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1 Motivation, plans

This series of three lectures of one hour each was preceded by two introductory lectures by Henk
van Tilborg about applications of discrete logarithms (in multiplicative groups as well as elliptic
curves) to cryptography. Those introductory lectures should now serve as motivation for the
coming three lectures. Large cyclic subgroups of prime order in elliptic curves or in Jacobians of
higher genus curves are useful in the cryptographic applications because at present there seems
to be no sub-exponential algorithm known for the discrete log problem in this context (except in
some very special cases), in contrast to the index calculus algorithm for the discrete log problem
in the multiplicative group of a finite field. This state of affairs is then used as justification for a
smaller block size, preserving the security.

Let us consider the case of elliptic curves. As one needs subgroups of prime order, it is
crucial to know the exact order of groups such as E(Fq), where E is an elliptic curve over a
finite field Fq, as well as the factorization into prime factors of them. In practice one uses finite
fields Fq with q of size at least about 200 binary digits.

At the start of elliptic curve cryptography around 1986 there was only one algorithm to com-
pute #E(Fq), namely, Schoof’s algorithm, running in time O((log q)4) (after improvements
by Atkin, Elkies and Couveignes; Schoof’s original algorithm had running time O((log q)5)).
Schoof’s algorithm is often said to use l-adic methods, because it uses the torsion points of all
prime orders l up to a suitable bound.

But, in 20001, Satoh came up with a so-called p-adic method. Here, p is the characteristic

1Note added during the workshop: Vercauteren showed me the article [5] by Goro Kato and Saul Lubkin,
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of Fq, i.e., one has q = pn, with p prime and n ≥ 1. His method has been improved (Satoh,
Vercauteren, Preneel, Vandewalle, Harley, Gaudry, Lercier and Lubicz), and now, for p fixed, the
method has running time O(n2+ε). For details, see Satoh’s overview article [10] in ANTS-V.

A common feature of these p-adic methods is that they are not polynomial in log p, but that
for fixed p (and varying n) they are faster than Schoof’s algorithm. Instead of using torsion
points of small and varying order l, they use the derivative of the q-Frobenius endomorphism
of the canonical lift of E modulo pm for large enough m. In other words, Schoof uses étale
cohomology with Fl-coefficients (in the form of l-torsion points), and Satoh uses crystalline
cohomology (in the form of de Rham cohomology of the canonical lift).

In 2001, Kedlaya came up with an algorithm (see [6]) for computing the zeta function of
hyper-elliptic curves C/Fq of arbitrary genus g with running time O(g4+εn3+ε), when p 6= 2 is
fixed (the condition p 6= 2 was there for convenience, it was removed by Vercauteren and Denef).
Kedlaya’s algorithm uses so-called Monsky-Washnitzer cohomology (a variant of crystalline
cohomology). We should also mention that at the same time Lauder and Wan came up with
algorithms with a similar running time, using p-adic methods that in some sense are the Fourier
transform of Kedlaya’s. We want to stress that it is quite remarkable that the running time is
polynomial in the genus. In particular, the big open problem in this field is to find an algorithm
for general q (with p not fixed) and g, that is polynomial in log q and g

The aim of these three lectures is to present Kedlaya’s algorithm in as much detail as possible.
Our reasons for doing that are the following: (1) it is actually theoretically much simpler even
in the case of elliptic curves than Satoh’s method using canonical lifts (in particular, there is
almost no geometry necessary), and (2) it is a much more general method (it works for arbitrary
genus, and also in higher dimension). In other words, our aim is to make publicity for p-adic
cohomology, because we think that it has an undeserved reputation of being complicated and not
so useful; the truth is precisely the opposite.

In the exposition here we will try to keep everything as simple as possible. We will emphasize
the things that actually are to be computed, and pay a lot less attention to the theory behind. But
we hope that this course will give the audience a good appetite for the theory. Some experience
with the theory of complex analytic functions in one variable is very useful, plus some basic
facts about polynomials in one variable over a field. For the rest, we suppose barely anything
else (probably, knowing what finite fields are should be sufficient). We will use some facts about
zeta functions of non-singular projective curves, but those will be explained (without proof).

from 1982
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2 A class of point counting problems

Now that we are done with the introduction, let us first describe exactly the problem that we want
to solve. For n ≥ 1 an integer, we define Z/nZ := {0, 1, . . . , n − 1}, with the usual operations
+ (addition) and · (multiplication) performed “modulo n”, i.e., one performs these operations in
the ring of integers Z, but then reduces again mod n by composing with the function taking the
remainder upon division by n. The sets Z/nZ, equipped with these operations, are rings, i.e., the
usual properties of addition and multiplication are true.

Let us recall that a ring is called a field if 1 6= 0 and every non-zero element has a multiplica-
tive inverse. Then Z/nZ is a field if and only if n is prime, and, in that case, we also denote it
by Fn. We have the following basic result about finite fields.

2.1 Theorem. Let F be a finite field. Then q := #F is of the form pn with p a prime number
and n ≥ 1. For every q of this form there does exist a finite field F with #F = q; it can be
constructed as Fp[x]/(f), with f an irreducible polynomial of degree n over Fp. Two finite fields
with the same number of elements are isomorphic (they all are splitting fields over Fp of xq −x).
For q = pn a prime power, we denote by Fq a field with q elements.

We note that for practical purposes one implements Fq as Fp[X]/(f), with

f = xn + fn−1x
n−1 · · ·+ f1x + f0

monic and irreducible over Fp. Then (1, x, . . . , xn−1) is an Fp-basis of Fq. Addition and multi-
plication are performed as in Fp[x], followed by reduction mod f . Inversion can be performed
by an extended gcd algorithm (or by powering, or by inverting a linear map).

We can now describe the class of point counting problems considered by Kedlaya. Let p

be a prime different from 2, and let q = pn for some n ≥ 1. Let f ∈ Fq[x] be monic, of
some odd degree d = 2g + 1, and without multiple roots (in some algebraic closure of Fq), i.e.,
gcd(f, f ′) = 1. Then we let Cf denote the algebraic curve in the affine plane over Fq given by
the equation:

y2 = f.

The condition gcd(f, f ′) = 1 ensures that Cf is non-singular (indeed, the equation y2 − f and
its partial derivatives have no common zero). For d = 3 (i.e., g = 1), the curves Cf are elliptic
curves, minus the point at infinity in the projective plane. For each finite extension Fqm of Fq we
can then consider the set of points of Cf with coordinates in Fqm:

Cf (Fqm) = {(a, b) ∈ F2
qm | b2 = f(a)}.

The general theory of zeta functions of curves then implies the following (see [2], or [12]).
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2.2 Theorem. (Weil) For q and f as above, there exists a monic polynomial Pf with integer
coefficients, of degree 2g, with the following properties. Its complex roots αi, 1 ≤ i ≤ 2g,
satisfy |αi| = q1/2, and can be numbered such that αiαg+i = q. For every m ≥ 1, one has:

(2.3) #Cf (Fqm) = qm −
∑

i

αm
i .

For Jf the Jacobian variety of Cf completed with a non-singular point one has:

#Jf (Fq) = Pf (1).

We note that cyclic subgroups of large prime order of the Jf (Fq) can be used for cryptography,
hence it is important to be able to compute #Jf (Fq) efficiently, or, even better, Pf itself. This is
precisely what Kedlaya’s theorem in [6] is about.

2.4 Theorem. (Kedlaya) Let p > 2 be a prime number. For n ≥ 1 and f in Fq[x] of degree
2g + 1 as above, Pf can be computed in time O(g4+εn3+ε).

Note that for elliptic curves (i.e., g = 1 and p fixed) Kedlaya’s algorithm has better complexity
than Schoof’s, but worse than Satoh’s. In the next sections we will describe Kedlaya’s algorithm.
We remark that there seems to be no simple way to deduce Pf from q and f .

3 ***Some cohomological background (curves only)***

This section is included only to describe the general framework used to do point counting (and
also to educate those Dutch mathematicians who always seem to work in the projective non-
singular case only!); it is not necessary in order to understand the computational aspects of
Kedlaya’s algorithm. The title of the section is surrounded by stars in order to discourage the
reader from reading the section. Advice: do not let this section discourage you from reading the
rest of this text. After this section everything will be very explicit, and easier than you may think.

The notation remains as above. In particular, q = pn. The first observation is to view Cf (Fqm)

as the set of fixed points of the qm-power Frobenius map. Let F be an algebraic closure of Fq,
and let:

F : F → F, a 7→ ap

be the p-power Frobenius map. It is an automorphism of the field F. We let Fq := F n be the
q-power Frobenius. Then, for any m ≥ 1 we have:

Fqm = {a ∈ F | Fm
q (a) = a}.
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As f has coefficients in Fq, Fq also gives a map, still denoted Fq and called the q-power Frobenius
of Cf :

Fq : Cf (F) → Cf (F), (a, b) 7→ (Fq(a), Fq(b)),

of which Cf (Fqm) is precisely the set of fixed points. Now, in algebraic topology, one knows
that counting fixed points can be done using cohomology. In the setting of algebraic varieties
that we are in now, the required theory does exist, and in fact in many variants (l-adic étale,
p-adic (Monsky-Washnitzer, rigid)). For our curves Cf , each of these theories associates to Cf

two vector spaces H1
c(Cf ) and H2

c(Cf ) over a field of characteristic zero, such that Fq induces
endomorphisms:

F ∗
q : Hi

c(Cf ) → Hi
c(Cf ),

with the property that:

#Cf (Fqm) = trace((Fm
q )∗ | H2

c(Cf ))− trace((Fm
q )∗ | H1

c(Cf )).

This last formula is the Lefschetz trace formula in the case of affine curves. It is valid in great
generality (for all separated varieties, and also for “constructible sheaves” replacing the constant
coefficients). In particular, the variety does not need to be complete or projective, and it may
have singularities. The subscript “c” stands for “compact support”, hence the cohomology in the
formula is “cohomology with compact supports”. In formula 2.3 above, qm is the trace on H2

c

and the sum of the αm
i is the trace on H1

c . In particular, the important polynomial Pf is the
characteristic polynomial of F ∗

q acting on H1
c(Cf ). Now cohomology with compact supports is

not hard to define (one takes the ordinary cohomology of the sheaf extended by zero on some
compactification, and in the case of de Rham cohomology of differentiable varieties one can
also just replace the de Rham complex of differential forms by those with compact support),
but it can be avoided for non-singular varieties. Indeed, Poincaré duality says that H2

c(Cf ) is
one-dimensional with maps acting as their degree, and that the usual product:

H1
c(Cf )× H1(Cf ) → H2

c(Cf )

is a perfect pairing. This implies that Pf is the characteristic polynomial of q(F ∗
q )−1 on H1(Cf ).

But this is still not how we are going to compute Pf . We put:

C ′
f := Cf − {zeros of y}.

The curves Cf and C ′
f have an automorphism ι of order two:

ι : (a, b) 7→ (a,−b).
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Then ι induces automorphisms ι∗ of H1(C ′
f ) and H1(Cf ), decomposing them into two eigen-

spaces on which ι∗ acts as 1 and −1, respectively:

H1(C ′
f ) = H1(C ′

f )
+ ⊕ H1(C ′

f )
−, H1(Cf ) = H1(Cf )

+ ⊕ H1(Cf )
−.

Then we have the following description of Pf , that will actually be used for computing it.

3.1 Proposition. Pf is the characteristic polynomial of F ∗
q on H1(C ′

f )
−.

Let us try to understand this. Let Cf be the compactification of Cf , and let R denote the set
of zeros of f plus the point ∞ at infinity (it is the ramification locus of the map from Cf to P1

extending (a, b) 7→ a). Then

H1(Cf )
+ = H1(P1) = {0}, H1(Cf )

− = H1(Cf ) = H1
c(Cf ).

And we have an exact sequence:

H0
c(R) → H1

c(C
′
f ) → H1

c(Cf ) → {0}.

As ι acts trivially on R, it follows that the map H1
c(C

′
f )
− → H1

c(Cf )
− is an isomorphism. More-

over, H1
c(Cf )

− = H1(Cf ).
Let us end this section with the remark that the reason for working with C ′

f instead of Cf is
to get a Frobenius lift that is given by a simple formula. This will become clear later.

4 Monsky-Washnitzer cohomology

In this section we give an explicit description of the first Monsky-Washnitzer cohomology group
of the curves of the form C ′

f as above (p 6= 2). In order to construct these groups it does not
suffice to work over Fp, because that would only lead to cohomology groups that are Fp-vector
spaces (and hence would only give information about Pf modulo p). We want cohomology
groups that are vector spaces over a field of characteristic zero. In this case, that field will be Qp,
the field of p-adic numbers, and we will now first explain what that field is.

4.1 The p-adic numbers

Let p be a prime number. Writing integers in base p means that each integer can be written in a
unique way as ar · · · a1a0 =

∑
aip

i, with ai in {0, 1, . . . , p− 1} (of course, one may also choose
another set of representatives, such that |ai| < p/2 if p > 2). The operations of addition and
multiplication are done in the usual way. Now nothing prevents us from enlarging the ring Z by
extending these sequences arbitrarily to the left.

6



4.1.1 Definition. The set of p-adic integers is the set {· · · a2a1a0} of all sequences with
0 ≤ ai < p.

4.1.2 Proposition. Addition and multiplication done in the usual way make the set of p-adic
integers into a ring, that we will denote by Zp. The morphism Z → Zp is injective. Multiplication
by p is a shift to the left. We have Zp/p

nZp = Z/pnZ. An element a of Zp is invertible if and
only if a0 6= 0 (one can construct the inverse digit by digit).

In more fancy language, Zp is the inverse limit of the Z/pnZ, i.e., the p-adic completion of Z.

4.1.3 Definition. The set of p-adic numbers is the set {· · · a2a1a0, a−1 · · · a−r} of all sequences
infinite to the left, and finite to the right, with 0 ≤ ai < p.

4.1.4 Proposition. Addition and multiplication done in the usual way make the set of p-adic
numbers into a field, that we will denote by Qp. The map vp : Q∗

p → Z, a 7→ min{i | ai 6= 0} is
a valuation. The map |·| : Qp → R sending 0 to 0 and non-zero a to p−vp(a) is an absolute value
on Qp, for which Qp is complete and for which Q is dense. And Zp = {a | |a| ≤ 1} is compact.

With respect to this absolute value, we can speak of converge of sequences etc. Then:

· · · a2a1a0, a−1 · · · a−r =
∑

i

aip
i

(note that |p| = 1/p, hence the series converges). It is clear that, just as with the real numbers R,
the ring operations are easy to implement with any desired precision. Later in this article, we will
see that all computations in Kedlaya’s algorithm can be done in some fixed Z/pmZ, i.e., within
Zp and with a precision of m digits.

Let q = pn for some n ≥ 1, and let f in Fp[x] be monic and irreducible of degree n. Then
we write Fq = Fp[x]/(f), as before, and we know that another choice of f gives an isomorphic
field. Now we lift this over Zp.

4.1.5 Definition. Let p, q and f as above, and let f in Zp[x] be a monic lift of f . Then we define:

Zq := Zp[x]/(f), Qq := Qp[x]/(f).

Concretely, Zq has Zp-basis (1, x, . . . , xn−1), and this is also a Qp-basis of Qq. Operations are
done modulo f .

4.1.6 Proposition. The ring Qq is a field (and hence Zq is an integral domain). The constructions
are independent of the choice of the lift f in the sense that any other lift leads to rings that are
canonically isomorphic to the ones gives by f .
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4.2 A dagger ring

Let p > 2 be a prime number, let n ≥ 1 and let q := pn. Let Q be monic in Fq[x], of odd degree
d = 2g + 1, and such that gcd(Q,Q

′
) = 1. We put A := Fq[x, y, y−1]/(y2 − Q). This is the

ring of functions on the curve C ′
Q

(notation as before) that we want to consider. Note that as y is
invertible, Q is invertible too. Another way to write this ring is:

A = (Fq[x, Q
−1

])[y]/(y2 −Q) =
⊕
i,j,k

Fq xi Q
j
yk, (0 ≤ i < d, j ∈ Z, 0 ≤ k < 2)

=
⊕
i,j

Fq xiyj, (0 ≤ i < d, j ∈ Z).

Just as we have lifted Fq to Zq, we will now lift A to a ring A. In contrast to Satoh’s method for
elliptic curves, where one has to choose the canonical lift that is not so easy to compute, we can
just choose a monic lift Q in Zq[x] of Q, and the whole theory will work. Then we put:

A := Qq[x, y, y−1]/(y2 −Q) =
⊕
i,j

Qq xi yj, (0 ≤ i < d, j ∈ Z).

This ring A is the ring of functions of the algebraic curve C ′
Q over Qq. It definitely depends on

the choice of our lift Q if g > 0 (just think of the case of elliptic curves). In order to get rings
that do not depend on the choice of Q we have to get out of the world of algebraic curves and
move to-wards more analytic objects. We put:

A∞ :=

{∑
i,j

ai,jx
iyj | ai,j ∈ Qq, |ai,j| → 0 as |j| → ∞

}
,

with 0 ≤ i < d and j ∈ Z. The elements of A∞ are the arbitrary series f =
∑

i,j ai,jx
iyj with

the property that for every integer k almost all ai,j are in pkZq. A more fancy way to say this
is that A∞ = Qq ⊗Zq A∞

+ , with A∞
+ the p-adic completion of Zq[x, y, y−1]/(y2 − Q). One can

show that A∞
+ , and hence also A∞, do not depend on the choice of our lift Q: any lift gives an

isomorphic result, but the isomorphism is not unique. (Just for information: this comes from the
fact that the set of lifts over Zq/p

2Zq form a torsor under H1(C ′
Q
, T), which is zero because C ′

Q

is affine and the tangent sheaf T is coherent, and so on.)
The ring A∞ is the ring of series f =

∑
i,j ai,jx

iyj (0 ≤ i < d and j ∈ Z) that converge
on the part of CQ(Qq) given by the condition |y| = 1 (implying |x| ≤ 1). In complex analysis,
the power series that converge on the closed unit disk give functions that are continuous but
not necessarily differentiable (example: (1 − z)1/2). In the p-adic case, one gets functions that
one cannot integrate (example:

∑
n≥0 pnzpn−1). So, in both cases, de Rham cohomology will
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not give the results that we want for such rings. To get the right cohomology, one uses over-
convergent functions, i.e., elements of A∞ that converge on a neighborhood of the closed part
that one considers (the neighborhood depends on the element). This gives the ring that we will
work with:

A† :=

{∑
i,j

ai,jx
iyj | ai,j ∈ Qq, lim inf

|j|→∞
vp(ai,j)/|j| > 0

}
.

One can show that A† does not depend on the choice of our lift Q (see for example Corol-
lary 7.5.10 in [1]; in this explicit case, one can also use an explicit method, just as for the
construction of the Frobenius lift in section 5).

4.3 Differentials and de Rham cohomology

We start with the differential forms on C ′
Q. The functions on C ′

Q that we consider are the el-
ements of A. Each element f of A has to have a differential df , such that the Leibniz rule
d(fg) = fdg + gdf holds and such that da = 0 for a ∈ Qq. The differentials should form an
A-module. In other words, d should be a Qq-derivation from A to an A-module. Now there exists
a universal such derivation d : A → Ω, such that for any Qq-derivation D : A → M there is a
unique A-linear map l : Ω → M such that D = ld. The universal derivation is easy to describe.
First of all, Ω is generated by the df for f in A, hence by dx and dy. But we have:

0 = y2 −Q, hence 0 = 2ydy −Q′dx, dy =
Q′dx

2y
.

(Note that 2y is invertible in A.) It follows that Ω is a free A-module and that (Q′dx)/2y is an
A-basis:

Ω = A · dx

2y
.

The de Rham complex of C ′
Q is then:

A
d−→ A · dx

2y
, xiyj 7→

(
2ixi−1yj+1 + jxiQ′yj−1

) dx

2y

with A in degree zero and A(dx)/2y in degree one. The algebraic de Rham cohomology is
simply the homology of this complex:

H0
dR(C ′

Q) = ker(d) = {f ∈ A | df = 0}, H1
dR(C ′

Q) = coker(d) =

(
A · dx

2y

)
/dA.

4.3.1 Proposition. We have H0
dR(C ′

Q) = Qq. The classes [xiy−1(dx)/y] with 0 ≤ i ≤ 2g form
a basis for H1

dR(C ′
Q)+, and the classes [xi(dx)/y] with 0 ≤ i < 2g form a basis for H1

dR(C ′
Q)−.
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Proof. We first split the complex into its two eigen-spaces for ι. Recall that the ring A has Qq-
basis xiyj , 0 ≤ i < d, j ∈ Z, that ιx = x and that ιy = −y. It follows that the decompositions
in ι-eigen-spaces are:

A+ =
⊕
0≤i<d

j≡0(2)

Qqx
iy2j =

⊕
0≤i<d

j∈Z

Qqx
iQj = Qq[x, Q−1],

Ω+ =
⊕
0≤i<d

j≡1(2)

Qqx
iyj dx

2y
=
⊕
0≤i<d

j≡1(2)

Qqx
iQ(j−1/2)dx = Qq[x, Q−1]dx,

A− =
⊕
0≤i<d

j≡1(2)

Qqx
iyj,

Ω− =
⊕
0≤i<d

j≡0(2)

Qqx
iyj dx

2y
.

Let us deal with the +-part first. In fact, this part is the de Rham complex for the ring Qq[x, Q−1],
i.e., for the curve A1 minus the zeros of Q. In the exercises it is proved that H0

dR(CQ)+ = Qq

and that the xiQ−1dx, 0 ≤ i < d, form a basis for H1
dR(C ′

Q)+.
Let us now deal with the −-part. We order the monomials xiyj , 0 ≤ i < d and j ∈ Z

lexicographically, with “j first and then i”. (On the xiyj in A− this ordering is given by the order
at the unique point ∞ at infinity of CQ: xiyj has order −2i− jd. We also note that if α is a root
in Qq of Q, then the order of xiyj at (α, 0) is j if α 6= 0 and 2i + j if α = 0.) It is a good idea
to draw a picture of these points (i, j). For 0 ≤ i < d, we consider the division of xiQ′ by Q

in Qq[x]:
xiQ′ = aiQ + bi, deg(bi) < d.

We have a0 = 0 and b0 = Q′. For 1 ≤ i < d we have ai = dxi−1 + · · · , hence deg(ai) = i− 1.
Then we have:

d : xiyj 7→
(
2ixi−1yj+1 + jxiQ′yj−1

) dx

2y
=
(
2ixi−1yj+1 + jaiy

j+1 + jbiy
j−1
) dx

2y
.

For 0 ≤ i < d and j ≡ 1(2) it follows that the highest monomial of d(xiyj) is xi−1yj+1 if
1 ≤ i < d, and xd−1yj−1 if i = 0 (note that 2i + jd 6= 0 and jd 6= 0). We also note that
the multiplication by Q′ on Qq[x]/(Q) is an isomorphism, because gcd(Q,Q′) = 1. Hence
b0, . . . , bd−1 form a Qq-basis of Qq[x]<d. It follows that the lowest monomial of d(xiyj) is of the
form xkyj−1 with 0 ≤ k < d. Graphically speaking, d(xiyj) is concentrated on the j + 1th and
j − 1th rows of the monomial space, and on the j − 1th row only if i = 0.
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Let us now prove the claim that H0
dR(C ′

Q)− = ker(d : A− → Ω−) = 0. This is immediate
from the fact that all d(xiyj) with 0 ≤ i < d and j ≡ 1(2) have different highest monomials, so
that the d(xiyj) are linearly independent.

It remains to prove that the classes [xi(dx)/y] with 0 ≤ i < d − 1 form a basis for
H1

dR(C ′
Q)− = Ω−/dA−. Let us first show that these elements are linearly independent. So

suppose that we have: ∑
0≤k<d−1

λkx
k(dx)/y =

∑
0≤i<d

j≡1(2)

µi,jd(xiyj) 6= 0,

with almost all µi,j equal to zero. Then the highest monomials occurring on the right hand side
are of the form xiy−1 or y and i = 0. However, y does not occur because on the left hand side
the coefficient of xd−1(dy)/x is zero. The linear independence of the bi implies that the lowest
monomial occurring on the right hand side is of the form xiy, 0 ≤ i < d. So we have proved that
the right hand side is zero, hence also the left hand side.

We prove that the [xi(dx)/y] generate by giving a reduction algorithm to write an arbi-
trary element f(dx)/y of Ω− as the sum of an element of dA− and a linear combination of
the xi(dx)/y. So, let f(dx)/y be given. As long as f has a monomial with j < 0, do the
following: let xiyj be the lowest monomial of f ; use the unique linear combination dg of the
d(xkyj+1) such that f(dx)/y − dg has no monomials xmyn with n = j. Now f has no mono-
mials xiyj with j < 0. As long as f has monomials xiyj with j > 0, do the following: let xiyj

be the highest monomial of f ; let xkyl be the monomial such that d(xkyl) has highest monomial
xiyj and replace f(dx)/y by f(dx)/y minus the appropriate multiple of d(xkyl). Now f has no
monomials xiyj with j 6= 0. Now subtract from f(dx)/y the appropriate multiple of dy so that
the monomial xd−1y does not occur in the difference. Now f(dx)/y is a linear combination of
the xi(dx)/y with 0 ≤ i < d− 1. �

At this point, we have the vector space H1
dR(C ′

Q)− = ⊕0≤i<d−1Qqx
i(dx)/y that will give us the

desired polynomial PQ. But, unfortunately, we do not yet have the Frobenius operator of which
PQ is the characteristic polynomial. Namely, the Frobenius endomorphism Fq of C ′

Q
cannot be

lifted to C ′
Q if g > 1, and only for a very special choice of Q if g = 1 (the canonical lift). (The

reason that for g > 1 there is no lift is that curves of genus > 1 over a field of characteristic
zero have no endomorphisms of degree > 1 by Hurwitz’s formula.) In order to get a Frobenius
operator, we will replace the ring A by A†.
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By definition, the de Rham complex of A† is given by:

d : A† −→ A†·dx

2y
,∑

i,j

ai,jx
iyj 7→

∑
i,j

ai,jd(xiyj) =
∑
i,j

ai,j

(
2ixi−1yj+1 + jxiQ′yj−1

) dx

2y
.

Indeed, one checks that if lim inf |j|→∞ vp(ai,j)/|j| > 0, then the same holds for the coefficients
of
∑

i,j ai,j(2ix
i−1yj+1 + jxiQ′yj−1) (the “liminf” does not even get smaller). We will denote

the cohomology groups of this complex by Hi(C ′
Q
); note that they are Qq-vector spaces. Just as

before, the automorphism ι splits them into two parts.

4.3.2 Proposition. The elements [xi(dx)/y], 0 ≤ i < d− 1, form a basis for H1(C ′
Q
)−.

Proof. There is a general theory that guarantees that passing from A to A† does not change
the cohomology (the technical condition is that we are dealing with an open sub-scheme of a
proper and smooth Zq-scheme with complement a relative divisor with normal crossings). But
in this case we give a proof by computation that will also give us a very precise control of the
denominators that arise in the reduction algorithm. In any case, we need the reduction algorithm
in order to compute the matrix of the Frobenius operator with respect to the basis that we have.

Let us show that the [xi(dx)/y], 0 ≤ i < d− 1, generate H1(C ′
Q
)−. So let

∑
m amym(dx)/y

be an element of A†·(dx)/y, with am in Qq[x] and deg(am) < d. After multiplication by a
suitable power of p we have that am is in Zq[x] for all m. For each m 6= 0, the following two
lemmas give us a bm in Qq[x] and fm in A− such that amym(dx)/y = bm(dx)/y + dfm and
deg(bm) < d− 1. By definition, there exists an ε > 0 and an integer m0 such that am is divisible
by pbε|m|c when |m| > m0. It follows that we have, in A†·(dx)/y:

∑
m

amym(dx)/y = a0(dx)/y +

(∑
m6=0

bm

)
(dx)/y + d

(∑
m

fm

)
.

In order to get rid of a0,d−1x
d−1y one uses the identity:

dy = Q′dx

2y
= (dxd−1 + · · · )dx

2y
.

This finishes the proof that the [xi(dx)/y], 0 ≤ i < d − 1, generate. In order to see that they
are linearly independent, one multiplies a hypothetical relation by a suitable power of p to make
it integral, then reduces modulo an arbitrarily high power of p, and proceeds as in the proof for
independence in H1

dR(C ′
Q)−. �
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4.3.3 Remark. The proofs of the two following lemmas are quite technical. If we just admit
the fact that the proposition above is true, then we could use a more direct but worse bound on
the denominators that does not change the exponents of g and logp q in Kedlaya’s algorithm (the
computations would then be done with a much higher precision than necessary).

4.3.4 Lemma. Consider ω = ay−m(dx)/y, with m > 0, m ≡ 0(2), and a in Zq[x]with
deg(a) < d. Then there is a unique b in Qq[x] with deg(b) < d, and a unique f in A− such
that:

ω = ay−m(dx)/y = b(dx)/y + df,

with f =
∑−1

j=−m+1 fjy
j , fj ∈ Qq[x], deg(fj) < d. Then one has:

pblogp(m−1)cb ∈ Zq[x] and pblogp(m−1)cfj ∈ Zq[x] for all j.

Proof. The existence of b and f follows directly from the reduction algorithm above. It remains
to bound their denominators.

Let us first remark that one can bound the denominators of b and the fj by inspecting the divi-
sions that have to be done in the reduction algorithm above. If one just bounds the denominators
by putting all the divisions together, one finds a bound of the form pf(m) with f(m) linear in m.
Hence we need to do better. (Also, somewhere the fact that in our situation we have a smooth
compactification with a normal crossings divisor as boundary should show up somewhere).

As we are dealing with negative powers of y, so that it is a natural idea to look at what
happens at the zeros of y, i.e., at the points (α, 0) with α a root of Q. So let α be a root of Q in
some Zqr , and let P = (α, 0). At P , we have y as a local coordinate. Hence the completion of
Zqr [x, y]/(Q) at P is Zqr [[y]]. We can then write df and f as series:

df =
∑

j≥−m

cjy
jdy, f =

∑
j≥−m

cj

j + 1
yj+1,

with cj in Zqr , and with cj = 0 if j ≡ 1(2) (because f is in A−). The series expansion of
b(dx)/y in y at P has no pole, and the series of ay−m(dx)/y has coefficients in Zqr . It follows
that cj is in Zqr if j < 0. We put n = pblogp(m−1)c. Then it follows that ncj/(j + 1) is in Zqr

for j < 0. Evaluating the coefficient of y−m+1 in the identity f =
∑−1

j=−m+1 fjy
j gives that

f−m+1(P ) = c−m/(−m + 1), hence that nf−m+1(P ) is in Zqr . Such an integrality statement
holds at each zero of y. It follows that nf−m+1 is in Zq[x] (use that the d roots of Q are distinct
and that the reduction modulo p of pef−m+1 does not have more than d−1 roots if it is non-zero).

Now the series of nf − nf−m+1y
−m+1 has integral coefficients at yj with j < 0. The same

argument then gives that nf−m+2 is integral, and so forth. �
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4.3.5 Lemma. Consider ω = aym(dx)/y, with m > 0, m ≡ 0(2), and a in Zq[x]with
deg(a) < d. Then there is a unique b in Qq[x] with deg(b) < d, and a unique f in A− such
that:

ω = aym(dx)/y = b(dx)/y + df,

with f =
∑m−1

j=1 fjy
j , fj ∈ Qq[x], deg(fj) < d. Then one has:

pblogp(dm+d−2)cb ∈ Zq[x] and pblogp(dm+d−2)cfj ∈ Zq[x] for all j.

Proof. The existence and uniqueness of b and f is guaranteed by the reduction algorithm above.
In this case we are dealing with positive powers of y, hence we study what happens at the unique
pole ∞ of y. Let v∞ denote the valuation at this point. Then we have v∞(x) = −2, v∞(y) = −2

(because y2 = Q and deg(Q) = d), v∞(dx) = −3, v∞((dx)/y) = d−3, v∞(f) ≥ −md−d+2,
and v∞(b(dx)/y) ≥ −d + 1. A suitable coordinate at ∞ is given by z := x(d−1)/2/y; note that
ι(z) = −z. Then we have expansion:

df =
∑

j≥−dm−d+1

cjz
j, f =

∑
j≥−dm−d+1

cj

j + 1
zj+1,

with cj in Qq, and cj = 0 if j ≡ 1(2). As the expansion of aym(dx)/y has coefficients in Zq, and
v∞(b(dx)/y) ≥ −d + 1, it follows that cj is in Zq for j ≤ −d. We put n = pblogp(dm+d−2)c. Then
ncj/(j + 1) is in Zq if j ≤ −d. As all v∞(xiyj) for 0 ≤ i < d and j > 0 are distinct and ≤ −d,
it follows that nfj is in Zq[x] for all j. �

5 Frobenius lifts

In this section, we will show that the Frobenius endomorphism Fq : C ′
Q
→ C ′

Q
can be lifted to A†,

and how its action on the cohomology space H1
dR(C ′

Q
)− gives us the polynomial PQ that we are

after. As the cohomology space is given with the explicit basis [xi(dx)/2y], 0 ≤ i < d − 1,
computing the action of Fq means computing its matrix with respect to this basis. Then PQ is the
characteristic polynomial.

5.1 Frobenius on points and rings

Let us now first how we interpret the morphism Fq : C ′
Q
→ C ′

Q
that we have seen in section 3 as a

map from CQ(F) to itself, with F an algebraic closure of Fq, as a morphism from the Fq-algebra
A := Fq[x, y, y−1]/(y2 − Q) to itself. The morphism Fq sends an element (a, b) of CQ(F) to
(aq, bq). By the definition of A we have:

CQ(F) = HomFq(A, F),

14



where (a, b) corresponds to the morphism that sends x to a, and y to b. It is then immediate
that the map (a, b) 7→ (aq, bq) is induced by the Fq-algebra morphism Fq : A → A that sends x

to xq and y to yq. Recall now that q = pn. It follows then that Fq = F n
p , with Fp the Fp-algebra

morphism from A to itself that sends any element a to its pth power ap, i.e., Fp is the absolute
p-power Frobenius endomorphism. Computationally, it is then a good idea to work with Fp.
Note that Fp is not an Fq-algebra morphism if n > 1; indeed, we have a commutative diagram:

A
Fp // A

Fq
σ //

OO

Fq

OO , σ : Fq → Fq, a 7→ ap,

where, as usual, we let σ denote the absolute Frobenius on Fq.

5.2 A lifting of Frobenius on A†

We start with lifting σ to an automorphism, still denoted σ, from Zq to itself. That this can be
done, in a unique way, results from Proposition 4.1.6. As Qq = Zq[1/p], σ extends uniquely to
an automorphism σ of Qq. We extend σ to Fp : Zq[x] → Zq[x] by sending x to xp. We will show
that Fp can be extended uniquely to an endomorphism Fp of A∞ that is p-adically continuous and
compatible with the Qq[x]-algebra structure on A∞. These last conditions mean that Fp maps the
sub-ring A∞

+ = (Zq[x, y, z]/(y2 −Q, yz − 1))∧ to itself, and that for each m ≥ 0 the restriction
of Fp on Zq[x, y, z]/(y2 −Q, yz − 1, pm) to Zq[x]/(pm) is the Fp that we already had.

Let us write Q = xd + Qd−1x
d−1 + · · ·+ Q0. Then we have:

FpQ = xpd + σ(Qd−1)x
p(d−1) + · · ·+ σ(Q0) =: Qσ(xp).

As Fp lifts the p-power Frobenius endomorphism of Fq[x], FpQ and Qp have the same image
in Fq[x], hence their difference is divisible by p in Zq[x]. We put:

E :=
FpQ−Qp

p
(E ∈ Zq[x]).

By construction, extending Fp as we want to A∞
+ means the following:

1. Fpa = σa for all a in Zq,

2. Fpx = xp,

3. Fpy is an element of A∞
+ that satisfies (Fpy)2 = FpQ and has image yp in A,

4. Fpz is an element of A∞
+ that satisfies (Fpy)(Fpz) = 1.
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In A∞
+ we have:

FpQ = Qp + pE = y2p + pE = y2p(1 + pEz2p),

hence we can put:

Fpy = yp(1 + pEz2p)1/2 = yp
∑
k≥0

(
1/2

k

)
pkEkz2pk.

Here
(
1/2
k

)
is the polynomial

(
t
k

)
= t(t − 1) · · · (t − k + 1)/k! evaluated at t = 1/2. Note that

v(
(
1/2
k

)
) ≥ 0, i.e,

(
1/2
k

)
is in Zq (argument: approximate 1/2 p-adically with elements of Z). We

also put:

Fpz = zp(1 + pEz2p)−1/2 = zp
∑
k≥0

(
−1/2

k

)
pkEkz2pk.

So this extends Fp to A∞
+ , and hence to A∞. Let now a =

∑
i,j ai,jx

iyj be an element of A† (the
sum ranging over the (i, j) with 0 ≤ i < d, j ∈ Z). Then we have:

Fpa =
∑
i,j

σ(ai,j)x
pi(Fpy)j ∈ A∞,

where (Fpy)j = (Fpz)−j if j < 0. We leave it as an exercise to show that Fpa is again an element
of A†. So now we have our lift of Frobenius Fp on A†. We remark that the reason to invert y

was precisely to be able to impose Fpx = xp on our Frobenius lift. One can also lift Frobenius
without inverting y, and it might be interesting to see if this improves the constants (not the
exponents) in the running time of Kedlaya’s algorithm. We also remark that wanting a Frobenius
lift forces us to work with A†, and not with the ring of functions on a fixed neighborhood of the
region given by |y| = 1, as the Frobenius lift sends each neighborhood to a larger neighborhood.
Indeed, consider power series

∑
i≥0 aix

i, ai ∈ Zp and the Frobenius lift that sends x to xp, then
one has: ∑

i

aix
i 7→

∑
i

aix
pi, lim inf v(ai)/ip = p−1 lim inf v(ai)/i.

5.3 Frobenius action on H1 and consequences

Our Frobenius lift Fp on A† induces a σ-linear endomorphism of the de Rham complex over A†,
and hence a σ-linear endomorphism of the Qq-vector space H1(CQ)−. Recall that the [xi(dx)/y],
0 ≤ i < d− 1, form a basis. We have:

Fp : xi(dx)/y 7→ pxpi+p−1y(Fpy)−1(dx)/y = pxp(i+1)−1y(Fpz)(dx)/y,

with
y(Fpz) = y−p+1

∑
k≥0

(−1/2
k

)
pkEky−2pk.
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Hence:
Fp(x

i(dx)/y) =
∑
k≥0

(−1/2
k

)
pk+1Ekxp(i+1)−1y−(2k+1)p+1 · (dx)/y.

The degree of E is at most pd− 1, hence that of Ekxp(i+1)−1 is at most p(d− 1)− 1+ k(pd− 1).
We note that:

k(pd− 1) + p(d− 1)− 1

d
< (k + 1)p

So, for k ≥ 0 we can write:(−1/2
k

)
Ekxp(i+1)−1y−(2k+1)p+1 =

∑
−(2k+1)p<j<p

ci,k,jy
j, with ci,k,j in Zq[x] and deg(ci,k,j) < d.

Then we have, for 0 ≤ i < d− 1:

Fp(x
i(dx)/y) =

∑
k≥0

−(2k+1)p<j<p

pk+1ci,k,jy
j · (dx)/y.

Now we need apply Lemmas 4.3.4 and 4.3.5 in order to rewrite [Fp(x
i(dx)/y)] in terms of our

basis. We find:

[Fp(x
i(dx)/y)] =

[∑
k≥0

pk+1c′i,k(dx)/y

]
,

with c′i,k in Qq[x], deg(c′i,k) < d, pmkc′i,k ∈ Zq[x],

mk = max(blogp((2k + 1)p)c, blogp(pd− 2)c).

But we have not reduced Fp(x
i(dx)/y) completely, because of the term xd−1(dx)/y that can still

occur in the last formula. The last reduction step, that uses dy, needs a division by d. If d is not
divisible by p, then this division gives an integral result, and the action of Frobenius on H1(C ′

Q
)

is given by a matrix with coefficients in Zq. But in general we do have to take this division
into account, and we get the following. Let c′′i,k be in Qq[x] with deg(c′′i,k) < d − 1 such that
[c′i,k(dx)/y] = [c′′i,k(dx)/y]. Then:

[Fp(x
i(dx)/y)] =

[∑
k≥0

pk+1c′′i,k(dx)/y

]
,

with c′′i,k in Qq[x], deg(c′′i,k) < d− 1, pmk+vp(d)c′′i,k ∈ Zq[x].

As we are going to consider the nth power of Fp acting on H1(C ′
Q
)−, it is quite useful (but not

essential for the complexity) to know whether or not the Zq-module ⊕0≤i<d−1Zq·xi(dx)/y is
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stable under Fp, i.e., whether or not the matrix of Fp with respect to this basis has coefficients
in Zq. In the notation of above k + 1−mk − vp(d) can take negative values, in fact:

min{k + 1−mk − vp(d) | k ≥ 0} = −vp(d)− blogp(d− 2/p)c.

So our estimates do not show that the coefficients in question are in Zq. In fact Vercauteren tells
me that his computations show that very often the matrix in question does not have all coefficients
in Zq. In order to not have to worry about the growth of the denominators when computing the
action of F n

p , the following proposition is quite useful, and seems new.

5.3.1 Proposition. Let t be a parameter at the point ∞ at infinity such that ιt = −t (e.g.,
t := xg/y). Let L be the sub-Zq-module of ⊕0≤i<d−1Zq·xi(dx)/y consisting of those ω whose
image in (t−2gZq[[t]]dt)/(t−1Zq[[t]]dt) can be integrated, i.e., are in the image of:

d :
t−2g+1Zq[[t]]

Zq[[t]]
−→ t−2gZq[[t]]dt

t−1Zq[[t]]dt
.

Then the action of Fp on H1(C ′
Q
)− respects the Zq-module L. Moreover, there is an isomorphism:

⊕0≤i<d−1Zq·xi(dx)/y

L
−→

⊕
−(2g−1)≤i<0

i≡1(2)

Zq/iZq,

hence the quotient (⊕0≤i<d−1Zq·xi(dx)/y)/L is annihilated by pblogp(2g−1)c.

Proof. We just sketch the proof, as it is much too technical anyway. Let CQ be the smooth
projective curve over Zq given by Q. Then there is a canonical isomorphism:

H1
dR(CQ/Zq) = H1

crys(CQ/Zq),

between crystalline cohomology and de Rham cohomology (see [3]). Hence H1
dR(CQ/Zq) is

canonically equipped with an action of Frobenius. Then we consider:

H1
dR(CQ/Zq)↪→H1

dR(CQ/Qq) = H1
dR(C ′

Q/Qq)
− = H1(C ′

Q
)−.

Then one shows that L is the image of H1
dR(CQ/Zq), by considering the complexes:

C(m) :=
(
O(m∞) → Ω1((m + 1)∞)

)
on CQ, with m ≥ 0. One finds that H1

dR(CQ/Zq) = H1(C(0)). The quotient of C(2g − 1) by its
subcomplex C(0) is the complex given by the map d in the proposition that we are proving. One
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finds the following diagram, whose first two rows and first two columns are exact:

H0(Ω(∞)) // //
��

��

H0(Ω(2g∞))− // //
��

��

(
t−2gZq [[t]]dt

t−1Zq [[t]]dt

)−
����

H1(C(0)) // //

����

H1(C(2g − 1))− // //

����

⊕
−(2g−1)≤i<0

i≡1(2)

Zq/iZq·ti(dt)/t

H1(O) // H1(O((2g − 1)∞))

0

�

Let e = (e1, . . . , e2g) be a Zq-basis of L, and let m be the matrix that gives the action of Fp on L

with respect to e. This means that:

Fpej =
∑

i

mi,jei.

We note that Proposition 5.3.1 shows that m is in M2g(Zq). As Fp is σ-linear, we have, for λj

in Zq:
Fp

∑
j

λjej =
∑
i,j

σ(λj)mi,jei.

Also, for a and b σ-linear endomorphisms of a Qq-vector space V with a basis e, we have:

mat(ab)e = (mat a)e(σ(mat b))e.

(Exercise left to the reader.) It follows that the matrix with respect to e of the linear endomor-
phism Fq = F n

p of H1(C ′
Q
)− is given by:

(mat Fq)e = m·(σm) · · · (σn−1m).

5.3.2 Theorem. The characteristic polynomial of F n
p on the Qq-vector space H1(C ′

Q
)− is the

polynomial:

PQ =

2g∏
i=1

(t− αi) = t2g − a1t
2g−1 + · · · − a2g−1t + a2g.

in Z[t] of Theorem 2.2. We have:

a2g−i = qg−iai, |ai| ≤ 22gqi/2.
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Proof. The Lefschetz fixed point formula for Monsky-Washnitzer cohomology gives that Pf is
the characteristic polynomial of Fp (for a proof see the new book [1] by Fresnel and van der Put).
The identity αiαg+i = q is a consequence of Poincaré duality. This implies a2g−i = qg−iai, see
[2] or [12]. That |αi| = q1/2 is due to Weil (because this is for a curve, Deligne has proved such a
thing for general non-singular projective varieties) (see the appendix of Hartshorne’s book). We
use it as follows:

|ai| = |
∑

j1<···<j2g

αj1 · · ·αji
| ≤

∑
j1<···<j2g

|αj1 · · ·αji
| =

(
2g

i

)
qi/2 ≤ 22gqi/2.

�

It follows that it suffices to compute the ai, for 1 ≤ i ≤ g, as elements of Zq/p
NZq, where N is

chosen such that:
pN > 2·22g·qg/2.

The computations earlier in this subsection show that the power series in y and y−1 can be
truncated at an appropriate place, so that the computation becomes finite. This will be done in
detail in the next section.

6 The algorithm

The input data are the following: a finite field Fq, given by means of a prime number p > 2,
an integer n ≥ 1 and a monic irreducible polynomial f in Fp[z] of degree n, an odd integer
d = 2g+1 ≥ 1 and an element Q of Fq[x], monic and of degree d, such that gcd(Q,Q

′
) = 1. The

output is: the polynomial PQ in Z[t] described in Theorem 2.2. Now we describe the algorithm.

6.1 Initialisation

First lift f to f in Z[z] by lifting the coefficients in {0, 1, . . . , p− 1}. Let Zq := Zp[z]/(f). Lift
Q to Q in Zq[x] in the obvious way: Q = xd + Qd−1x

d−1 + · · ·+ Q0, with Qi =
∑

0≤j<n Qi,jz
j

in Zq = Zp1⊕ · · · ⊕ Zpx
n−1 and the Qi,j in {0, 1, . . . , p− 1}.

Put:

N := dlogp(2
2g+1qg/2)e, so that pN > 22g+1qg/2

N1 := N + vp(d) + blogp(d− 2/p)c+ blogp(2g − 1)c.

Let M be the smallest integer such that:

M − blogp(2M + 1)c ≥ N1.
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6.2 Compute the action of Frobenius on the differentials

For 0 ≤ i < d− 1, compute:∑
0≤k<M

(−1/2
k

)
pk+1Ekxp(i+1)−1y−(2k+1)p+1 =

∑
0≤k<M

−(2k+1)p<j<p

pk+1ci,k,jy
j

as an element of:
Zq[x, y, y−1]/(y2 −Q) =

⊕
0≤k<d

l∈Z

Zqx
kyl,

with a precision of N1 “digits”, i.e., modulo pN1 if you wish. Recall that E = (FQ − Qp)/p.
The ci,k,j are in Zq[x] of degree < d.

6.3 Applying the reduction algorithm

Apply the reduction algorithm of page 11:∑
0≤k<M

−(2k+1)p<j<p

pk+1ci,k,jy
j·(dx)/y ≡ m̃i·(dx)/y,

with m̃i in Zq[x], deg(m̃i) < d − 1. Here we work with N1 digits left of the comma, if at some
point a division by p has to be done, one just shifts the number one place to the right, inserting
whatever one wants at the left. Let m̃ be the matrix whose columns are the m̃i; it is square, of
size 2g. Now compute a Zq-basis e for the Zq-module L as in Proposition 5.3.1, with a precision
of N digits, and compute the matrix m of Fp with respect to e. Note that we have seen that m is
in M2g(Zq), and that we have its N most significant digits.

6.4 Computing the characteristic polynomial

Compute:
m′ = m·(σm)(σ2m) · · · (σn−1m).

Then m′ is in M2g(Zq). Compute:

det(t·id−m) = P = t2g + P2g−1t
2g−1 + · · ·+ P0 in Zq[t].

For 1 ≤ i ≤ g let ai be the unique integer with |ai| ≤ 22gqi/2 such that ai = (−1)iPi in Z/pNZ
(indeed, we know that the images of these Pi in Zq/p

NZq are in Z/pNZ). For g < i ≤ 2g, put
ai := qi−ga2g−i. Then one has:

PQ = t2g − a1t
2g−1 + · · · − a2g−1t + a2g.
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7 Running time and space requirement of the algorithm

As minimisation of the running time of an algorithm is not my specialty, I just give the facts that
are stated in Kedlaya’s article.

Note that N1 = O(gn). An element of Zq/p
N1Zq can be stored in O(gn2) bits. All ring

operations in Zq/p
N1Zq can be done in time O(g1+εn2+ε), using fast integer multiplication.

For 0 ≤ k < n the matrix of the automorphism σk of Zq/p
N1Zq = (Z/pN1Z)[z]/(f) can be

computed in time O(g1+εn3+ε): first compute in Fq, then lift using Newton’s method.
Step 6.2 can be done in time O(g3+εn3+ε), and the storage space is O(g3n3) bits. Note that

M = O(gn), deg(E) = O(g), d = deg(Q) = O(g). Basically, this step means computing
a polynomial of degree O(g2n) in x and writing it as a polynomial in Q with coefficients of
degree < d.

Step 6.3, the reduction step, can be done in time O(g4+εn3+ε), no additional space is required.
We have g forms to reduce, each takes M = O(gn) multiplications by (Q′)−1 in Zq[x]/(Q, pN).
So: g·gn·g2+εn2+ε.

Step 6.4 can be done in time O(g4+εn2+ε) + O(g3+εn3+ε), and no additional space is re-
quired. One computes m′ = m·(σm)(σ2m) · · · (σn−1m) by repeated squaring (m1 := m·(σm),
m2 := m1·(σ2m1), etc.). So one computes O(log n) multiplications of square matrices of size 2g,
with coefficients of size gn2, and O(g2 log n) applications of powers of σ. One computes the
characteristic polynomial of m′ by choosing an element v and computing v, m′v, (m′)2v, . . .

until these are linearly dependent. That takes O(g3) ring operations.
One concludes that the dominant step is the reduction step, and that the total running time of

the algorithm is O(g4+εn3+ε), and that it requires O(g3n3) bits of storage.
It seems (see Lauder’s articles) that if one does not fix p, one has a running time

of (pg4+εn3+ε). As the algorithm manipulates polynomials that are not sparse and of degree
at least p, this factor p is not easy to get rid of.
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