Exercises for February 20

1. (Graded) Let $Q:=V\left(X_{0} X_{3}-X_{1} X_{2}\right)$ in \mathbb{P}^{3}, and let P be in Q. Show that $T_{P} Q \cap Q$ consists of 2 distinct lines. Hint: write $P=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and show that by symmetry one can assume that $a_{0}=1$. Then work in the affine part $D\left(X_{0}\right)=\mathbb{P}^{3}-V\left(X_{0}\right)$ and do your computations there.
2. Let A be the \mathbb{R}-algebra of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let m be the subset of A consisting of f such that $f(0)=0$. Show that m is a maximal ideal of A, and that $m=m^{2}$. Hint: first consider f in m such that $f(x) \geq 0$ for all x; for the general case it may be convenient to consider complex numbers.
3. Let n and m be positive integers. Let $f=\left(f_{1}, \ldots, f_{m}\right)$ be a polynomial map from \mathbb{A}^{n} to \mathbb{A}^{m}. Show that the tangent maps $T_{P} f: T_{P} \mathbb{A}^{n} \rightarrow T_{P} \mathbb{A}^{m}$ as defined in the lecture are given by the usual formulas.
