat hi = ih.

(c) De afbeelding C → H maakt van H een 2-dimensionale C-vectorruimte, zeg met basis
(1, j). Concludeer dat de afbeelding h 7→ hih−1 van H − {0} naar S2 een bijectie
induceert van P1(C) naar S2.

4. (a) Laat zien dat de bijectie P1(C)→ S2 van de vorige opgave een homeomorfisme is.

(b) Laat zien dat die bijectie een isomorfisme van C∞-manifolds is. Hint: gebruik een kaart
van P1(C), en laat zien dat de afgeleide bijectief is. Als je weinig wilt rekenen, kun je
de actie van H∗ op P1(C) = H

∗/C∗ via links vermenigvuldigingen gebruiken; dan is het
genoeg om in één punt te laten zien dat de afgeleide bijectief is.



Opgaven week 5 (2002/10/14)

Maak de volgende vier sommen, en lever die in op maandag 10/21 (of eerder).

1. Laat k ≥ 1, en f : X → Y een morfisme van Ck-manifolds. Dan noemen we f een submersie
als voor alle x in X geldt dat Tf (x) : TX(x) → TY (fx) surjectief is. Laat zien dat een
submersie een open afbeelding is.

Laat nu n ≥ 2, G := SOn(R). Dan werkt G op Rn, en de baan van de standaard eerste basis
vector e1 is de eenheidsbol Sn−1. We bekijken de afbeelding f : G → Sn−1, g 7→ ge1. Dan
is f een morfisme van C∞-manifolds, compatibel met de G-actie: f(gx) = gf(x) voor alle g
en x in G. Laat zien dat hieruit volgt dat Tf (g) surjectief is voor alle g dan en slechts dan
als Tf (1) surjectief is (maak een mooi commutatief diagram met allemaal raakafbeeldingen).
Bereken TSn−1(e1) en TG(e1) als deelruimten van Rn en Mn(R) (respectievelijk), en laat
zien dat Tf (1) surjectief is.

Laat zien dat de vezels van f allemaal isomorf zijn met SOn−1(R) (gebruik weer de actie
van G), en concludeer dat SOn(R) samenhangend is.

2. Laat k ≥ 1, en laat X en Y beide Ck-manifolds zijn. Laat x in X en y in Y . Dan
hebben we een morfisme p : TX×Y (x, y) → TX(x) × TY (y) gëınduceerd door de projec-
ties pX : X × Y → X en pY : X × Y → Y . Aan de andere kant is er een morfisme
i : TX(x)×TY (y)→ TX×Y (x, y) gëınduceerd door de injecties iX,y : X → X×Y , x′ 7→ (x′, y)
en iY,x : Y → X × Y , y′ 7→ (x, y′). Laat zien dat p en i inversen zijn. (Gebruik een kaart te
(x, y), bijvoorbeeld.)

3. Laat k ≥ 1. Laat G een Ck-Liegroep zijn (d.w.z., G is een Ck-manifold met compatibele
groepsstructuur). Dan hebben we morfismen van Ck-manifolds µ : G×G→ G, (x, y) 7→ xy,
en ι : G → G, x 7→ x−1. Laat zien dat Tµ : TG(e) × TG(e) = TG×G(e) → TG(e) simpelweg
de optelling is, en dat Tι(e) vermenigvuldiging met −1 is.

4. Laat k ≥ 1, en G een Ck-Liegroep zijn. Laat H een gesloten Ck-ondergroep van G zijn.
Dan werkt H van rechts op G door translaties. We gaan het quotiënt G/H de structuur van
Ck-manifold geven, en laten zien dat de quotiënt afbeelding p : G → G/H een vezeling is,
met vezel H.

We volgen het procédé dat we hebben gezien bij de Grd,n(R). Dus G/H krijgt de quotiënt
topologie (U is open dan en slechts dan als p−1U open is), en we definiëren voor U open dat
CkG/H(U) := CkG(p−1U)H .

Omdat p compatibel is met de linksactie van G (p(gx) = g·p(x) voor alle x en g), is het
voldoende aan te tonen dat (G/H,CkG/H) een Ck-manifold is in een omgeving van p(e).
Laat zien dat er een kaart φ : U → G bestaat, met φ(0) = e en U ⊂ R

n × Rm, zodat
φ−1H = U ∩ (Rn × {0}) (gebruik som 4 van week 2). Laat T ⊂ U ∩ ({0} × Rm) een open
omgeving van 0 zijn, en bekijk de afbeelding:

f : T ×H −→ G, (t, h) 7→ φ(t)h.

Laat zien dat Tf (0) bijectief is en concludeer dat dit zo is voor alle (t, 0) met t in een
omgeving van 0. Door T klein genoeg te nemen mogen we aannemen dat Tf (t, 0) bijectief
is voor alle t. Concludeer dat Tf (t, h) bijectief is voor alle (t, h), aangezien f compatibel is



met de rechts-actie van H. Laat zien dat als T voldoende klein is, dat φ(t1)−1φ(t2) ∈ H
impliceert dat t1 = t2. Neem aan dat T voldoende klein is, en concludeer dat f injectief
is, en dus een isomorfisme naar een open deel van G, van de vorm p−1U . Laat zien dat
f := pf : T → G/H een isomorfisme is van (T,CkT ) naar (U,CkG/H |U ). Dus (G/H,CkG/H) is
een Ck-manifold.

Concludeer dat p : G→ G/H een vezeling is met vezel H (dit volgt direct uit het voorgaande
in een omgeving van p(e); gebruik dan de links-G-actie).



Opgaven week 6 (2002/10/28)

Maak van de volgende vier sommen de eerste drie, en lever die in op maandag 11/4 (of eerder)
(de vierde som wordt donderdag op college behandeld).

1. Maak de som die impliciet in het bewijs van Propositie 3.1.1 beschreven is.

2. Laat i in Z≥0, A een ring, en M een A-moduul.

(a) Laat n ≥ 0 en neem aan dat M vrij is van rang n. Bewijs dat de rang van het vrije
A-moduul Si(M) gelijk is aan

(
i+n−1
n−1

)
met een combinatorisch argument (d.w.z. laat

zien dat het aantal monomen van graad i in de variabelen x1, . . . , xn gelijk is aan het
aantal keuzen van n− 1 elementen uit een verzameling met i+ n− 1 elementen).

(b) Laat zien dat de afbeelding M i → Si(M), (m1, . . . ,mi) 7→ m1 · · ·mi een universele
symmetrische i-lineaire afbeelding is. (Hint: gebruik dat M i → Ti(M) een universele
i-lineaire afbeelding is, en laat zien dat de kern van Ti(M) → Si(M) voortgebracht
wordt door elementen van de vorm u1 ⊗ · · · ⊗ uj ⊗ (x⊗ y − y ⊗ x)⊗ v1 ⊗ · · · ⊗ vk met
j ≥ 0, k ≥ 0, en 2 + j + k = i.)

(c) Laat zien dat de afbeelding M i → Λi(M), (m1, . . . ,mi) 7→ m1 · · ·mi een universele
alternerende i-lineaire afbeelding is.

3. Laat k een lichaam zijn, V een k-vectorruimte en d in Z≥0. We hebben de Grassman
variëteit Grd(V ) van d-dimensionale deelruimten van V gedefiniëerd, met de structuur van
C∞-manifold als k gelijk is aan R en V eindig dimensionaal is.

Laat W een d-dimensionale deelruimte van V zijn, en laat w1, . . . , wd een basis zijn van W .
Dan krijgen we een element w1 · · ·wd van Λd(V ). Laat zien dat dit element ongelijk aan nul
is, en dat zijn beeld in P(Λd(V )) alleen van W afhangt. Dus we krijgen een afbeelding φ

van Grd(V ) naar P(Λd(V )). Laat zien dat deze afbeeling injectief is. Deze afbeelding heet
de Plücker inbedding.

Laat dan zien dat, voor k = R, φ een C∞-morfisme is, met overal injectieve afgeleide. (Hier
is het handig om de actie van GL(V ) te gebruiken.)

4. Laat A een Q-algebra zijn, M een A-moduul, en n ≥ 0. De groep G := Sn van permutaties
van {1, . . . , n} werkt (van rechts) op het A-moduul Mn door (σm)i = mσ(i), en dus (ook
van rechts) op Tn(M): m1 · · ·mn wordt naar mσ(1) · · ·mσ(n) gestuurd. Laat nu p1 en pε de
endomorfismen van Tn(M) zijn gegeven door:

p1(x) =
1
n!

∑
σ

x·σ, pε(x) =
1
n!

∑
σ

ε(σ)x·σ,

waarbij de sommen over alle σ in Sn zijn. Laat zien dat p1 en pε orthogonale idempo-
tenten zijn: p2

1 = p1, p2
ε = pε, en p1pε = pεp1 = 0. Laat Sn(M)′ := p1Tn(M), en

Λn(M)′ := pεTn(M). Dan heten Sn(M)′ en Λn(M)′ de A-modulen van symmetrische en
anti-symmetrische tensoren van graad n van M . Laat zien dat de natuurlijke afbeeldin-
gen Sn(M)′ → Sn(M) en Λn(M)′ → Λn(M) isomorfismen zijn. (Hierbij is het handig te
gebruiken dat Sn ook op Sn(M) en Λn(M) werkt, compatibel met de actie op Tn(M).)



Opgaven week 8 (2002/11/18)

Maak de volgende sommen, en lever die in op maandag 11/25 (of eerder).

Laat X := S2 de eenheidsbol in R3 zijn, dus gegeven door de vergelijking x2
1 + x2

2 + x2
3 = 1. We

geven X de Riemannse metriek gëınduceerd door de standaardmetriek op R3.

1. Bereken de gradiënt van de functie x1 op X. Is deze gelijk aan de orthogonale projectie
van de gradiënt van x1 gezien als functie op R3? En zo ja, kun je dat ook inzien zonder te
rekenen?

2. Geef een orthogonale basis (e1, e2) van TX op X − {(0, 0, 1), (0, 0,−1)} (d.w.z. op het
complement van de noord en zuidpool), zoals je die op wereldbollen ziet. Teken de twee
vectorvelden e1 en e2 in een omgeving van de noordpool.

3. Geef een orthogonale basis (e1, e2) van TX op X − {(0, 0, 1)} (d.w.z. op het complement
van de noordpool). Hint: je kunt een stereografische projectie gebruiken. Teken de twee
vectorvelden (e1, e2) in de buurt van de noordpool.



Opgaven week 9 (2002/11/25)

Maak de volgende sommen, en lever die in op maandag 12/02 (of eerder).

1. Laat Y een gesloten deelverzameling van R zijn, en U zijn complement. Laat X het C∞-
manifold zijn gekregen door twee copiën van R aan elkaar te plakken via de identiteitsaf-
beelding van U naar zichzelf (dus X is de reële lijn met Y verdubbeld). Laat g1 en g2 de
bijbehorende open immersies van R in X zijn. Laat v een volume vorm op X zijn, met
quasicompacte support.

Druk
∫
X
v uit in de integralen over R en over U van g∗1v en g∗2v.

Druk
∫
X
v uit in de integralen over Y en over U van g∗1v en g∗2v.

Geef een voorbeeld waar al deze deze integralen over R, U en Y ongelijk aan nul zijn.

2. Laat n ≥ 1 en G := GLn(R). Laat xi,j : G → R de functie zijn gegeven door: g 7→ gi,j .
Bewijs dat de differentiaalvorm

dx1,1dx2,1 · · · dxn,1·dx1,2 · · · dxn,2 · · · · · · dxn,1 · · · dxn,n
detn

van graad n2 invariant is onder alle links en rechtstranslaties van G naar zichzelf. Hier is
det : G→ R de determinant-functie.

Aanwijzing: de definities toepassen. Laat bijvoorbeeld zien dat (g·)∗xi,j =
∑
k gi,kxk,j door

(gh)i,j =
∑
k gi,jhk,j te gebruiken.



Supplement gradiënt

In het college is, voor k ≥ 1, een pseudo-Riemannse Ck-manifold gedefiniëerd als een paar (X, b),
met X een Ck-manifold en b een metriek op TX . Voor wat zo’n b is: zie het begin van sectie 3.3.
Als b positief is dan heet (X, b) een Riemannse Ck-manifold.

Als (X, b) en (X ′, b′) pseudo-Riemannse Ck-manifolds zijn, dan heet een Ck-morfisme f van X
naar X ′ een isometrie als voor iedere x in X de R-lineaire afbeelding Tf (x) : TX(x)→ TX′(f(x))
een isometrie is, d.w.z., voor alle v en w in TX(x) geldt b′((Tf (x))v, (Tf (x))w) = b(v, w).

Laat (X, b) een pseudo-Riemannse manifold zijn. We noteren de metriek b soms ook als 〈·, ·〉,
en we gebruiken ook dat b een isomorfisme φ : TX → Ω1

X geeft zodat voor alle x in X, en voor alle
v en w in TX(x): ((φx)v)w = 〈v, w〉x. We definiëren we nu een morfisme “gradiënt” als volgt:

grad: CkX
d−→ Ω1

X
φ−1

−→ TX .

Het is duidelijk dat voor Rn met de standaardmetriek dit begrip van gradiënt overeenkomt
met het begrip dat we al kennen (want de standaardbases van Ω1

X en TX zijn dan compatibel
via φ). Dit levert ons de informatie dat isometrieën van Rn compatibel zijn met het nemen van
gradiënten.

In het algemeen geldt dat voor U ⊂ X open, f in CkX(U) en ∂ in TX(U):

〈gradf, ∂〉 = (df)∂ = ∂f.



Opgaven week 10 (2002/12/02)

Laat n ≥ 0, en X een Hausdorffs georiënteerd C∞-manifold met dimX = n: voor iedere x in X

hebben we een decompositie ΩnX(x) = ΩnX(x)+
∐
{0}

∐
ΩnX(x)−, die lokaal constant is. Laat nu

ω een element zijn van Ωn−1
X (X), met compacte support. We gaan bewijzen dat

∫
X
dω = 0, een

speciaal geval van de stelling van Stokes.

1. Laat zien dat voor iedere x in X er een georiënteerde kaart φ : U → X is met x ∈ φ(U),
en een C∞-functie f : X → [0, 1] ⊂ R met compacte support bevat in φ(U) en f = 1 in
een omgeving van x. Waar heb je hierbij nodig dat X Hausdorff is? (Geef eventueel een
voorbeeld van een niet Hausdorffse X en een x waarvoor niet zo’n φ en f bestaan.)

2. Laat K ⊂ X een compacte deelverzameling zijn. Laat zien dat er een r ≥ 0 bestaat,
georiënteerde kaarten φi : Ui → X, voor 1 ≤ i ≤ r, en functies pi in C∞X (X) met Supp(pi)
compact en bevat in φi(Ui), en

∑
i pi = 1 op K. Zie eventueel Lemma 12.4 en het bewijs

daarvan in het diktaat van Looijenga.

3. Laat K := Supp(ω), en laat r, φi en pi als hierboven zijn. Dan hebben we:∫
X

dω =
∫
X

d(
∑
i

piω) =
∑
i

∫
X

d(piω) =
∑
i

∫
Rn

φ∗i d(piω) =
∑
i

∫
Rn

d(φ∗i (piω)).

Om te bewijzen dat
∫
X
dω = 0 mogen we nu dus aannemen dat X = R

n.

4. Nu is X gelijk aan Rn. Schrijf ω =
∑
i fi
∏
j 6=i dxj , waarbij de producten in de standaard

volgorde zijn genomen. We mogen dus ook aannemen, na eventuele permutatie van de
coordinaten, dat ω = fdx2 · · · dxn. Schrijf het nu gewoon verder uit (integreer eerst naar de
variabele x1, en gebruik dat voor alle (a2, . . . , an) in Rn−1 de functie x 7→ f(x, a1, . . . , an)
compacte support heeft).



Opgaven week 11 (2002/12/09)

1. Laat zien dat Sn oriënteerbaar is voor alle n ≥ 0. Hint: gebruik de standaardoriëntatie
van Rn+1 en de uitwendige genormaliseerde normaalvector.

2. Laat n ≥ 0, en laat ι : Sn → Sn de antipodale afbeelding zijn. Laat zien dat Pn(R) = Sn/〈ι〉.

3. Laat n ≥ 1. Laat zien dat ι als in de vorige opgave de twee oriëntaties van Sn verwisselt
precies dan als n even is. Concludeer dat ι∗ : Hn

dR(Sn) → Hn
dR(Sn) vermenigvuldiging met

(−1)n−1 is.

4. (De stelling van de kruin.) Laat n ≥ 2 een even geheel getal zijn en D een C∞-vectorveld
op Sn zijn. Bewijs dat D een nulpunt heeft.

Hint: stel dat D geen nulpunt heeft. Laat zien dat er dan een homotopie is tussen de
identiteit op Sn en de antipodale afbeelding. Merk op dat dit in tegenspraak is met de
vorige opgave.

5. Laat n ≥ 1 een oneven geheel getal zijn. Geef een C∞-vectorveld op Sn zonder nulpunt.


