EIDMA-Stieltjesweek Graduate Course

Σ -protocols

September 23, 2003

Berry Schoenmakers TU Eindhoven berry@win.tue.nl http://www.win.tue.nl/~berry/

1. Definitions

1.1. Σ -protocols

Let $R = \{(v, w)\}$ be a binary relation. (It is assumed that for some given polynomial p that $|w| \leq p(|v|)$ for all $(v, w) \in R$.) Here, vdenotes the common input to prover and verifier, and w denotes a witness, which is the private input to the prover. Let $L_R = \{v | \exists w :$ $(v, w) \in R\}$.

A Σ -protocol for relation R is of the following form:

1.2. Security properties for Σ -protocols

Completeness: if P and V follow the protocol, the verifier always accepts.

Special soundness: for any v and any pair of accepting conversations (a, c, r) and (a, c', r') with $c \neq c'$ one can efficiently compute witness w such that $(v, w) \in R$.

Special honest-verifier zero-knowledge: there exists a p.p.t. machine S (simulator) which for any v and c produces conversations (a, c, r) with the same probability distribution as conversations between the honest P and V with common input v and challenge c.

Note that a cheating prover succeeds with probability at most 1/q, where q denotes the cardinality of the challenge space $\gamma(\cdot)$.

2. Schnorr-based examples

2.1. Schnorr's protocol

Verifier Prover $(x = \log_g h)$ $u \in_R \mathbb{Z}_q$ $a := g^u$ a $c \in_R \mathbb{Z}_q$ \mathcal{C} r := u + cxr $q^r \stackrel{?}{=} ah^c$

2.2. Parallel composition

Running two instances of Schnorr's protocol in parallel, for the *same* public key h, results in a Σ -protocol with a larger challenge length.

2.3. AND composition

Given two public keys h_1, h_2 , one proves knowledge of $\log_g h_1$ and $\log_g h_2$, by running two instances of the Schnorr proof in parallel, using a *common* challenge.

2.4. OR composition

It turns out that there is a proof of knowledge of (at least) one of $x_1 = \log_q h_1$ and $x_2 = \log_q h_2$ of the *same* complexity as an AND proof.

We let the prover do a proof of knowledge for both $\log_g h_1$ and $\log_g h_2$ in parallel but giving the prover one degree of freedom in choosing the two challenges for these proofs. This allows the prover to *cheat* in one of the two proofs.

Suppose the prover knows x_1 but does not know x_2 . The prover will then do a real proof of knowledge for $\log_g h_1$, and use the honestverifier zero-knowledge property of the Schnorr protocol to create a simulated proof for $\log_g h_2$.

Prover Verifier
(using
$$x_2 = \log_g h_2$$
) (using $x_1 = \log_g h_1$)
 $r_1, c_1, u_2 \in_R \mathbb{Z}_q$
 $a_1 := g^{r_1} h_1^{-c_1}$
 $a_2 := g^{u_2}$
 $c_2 := c - c_1$
 $r_2 := u_2 + c_2 x_2$
 $c_1 := c - c_2$
 $r_1 := u_1 + c_1 x_1$
 $c_1 + c_2 \stackrel{?}{=} c_1$
 $c_1 + c_2 \stackrel{?}{=} c_2$
 $c_1 + c_2 \stackrel{?}{=} c_1$
 $g^{r_1} \stackrel{?}{=} a_1 h_1^{c_1}$

2.5. Equality of Discrete Logs

Given two public keys $h_1 = g_1^x$, $h_2 = g_2^x$, one proves knowledge of $x = \log_{g_1} h_1 = \log_{g_2} h_2$, by running two instances of the Schnorr proof in parallel, using a *common* random choice, a *common* challenge and a *common* response.

2.6. Schnorr signatures

Schnorr signatures are obtained by applying the Fiat-Shamir heuristic to Schnorr's protocol: compute the challenge as a hash $\mathcal{H}(\cdot)$ of the message m and the value a.

 $\begin{array}{ll} \text{Signer} & \text{Receiver} \\ (x = \log_g h) & \\ u \in_R \mathbb{Z}_q \\ a := g^u \\ c := \mathcal{H}(m, a) \\ r := u + xc & \underbrace{a, r} \\ g^r \stackrel{?}{=} ah^c \end{array}$

(As an optimization, one may send c instead of a, as the bit-length of cmay be much smaller than the bit-length of a. The receiver computes $a := g^r h^{-c}$ and accepts if $c = \mathcal{H}(m, a)$.) The Fiat-Shamir technique for converting Σ -protocols into signature schemes is provably secure in the so-called random oracle model.

3. Exercises

Exercise 1 Prove the special soundness of the OR composition for the Schnorr protocol.

Exercise 2 Let g, h denote generators of a group G of large prime order q such that $\log_g h$ is unknown to anyone. Let $B = g^x h^y$ denote the common input to prover and verifier, where $x, y \in \mathbb{Z}_q$ is private input to the prover. For each of the following predicates $\psi(x, y)$, design a Σ -protocol that proves knowledge of $x, y \in \mathbb{Z}_q$ such that $B = g^x h^y$ and $\psi(x, y)$ holds:

$$\begin{array}{l} a. \ \psi(x,y) \equiv \mathrm{true}; \\ b. \ \psi(x,y) \equiv x = y; \\ c. \ \psi(x,y) \equiv \alpha x + \beta y = \gamma \ \mathrm{for \ given} \quad \alpha, \beta, \gamma \in \mathbb{Z}_q; \\ d. \ \psi(x,y) \equiv x \in \{0,1\}; \\ e. \ \psi(x,y) \equiv x \in \{0,\ldots,2^k-1\}, \ \mathrm{where} \ k \ \mathrm{is \ a \ fixed \ integer}, \ 1 \leq k \leq \\ \lfloor \log_2 q \rfloor; \\ f. \ \psi(x,y) \equiv x \neq 0; \\ g. \ \psi(x,y) \equiv \exists a \in \mathbb{Z}_q : x = a^2; \end{array}$$