Problems

- On the discrete logarithm system

Problem 1.1 ${ }^{M}$

Users A and B want to use the Diffie-Helleman to fix a common key over a public channel. They use $\operatorname{GF}(p)$, with $p=541$ and primitive element $\alpha=2$.
User B makes $c_{B}=123$ public. If $m_{A}=432$, what will be the common key $k_{A, B}$ that A and B use for their communication?

Problem 1.2 ${ }^{M}$

Demonstrate the special caase version of the Pohlig-Helmann algorithm, that computes logarithms in finite fields of size $q=2^{n}+1$, by evaluating $\log _{3}(142)$ in $\mathrm{GF}(257)$.

Problem 1.3 ${ }^{M}$

Find a solution of $\log _{44} 55$ in $\mathrm{GF}(197)$ by means of the Baby-Step Giant Step method, when only 15 field elements can be stored.

Problem 1.4 ${ }^{M}$

Check that $\alpha=662$ is a primitive 2003-th root of unity in $\mathrm{GF}(4007)$ (note that 4007 is a prime number). Let G be the multiplicative subgroup G of order 2003 in $\mathrm{GF}(4007)$ generated by α. Check that 2124 is an element of G.
Determine $\log _{662} 2124$ by the Pollard- ρ method.

Problem 1.5 ${ }^{M}$

Check that $g=996$ is a generator of the multiplicative group \mathbb{Z}_{4007}^{*}. Set up the index-calculus method with a factor base of size 6 and determine $\log _{996} 1111$.

- On elliptic curve cryptosystems

Problem 2.1 ${ }^{M}$

How many points lie on the elliptic curve defined by the equation $y^{2}=x^{3}+\alpha \mathrm{x}+1$ over $\mathrm{GF}\left(2^{4}\right)=\mathrm{GF}(2)[\alpha] /\left(1+\alpha^{3}+\alpha^{4}\right)$?

Problem 2.1

Find the intersection points over \mathbb{Z}_{31} of the lines $y=4 x+20$ and $y=4 x+21$ with the elliptic curve $y^{2}=x^{3}+25 x+10$.

Problem 2.3 ${ }^{M}$

Consider the elliptic curve \mathcal{E} defined by $y^{2}=x^{3}+11 x^{2}+17 x+25$ over \mathbb{Z}_{31}. Check that the points $P=\{12,10\}$ and $Q=\{25,14\}$ lie on \mathcal{E}. What is $-P$? Compute the sum of P and Q without using the Mathematica procedure presented before.

Problem 2.4 ${ }^{M}$

Consider (again) the elliptic curve \mathcal{E} defined by $y^{2}=x^{3}+11 x^{2}+17 x+25$ over \mathbb{Z}_{31}. Determine the orders of $P=\{27,10\}$ and $Q=\{24,28\}$. What can you conclude about the cardinality of \mathcal{E} ?

What is the cardinality of \mathcal{E} ?
Construct a point of maximal order from P and Q.

