
EIDMA-Stieltjesweek Graduate Course

Σ-protocols

September 23, 2003

Berry Schoenmakers
TU Eindhoven
berry@win.tue.nl

http://www.win.tue.nl/~berry/

1. Definitions

1.1. Σ-protocols

Let R = {(v, w)} be a binary relation. (It is assumed that for some
given polynomial p that |w| ≤ p(|v|) for all (v, w) ∈ R.) Here, v
denotes the common input to prover and verifier, and w denotes a
witness, which is the private input to the prover. Let LR = {v|∃w :
(v, w) ∈ R}.
A Σ-protocol for relation R is of the following form:

Prover Verifier
(random tape sP) (random tape sV)

((v, w) ∈ R) (v ∈ LR)

a := α(v, w, sP)

−−−−
a
−−−−→

c := γ(sV) public
coin

←−−−−
c
−−−−

r := ρ(v, w, c, sP)

−−−−
r
−−−−→

φ(v, a, c, r)?

1.2. Security properties for Σ-protocols

Completeness: if P and V follow the protocol, the verifier always
accepts.

Special soundness: for any v and any pair of accepting conversa-
tions (a, c, r) and (a, c′, r′) with c 6= c′ one can efficiently compute
witness w such that (v, w) ∈ R.

Special honest-verifier zero-knowledge: there exists a p.p.t.
machine S (simulator) which for any v and c produces conversations
(a, c, r) with the same probability distribution as conversations be-
tween the honest P and V with common input v and challenge c.

Note that a cheating prover succeeds with probability at most 1/q,
where q denotes the cardinality of the challenge space γ(·).

2. Schnorr-based examples

2.1. Schnorr’s protocol

Prover Verifier
(x = logg h)

u ∈R ZZq

a := gu

−−−−
a
−−−−→

c ∈R ZZq

←−−−−
c
−−−−

r := u + cx

−−−−
r
−−−−→

gr ?
= ahc

2.2. Parallel composition

Running two instances of Schnorr’s protocol in parallel, for the same
public key h, results in a Σ-protocol with a larger challenge length.

Prover Verifier
(x = logg h)

u1, u2 ∈R ZZq

a1 := gu1

a2 := gu2

−−−
a1, a2
−−−−−−→

c1, c2 ∈R ZZq

←−−−
c1, c2
−−−−−−

r1 := u1 + c1x
r2 := u2 + c2x

−−−
r1, r2
−−−−−−→

gr1
?
= a1h

c1

gr2
?
= a2h

c2

2.3. AND composition

Given two public keys h1, h2, one proves knowledge of logg h1 and
logg h2, by running two instances of the Schnorr proof in parallel, using
a common challenge.

Prover Verifier
((x1, x2) = (logg h1, logg h2))

u1, u2 ∈R ZZq

a1 := gu1

a2 := gu2

−−−
a1, a2
−−−−−−→

c ∈R ZZq

←−−−−
c
−−−−

r1 := u1 + cx1
r2 := u2 + cx2

−−−
r1, r2
−−−−−−→

gr1
?
= a1h

c
1

gr2
?
= a2h

c
2

2.4. OR composition

It turns out that there is a proof of knowledge of (at least) one of
x1 = logg h1 and x2 = logg h2 of the same complexity as an AND proof.

We let the prover do a proof of knowledge for both logg h1 and
logg h2 in parallel but giving the prover one degree of freedom in
choosing the two challenges for these proofs. This allows the prover
to cheat in one of the two proofs.

Suppose the prover knows x1 but does not know x2. The prover
will then do a real proof of knowledge for logg h1, and use the honest-
verifier zero-knowledge property of the Schnorr protocol to create a
simulated proof for logg h2.

Prover Verifier

(using x2 = logg h2) (using x1 = logg h1)

r1, c1, u2 ∈R ZZq r2, c2, u1 ∈R ZZq

a1 := gr1h−c1
1 a1 := gu1

a2 := gu2 a2 := gr2h−c2
2

−−−
a1, a2
−−−−−−→

c ∈R ZZq

←−−−−
c
−−−−

c2 := c− c1 c1 := c− c2
r2 := u2 + c2x2 r1 := u1 + c1x1

−
c1, c2, r1, r2
−−−−−−−−→

c1 + c2
?
= c

gr1
?
= a1h

c1
1

gr2
?
= a2h

c2
2

2.5. Equality of Discrete Logs

Given two public keys h1 = gx
1 , h2 = gx

2 , one proves knowledge of
x = logg1

h1 = logg2
h2, by running two instances of the Schnorr proof

in parallel, using a common random choice, a common challenge and
a common response.

Prover Verifier
(x = logg1

h1 = logg2
h2)

u ∈R ZZq

a1 := gu
1

a2 := gu
2

−−−
a1, a2
−−−−−−→

c ∈R ZZq

←−−−−
c
−−−−

r := u + cx

−−−−
r
−−−−→

gr
1

?
= a1h

c
1

gr
2

?
= a2h

c
2

2.6. Schnorr signatures

Schnorr signatures are obtained by applying the Fiat-Shamir heuristic
to Schnorr’s protocol: compute the challenge as a hash H(·) of the
message m and the value a.

Signer Receiver
(x = logg h)

u ∈R ZZq

a := gu

c :=H(m, a)

r := u + xc −
a, r

−−−−−−−−−−→ c :=H(m, a)

gr ?
= ahc

(As an optimization, one may send c instead of a, as the bit-length of c
may be much smaller than the bit-length of a. The receiver computes
a := grh−c and accepts if c = H(m, a).)
The Fiat-Shamir technique for converting Σ-protocols into signature
schemes is provably secure in the so-called random oracle model.

3. Exercises

Exercise 1 Prove the special soundness of the OR composition
for the Schnorr protocol.

Exercise 2 Let g, h denote generators of a group G of large prime
order q such that logg h is unknown to anyone. Let B = gxhy

denote the common input to prover and verifier, where x, y ∈ ZZq

is private input to the prover. For each of the following predicates
ψ(x, y), design a Σ-protocol that proves knowledge of x, y ∈ ZZq

such that B = gxhy and ψ(x, y) holds:

a. ψ(x, y) ≡ true;

b. ψ(x, y) ≡ x = y;

c. ψ(x, y) ≡ αx + βy = γ for given α, β, γ ∈ ZZq;

d. ψ(x, y) ≡ x ∈ {0, 1};
e. ψ(x, y) ≡ x ∈ {0, . . . , 2k−1}, where k is a fixed integer, 1 ≤ k ≤
blog2 qc;

f. ψ(x, y) ≡ x 6= 0;

g. ψ(x, y) ≡ ∃a ∈ ZZq : x = a2;

	Definitions
	-protocols
	Security properties for -protocols

	Schnorr-based examples
	Schnorr's protocol
	Parallel composition
	AND composition
	OR composition
	Equality of Discrete Logs
	Schnorr signatures

	Exercises

