Problems

On the discrete logarithm system

Problem 1.1^M

Users *A* and *B* want to use the Diffie-Helleman to fix a common key over a public channel. They use GF(p), with p = 541 and primitive element $\alpha=2$.

User *B* makes $c_B = 123$ public. If $m_A = 432$, what will be the common key $k_{A,B}$ that *A* and *B* use for their communication?

Problem 1.2^M

Demonstrate the special caase version of the Pohlig-Helmann algorithm, that computes logarithms in finite fields of size $q = 2^n + 1$, by evaluating $\log_3(142)$ in GF(257).

Problem 1.3^M

Find a solution of $\log_{44} 55$ in GF(197) by means of the Baby-Step Giant Step method, when only 15 field elements can be stored.

Problem 1.4^M

Check that $\alpha = 662$ is a primitive 2003-th root of unity in GF(4007) (note that 4007 is a prime number). Let *G* be the multiplicative subgroup *G* of order 2003 in GF(4007) generated by α . Check that 2124 is an element of *G*.

Determine $\log_{662} 2124$ by the Pollard- ρ method.

Problem 1.5^M

Check that g = 996 is a generator of the multiplicative group \mathbb{Z}_{4007}^* . Set up the index-calculus method with a factor base of size 6 and determine $\log_{996} 1111$.

On elliptic curve cryptosystems

Problem 2.1^M

How many points lie on the elliptic curve defined by the equation $y^2 = x^3 + \alpha x + 1$ over $GF(2^4) = GF(2)[\alpha]/(1 + \alpha^3 + \alpha^4)$?

Problem 2.1

Find the intersection points over \mathbb{Z}_{31} of the lines y = 4x + 20 and y = 4x + 21 with the elliptic curve $y^2 = x^3 + 25x + 10$.

Problem 2.3 *M*

Consider the elliptic curve \mathcal{E} defined by $y^2 = x^3 + 11 x^2 + 17 x + 25$ over \mathbb{Z}_{31} . Check that the points $P = \{12, 10\}$ and $Q = \{25, 14\}$ lie on \mathcal{E} . What is -P? Compute the sum of P and Q without using the *Mathematica* procedure presented before.

Problem 2.4 *M*

Consider (again) the elliptic curve \mathcal{E} defined by $y^2 = x^3 + 11 x^2 + 17 x + 25$ over \mathbb{Z}_{31} . Determine the orders of $P = \{27, 10\}$ and $Q = \{24, 28\}$. What can you conclude about the cardinality of \mathcal{E} ? What is the cardinality of \mathcal{E} ? Construct a point of maximal order from P and Q.