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These are notes for a course given at Rennes at the DEA level, for students in algebra
and geometry, or in analysis, or in probability theory. The notes are based on a handwritten
version of about 128 pages by Dominique Cerveau, who has taught the same course during
the last few years, and who is of course not responsible for the mistakes in this version. The
main result of the course seems to be the Peter-Weyl theorem, which is a generalisation
of Fourier theory on the circle to compact Lie groups. I will try to follow his notes quite
faithfully, but also I would like to put a little bit more emphasis on representations of
Lie groups, with of course the explicit examples for the groups SO3(R) and SU,(R). In
particular, I would like to find time to discuss the applications of these examples to quantum
mechanics, and, if possible, Gell Man’s discovery of quarks in terms of representations of
SU3(R). The course takes place in 30 hours (10 weeks, 3 hours a week). One reason to
type these notes is to have them available on the internet, in a convenient format.



Contents

1

2

3

8

9

Some topology and differential geometry
Lie groups; first definitions

The exponential map

Categories and functors

Coverings and universal coverings

Lie induces an equivalence

The Campbell-Hausdorff formula
Fundamental groups of some Lie groups

Closed subgroups are Lie subgroups

10 Representations of SL,, SU; and SOj3

11 Integration on Lie groups

12 Representations of compact Lie groups and the Peter-Weyl theorem

13 Characters, the space of class functions, and the decomposition of some

tensor products

14 Some equidistribution results

15 Quelques exercices; exemple pour I’examen.

16 Further theory

17 Some physics

20

27

30

32

38

44

45

49

52

63

68

73

7

79

80

82



1 Some topology and differential geometry

1.1 Introduction

In order to even define what an abstract Lie group is, we need the terminology of manifolds.

So we begin this course by recalling some facts from topology and differential geometry.

1.2 Topology and quotients

We recall that a topological space X is called separated (or Hausdorff) if for all distinct
elements x; and x5 of X there are neighborhoods U; and U, of z; and x5, respectively,
such that U; N U, is empty. Equivalently, X is Hausdorff if and only if the diagonal in
X x X (with the product topology) is closed. A compact subset of a separated topological
space is closed. If f: X — Y is a continuous bijection with X compact and Y separated,
then f is a homeomorphism.

We will view an equivalence relation R on a set X as its graph in X x X. If R is an
equivalence relation on a topological space X, then we define the quotient topological space
X/R as follows: the set X/R is the set of equivalence classes of R, and a subset U of X/R
is open if and only if p~'U is open in X, where p: X — X/R is the quotient map. With
this definition, p: X — X/R has the usual universal property: if f: X — Y is continuous
and satisfies f(x1) = f(z2) for all (z1,22) in R, then there is a unique continuous map
f: X/R — Y such that f = fop.

1.2.1 Exercise. Let R be an equivalence relation on a topological space X.
1. Suppose that X/R is separated. Show that R is closed in X x X.

2. Suppose that R is closed in X x X and that p: X — X/R is open (i.e., that p(U) is
open in X/R for every open subset U of X). Show that X/R is separated.

3. Suppose that R is the equivalence relation given by an action of a group G on X.
Show that p: X — X/R is open.

1.2.2 Example. Projective spaces. For n > 0 integer, we have the real and complex
n-dimensional projective spaces P*(RR) and P"(C), defined to be the quotients of R**' —{0}
and C"*' —{0} by the equivalence relation “lying on the same (real or complex) line through
0”. These quotients are separated. The fibers of p are precisely the lines through 0.



1.2.3 Example. Elliptic curves. One considers the quotients C/A, where A is a lattice
(i.e., discrete subgroup of maximal rank) in C. These quotients are all homeomorphic to
the product of two circles S! x S! (and hence are separated). In this case the quotient map
p is a covering (revétement in French), meaning that for each z in C/A there is an open
neighborhood U of z such that p~'U — U is isomorphic to a disjoint union of copies of
U (think of a stack of pancakes). This makes it possible to give C/A the structure of a
complex analytic variety (even if we have not yet defined what that should be): the notion
of holomorphic complex function on an open subset of C/A is clear.

Let (A1, A2) be a Z-basis of A. Then multiplication by A;! transforms A into the lattice
Z + Zt, with 7 = A\y/A;. Hence the quotient C/A is isomorphic to C/(Z + Z7). This last
quotient is often performed in two steps: the quotient of C by the subgroup Z is given
by e: C — C*, z — exp(2miz) (note that it is surjective and that the kernel is Z). Let
q = (7). Then we conclude that C/(Z + Z) is isomorphic to C*/q%.

1.2.4 Example. Hopf manifolds. Let n > 1, and let Aq,..., A\, be real numbers with
0 < A\ < 1. We let the group Z act on R* — {0} by:

(m, (T1,--.,25)) = ATz, ..., AT,).
The quotient Z\(R* — {0}) is then homeomorphic to S"~! x St.

1.2.5 Example. Real and complex tori. One considers quotients of finite dimensional
real or complex vector spaces by lattices. The quotients are separated, even compact, and

in fact products of circles. (Easy exercise.)

1.2.6 Example. Spaces of lattices. Let n > 0. We consider the quotient of GL,(R)
by the action given by right translations of the subgroup GL,(Z) (the group of invertible
elements in the ring M,,(Z). Note that GL,(R) is an open subset of M, (R), which induces
the topology on GL,(R) that we want to use. The topology induced on GL,(Z) is dis-
crete, and the quotient map p: GL,(R) — GL,(R)/GL,(Z) is a covering. The quotient
GL,(R)/GL,(Z) is therefore a manifold of dimension n?. What makes this quotient in-
teresting is that it is the set L of lattices in R": the group GL,(R) acts on L, this action
is transitive, and the stabilizer of Z" is GL,(Z). We should note that in all the examples

until now the equivalence relation comes from a group action.

1.2.7 Example. Non separated quotients. Let us end the examples by some non

separated ones.

1. The quotient of R by the subgroup Q (or by Z + Zx with x not in Q).
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2. The quotient of M,, ,(R) (with m > 1 or n > 1) by the equivalence relation “equal
rank”. (Exercise: is this equivalence relation given by a group action? Is every

equivalence relation given by a group action?)

1.3 Sub manifolds of R"

1.3.1 Definition. Let n > 0 and U C R” open. A subset V of U is called a closed sub
manifold of U if it is closed and if for every v in V there is a diffeomorphism f from
an open neighborhood W of v in U to an open neighborhood W' of 0 in R such that
f(V)=W'n (RF x {0}) for some k; this k is called the dimension of V at v. Informally
speaking: V' is a closed sub manifold of U if it is closed and locally at every v in V', up to

diffeomorphism, a linear subspace of R".

1.3.2 Remark. The notion of diffeomorphism that we use is the one that demands the

map to be infinitely differentiable (notation: C°°), unless we say otherwise.

1.3.3 Example. Let n > 0, and let : R* — R be a quadratic form of rank n on R".
Then the level sets Q~'t with ¢ # 0 are closed sub manifolds of R".

1.3.4 Example. The spiral S = {exp(t)(cos(t),sin(t)) | t € R} in C = R? is a one-

dimensional closed sub manifold of R? — {0}, but not of R* (because it is not closed in R?).

1.4 Submersions, immersions, embeddings, local models

Let U C R* and V C R? be open subsets. Let f: U — V be a differentiable map (C*).
Then f is a submersion at u € U if the derivative (Df)u: R* — RP is surjective. Suppose
now that that is so. After a suitable renumbering of the coordinates of R*, the map
¢: U — R given by ¢(z) = (f(z),z1,...,2n—p) has bijective derivative (D¢)u at u. We
note that f = pr, o ¢, with pr,: R* — RP the projection on the first p coordinates. The
implicit function theorem (théoréme d’inversion locale in french) gives that ¢ induces a
diffeomorphism from a suitable open neighborhood of « in U to an open subset U’ of R",

and we have the formula:

(foo N(wy,...,xn) = (1, ..  Tp),

for all (z1,...,2,) in U'. In other words, up to a local diffeomorphism, a submersion is a

linear projection. We say that f is a submersion if it is a submersion at all u in U.



1.4.1 Proposition. Let U C R® and V C RP open subsets, and let f: U — V be a
differentiable map. Let v be in V', and suppose that f is a submersion at all u in f~{v}.

Then f~'{v} is a closed sub manifold of U, of dimension n — p at every point.
Proof. Clear, since this is so for the local model. [l

Let again U C R® and V C RP be open subsets, and f: U — V a differentiable map. We
say that f is an smmersion at v in U if (D f)u is injective. Suppose that that is so. After
a suitable renumbering of the coordinates of R?, the map ¢: U x RP™" - R* x RP" =RP
given by ¢(z,y) = f(z) + isn(y), with is,: RF™" — RP given by is,(y) = (0,y), has
invertible derivative at (u,0). We note that f = ¢ oic,. The implicit function theorem

gives that ¢ is invertible in a neighborhood of (u,0), and we have the formula:

(67 o f)(ay,...,2n) = (71,...,2,,0,...,0),

for all (z1,...,z,) in a neighborhood of u in U. So, locally at u, f is equivalent to a linear
inclusion. The map f is called an immersion if it is an immersion at every point.

In order to state an analog of the previous proposition for images of immersions, we
introduce the notion of closed embedding. A map f: X — Y between topological spaces
is called a closed embedding if it is injective, with closed image, and such that the topology
on X induced by Y is the topology of X. Equivalently, f is a closed embedding if it is
injective, and if for Z any subset of X, V is closed if and only if f(V) is closed in Y.
Equivalently, f is a closed embedding if it induces an isomorphism from X to a closed

subspace of Y. (Of course, one also has the analogous notion of open embedding.)

1.4.2 Proposition. Let U C R® and V C RP open subsets, and let f: U — V be a
differentiable map. Then f is called a closed immersion if it is an immersion and a closed
embedding. If this is so, then f(U) is a closed sub manifold of V.

1.4.3 Example. We give two examples of immersions that are not closed immersions.

1. Let z be in R but not in Q. Take f: R — R?/Z?, t > t(1,z). In this case the image
of f is not closed, it is even dense.

2. (This one would be easier with a picture.) Take f: R — R? given by: t — (1,1)
for t <0, and t — (cos(g(t),sin(g(t)) for ¢ > 0, with g: [0, 00— R a C'* bijection
between Rs and [0, 27 with ¢/(0) = 1 and ¢ (0) = 0 for all n > 1.



1.5 Sub Lie groups of GL,(R)

By definition, the sub Lie groups of GL,, (R) are the subgroups that are closed sub manifolds
(recall that GL,(R) is an open subset of M, (R) = R*’). We start with some very simple

examples.

1.5.1 Example. The diagonal subgroup: {diag(t,...,t,) | t1,...,t, € R*}. It is given
by the equations z; ; = 0 for all ¢ # j, and it is isomorphic to (R*)™.

1.5.2 Example. The triangular subgroup {z € GL,(R) | z;; = 0if ¢ > j}. This one is
not commutative, but still solvable.

1.5.3 Example. The standard maximal unipotent subgroup:
{z € GL,(R) | z;; = 0if ¢ > j and z;; = 1 for all 5}.

In order to see that SL,(R) is a sub Lie group of GL,(R), it is convenient to prove the

following lemma (which is a bit more general than we need).

1.5.4 Lemma. Let n > 0, and let a be in M,,(R). Then det: M, (R) — R is a submersion
at a if and only if rank(a) > n — 1.

Proof. Put r := rank(a). We take elements p and ¢ in GL,(R) such that a = pl,q,
with 1, the diagonal matrix with r ones followed by zeros. The map M,(R) — M, (R),
x — pzq is a linear bijection, hence a diffeomorphism, so that it suffices to prove that the
map z — det(pzq) = det(p) det(q) det(x) from M, (R) to R is a submersion at 1, if and
only if r > n — 1. This is done by calculating partial derivatives, using either the definition

of det as a sum over the group S,, or column or row expansion. [l

1.5.5 Corollary. For n > 0, the subgroup SL,(R) = det™' {1} of GL,(R) is a sub Lie

group, of dimension n? — 1.

1.5.6 The orthogonal groups

For n > 0 we let O,(R) be the subgroup {z € GL,(R) | 'z = 1}, where z* denotes the
transpose of x: i, = x;;. More conceptually, O,(R) is the subgroup of elements g of
GL, (R) that preserve the standard inner product (z,y) = z'y = Y. z;y; of R in the sense
that ¢ is in O, (R) if and only if (g, gy) = (z,y) for all x and y in R*. It is clear, from



looking at the defining equations (z'z); ; = d; ;, that O, (R) is a closed, compact subgroup

of GL,(R). In order to see that it is a sub manifold, we consider the map:
f: M,(R) — M, (R)", a+~ d'a,

with M,,(R)* the subspace of symmetric matrices of M, (R). The map f is polynomial,

hence C*®. Let us compute its derivative at 1, for b in M,,(R) we have:
JA+0) =1+ 1+b)=1+b"+b+bb= f(1)+ (' +b) + b'.

Since b + b is linear in b and b*h homogeneous quadratic, we have ((Df)1)b = b*+b. Since
every symmetric matrix is of the form b* 4+ b (think of the decomposition of M, (R) into the
direct sum M, (R)* @M, (R)™), f is a submersion at 1, and, in a neighborhood of 1, O, (R)
is a closed sub manifold. In order to finish the proof that O, (R) is a closed sub manifold
of GL,(R) we use the following lemma, whose proof, although quite obvious, illustrates
an important principle: the group acts transitively on itself by right or left translations,

implying that “everything is the same everywhere”.

1.5.7 Lemma. Let G be a closed subgroup of GL,(R). If there exists an open neighbor-
hood U of 1 in GL,(R) such that GNV is a closed sub manifold of U, then G is a sub Lie
group of GL,(R).

Proof. Let g bein G. Let L;: GL,(R) — GL,(R) be the left translation by g: = +— gz.
This L, is a diffeomorphism, because it extends to a linear automorphism of M, (R). Let
U be as in the statement of the lemma. Then gU = L,U is an open neighborhood of g,
and GNgU = g(GNU), hence G N gU is a closed sub manifold of gU. O

Later we will prove a theorem of Cartan and von Neumann that says that each closed
subgroup of GL,(R) is a sub Lie group.

Note that we do not demand our Lie groups to be connected. For example, the zero
dimensional sub Lie groups of GL,,(R) are the discrete subgroups, i.e., the closed subgroups

on which the induced topology is discrete. We have already seen the example GL,,(Z).

1.5.8 Exercise. Let n > 0. Show that GL,(C) is open in M, (C). Show that the subset
U, = {z € GL,(C) | 'z = 1} is a sub Lie group of GL,(C), and determine its dimension.
These groups are called the unitary groups.

1.5.9 Exercise. For each of the sub Lie groups of GL,(R) defined above, determine its
number of connected components. Indication: try to use normal forms for endomorphisms

of R-vector spaces.



1.6 Abstract manifolds

1.6.1 Definition. Let X be a topological space and let £ > 0 be an integer, oo or w. A
C*k-atlas for X consists of the following data: a set I, for each 4 in I an open subset X;
of X, an integer n; > 0, an open subset U; of R* and a homeomorphism ¢;: U; — X;.
These data are required to satisfy the following conditions. Firstly, the X; cover X, that is,
U;X; = X. Secondly, the charts ¢; are compatible, in the sense that we will now explain.
For 7 and j in I let X;; be X; N X;, and let U, ; be qﬁ;lX,-,j. Then ¢; induces a bijection,
still denoted ¢;, from U; ; to X, ;. Saying that ¢; and ¢; are compatible means that U, ; is
open in U;, U;; open in Uj;, and the bijection ¢j_1 o¢;: U;j — U,; is C*. The notation C¥

means: real analytic, i.e., locally given by a convergent power series.

Note that the terminology “differentiable” is misplaced in the case £ = 0; in that case we

speak of a topological atlas. An other remark concerns the integers n;.

1.6.2 Definition. Let & > 0 be an integer, co, or w. A variety or manifold of class C*
is a topological space X, separated and with a countable basis for the topology, equipped
with a C*-atlas. Notation: (X, I,n, U, ¢).

1.6.3 Remark. Both conditions “separated” and “countable basis” are there only for

traditional reasons, there is a good theory without them. See for example [Edix].

For X a C*-variety and x in X, all n; for 7 such that X; contains & are equal; this integer
is called the dimension of X at z; we denote it by dimx(z), so that we can view dimx
as a Z-valued function on X. (For k£ > 0 the equality of the n; is easy to prove (consider
derivatives and use linear algebra); for k¥ = 0 one needs some algebraic topology.) Most
of the time we will just consider the C'* case. As usual, defining the objects to study is
not too interesting; we should also say what maps between them we want to consider. For

example, we want to say what it means that two manifolds are isomorphic.

1.6.4 Definition. Let (X, I, n,U, ¢) and (Y, J,m,V, 1) be manifolds. Let f be a continu-
ous map from X to Y. Let z be in X. Then f is called differentiable at x if for every (i, )
such that « € X; and f(z) € Y; the map ¥; ' f¢; from ¢;((f1Y;) N X;) C R% to R™ is
differentiable at ¢, '(x). The map f is called differentiable, or a morphism of manifolds, if
it is differentiable at all z in X.

Note that this definition does not change if we require differentiability at x only for one
pair (¢,7). If f: X — Y and g: Y — Z are morphisms, then go f: X — Z is also



a morphism. So we have the category of manifolds: we have objects, morphisms, com-
position of morphisms, the composition is associative and each object X has an identity
morphism idx. A morphism f: X — Y is called an isomorphism if and only if there exists
a morphism g: Y — X such that fg =idy and gf = idx. Equivalently: amap f: X —- Y
is an isomorphism if and only it is bijective and f and f~! are differentiable.

All concepts of differential calculus in R® that are invariant under diffeomorphisms
can be transported to C*-manifolds if £ > 1. For example, a morphism f: X — Y is a
submersion (resp., immersion) at z in X if for some i in I such that z € X; and for some
j in J with f(z) € Y; the derivative (D(wj_1 f#:))(¢; x) is surjective (resp., injective). A
subset Z of a manifold (X, I,n,U,¢) is a closed (resp., open) sub manifold if, for each
vin I, ¢; 'Z is a closed (resp., open) sub manifold of U;. The name “sub manifold” is
justified, because the implicit function theorem gives atlases (and one can verify that any
two atlases obtained in that way are equivalent in the sense that the identity map induces

an isomorphism).

1.6.5 Exercise. For each of the examples in Section 1.2, give a C“-atlas such that the

quotient map is a C'“-submersion.

1.7 A definition of manifolds in terms of functions

The definition of manifold in terms of atlases is natural, but somewhat clumsy. For ex-
ample, different people may use different atlases for what we would like to call the same
manifold. A more natural and better definition is in terms of functions. Suppose that we
have a C*-manifold (X, I,n,U, ¢). Then, for V an open subset of X, we know what it
means for a function f: V — R to be C*, and we let C% (V) be the R-algebra space of
such functions. (Likewise, for each | < k we have C% (V).)

1.7.1 Proposition. Let X andY be C*¥-manifolds, and f a continuous map from X toY .
Then f is C* if and only if for each open subset U of Y, and for each g in C(U), we have

go feCk(f'U).

Proof. Suppose that f is C*¥. Then it follows directly from the definitions, and the
fact that compositions of differentiable maps are differentiable, for each open U in Y and
g € CE(U) the function gf is in C%(f~1U).

Suppose now that for each open U in Y and g in C¥(U) the function gf is in C%(f~1U).
Then X; N f~'Y; is open in X;, hence ¢;*(X;N f~Y;) is open in U;, hence in R%. We have
to show that the map w;lfqbi from ¢; ' (X; N f71Y;) to V; € R™ is C*. It is equivalent
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to show that the m; coordinate functions :rkqu_l fo; of this map are C*. Now a:kwj_l is in
CE(Y;), hence 25" f is in C%(f71Y;). Tt follows that zxi; ' fo; is C*. O

The idea to give an other definition of manifolds is simply to study what properties the
sub R-algebras C% (U) of the R-algebras of all R-valued functions on U should verify. The

following properties are clearly satisfied:

1. for U C X open, f: U — R, and U; (i € I) an open cover of U, f is in C%(U) if and

only if for each i its restriction to U; is in C% (Uf;);

2. for each = in X, there is an open subset U of X, and a homeomorphism f from an
open subset V' of some R" to U, such that for ¢ an R-valued function on U one has
g € C%(U) if and only if go f is C* on V.

1.7.2 Definition. Let k be a in Z U {co,w}. A C*¥-manifold is a pair (X,C%), with X a
topological space, separated and with a countable basis for the topology, and with C'x the
datum, for every open subset U of X, of a subset C%(U) of the set of R-valued functions
on U, such that the two conditions above are satisfied. A morphism of C*-manifolds is a

continuous map f: X — Y such that for every open U C Y and every g in C%(U) we have
gofe€Ck(f~'U)

We leave the verification of the equivalence with the first definition to the reader. Let us
just say that one can construct an atlas for (X, C%) by using the homeomorphisms of the
second condition. In what follows, we will freely use this definition, using only the notion
of C* functions on open subsets of a manifold. For local computations, we will just use
that, locally, (X,C%) is isomorphic to some (U, C¥) with U open in some R". We finish

by remarking that this last defition of manifold is the one used for example in [Vara].

1.8 Tangent spaces and the tangent bundle

Let X be a manifold, of class C* with k¥ > 1. For x in X we want to define its tangent
space Tx(z). There are several ways to do this (which are of course equivalent). For a
detailed discussion of all of those I know, see [Spiv], Volume I, Chapter 3. We will discuss
two of them. Intuitively, the tangent space of X at a point z in X is the first order
approximation of X at x. We need it in order to speak of the derivatives of morphisms
of manifolds. The second of the two constructions that follow is based on the observation
that for @ and v in R, the map:

fla+tv) = f(a)
t

0y: C'(R*) = R, frlim
t—0
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determines v. Indeed, we have v; = 0,x;. Hence knowing v or knowing the map 9,, which
takes the partial derivative in the direction specified by v, amounts to the same. So in
order to get an intrinsic definition of tangent vector (i.e., without using coordinates or
charts), we are eventually going to define a tangent vector at z to be a map with some

properties that 0, has.

1.8.1 The first construction: curves

Let X be a C*-manifold with ¥ > 1, and let  be in X. A parametrized curve at z is
a differentiable map c¢: U — X with U C R an open interval containing zero and with

¢(0) = z. For ¢ such a curve and V' C X open and containing z, we have the map:
0.: CE (V) =R, fr(foc)0.

We define Tx(x) to be the set of equivalence classes of parametrized curves at z, for the
following equivalence relation. Two such curves ¢; and ¢y are equivalent if and only if for
each open neighborhood V' of z we have 0., = 0,,.

We claim that Tx(z) has an R-vector space structure defined by A¢; + ¢ = ¢; if and
only if A0, +0,, = 0., for every open neighborhood V of z, and that dim Tx (z) = dimx (z).
To see that, we may suppose that X is itself an open subset of R", in which case the details
are left to the reader (use the observation of the beginning of this section).

1.8.2 The second construction: derivations

For z and v in R", the partial derivative 9,: C'(R") — R satisfies the following properties:
1. it is R-linear;
2. 0y(fg) = f(x)0y(9) + g(x)0,(f) (Leibniz’s or product rule);
3. Oy(gh) =0 if g(x) = 0= h(z), g € C'(R") and h € C°(R").

Let again X be a C*-manifold eith k¥ > 1. Let x be in X. We let C%, be the set of
germs of C*-functions at z: C% , is the set of equivalence classes of pairs (U, f), with U an
open neighborhood of z and f in C%(U), for the following equivalence relation. Two such
pairs (Ui, f1) and (Us, f2) are equivalent if and only if there is an open neighborhood V' of
x contained in U; N U,, such that the functions fi|y and fs|y are equal. The R-algebra
structures on the C% (U) induce one on C% . For U an open neighborhood of # and f in
Ck (U), the class of (U, f) is called the germ of f at z and is denoted f,.
We let Derg(C% ., R) be the set of maps 0: C% , — R that satisfy:

12



1. 0 is R-linear;

2. 9(fg) = f(x)0(g) + 9(x)d(f);
3. d(f) =0if f = gh with g(z) =0 = h(z), g € C*(R") and h € C°(R").

Such 0 that satisfy the first two conditions are called (R-linear) derivations. To emphasize
the third condition, we use the notation Der' in stead of Der. Since Der]'R(Cff’w, R) is closed
under R-linear combinations, it is an R-vector space.

By definition, we have an injective R-linear map from Tx (z) to Derg(C% ,, R), sending
¢ to 0.. We claim that this map is an isomorphism. To prove that, it suffices to show that
every element of Derg(C% ,,R) is of the form 9,. Since everything is defined intrinsically,
and the question is local, we may suppose that X is an open subset of R” and that x = 0.
Let 8 be in Derg(C% o, R). We claim that 9 = Y ", 8(z;)d;, with &; be the element of
Derg (C% ,R) that sends f to its ith partial derivative at 0. The elements 0; are linearly
independent because of the relations 0;z; = ¢; ; (where z; is the jth coordinate function,
and ¢; ; the Kronecker symbol). To prove the identity, let f be in C’ff’o. Rewriting the

/01 (%f(t:c)) dt = f(z) — £(0),

with z in some neighborhood of 0, gives:

equality:

f(z) = f(0)+ Zl"z/o (Dif)(tz)dt = £(0) + Zai(f)fvz' + ingi(:b),

with D; the ith partial derivative. Since the D, f are C*~!-functions, the g; are C*~1, and
0(x;9;) = 0 for each i. Applying 0 to the last identities gives the desired result:

i=1

Now we know that the 9; form a basis of Derg(C% o, R). It follows that our map from

Tx(z) to Derg(Cx z, R) is an isomorphism.

1.8.3 Derivatives

Let f: X — Y be a morphism of C*-manifolds with £ > 1. Let z be in X. Then we have
a map:

Ts(z): Tx(z) = Ty (f(z)), 9w 0o f", (Tp(x)d)g=0(gof),
for all g in Cl’“/, Ha)- Indeed, one verifies immediately from the definitions that d o f* is an
element of Dery(C¥ /), R).
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1.8.4 Exercise. For f as above, with X and Y open subsets of R* and R™, verify that
Ty(x) is given, with respect to the bases 0; of Tx(z) and Ty (f(z)), by the usual matrix
whose (i, j)th coefficient is (0f;/0z;)z, with f; the ith coordinate of f.

1.8.5 Exercise. For X a closed sub manifold of R* and z in X, the tangent space T x () is
a subspace of R". More generally, if f: X — Y is an immersion at z in X, then Ty (f(z)) is
the image im(T(z)) of Tx(z) under T;(z). Also, if f: X — Y is a submersion at z in X,
then Z := f~'{f(x)} is, locally at x, a submanifold of X, and one has Tz(z) = ker(T;(z)).

1.8.6 Exercise. Compute (i.e., give equations for) the tangent spaces at the origin of the

subgroups of GL,(R) given in Section 1.5. These tangent spaces are subspaces of M, (R).

1.8.7 The tangent bundle

Let X be a C*-manifold with k£ > 1. We want to make an object Tx, called the tangent
bundle of X, that combines all the Tx(z). As a set, Tx is just the disjoint union of all
the Tx(x), z € X. But in order to have something useful, for example second derivatives
of morphisms of manifolds, it can be useful to equip Tx with the structure of a manifold
(it will be a C* *-manifold, in fact), reflecting the fact that it is a disjoint union of vector
spaces. The notion of vector bundle is made exactly for doing this, but at this moment we
will not go into this abstraction, and we will just describe Tx itself, and not so much the
structures that it has.

We give Tx the structure of a C*~'-manifold. Note that we have a canonical map
p: Tx — X, such that the fibre p~'{x} over z is Tx(z). We demand that this map be
continuous. Since X itself is locally isomorphic to R (n may vary), we may suppose that X
is an open subset of R® in order to specify the topology and the structure of C*~!-manifold,
as long as the map p will be continuous and the structure in question independent of the
isomorphism chosen. So let U be an open subset of X, and ¢: U — V an isomorphism,
with V' C R™ open. Then we have a bijection:

[[Ts@: []Tx@) — J] Tee(v) =R" x V.

ucU uelU vEV

We simply demand that these bijections are isomorphisms of C*~!'-manifolds. This works,
since if ¢: U — W is also an isomorphism, with W C R" open, then the bijection from
Ty to Ty induced by 1) o ¢~ is given by:

(t,v) = (DY o ¢~ )v)t, (67 ')),
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which is indeed C*~1.

We note that in the last formula the dependence on t is linear, which means that Tx
can be seen as a C*~!-family of R-vector spaces, indexed by X. For f a morphism of C*-
manifolds, T; is a morphism of C*~'-manifolds, respecting the R-vector space structures

in the fibers of p.

1.9 Vector fields and derivations

1.9.1 Definition. Let X be a C*-manifold with £ > 1. A vector field v on X is a section
of p: Tx — X, i.e., amap v: X — Tx such that powv =idx. Hence a vector field is just
the data of a tangent vector at every z in X. A vector field v is called C* (I < k — 1) if
the map v is C*.

1.9.2 Remark. On R”, a vector field v is a map:
v:R* 5> R" xR, z+— (vi(z),x).

The vector field v is C* if and only if the n coordinates of v; are. In a lot of text books that
only deal with manifolds embdedded in some R", the second component is never mentioned
(because it is given by the identity function anyway), and vector fields are identified with

their first component.

1.9.3 Construction. Let v be a vector field on a C*-manifold X, with k € {oo,w}. Then,
viewing Tx () as Derg(C% ,, R), it makes sense to write, for f in C% (X), (v(z))f, which is
the derivative of f at z in the direction specified by v(x). The function D,(f): z — (v(x))f
is again in C* (verify it locally if you want), and, by construction, D,: C%(X) — C%(X)
is a derivation, which means that for all f and g in C%(X) we have:

D,(fg) = Dy(f)g+ fD.(9).

1.9.4 Theorem. Let X be a C*°-manifold. The map v — D, is an isomorphism of
C¥ (X)-modules from the C¥ (X )-module of C* vector fields on X to the C¥ (X )-module
Derg (C¥ (X)) of R-linear derivations from C¥(X) to itself.

The proof of this theorem is not so hard; contrary to what some people say, one does
not need to suppose that X has a countable basis for its topology. I do not know if the
condition that X be separated can be dropped. Because of this theorem, we will not
distinguish anymore between vector fields and derivations, on C'*°-manifolds; in fact, we

will always view them as derivations.
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For X open in R", C¥(X)-module Derg(C¥ (X)) is free with basis the 0/0x;. Equiva-
lently, every vector field D can be written uniquely as ) , a;0/0z;, with the a; in CP(X).

1.9.5 Construction. The Lie bracket of two vector fields. Let X be a C'*°-manifold,
and D; and D, two elements of Derg(C¥(X)). Then their commutator:

[D1, Do] = D1D; — Dy Dy

in Endg(C¥ (X)) is again a derivation (exercise). In general, compositions of derivations
are no longer derivations; they are higher order differential operators. It is no suprise
that the commutator of two derivations is again a derivation; in general, if D; and D, are
differential operators of orders < d; and < ds, respectively, then DDy and Dy D; are both
of order < d; + dy (just count the number of derivatives), but their difference is of order

< d; + dy — 1 (the non commutation involves lower order operators).

1.9.6 Exercise. For X open in R", compute [, fi0/0x;, Zj g;0/0x;], where the f; and
g; are C*°-functions on X.

1.10 Flows

Let X be a C*-manifold, with & € {co,w}. Let D be a C* vector field on X. For x in
X, we denote by D, the tangent vector at z given by D. We wonder if there are C* maps
f: U — X with 0 € U C R open, such that for all u in U, we have (T;(u))(d/dt)y = D).
(Note that (d/dt), is just a complicated notation for the tangent vector 1 € R = Ty (u).)
Such f are called integral curves of D. In order to find out if they exist, we may suppose
that X is an open subset of R*. Then D = Y, a;0/0z; with the a; in C%(X), and
f="(f1,---, fn)- Applying the definitions gives that the equation we want to solve is:

ai(u) = Dy (i) = ((Tr(u))(d/dt)u)z: = ((d/dt)u)(i 0 f) = ((d/dt)u)(fi) = (dfi/dt)(u).
So the equation is:
dfi/dt:a’iofa 1<i<n,
or, equivalently:
(df /dt)(u) = a(f(u))
which is an ordinary first order differential equation, of which we know (Cauchy’s theorem)
that for every z in X there is a unique solution f with f(0) = z, on a sufficiently small

interval U > 0. We denote this solution by u — ¢(u,z) or by ¢,. The flow of D is the
maximal solution ¢: W — X, with W a neighborhood of {0} x X in R x X.
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By construction, we have ¢(u; + ug,x) = ¢(uq, ¢(us, x)), i.e., Puituy, = Ouy © Puys
wherever these expressions make sense. This means that u +— ¢, is a local morphism of
groups from R to Aut(X).

If X is compact, then the flow exists on W = R x X, simply because W contains at
least a subset of the form | —&,e[xX (then use ¢y, 1y, = Gy, © Py, to extend).

1.11 A theorem of Frobenius

Later on we will have to use a theorem of Frobenius, which generalizes the integral curves
of a vector field to “systems of tangent spaces”. A system of tangent spaces V on a C*-
manifold X (with & > 1) is the data, for every z in X, of a subspace V,, of Tx(z). If all the
V, are of dimension p, we say that V is a rank p system of tangent spaces. Now suppose
that k¥ = co. We say that V is C* if there is a sub C(X)-module D of Derg(CP(X))

such that for all x in X we have D, = V,, where:
D,={D, | D e D} C Tx(x).

A C system of tangent spaces V' is called integrable if for every x in X there exists
a diffeomorphism ¢: U — R" such that TyV, = {(v,é(u)) | v € R’} for some p. If so,
there exists, for every x in X a local sub manifold Y, of X, such that V,, = Ty, (u) for
all v in Y. A leaf of V is a maximal injective immersion ¢: ¥ — X, with Y connected,
such that Ty (y) =V, for all y in Y. Intuitively, such a Y can be obtained by glueing the

local Y, ’s.

1.11.1 Theorem. (Frobenius) Let V be a C™ system of tangent vectors of X, given by
D C Derg(C¥(X)). Then V is integrable if and only if [D, D] C D.

1.12 Complex manifolds

Since we also want to be able to study complex Lie groups, such as GL,(C) and complex
tori (quotients by complex vector spaces by lattices), taking into account the complex
structures, we also need the notion of complex manifold. One particularity with complex
functions is that a function f: U — C with U open in C" is analytic as soon as it is C! in
the complex sense, i.e., if it is C! (in the real sense) and if for every u in U the derivative
(Df)u: C* — C (which is by definition R-linear) is C-linear. For n = 1 this is a direct

consequence of Cauchy’s integral formula.
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1.12.1 Proposition. (Cauchy’s integral formula) Let A C C be an open disk, with
closure A and boundary dA. Let f: A — C be C* in the complex sense (i.e., there is an
open neighborhood U of A and an extension of f to U that is complex differentiable with
continuous derivative). Then for all z be in A one has:

f() = (2mi) * [ T

oA W — 2

where the integral is taken in the counterclockwise direction.

The proof of this proposition uses the theorem of Stokes, or a simple version of it based
on the fact that we are just dealing with a disk here. We won’t give it here (see analysis
textbooks).

1.12.2 Proposition. Let n > 0, U C C" open and f: U — C. Then f is analytic if and

only if f is C' in the complex sense.

Proof. We just sketch the proof. Of course, if f is analytic, it is C* in the complex sense.
So suppose now that f is C! in the complex sense. Let us first suppose that n = 1. Let 2
be in U. We will show that f is analytic at z;. After a translation in C we may assume
that zp = 0. Let A be an open disk with center 0, contained in U. Then for all z in A we
have:

f(w)dw

oA W— 2

dw

F(z) = (2mi) " — (2mi)! /8A (1+ (/) + (zfw)? + -+ F(w)

w

From this expression it is easily seen that one has:

flz) = Zanz”, with a, = (27m')_1/ w_”f(w)d—w,
n>0 oA w
for all z in A.

Let us now do the general case: n > 1. Let zy be in U. We want to show that f is
analytic at zy. After a translation we may assume that zo = 0. Let » > 0 be in R such
that the polydisk (i.e., product of disks) A := {z € C" | |z;| < r for 1 < i < n} is contained
in U. A repeated application of Cauchy’s integral formula gives,for all z in A:

n

() = (2mi) / T (i — )7 Fw)duwn - du,

0A 4

The power series expansion in the z;/w; of the product of the (w; — z;)~! gives the result.
O
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This last proposition is the reason that we do not define what complex differentiable

manifolds are: they are just the complex analytic manifolds.

1.12.3 Definition. A complex analytic manifold is a pair (X, Cx), with X a topological
space and Cx the datum, for every open subset U of X, of a subset Cx(U) of the set of
C-valued functions on U, such that:

1. for U C X open, f: U = R, and U; (i € I) an open cover of U, f is in Cx(U) if and
only if for each i its restriction to U; is in Cx (U;);

2. for each z in X, there is an open subset U of X, and a homeomorphism f from an
open subset V' of some C" to U, such that for g an C-valued function on U one has

g € Cx(U) if and only if g o f is analytic on V.

Morphisms of complex manifolds are continuous maps that transform analytic functions

into analytic functions.
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2 Lie groups; first definitions

2.1 Definition. A (real) Lie group is a group G equipped with the structure of a C'*

manifold, such that the maps:

GxG— G, (z,y)—zy and G— G, z—27!
are morphisms.

A complex Lie group is a group G equipped with the structure of complex manifold,
such that the two maps above are morphisms.

A morphism of Lie groups is a morphism of groups that respects the manifold structures.
The unit element of a group will usually be denoted by e.

2.2 Exercise. Show that in the above definition one can replace the two maps by the

single map: (z,y) — zy '

2.3 Examples. The Lie subgroups of GL,(R) are Lie groups. Real tori (quotients of finite
dimensional R-vector spaces by lattices) are Lie groups. (In fact, we should specify the
manifold structure, but we don’t; only a fool could think of some manifold structure that
is not the one that we want.) The group GL,(C) is a complex Lie group, as well as SL,,(C)
and O,(C) = {z € GL,(C) | '~ = 1}. But U, is not a complex Lie group (the defining
equations are not, analytic since they involve complex conjugation; even more convincing:
the dimension of U,, need not be even). Complex tori (quotients of finite dimensional C-
vector spaces by lattices) are compact complex Lie groups, and we will see that they are

the only compact complex Lie groups.

An important tool in the study of Lie groups is the tangent bundle. Our first concern will

be to study the implications of having a group structure.

2.4 Various actions of a Lie group on itself

Let G be a Lie group (real or complex). As with any group, we have the following actions
of G on itself:

1. the action by left translations: for x in G we have l,: G — G, y — zy;

2. the right action by right translations: for z in G we have r,: G — G, y — yx (right
action means: Ty, 4, (Y) = T2y (72, (¥)));

3. the action by conjugation: for z in G we have inn,: G — G, y — zyz~ .
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All these actions are by automorphisms of G as a manifold (i.e., all [, r, and inn, respect
the manifold structure). The actions by left and right translations are free and transitive:
xy = y implies ¢ = e, yr = y implies x = e, and for y in G we have y = ye = ey.
The action by conjugation is not free and not transitive as soon as G # {e} (exercise).
However, the action by conjugation respects also the group structure of G: each inn, is
an automorphism of G as a Lie group. Moreover, inn: G — Autp;(G), x — inng, is a
morphism of groups (and even of Lie groups, if we put a reasonable manifold structure on
Autrie(Q)).

We let L denote the vector space Tg(e) (real or complex). For every z in G we
have the two isomorphisms (of R or C-vector spaces) T, and T, from L to Tg(z).
These two isomorphisms need not be the same. In fact, since ¢, = r;* o[, we have
T, (e)7'T, (e) = T.,(e). This fact will give us the structure of Lie algebra on L, as we
will see a bit further. By construction, we have T, (e)T,,(e) = T,,,(e), which means that

we have a morphism of Lie groups:
G — GL(L), =z~ T.(e).

This morphism is called the adjoint representation of G, which is just a complicated way

of saying “the action induced by conjugation on its tangent space at e”.

2.5 Trivialization of the tangent bundle

We want to identify all Tg(z) with Tg(e), and to do that, we choose to use the left
translations. (We could also have used right translations. Anyway, the map z — '
from G to G transforms left translations into right translations, so every question about
right translations can be transformed into one about left translations. This means that

our choice is not so important.) The map:

LxG—Tg, (v,9)—T,)e€ Talg)
is clearly bijective: its inverse is given by:

Ta — Lx G, t (Ty,, ()7 (1), p(1)),

with p: T¢ — G the projection. Since both maps are given in terms of formulas that are
composed of morphisms of manifolds, they are morphisms of manifolds. A more rigor-

ous argument for this is the following: the second map is a morphism, and moreover its
-1

Lo is an isomorphism from
4

derivative is everywhere bijective since p is a submersion and T
Ta(p(t)) to L.
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2.6 Left, right and bi-invariant vector fields

Let us consider the vector space of vector fields (C* or analytic) on G. The group G acts
on it via [: for ¢ in G and D a vector field, viewed as a derivation, we have, for every x
in G:
(9-D)ga = (T4, (2))(Dz),  (D-g)ag = (T, (2))(Dz)-

A vector field D is called left (resp., right or bi) invariant if for all g in G one has g-D = D
(resp., D-g = D or g-D = D = D-g). Clearly, a left (or right) invariant vector field D is
determined by its value D, at e. Moreover, if v is in L = T¢(e), then there is a unique left
(or right) invariant vector field D with D, = v (use the trivialization of T¢ in the previous
section). Hence D +— D, is a bijection from the space of left (or right) invariant vector
fields on G to L.

The situation for bi-invariant vector fields is as follows. A vector field D is bi-invariant
if and only if for all g in G one has Dy, = (Ty,(e))D, and D, = (T,,(e))D., which means:
if and only if Dy = (Ty,(e))D. and (T,,(e)' o Ty (e))D, = D, for all g in G. Since
T,,(e) ' o Ty (e)) = T, (e), D is bi-invariant if and only if it is left invariant and D,
invariant under the adjoint representation of G.

Let us now compute what g-D is if we view D as a derivation. So let f be a (C* or

analytic) function on an open part U of G, and let v be in U. Then we compute:
((gD)flu = (gD)uf = (T4, (97 'w)) Dyt )f = Dy-1,(f o ly) =

(
= Dy, (l5(f)) = D(5(f)) (g 'u) = DU(F)) (g1 (w)) =
= (l*—l( (g (F)u = ((lg-1 0 D o lg) flu.

This horrible but instructive computation tells us that:

gD =1,-10oDol.

Of course, there is an easier way to get this formula. Suppose that we have an isomorphism
a: X — Y of say C*-manifolds, and a vector field D on X. Then we have the following

diagram (the only one that makes sense):

Co(X) «X— C=(Y)

lD la*D
o>(x) YL ooy,
Even more generally, for f: X — Y just a morphism of C'°-manifolds, and for D in

Derg(C*°(X)), we have f,D := Do f* = (f*)*(D) in Derg(C*°(Y"), C*(X)). But we won’t
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use this last one; it leads to the general concept of derivations Der4(B, M) with A a ring,
B an A-algebra and M a B-module.

We go back to our Lie group G. Suppose that D; and D, are left-invariant vector
fields on G. Then, the formula gD = l;_l oDo l; implies that DD, and D, D, are both

left-invariant (differential operators), and therefore that [D;, Ds] is left-invariant.

2.7 The Lie algebra of a Lie group

Let G be a Lie group. Let L denote Tg(e). For v in L, let D, denote the unique left-
invariant vector field on G such that (D,). = v. Then we have a map, called the Lie
bracket:

[,]: LXL— L, (v,w)— [Dy,Dyle.

In particular, we have: [D,,D,| = Dy,. The Lie algebra of G is then L = Tg(e),
equipped with this map [-,-].

In words, all that we have done to construct the Lie bracket on Lie(G) is to use the
isomorphism (of R-vector spaces) with the space of left-invariant vector fields, to transport

the commutator on vector fields to Tg(e). Therefore, it is very simple to verify that:

1. [-,-] is R-bilinear (and also C-bilinear if G is complex);

2. [-,+] is alternating: [z,z] = 0 for all z in Lie(G);

3. [, ] satisfies the Jacobi identity: [z, [y, 2]] + [, [z, y]| + [y, [2,z]] = 0 for all z, y and
z in Lie(G).

2.7.1 Definition. Let k£ be a field. A k-Lie algebra is a k-vector space L equipped with
a map [, -] from L x L to L that satisfies the three properties above (with R replaced by
k, of course). If Ly and Ly are k-Lie algebras, then a morphism from L; to L, is a k-linear
map f: Ly — Lo such that for all x and y in L one has: [f(z), f(y)] = f([z,y]).

This means that Lie(G) is a Lie algebra (complex if G is). We will show in a moment that
for a morphism f: G; — G the tangent map T (e) from Lie(G1) to Lie(G2) is a morphism
of Lie algebras, i.e., that Lie is a functor from Lie groups to Lie algebras. But first, let
us make a remark that gives the Jacobi identity a more conceptual meaning the just some

identity.

2.7.2 Remark. Let k be a field and let L be a k-vector space equipped with a composition
law [-,] that satisfies properties 1 and 2 in the definition of a Lie algebra. For z in L,
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the map ad(z): L — L, y — [z,y], is k-linear. Hence we have a map ad: L — Endy(L),
x +— ad(z), from L to the k-vector space of endomorphisms of the k-vector space L. Now
this is interesting, since Endg(L) is also equipped with a Lie bracket, namely, the usual
commutator: |u,v] = uv—vu. Then one verifies just by writing things out that |-, -] satisfies
the Jacobi identity if and only if ad is compatible with the Lie brackets on both sides, i.e.,
if and only if for all z and y in L we have:

ad([z, y]) = [ad(z), ad(y)].

In particular, for L a Lie algebra, the map ad is a morphism of Lie algebras.

2.7.3 Proposition. Lie is a functor from Lie groups to Lie algebras, i.e., for f: G; — G5
a morphism of Lie groups, Lie(f) := Tf(e): Lie(G1) — Lie(G2) is a morphism of Lie
algebras.

Proof. The proposition we want to prove is a simple consequence of the following lemma

(just compose two such diagrams).

2.7.4 Lemma. Let v be in Lie(G1), and let D, be the left-invariant vector field on G,
given by v. Put v' := T¢(e)v in Lie(Gs), and let D,y be the left-invariant vector field on
G given by v'. Then v' is the unique element of Lie(G3) for which the following diagram

commutes:

Co(Gy) +L— C=(Gy)
C=(Gy) «+L— C=(G,).

Proof. We start by recalling a simple formula: for f: X — Y a morphism of varieties, x
in X, vin Tx(z) and F in C*®(Y), we have: ((T¢(z))v)F = v(f*(F)).

Now let F' be in C*(G3) and let g be in G;. Then we simply compute both sides of
our diagram, applied to F' and evaluated at g. We have:

((f* o Dy)F)g = (Dy F)(f(9)) = (D) o) F = (Tuy,, (V) F = ' (I F') =
= ((Tr(e))v) () F) = v(f* U3y F))-

On the other hand, we have:

((Dy o fH)F)g = (Dy(fTF))g = (Du)y(f*F) = ((Ty, (€))0) (f*F) = v(lg(f*F))-
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So in order to show that the diagram commutes, it suffices to show that for all g in G; we
have fol, = ls o f, as morphisms of varieties from G to G3. But, evaluating at = in G|,
the identity becomes: f(gx) = f(g)f(z), which is true since f is a morphism of groups.
The uniqueness in the lemma follows easily from composing the diagram with the
evaluation at e map: C*(Gy) — R, h — h(e). Indeed, one side of the composition is
vo f* =Ty(e)v, and the other side is v'. O

g

2.8 The Lie algebra of GL,(R)

Let G := GL,(R) (some n > 0). Since G is an open subset of M,(R), we identify the
Tg(x) with M, (R), for all z in G. Let a be in L = Tg(e) = M, (R). We wish to describe
explicitly the left-invariant vector field D, on G such that (D,). = a. For g in G we have
(Dq)g = ga. Now we compute D,z; j, where the z; ; are the coordinate functions on M, (R).
For g in G, (D,z;;)(g) is by definition the derivative of z; ; at g in the direction given by

D,(g), i.e., in the direction ga. So we compute:
z;j(g +ega) = (9 +€g9a)i; = gij +€(9a)i; = zi;(9) + ¢ Zgi,kak,j-
k

It follows that D, (z;;) = Y, Tik0k,;- Applying this formula twice gives:

(DaDy)ij = Da(d_ wikbij) = Y tigawsbej = Y Tige(ab)yj = Dapi j-
k kK K

From this we get:
[Da, Dolzi,j = Dia,pi,;-

Since the functions z;; are coordinates on the manifold GL,(R), two derivations D and

D' such that D(x; ; = D'(x; ;) for all ¢ and j are necessarily equal. Hence:
[-Da7 Db] = D[a,b]a

So the Lie bracket for GL,(R) is just the ordinary commutator of matrices. The reader

should check that if we had used right-invariant vector fields to define the Lie bracket,

1

we would have found the opposite result (use that x — 2~ ' induces multiplication by —1

on L).

25



2.9 The Lie algebras of some subgroups of GL,(R)

Let us now reconsider the subgroups of GL,,(R) that we considered in Section 1.5. From the
computations we did there, it follows that Lie(SL, (R)) is the subspace of M,,(R) consisting
of the elements with trace zero, that Lie(SO,(R)) = M, (R)~, the space of anti-symmetric
matrices, From the functoriality of the Lie algebra it follows that the Lie bracket for any
of these subgroups is just the restriction of the one for M, (R). Since U,(R) is the set of
z in GL,(C) that satifsy 'z = 1, it follows that Lie(U,(R)) is the subset of y in M, (C)
that satisfy 7' +y = 0.

Another sequence of “classical groups” that we should have introduced already before
is that of the symplectic groups Sp,,(R). As in the case of the orthogonal groups, the
symplectic groups are stabilizers of bilinear forms, but this time it is antisymmetric forms.
We recall that every non-degenerate antisymmetric bilinear form on a real vector space is
given, with respect to a suitable basis, by the matrix ( |;}). We define Sp,,(R) to be the
subgroup of z in GLg,(R) with z*¢z = 1. It is clear that Sp,,(R) is a closed subgroup
of GLy,(R). To show that it is a Lie subgroup, we consider the map:

[ GLoy(R) — My, (R)™, 1~ z'z — 1),
because f~1{0} = Sp,,(R). We have:

We will now that (Df)(1) is surjective (and hence f a submersion at 1) by computing its
kernel (i.e., Lie(Sp,, (R))
of n by n matrices: y =

and comparing dimensions. So write y as a two by two matrix

() @b). Then a short computation gives:
v +1Yy=0 < (" =cand b’ =b and d = —a").
It follows that the kernel has dimension 2n? +n. We note that:
2n? +n = dim(Ma, (R)*) = ((2n)* — (2n))/2.

Linear algebra then implies that our map z — z'% + 9z is surjective. So Sp,,(R) is a
Lie subgroup of GLy,(R), and Lie(Sp,, (R)) is the space of (2%) with ¢ = ¢, b* = b and
d=—a.
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3 The exponential map

The exponential map will be our crucial tool in order to show that the difference between
Lie groups and Lie algebras is very small (we will make precise statements later).

So let G be a Lie group, let v be in Lie(G) and let D, be the left-invariant vector field
on G given by v. Let ¢,: W — G be the flow of D, (we recall that W is a neighborhood
of {0} x Gin R x G. For z in G, we let ¢,,: | — ¢,e[— G denote ¢,(-,x) (with € > 0
depending on v and z). We recall that the differential equation defining ¢, , is:

(T, () (1) = (Do), )

As D, is left-invariant, the l,: G — G are isomorphisms of varieties that send D, to D,,

for all g in G. Hence we have, for every ¢ in G:

¢v,gw (t) = g¢v,w (t) .

3.1 Proposition. The flow of D, is defined on all of R x G.

Proof. Let ¢ be a positive real number such that ¢, . is defined on | — ¢, ¢[. Then, for g
in G, the map ¢, 4 is defined on the same interval since it is given as: ¢, 4 = l40 ¢, .. Then

one argues as in the case where we discussed the flow on a compact variety. U
3.2 Proposition. The map ¢, .: R — G is a morphism of groups.

Proof. The proof is given by the equalities:

¢v,e(t1 + t2) = ¢v,¢v,e(t1)(t2) = ¢v,e(t1)¢v,e(t2)-

O

3.3 Definition. We define exp: Lie(G) — G to be the map v — ¢,.(1). This is a
morphism of C*¥-manifolds if G is a C*-manifold. We note that for all v in Lie(G) and all

t in R we have:
exp(tv) = ¢tv,e(1) = ¢v,e(t)a

since multiplying a vector field by a real number ¢ makes the flow go ¢ times as fast. By

the previous proposition, the map ¢ — exp(tv) from R to G is a morphism of groups:

exp((t1 + t2)v) = exp(t1v) exp(tov), for all ¢; and ¢ in R.
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3.4 Proposition. Let f: G; — G5 be a morphism of Lie groups. Then the diagram:

Lie(G1) =, Lie(G,)

exp l l exp

G1 L) G2

is commutative. In particular, a morphism of Lie groups is determined, on the connected
component of the identity element, by its derivative at the identity element. So, if G is
connected, then the map Lie from Hom(G1, G5) to Hom(Lie(G:), Lie(G3)) is injective.

Proof. Let v, be in Lie(G,), let vy = Lie(f)vy, and let D,, and D,, be the left-invariant
vector fields on G; and G, given by v; and vs. As in Lemma 2.7.4, for every z in G; we
have: (T¢(2))(Dy,)e = (Duy)f(z)- It follows immediately from the definition of the flow
of a vector field, plus that of tangent mappings, that for all x in G, f o ¢y, 5 = Gu, ()
(namely, f o ¢,, . satisfies the differential equation plus the initial data for ¢, s(;)). Hence
the diagram is commutative.

The fact that f is determined by Lie(f) follows from the fact that exp(Lie(G)) generates
an open (and hence closed) subgroup of G. O

3.5 Proposition. The tangent map Teg,(0): Triec)(0) = Lie(G) — Lie(G) = Tgl(e) is
the identity.

Proof. Let v be in Lie(G). We consider the composition:
bve: R = Lie(G) B G, testv e exp(to).

Then we simply look at what happens on tangent spaces. The map ¢ + tv is linear, hence
equal to its derivative. Hence (T.,(0))(1) = v. Hence we have: (Texp(0))v = (T4, .0)1 =v
(the last equality comes from the definition of ¢,). O

3.6 Corollary. The exponential map exp: Lie(G) — G is a local isomorphism of C*-
manifolds (G being a C*¥-manifold), with Tex,0 = id.

3.7 Remark. Be careful: exp is not always a morphism of Lie groups; we will see later that
exp is a morphism of Lie groups if and only if [z, y] = 0 for all x and y in Lie(g). We will also
see (hopefully) the Baker-Campbell-Hausdorff formula that expresses exp ! (exp(a) exp(b))
in terms of repeated commutators of @ and b (for a and b in a sufficiently small neighborhood
of 0).
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3.8 Proposition. For GL,(R) (and its Lie subgroups) the exponential map is the usual

exponential map:

exp: Ma(R) = GL,(R), exp(a) =Y l'a iy
1.

i>0

Proof. We have exp(ta) = ¢,1(t), and ¢, is defined by the differential equation:

(Tpos (1)) (1) = (Da)gus(ty = dan (),

with the initial condition: ¢,1(0) = 1. Since ¢ — e satisfies this equation with initial

condition, and the solution is unique, we have the desired equality. ]

3.9 Examples. 1. For G = R (the additive group), exp is the identity. One can see
this abstractly, by computing the invariant vector fields and solving the differential
equation, or by viewing R as the subgroup of GLy(R) via the map = — (} %), and
noting that for a = (J{), exp(a) = 1 + a since a® = 0.

2. For G = R*, the multiplicative group, viewed as an open subset of R in order to view
its tangent spaces as R, the map exp sends ¢ to e'. Either apply the definitions, or
view R* as GL;(R) for example.

3. For G = SO,(R), we recover the fact that the matrices e* with a antisymmet-
ric are orthogonal. Moreover, we know now that close to 0, this is a diffeomor-

phism between M, (R)~ and SO,(R). In particular, we recover that the matrices

—t) — (cos(t) — sin(t)

eXP(? 0 sin(t) cos(t) ) are rotations in RQ.
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4 Categories and functors

Why introduce these notions? Well, I want to express the relation between Lie groups and
Lie algebras as follows (as in [Serl, II, §8, Thm. 1]):

The functor Lie that associates to a Lie group its Lie algebra induces an equiv-
alence of categories from the category of Lie groups that are connected and

simply connected to that of Lie algebras.

So if we want to do that, we need to know what that means. In this section, the definition
of category and functor are given, and some examples. The notion of equivalence will be
postponed until we need it, and the notion of simply connected will be explained in the

next section, together with some facts about coverings and universal coverings.

4.1 Definition. A category C consists of the following data:

1. a collection (or let us just say set) Ob(C') of which the elements are called the objects
of C;

2. for all X and Y in Ob(C): a set Homc (X, Y') of which the elements are called the
morphims from X to Y

3. for all X, Y, and Z in Ob(C): a map Hom¢(Y, Z) x Hom¢(X,Y) — Home(X, 7),
denoted (g, f) — g o f, called composition of morphisms,

that satisfy:
1. composition is associative: ho (go f) = (ho g) o f every time that it makes sense;

2. for all X in Ob(C) there is an element idx in Home (X, X) such that foidxy = f

and idx o g = g whenever these make sense.

In most cases, there is no ambiguity of what the morphisms are supposed to be, so in that

case one just defines the category by saying what its objects are.
4.2 Examples. 1. The category Set of sets.

2. The category Grp of groups.

3. The category Top of topological spaces.

4. The category of C*-manifolds.
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5. The categories of Lie groups and of Lie algebras.

4.3 Definition. A functor should be thought of as a morphism of categories. More pre-
cisely, if C' and D are categories, a covariant (resp., contravariant) functor F': C — D

consists a the data:
1. amap F: Ob(C) — Ob(D), denoted X — F(X);

2. for all X and Y in Ob(C), a map F from Hom¢(X,Y) to Homp (F(X), F(Y)) (resp.,
to Homp (F(Y), F(X))) denoted f — F(f),

such that F(go f) = F(g) o F(f) (resp., F(go f) = F(f) o F(g)) whenever this makes

sense.

4.4 Examples. 1. Lie from Lie groups to Lie algebras (covariant).

2. The functor from C*-manifolds to R-algebras that associates to X the R-algebra,
Ck(X) (contravariant).

3. The functor that associated to a vector space its dual (contravariant).

4.5 The homotopy category

To end this section let us just give one interesting example of a useful and highly non-trivial
construction with categories. We start with the category Top of topological spaces. For
X and Y in Top, f and g in Hom(X,Y") are said to be homotopic if one can interpolate
between them, i.e., if there exists a continuous map F': X x[0,1] — Y such that f = F(-,0)
and g = F(-,1). One checks easily that this is an equivalence relation on Hom(X,Y); we
denote it “~”. Then one can check that composition in Top is compatible with ~ in the
sense that one gets a category Top/ ~ with the same objects as Top, but in which one has
replaced Hom(X,Y) by Hom(X,Y)/ ~.

As an exercise one can show that the point {0} and the line R are isomorphic objects in
Top/ ~ (a morphism f: X — Y is called an isomorphism if there is a morphism g: ¥ — X
such that go f =idx and f o g =idy).
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5 Coverings and universal coverings

5.1 Definition. Let f: X — Y be a morphism of topological spaces (or C*-manifolds,
etc.). Then f is called a covering if for all y in Y there exists an open neighborhood U of
y in Y such that f~'U is isomorphic, compatibly with the map f, to a disjoint union of
copies of U, i.e., if there is a commutative diagram:

X +—— f7lU «+—— Hzef—l{y}U

TR
Y ¢— U — U.

A morphism of coverings from f;: X; — Y] to fo: Xy — Y5 is a commutative diagram:

Xl—)XQ

P

Y — Y.

5.2 Example. Coverings of Lie groups. If G is a Lie group, and N is a normal discrete
subgroup of G, then the quotient morphism p: G — G/N is a covering. We will give some

explicit examples in a moment.

5.3 Exercise. Let f: X — Y be a covering, and let f; and f; be morphisms from Z — X,
such that fo fy and f o f; are homotopic. Show that f, and f; are homotopic. Hint: show
in fact that for F': Z x [0,1] — Y a homotopy between f o fy and f o f; there exists a
unique F: Z x [0,1] — X such that F = fo F and F(-,0) = fo and F(-,1) = f. To prove

this, reduce to the case where X is a disjoint union of copies of Y.

5.4 Definition. A topological space X is called connected if X has exactly two subsets
that are open and closed: () and X (in particular, X is not empty). Equivalently: X is
connected if the R-vector space of locally constant R-valued functions has dimension one.

5.5 Definition. A topological space X is called simply connected if every loop in it is
contractible, i.e., if every continuous f: S' — X is homotopic to a constant map, i.e, if for
every such f there exists a continuous F': S' x [0,1] — X such that F(-,0) = f and F(-,1)

1s constant.

5.6 Example. Every contractible topological space is simply connected. In particular, all
convex subsets of finite dimensional real vector spaces are simply connected. A bit less

trivial: for n > 2 the n-sphere S™ is simply connected.
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5.7 Theorem. For every connected manifold X, there exists a covering px : X — X with
X connected and simply connected. These coverings have the following property: for
f: X =Y a morphism of connected manifolds, and for x in X and y in Y with y = f(ac),
there exists, for every choice of ¥ in py*{z} and §j in py'{y}, a unique morphism f: XY
such that the following diagram is commutative:

X 1,y

px | S

x vy

The covers px: X — X are called universal covers. The property above implies that
universal covers are unique up to isomorphism (the isomorphisms are not unique, but
are unique after the choice of base points). The group Aut(px) of automorphisms of the
covering px, i.e., the group of commutative diagrams:

x 1y

px | S

x 1oy,

can be identified, after the choice of a point x in X, with the fundamental group m (X, z)
of X (recall that m (X, z) is the set of homotopy classes of loops in X with base point
T, ie., the class of morphisms f: S' — X with f(1) = z under base point preserving
homotopies). The group Aut(px) acts freely on X with quotient px.

We will not prove this theorem at all, but just use it, and illustrate it by some examples.
(I would like to say that anyway, if one wants to do research, one has to learn to use results
without knowing all of their proofs. It is simply not always possible to know the proofs of all
the results that one uses.) A few words about the construction of the universal cover. Let
z be in X. Then, as a set, X is just the set of homopoty classes of maps of pointed spaces
f:10,1] = X (f(0) = z and homotopies F' are required to satisfy F'(0,t) = F(0,0) = z
and F'(1,t) = F(1,0) for all ¢). Then one takes a reasonable topology on this set. What is
clear at least is that p~'{z} is the same as 7 (X, z).

It is an interesting exercise to find, for every connected Lie group that we encounter,
an explicitly given universal cover. In the special case of Lie groups, one has the following

result.

5.8 Proposition. Let G be a connected Lie group. Then, for any choice of & in p~*{e},
there is a unique group law on G such that p is a morphism of Lie groups. Let € be given.
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Then ker(p) is a normal discrete subgroup of C~¥, contained in the center of é, in particular,

ker(p) is commutative.

Proof. We just sketch. Let € be in p~'{e}. Since the product of two connected and simply
connected manifolds is connected and simply connected, G x G is simply connected, and
it is the universal cover of G x (G. Therefore, there is a unique morphism m: GxG—G
that is compatible with the multiplication morphism m: G x G — G. This m gives G a
group structure. The fact that ker(p) lies in the center of G follows from the fact that for
z in ker(p) both thye left and right translations [, and r, are in Aut(p) and both map € to

z, hence are equal. O

5.9 Example. A very simple example is given by the circle S!. Recall that we view S! as
the unit circle in C*, with the induced group structure. In this case, a simply connected

(even contractible) cover is given by: R — S, x +— exp(2miz), with kernel Z.

5.10 Quaternions, SU3(R), SO3(R) and SO4(R)

The real quaternion algebra H is defined to be the sub R-algebra of My(C) consisting of
the matrices of the form (¢ —65), with a and b in C. It is just a tiny computation to see that
this is indeed a sub-R-algebra. Another way to describe H is to say that it is a R-vector
space with basis (1,4, j, k) and an associative multiplication defined by: 2 = j2 = k? = —1,
ij = k, ji = —k. In our realization of H, one can choose i = (§ %) and j = (% §). The
center of H is just R: every element in My(C) that commutes with 7 is diagonal, and then
the condition to commute with 7 implies that it is scalar.

Since det(¢ ) = [a|> + [b|?, H is clearly a division algebra (i.e., every non-zero ele-
ment in it is invertible). For z in H, let z* := Z*, the complex conjugate of the trans-
pose of x (i.e., the adjoint of x for the standard hermitian inner product on C?). Then
x +— x* is clearly an involution of H (note that (xy)* = y*z*), with the property that
N(z) := z*x = zz* = det(z) and tr(z) := z + z* € R Note that N(zy) = N(z)N(y)
for all z and y in H. We define a real inner product on the R-vector space H by:
(x,y) = (z*y + y*z)/2 = tr(z*y)/2 = tr(yx*)/2 = (a*,y*). Clearly, the quadratic form
associated to this inner product is the norm N: H — R.

For x in H let [, and r, denote the left and right multiplication by x from H to itself:
lp:y — zy and r,: y — yzx. Let us first see how these relate to the inner product we
just defined, or, equivalently, to the quadratic form N. Well, N(zy) = N(z)N(y), and
N(yxz) = N(y)N(xz) = N(z)N(y), so it follows that [, and r, preserve the inner product
up to a factor N(x). In particular, [, and r, are orthogonal if N(z) = 1.
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Note that {z € H|N(z) = 1} is the subgroup SUy(R) of H*, i.e., the subgroup of
GILy(C) of elements fixing the standard hermitian inner product on C?. The adjoints of
l; and 7, are [, and 7, respectively (check it, it might be harder than you think!). We
want to know the characteristic polynomials of [, and r,. For x in R, these are both
equal to (X — x)*) of course. So let’s suppose that x is not in R. Then z* # z, and
the minimal polynomial of z over R is P, := (X — z)(X — z*) = X? — tr(z) + N(x).
This polynomial is irreducible over R because if it had a real root A\, x — A would be a
non-zero zero divisor in H. Note that P, is also the minimal polynomial of [, and r,. The
characteristic polynomial of a linear transformation has the same irreducible factors as its
minimal polynomial, so if the minimal polynomial is irreducible, then the characteristic
polynomial is just a power of the minimal polynomial. In our case, it follows that the
characteristic polynomials of [, and r, are both equal to P2, since they are of degree four.
In particular, det(l;) = det(r,) = N(x)?; note that these are positive. For z and y in H
let by, : H — H be given by: z — zzy*. Hence b,, is the composition of the commuting
R-linear maps [/, and ry-. Let A and X be the roots in C of P,, and let x and 7 be those
of P,. We claim that the characteristic polynomial of b,, is the one whose roots are Ay,
A, A\ and M. If z or y is in R, this is clear from what we know already, so suppose that
x and y are both not in R. Suppose that r,- has only one eigenvalue on the A-eigenspace of
Iz (in the complexification of the R-vector space H). Interchanging y and 7 if necessary, we
may suppose that this eigenvalue is y. Then r,- acts on the A-eigenspace as multiplication
by u, and on the A-eigenspace as multiplication by z. It follows that ry« is a polynomial in
I, with coefficients in R (take any @ in R[X| such that Q()\) = p). But then r,. = [, with
z = Q(z). Since z = z-1 = 1-y* = y*, we have z = y*, hence [, = r,. But this contradicts
that z is not in the center of H.

Let V be the orthogonal complement of R, with respect to our inner product. Then V' is
called the space of pure quaternions, I believe. It is a three dimensional R-vector space, with
a given inner product (the restriction of (-,-)). For z in H*, the map y — zyz~", from H to
H, induces the identity on R, hence induces a map c,: V — V. Since N(zyz~') = N(y),
¢z is an orthogonal transformation of V. Clearly, x + ¢, defines a morphism of groups
from H* to O(V), hence, by restriction to SUs(R), a morphism ¢: SUy(R) — O(V). The
kernel of ¢ is the intersection of SU,(R) with the center of H, i.e., the intersection with R;
hence ker(c) = {1, —1}. Let us show that im(c) is contained in SO(V'). Let x be in SUy(R).
Then [, and r,-1 have determinant one (see above). Hence c;, being equal to [ o r,-1,
has determinant one. Let us now show that im(c) = SO(V'). The cheapest way to do that
is to use that c: SU3(R) — SO(V') is a morphism of Lie groups. We know that SO(V') is
connected (a choice of an orthonormal basis of V' gives an isomorphism from SO3(R) to
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SO(V)), hence if im(c) is an open subgroup of SO(V') then it is also closed, hence equal
to SO(V). (Exercise: show that if G is a topological group, and H an open subgroup, that
H is closed; hint: the complement of H is a union of translates of H.) To show that im(c)
is open, it suffices to show that ¢ is a submersion at 1 in SU(R). But since both SU(R)
and SO(V) are of dimension three, that amounts to showing that Lie(c) is injective. Let y

be in H. Then we compute:
N(l+ey)=(1+ey)(l+ey)’ =1+e(y+y") + 0.

Hence Lie(SU3(R)) = {y € H | y + y* = 0}. Now we compute, for v in V and y
in Lie(SU2(R)):

(c(l+ey)v=(1+ey)v(l +ey) " = (1 +ey)v(l —ey + O(%) = v +(yv — vy) + O(c”).

It follows that Lie(c)(y) is the endormorphism v +— yv — vy of V. The fact that the center
of H is R implies that this endomorphism is zero if and only if y is in R, which is the case
only if y = 0 (since y* = —y). Hence Lie(c) is injective.

One can also show by direct computation that im(c) = SO(V). It suffices to show that
im(c) contains elements with a given trace in [—1, 3] and fixing a given non-zero element of
V' (classification of orthogonal transformations in dimension three). Let ¢ be in [—1, 3] and
let @ be a non-zero element of V. Then the z with ¢,(a) = a are exactly those commuting
with a, hence those in R[a] = R @ Ra. Now R[a] is isomorphic, as R-algebra, to C. Let x
be an element of R[a] with N(x) = 1, and let A and X be the roots in C of P,. We have
seen that the characteristic polynomial of the map y — zyz* = zyz~! from H to H has
as roots \?, Xz, 1 and 1. Hence the eigenvalues of ¢(z) on the complexification of V are 1
(on Ca), A? and X". So one just takes z such that A = /2, with cos(¢) = (t — 1)/2. We
conclude that SU5(R)/{1,—1} is isomorphic to SOj.

Let’s now study O(H). (Any choice of othonormal basis of H, for example (1,1, 7, k),
gives an isomorphism from O4(R) to O(H)). For z and y in H*, recall that b,, is the
R-linear map z — zzy*, from H to H. The map (z,y) — bs, gives a morphism of groups
from H* x H* to GLg(H). Restricting this map to SU,(R) x SU,(R) gives a morphism
of groups b: SU3(R) x SUy(R) — O(H), since r, and l,- are orthogonal if N(z) = 1 and
N(y) = 1. We want to determine kernel and image of this b. Let’s start with the kernel.
Suppose that b(z,y) is the identity in O(H). Then 1 = zly* = zy*, which shows that
y = x. Moreover, for all z in H we have z = zza* = zzx !, which means that z is in the
center of H, i.e., in R. It follows that ker(b) = {(1,1),(—1,—1)}, a cyclic group of order
two. Now the image of b. Since all r, and [, have positive determinant, im(b) is contained
in SO(H). We claim that it is equal to SO(H).
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To show that, it suffices to show that Lie(b) is injective, since both groups are Lie
groups of dimension four. So let (yi1,%2) be in Lie(SU2(R)) x Lie(SUy(R)), and suppose
that its image in Lie(SO(H)) is zero. Then one has, for all z in H:

(14+ey1)z(1 +ey)* = 2+ O(e?), hence y1z+ zy; = 0.

Now y; = —yo. Substituting z := 1 gives: yo = 1, so that we have y;2 — zy; = 0 for all 2
in H. But that means that y; is in R. Since y; = —y;, we have y; = 0. That does it.

As before, one can also compute directly. It suffices to show that, for every two-
dimensional subspace W of H, and for every pair (a, b) in SO(W) x SO(W+), im(b) contains
an element fixing W (and hence W), inducing a and b on W and W+, respectively. Let
W, a and b be such data. Let (wy,ws) be an R-basis of W. We define 2’ in H* by:
z'w; = wy (i.e., we have ' = wyw;'). Since 2’ is a root of P, which is of degree two,
we have z'W = W. Likewise, we define y' by: w1y’ = wy. Let x be in R[z'] and y in
R[y']. Then we have zW C W, sW+ c W, Wy ¢ W and Wty C W+, Let A and X
be the roots in C of P,, and p and fi those of P,. Then the eigenvalues of b(z,y) on the
complexification of H are Au, A\, A\ and M. After interchanging, if necessary, p and T,
b(x,y) has eigenvalues Ay and Afi on the complexification of W, and A and Ay on the
complexification of W+. Tt is now clear that one can choose z and y in SUy(R) such that
b(x,y) is as desired.

Coming back to universal covers, it is clear that SU,(R) is the unit sphere S* in H = R*,
hence it is simply connected. So we conclude that the double cover c¢: SU3(R) — SO2(R)
is the universal cover, and the same for b: SUy(R)? — SO, (R).
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6 Lie induces an equivalence

We have the functor Lie from the category of Lie groups to that of Lie algebras. We would
like to construct a kind of inverse to it. This “inverse” has to be a functor from Lie algebras
to Lie groups. Since various non-isomorphic Lie groups can have isomorphic Lie algebras,
the “inverse” has to make a choice between the various possibilities; a canonical choice is
to take connected and simply connected Lie groups. The following result says that this

choice is possible, i.e., gives a functor.

6.1 Theorem. For every Lie algebra L there exists a pair (G(L),ir) with G(L) a con-
nected and simply connected Lie group, and ir: L — Lie(G(L)) an isomorphism of Lie
algebras. These pairs have the following property: if L, is a Lie algebra, G5 a Lie group,
and f: Ly — Lie(G2) is a morphism, then there exists a unique morphism f: G(L1) — Gs
such that the diagram:

Lk~ —I Lie(Gy)

o [

Lie(f'

Lie(G(L1)) 2 Lie(G(Ly))
is commutative. In particular, such pairs are unique up to unique isomorphism (apply the

'.i%) are two such pairs). Hence a

property above to i}, and ij, where (G(L), i) and (G(L)
choice of such a pair, for every L, gives a functor G from Lie algebras to (connected and

simply connected) Lie groups.

Proof. We will use, without proof, the following theorem (for a proof, see [Vara, §3.17]
or [BLie, 1, §7, 3, Thm. 3]).

6.1.1 Theorem. (Ado, 1936) Let k be a field of characteristic zero, and let L be a finite
dimensional Lie algebra over k. Then there exists an injective morphism of Lie algebras
f: L — M, (k) for a suitable integer n.

Let now L be a finite dimensional real Lie algebra (the complex case will just work in the
same way). We view L as a sub Lie algebra of some M, (R), via a suitable embedding
(which exists by Ado’s theorem). We view M,,(R) as Lie(G), with G = GL,(R).

We let H be the subgroup of G that is generated by the elements exp(v) with v in L.
We would like to take for G(L) the universal cover of H. The problem is that H is not
necessarily a closed subgroup of G (think of maps R — R?/Z? with dense image). And
even if it were closed, we would still have to prove that it is a sub Lie group. The solution

to the problem is to apply the theorem of Frobenius that was stated in Section 1, and to
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take a topology on H that is not necessarily the one that is induced by the topology of G.
With the right topology, H will be a connected Lie group.

For v in L, we have the corresponding left-invariant vector field D, on GG, and for every
g in G, we have the subspace Vy, = {(D,), | v € L} =Ty, L of T¢(g). We let D be the sub
C*°(G)-module of Derg(C*(G)) that is generated by the D, with v in L. If (vy,... ,vg)
is an R-basis of L, then (D,,,...,D,,) is a C*°(G)-basis of D (we just say this because it
may help to understand what is going on; we don’t need to know that D is a free module).
We have to check that [D,D] C D. For that, it suffices to show that for v; and ve in L,
and f; and fy in C®(Q), [f1Dy,, foDy,] is in D. One computes that:

[levla f2D1)2] = levl (fZ)sz - f2Dv2 (fl)Dvl + fleD[vl,vz]-

The theorem of Frobenius now gives, locally at every point z in G, a closed sub manifold
X, of G such that, for all y in X, one has Tx, (y) =V, (these X, are called local integral
manifolds of the system of subspaces V).

For v in L, let ¢,: R x G — G denote the flow of the vector field D,. Then, for z in
G and small ¢t in R, ¢,(t, z) stays in X,, since for all y in G' we have (D,), € Tx,(y) (one
can say: D, induces vector fields on the X,, hence the flow stays in the X,). Now consider
exp(L) and X, in a small neighborhood of e in G (say the image of a neighborhood of 0
in L on which exp is a diffeomorphism). Both are d-dimensional sub manifolds, and from
what we have just said about the flows, it follows that (in the small neighborhood of e)
exp(L) is contained in X,, hence they are equal. But then it follows that H is the maximal
integral sub manifold (for D) that passes through e.

Let us now change the topology. In the new topology on G, a basis for the set of neigh-
borhoods of z is the set of neighborhoods of z in a closed (local) integral sub manifold X,.
(One should make a drawing here of what is going on.) With this new topology, G is a
d-dimensional manifold (but it does not have a countable basis for its topology). As we
have promised, the subset H is now a manifold, and it is connected. It is a Lie group,
with an injective morphism of Lie groups to GG, whose image is not necessarily closed. By
construction, Lie(H) = L (as sub Lie algebras of Lie(G)). We put G(L) := H.

Let now L; ne a finite dimensional Lie algebra, Gy a Lie group, and f: L; — Lie(G»)
be a morphism. Let I'; be the graph of f; it is a Lie sub algebra of L; x Lie(G2) such
that the projection to L is an isomorphism. Let H be the subgroup of G(L;) x G that
is generated by exp(I's). The same arguments as above show that H is the image of a
morphism G(I'y) = G(L;) x G that induces the maps we already had on the level of Lie
algebras. The induced morphism G(I'y) — G(L;) is a covering, and since both groups
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are connected and simply connected, it is an isomorphism. Hence G(T'y) is the graph of a
morphism G(f) from G(L;) to Gs. O

It becomes time to explain what an equivalence of categories is. So here is a definition.

6.2 Definition. Let F': C — D be a functor (covariant, say). Then F' is an equivalence
of categories if there exists a functor G: D — C and isomorphisms a(X): X — G(F(X))
for all X in Ob(C) and isomorphisms §(X): X — F(G(X)) for all X in Ob(D), such that

for all morphisms f in C' and g in D the following diagrams commute:

x Y, qrx) v 29, pew))
/ l JG(F(f)) gl F(G()
y 29 G(R(Y)) v Y pG)).

If F is an equivalence of categories, then for all X and Y in Ob(C), the map F from
Hom¢(X,Y) to Homp (F(X), F(Y)) is a bijection (the functor is called fully faithful; it is
called faithful if all those maps are injective). One can show that a functor F': C' — D
is an equivalence if and only if F' is fully faithful and essentially surjective: for all Y in
Ob(D) there exists an X in Ob(C) such that Y is isomorphic to F(X).

6.3 Remark. One may be surprised that this definition is complicated. If we would
have defined the notion of morphism of functors, then it would have been clear that
a:ideg — G o F and (:idp — F o G are isomorphisms of functors. So one can say
that G is an inverse of F', up to isomorphism of functors. One may ask, why not sim-
ply define an equivalence of categories to be an isomorphism, in the sense that one wants
equalities idc = G o F and idp = F o G. The answer is that in daily life, not enough
equivalences of categories are isomorphisms of categories. Let us just give one example:
if D is the functor that sends a finite dimensional vector space to its dual, then D o D is

isomorphic to the identity functor, but not equal.

We can now state the main theorem of the first (and worst) part of this course.

6.4 Theorem. The functor Lie from Lie groups to Lie algebras induces an equivalence of
categories from that of connected and simply connected Lie groups, to that of Lie algebras.
Moreover, every connected Lie group is of the form G/N with G connected and simply
connected, and N a discrete subgroup contained in the center of G.
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Proof. Let G be as in the previous theorem. So it is a functor from the category of Lie
algebras to that of connected and simply connected Lie groups. We have to produce the
isomorphisms «a(G) and (L), for G a connected and simply connected Lie group and for
L a Lie algebra. Let L be a Lie algebra. Then the construction of G(L) already gives
an isomorphism iy, : L — Lie(G(L)), this will be §(L). Let G be a connected and simply
connected Lie group. We have to come up with an isomorphism «(G): G — G(Lie(G)).
Theorem 6.1 gives us a morphism G(Lie(G)) — G, which gives the identity on Lie algebras.
Hence it is a local diffeomorphism at the identity element. It is surjective because the image
is open and G is connected. Hence it is a covering (the kernel is discrete), and hence it is
an isomorphism because G and G(Lie(G)) are both simply connected. O

6.5 Some consequences of the equivalence

Now that we know that we have Theorem 6.4 at our disposal, it is the moment to look at a
few consequences of it. First of all, the equivalence implies that the theory of Lie groups is
to a large extent an algebraic theory. (There are connected Lie groups that do not admit a
faithful finite dimensional representation, for example the universal cover of SLy(R); more
on this later.) A lot about Lie groups can be said in terms of their Lie algebras, which are
algebraic objects (vector spaces with some bilinear composition law that satisfies certain
conditions). Conversely, Lie algebras can be studied in terms of Lie groups. Both aspects
have their advantages, and the real advantage is that one can choose on which side one
wants to work. For example, integration over compact Lie groups (as we will see later) is

an important tool that one has on the side of Lie groups.

6.5.1 Theorem. Let G be a connected Lie group. Then G is commutative if and only if
Lie(G) is commutative in the sense that [x,y] = 0 for all x and y in Lie(QG).

Proof. Suppose that G is commutative. Then the map +: G — G with «(z) = z7! is

a morphism. By the lemma below, Lie(:) is the endomorphism z +— —z of Lie(G). This
implies that for all z and y in Lie(G) we have:

[I’y] = [—33, _y] = —[.’L',y],

which implies that [z, y] = 0, hence that Lie(G) is commutative.

Suppose now that Lie(G) is commutative, and let us prove that G is commutative.
Since G is a quotient of its universal cover é, it suffices to prove that G is commutative.
So we may suppose that G is simply connected. Now, since Lie induces a bijection from
End(G) to End(Lie(G)), there is a unique endomorphism ¢ of G such that Lie(¢) is the
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endomorphism —1 of Lie(G). If we show that «(y) = y~! for all y in G than it is clear that
G is commutative. Since G is generated by exp(L), it suffices to show that for every z in

Lie(G) we have exp(—z) = exp(z)™', but that follows from the commutative diagram (see

§ 3):

Lie(G) =% Lie(@)
expl lexp
G — G

Note that we did cheat a bit in saying that this theorem is a consequence of the
equivalence of categories, because in the proof we did use some more ingredients than just
that; it should be possible to give a “categorical” proof, using only what is in the theorem.
O

6.5.2 Remark. The condition that G be connected in the previous theorem is clearly
necessary: for any Lie group G and a finite group H, G x H is also a Lie group, and
Lie(G x H) = Lie(G). Take H any non commutative group.

6.5.3 Lemma. Let X; and X, be C*-manifolds, with k > 1. Let x = (z,,72) be in
X = Xy x X,. Let p; and ps the projections from X to X, and X5, and let i, and i, be the
maps from X, and X, to X given by y; — (y1,22) and ys — (x1,y2), respectively. Then
the tangents maps of these satisfy:

Tpl(i) o Ty (z1) =1id, Ty, (z) o Tiy(22) = 0
Tp2($) o T (z1) =0, sz(x) o Ty, (z1) =id
Til (Il) © Tpl (I) + Ti2 (‘772) © sz (.”E) =id.

In particular, the map T, (z1)+7Ty,(z2) from Tx, (z1) % Tx,(x2) to Tx(x) is an isomorphism.

Let G be a Lie group. Then the multiplication map m: G X G — G has derivative
Tn((e,e)): Tg(e) x Ta(e) = Taxa((e,e)) = Tg(e) equal the sum map: (z,y) — = + y.
The tangent map et e of .: G — G, 1(x) = x7!, is given by T,(e): z — —2.

Proof. The identity T, (x) o T;,(z1) = id is a direct consequence of p; o iy = idx,. The
same works for T),(z) o T;,(z1) = id. As p;oiy and py 04; are constant maps, their tangent
maps are zero; this gives Ty, (z) o T;,(22) = 0 and T,,(z) o T;, (z1) = 0. The last identity
is equivalent to Ty, (z1) + T;,(x2) being an isomorphism. But this is a local question, and
since it is true for X; = R it is true. (This last identity cannot be derived from the
functorial nature of tangent spaces plus the property that the tangent space of a point is

zero; in fact, taking the functor Tx(z) ® Tx(z) gives a counter example.)
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Let now G be a Lie group and m its multiplication map. Let #; and i, the morphisms
given by i1(z) = (z,e) and iy(z) = (e,z). Then we have m o i; = id and m o iy = id.
Taking tangent maps shows that T,,(e, e) is the sum map. To get the tangent map for the
inverse, consider the tangent map of f: G — G X G, z — (z,z7'), and use that mo f is

constant. O

6.5.4 Theorem. Let G be a simply connected connected Lie group, and V' a vector space
(real if G is real, complex if G is complex). Then, to give a representation of G on'V (i.e.,
a morphism from G to GL(V)) is equivalent to give a representation of Lie(G) on V (i.e.,
a morphism from Lie(G) to End(V)).

Proof. This is just saying that the map Lie: Hom(G, GL(V)) — Hom(Lie(G), End(V))
is bijective. O
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7 The Campbell-Hausdorff formula

It would not do to not say anything in this course about the Campbell-Hausdorff formula
(also called Baker-Campbell-Hausdorff formula in some texts, for example [Vara]). The
formula in question gives a formula for z such that exp(z)exp(y) = exp(z), in terms of
repeated commutators of x and y, such as [z,y], [z, [z, y]], [v, [z, v]], [, [y, [z, y]]], etc. The
formula is universal in the sense that it holds for all x and y sufficiently small in the Lie
algebra of any Lie group. The proof of this result is always somewhat long, so we will
not give one in this course. A proof that I like a lot (using some concepts as universal
enveloping algebra and free Lie algebras) is given in [Serl]. A proof that is less formal and
more for people who prefer analysis over algebra is given in [Vara]. We will just show what
the formula is up to degree 3. Knowing the formula up to order two is sufficient for many
things, and gives us the insight that the Lie bracket is, up to a factor 1/2, the quadratic
term.

So let G be a Lie group. We know that Lie(G) can be seen as a sub Lie algebra
of some M, (R) (Ado’s theorem). Hence a neighborhood of the identity element of G is
“isomorphic” (between quotes because it is closed only for multiplication of elements that
are sufficiently close to the identity) to a Lie sub group of GL,(R). Hence it suffices to
do our computation for GL,(R). Now GL,(R) has the advantage that it is the group of
invertible elements of the ring M,,(R), which is also its Lie algebra (if equipped only with
the Lie bracket). More precisely, the advantage is that we have a simple formula for the
inverse of exp, i.e., for log, so that we can write z = log(exp(z) exp(y)). Recall that the

power series expansions for exp and log are:

. ]‘ n __ 1 2 1 3
exp.xHZax —1+x+§a: +6x 4.
n>0
-1)" 1 1
log:1+yl—>—z( )"

o ——2 —3—---
n Yy =Y 2y +3y
n>1

Using these expansions, it is very simple to show that:

(11)  loglexp(z) exp(y)) =7 +y+ lr,] + 1 (1, [, ul] + [y o al) + -+

for all z and y such that exp(z) exp(y) is in a domain of convergence of log.

The Campbell-Hausdorff formula can also be taken as a point of departure for the
relation between Lie groups and Lie algebras. It has the advantage that it shows directly
that Lie groups are analytic, and it works over other complete fields than R and C, such

as the fields Q, of p-adic numbers (important for number theory). See [Serl].
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8 Fundamental groups of some Lie groups

The aim of this section is to compute explicitly the fundamental groups of some Lie groups,
so that we know how far these Lie groups are from their universal covers. From what we
have said about fundamental groups and homotopy, it is clear that for X and Y connected
topological spaces, f: X — Y a morphism that is a homotopy equivalence (i.e., such that
f is an isomorphism in the homotopy category), and = in X, f induces an isomorphism
from 71 (X, z) to 1 (Y, y). Therefore, it is good to know that some Lie groups are homotopy
equivalent to each other. To see this, we use some standard decompositions of SL, (R) and

SL,(C), known as “décomposition polaire” in French.

8.1 Proposition. Let n > 1. Let M,(R)™" be the set of positive definite symmetric
elements of M,,(R). Then the map:

M, (R)** x O,(R) — GL,(R)
is a diffeomeorphism.

Proof. First note that the dimensions are right. The theorem says that if we let O, (R)
act (from the right) on GL, (R), then every orbit intersects M, (R)™* in exactly one point,
and at that point, the orbit and M, (R)™* are transversal.

Note that M, (R)*" is the set of positive definite symmetric bilinear forms on R,
i.e., the set of inner products; the identity element 1 corresponds to the standard inner
product. We let GL,(R) act on M, (R)™" by: (g,b) — gbg*. Since for every inner product
on R™ there is an orthonormal basis (Gram-Schmidt or so), this action is transitive, hence
M, (R)** is the orbit of 1. By definition, the stabilizer of 1 is O,(R). Hence the map
GL,(R) — M, (R)*" that sends g to gg* induces a bijection:

GL,(R)/O,(R) — M, (R)**.

On the subset M,,(R)™* of GL,(R), this map sends b to »*>. We claim that for any b in
M, (R)**, there is a unique ¢ in M, (R)** such that ¢ = b, and we will denote it by v/b.
To prove the claim, note that if ¢ is as claimed, then c is diagonalizable simultaneously
with b (since they commute, as b = ¢?), and that the diagonal coefficients of ¢ are then the
(positive) square roots of those of b; this already proves uniqueness, the existence is follows
from the fact that b is diagonalizable with positive diagonal coefficients. Hence we have
indeed that every O, (R)-orbit intersects M, (R)** in exactly one point. To show that the

intersections are transversal, let us check that the derivative of M, (R)"* — M, (R)*,
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b — b2, is everywhere injective (hence bijective). So compute, for b in M, (R)*™* and ¢ in
M, (R)*:
(b+ec)® = b® + e(be + cb).

Suppose that bc + cb = 0. We want to conclude that ¢ = 0. Since b is diagonalizable,
it suffices to show that c¢(z) = 0 for each eigenvector x of b. So suppose that b(z) = Az.
Then b(c(z)) = —c(b(x)) = —Ac(z). But since b is positive definite, all its eigenvalues are

positive. Hence indeed c¢(z) = 0. O

8.2 Corollary. Let n > 1. The Lie groups GL,(R) and O, (R) are homotopy equivalent.
The Lie groups SL,(R) and SO, (R) are homotopy equivalent.

Proof. Note that M, (R)** is convex, hence contractible. Note that SO, (R) is the con-
nected component of 1 of O,(R), and that SL,(R) x R*" is the connected component of
1 of GLa(R). O

8.3 Proposition. Let n > 1. Let M, (C)"" be the set of positive definite hermitian
elements of M,,(C), i.e., the h such that (x,y) — z'hy is a hermitian inner product. Let
M,,(C)™*! be the subset of M,,(C) ™" consisting of the h with det(h) = 1. Then the maps:

M, (C)"" x U, (R) — GL,(C), M,(C)"*! x SU,(R) — SL,(C)
are diffeomeorphisms.

Proof. The set M, (C)*™" is the set of matrices that represent positive definite hermitian
forms on C". Hence GL,(C) acts on it by (g, h) — ghg'. This action is transitive and the
stabilizer of 1 is U)n(R). Hence we have a bijection from GL,(C)/U,(R) — M,(C)**,
induced by the map g + ¢g°*. The restriction of this map to M, (C)** is the map h — h2.
As in the real case, one proves that the map from M, (C)™*" to itself, that sends h to h?,
is a diffeomorphism. Hence the first map of the theorem is a diffeomorphism.

To see that the second map is bijective, use that for A in M, (C)*" one has det(h)
positive and real, and that for u in U,(R), one has det(u) in S'. To see that the map is a
diffeomorphism, one can show again that the tangent maps of h — h? are again injective

(and hence bijective), or one can use that the short exact sequences

det

{1} — SL,(C) — GL,(C) — C* — {1}

det,

{1} — SU,(C) — U, (C) —= S' — {1}
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are splittable, and hence give isomorphisms of varieties:
SL,(C) x C* = GL,(C), SU,(R) x S' 2 U,(R).
O

8.4 Corollary. Let n > 1. The Lie groups GL,(C) and U, (R) are homotopy equivalent.
The Lie groups SL,(C) and SU,(R) are homotopy equivalent.

Proof. Note that M, (C)™™ is convex, hence contractible. Moreover, it is diffeomorphic
to M, (C)* ™! x R, hence M,,(C)*™! is also homotopy equivalent to a point. d

8.5 Definition. Let f: F — B be a morphism of manifolds. Then f is called a fiber bun-
dle if for every b in B there is an open neighborhood U, a manifold ' and an isomorphism
g: F x U — f~'U such that f o g is the projection p;: F x U — U. A fiber bundle is
a submersion, obviously, and one has F' isomorphic to f~!'{b}. If one can take the same
F for all b in B (for example, when B is connected), then f is called a fiber bundle with
fiber F'. The manifold B is called the base, and E is called the total space.

8.6 Some fiber bundles involving Lie groups

For G a Lie group and H a closed sub Lie group, the quotient map f: G — G/H is a
fiber bundle with fiber H. Let us give some examples where the quotient map has some
geometric interpretation.

Let n > 1. We let SO,(R) act on R*, by matrix multiplication. Since it acts by
isometries that preserve the origin, we get an action of SO, (R) on the unit sphere S™!
in R*. This action on S"! is transitive (for z in S"~!, we have R* = Rz @ (R-x)*, an
orthogonal direct sum decomposition, hence there is an orthonormal basis (y1, . .. , y,) of R”
with y; = x). The stabilizer of the last standard basis vector e, is the subgroup SO, _1(R).
It follows that the map f: SO,(R) — S™, ¢ — g(e,), is a quotient for the right action
of SO, 1(R) on SO,(R) by right translations. In particular, f is a fiber bundle with
fibre SO,_1(R). Repeating this argument for SU,(R) acting on C" gives the following

result, that will allow us to apply induction on n to compute fundamental groups.

8.7 Proposition. Forn > 1, SO,(R) admits a morphism to S™ that is a fiber bundle with
fiber SO,,_1(R), and SU,(R) admits a morphism to S** ! that is a fiber bundle with fiber
SU,—1(R).
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8.8 Fiber bundles and homotopy theory

For some details and references to more details on the subject of this subsection, see any
book on algebraic topology, for instance [BoTu, II1.17], or [Hatc]. Let X be a manifold.
Then my(X) is defined to be the set of connected components. Let I = [0, 1] be the unit
interval. Forn > 1, amap f: I™ — X is called differentiable if it extends to a differentiable
map from some neighborhood of I™ in R” to X. Let 0I™ denote the boundary of I"™; it
is a union of 2" copies of I""!. Suppose x is in X. Then for n > 1 the nth homotopy
group 7, (X, z) of (X, x) is defined to be the set of classes of morphisms f: I" — X with
foI™ = {z}, up to homotopy that fixes f|gr». The group law on m,(X,z) comes from
writing I" = I"~! x I, and using the map I [[I — I given by = — /2 on the first copy
of I, and z — (z 4+ 1)/2 on the second. This gives indeed an associative composition on
(X, ), and one checks that for f: I" — X constant on 0I" with value z, the map g
defined by g(t1,... ,t,) = f(t1,... ,tn_1,1—t,) gives an inverse of the class of f in 7, (X, z).
For n > 2, (X, z) is commutative.

The basic result on fiber bundles and homotopy groups that we want to use is the

following.

8.8.1 Theorem. Let f: E — B be a fiber bundle with fiber F'. Suppose that B and F
are connected, that B is simply connected and that me(B,b) = 0, with b in B. Then E is
connected, and the morphism 7 (f~'{b},e) — 7 (E,e) (with e in f~'{b}) induced by the

inclusion is an isomorphism. In particular, if F' is simply connected, then F is.
8.8.2 Remark. More generally, one has the long exact sequence of homotopy groups:
o = M (Fr€) — (B, €) — my(B, b) == 7y 1 (Fye) — - -

The morphism m,(B,b) — 7, 1(F, f) in this sequence is defined as follows. Let n > 2
and let g: I" — B induce an element g of 7, (B,b). Then view I" as I" ! x I and g as a
homotopy from g|im-1440y t0 g|m-1x413- Since f: E — B is a fiber bundle, there exists a
homotopy G: I"™! x I — E such that f o G = g. Then 0(g) = G\Tlx{l}

8.9 Corollary. We have:

m(SL,(C)) = m1(SUL(R)) = 0 for n > 2,
7 (SL, (R) = 71 (SO, (R)) = Z/2Z for n > 3, and
71 (SLe(R) = 71 (SO2(R) = Z.

N—
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9 Closed subgroups are Lie subgroups

We will prove the following theorem, which is due to von Neumann (in the case of subgroups
of GL,(R)) and E. Cartan in general. The proof is a nice application of the Campbell-
Hausdorff theorem up to order two. In order to understand the proof given below, it is

instructive to first consider the case of subgroups of R and then of R".

9.1 Theorem. Let G be a real Lie group, and H is closed subgroup. Then H is a closed
Lie subgroup of G.

Proof. The idea of the proof is simply to look with a microscope at what happens close
to the element e of (G, via the exponential map and the Campbell-Hausdorff formula up
to order two. We choose some inner product (-,-) on Lie(G), and we let U be a small
ball of positive radius around 0 in Lie(G). We take U small enough so that we have
(Campbell-Hausdorff formula up to order two):

log(exp(z) exp(y)) = = + y + R(z,y),
log(exp(z) exp(y) exp(—=) exp(—y)) = [z, y] + S(z,y),

with || R(z, y)I| < cmax(||z[], [yll)* and [|S(z, y)|| < cmax(||z]], [ly[l)* for all z and y in U,
with ¢ some real number. Let L = {v € U | exp(v) € H} in Lie(G). We have to show
that, for U small enough, L is a sub Lie algebra of Lie(G). What we know about L is
that it is closed in U and that it is closed under the operation (x,y) — log(exp(z) exp(y)),
whenever the result is in U. In particular, for £ in L and n in Z such that nz is in U, we
have nx € L.

We define a subset 1" of Lie(G) that is our candidate for Lie(H). We let T' be the union
of {0} and the set of non-zero v in Lie(G) for which there exists a sequence z in L — {0}
that converges to 0 and such that the sequence n + ||z,|| 'z, on the unit sphere of Lie(GQ)

I

converges to ||v||"'v. Note that 7" does not depend on the choice of the inner product, and

also not on the choice of U, and that it is a cone: if ¢t is in 7" and A is in R, then At isin 7.

9.2 Lemma. Supppose that t is in T. Then exp(t) is in H. In particular, TN U is in L.

Proof. Lett# 0 bein T. Let € > 0 be small. By the definition of 7', we can take y # 0
in L such that ||y|| < e and ||||y]|"'y — ||t]|~'¢]] < €. Let n be an integer that is closest
to [[zll/llyll- Then:

I = ngll = el el = e~ ) = el 1A= = =" + ™ = el =g
< el 0 = =]+ Dl el =" = ] < (el + Ve
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Hence exp(t) is arbitrarily close to elements of H, and since H is closed in G, we have
exp(t) € H. O

9.3 Lemma. The cone T is a sub Lie algebra of Lie(G).

Proof. Let z and y be in 7. We have to show that z+y and [z,y] arein T. If z +y =0
or [z,y] = 0 this is true, so we may assume that such is not the case. Since T is a cone, we
may suppose that z and y are small, hence in 7"N U and hence in L. But then, for A <1
in R we have:

L > log(exp(Az) exp(A\y)) = Mz + y) + R(A\z, \y),

which shows that z + y is in T (since R(Axz, Ay) = O()\?), the unit vectors associated to
xz+y and log(exp(Az) exp(\y)) get arbitrarily close as A tends to zero). A similar argument
shows that [z,y] isin T. O

9.4 Lemma. The subset T NU of L is open and closed.

Proof. Since T is a subspace of Lie(G), the subset T NU of U is closed. It remains
to prove that T'N U is open in L. Suppose not. Then there is a sequence z in L — T
that converges to some element ¢ in 77N U. After translating the whole sequence exp(z)
by exp(—t) (which is in H) and taking log of that, we may assume that x converges to
zero. We write Lie(G) = T @ T+. For every u in U sufficiently small, there are unique
tin T and p in T+ such that u = log(exp(t) exp(p)). For n sufficiently large, let t(n)
and p(n) be defined by z(n) = log(exp(#(n)) exp(p(n))). Then the sequence p in T+ is
in L. Since the unit sphere in T is compact, we can replace p by a subsequence such that
n +— ||p(n)|| " p(n) converges to some element, say v. Then v is in 7', but also in 7+, and
is non-zero. This contradiction shows that 7'N U is open in L. O

We have now shown that H Nexp(U) is a real analytic submanifold of exp(U) (by applying
exp to L = exp~' H Nexp(U) in U). But then H is a real analytic submanifold of G at
every h in H: for every h in H there exists an open neighborhood U of A in G such that
HNU is an analytic closed sub manifold of U. Since H is closed in G, it is a closed analytic
sub manifold of G. 0

9.5 Corollary. Let f: Gy — G2 be a continuous morphism between two real Lie groups.

Then f is real analytic.

Proof. Apply the preceding Theorem to the graph of f. U
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In some other texts (such as [Vara]) the proof that one gives for the Theorem above uses

the following proposition, that we state because it might be of some interest.

9.6 Proposition. Let G be a Lie group, and let z and y be convergent sequences in Lie(G).

Then the sequences:

n — (exp(z,/n)exp(y,/n))" and
n — (exp(x,/n) exp(yn/n) exp(—z,/n) exp(—yn/n))"z

in G' converge and one has:

i (exp (o) xp(on /)" = exp (Jin 2+ T )

Jim (exp(za /) exp(y /m) exp (/) exp(—y /n)"" = exp ([lim . lim y])

Proof. Let U be as in the beginning of the proof of the Theorem. Let x and y be sequences
as in the Lemma. Then, for n large enough, z,,/n and y,/n are in U, and we have:

nlog(exp(x,/n) exp(yn/n)) = Tp + yn + nR(n_la:n, n_lyn).

Now note that nR(n~'z,,n 'y,) = O(n~!'). This implies the statements in the Lemma

concerning the first sequence. For the second sequence, one uses a similar argument. [
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10 Representations of SLy, SUy and SOj3

10.1 Representations

For G a group, k a field and V' a k-vector space, a (k-linear) action of G on V' is an action
G xV — V of G on the set V such that for each g in G the map g-: V = V, v — g-v
is k-linear. Equivalently, an action of G on V is a morphism of groups a: G — GL(V)
(to pass from one to the other, define a(g) to be v — g-v and define G x V — V by
(g9,v) — (a(g))v. A representation of G over k is defined to be a k-vector space with an
action by G. A morphism from a representation V' to a representation V' of the same group
G is a k-linear map f: V — V' that commutes with the actions of G on V and V': for
all vin V and ¢ in G one has f(gv) = ¢g(fv). In old fashioned language, such maps f are
called intertwining operators. For a group G, one has the category of its representations.
In particular, we say that two representations V' and V' are isomorphic if they are so in
the categorical sense, or, equivalently, if there is an isomorphism f: V — V' of k-vector
spaces that commutes with the G-action. Yet an other way to say that two representations
V and V' of G are isomorphic is to say that there are bases of V' and V' such that for each
g in G the matrices of V — V: v+ gv and V' — V' v/ — gv’ are equal.

An example of a representation of a group G is obtained as follows. Let X be a set with
a G-action G X X — X, let k be a field, and let V' be the k-vector space of all k-valued
functions on X. Then G acts on V via (¢ f)z = f(¢ 'x). Indeed, this defines a k-linear
action (exercise for the reader). Even better: V' is a k-algebra, and G acts via k-algebra
automorphisms. For X = GG, with action the left translations, this representation is called
the regular representation. Instead of taking all functions on V', one can also take suitable
subspaces, such as differentiable functions, or functions with compact support, if X has
the necessary structure to define these notions.

For GG be a real Lie group and V be a finite dimensional R-vector space, we say that a
representation of G on V is differentiable if the map G x V — V is, or, equivalently, if the
morphism of groups G — GL(V) is a morphism of Lie groups. When G is a Lie group, we
will always assume representations to be differentiable. The reason that we limit ourselves
to finite dimensional representations of Lie groups is not that infinite dimensional ones are
not interesting; on the contrary. But for compact groups, the finite dimensional ones are

sufficient for all purposes that I know.
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10.2 The representations k[z,ylqs of SLy(k)

Let k be an infinite field, and let k[z, y] be the polynomial algebra in two variables over k.
In order to define an action by SLo(k) on k[z,y| we view k[z,y| as the set of polynomial
functions on k2. (Indeed, as k is infinite, the notions of polynomial and polynomial function
are the same, i.e., two polynomials define the same function if and only if they are equal.)
We let SLy(k) act on k% in the standard way: (g, a) — ga, multiplication of matrix times
column vector. Then we have an action by SLy(k) on the k-vector space F' of all k-valued
functions on k? (a huge space) given as in the previous section: (¢f)a = f(g7'a).

We write out explicitly what happens here. So let g = (%), and let @ = (u,v). Then
g7t = (1% 7?), hence g7ra = (du — bv, —cu + av), hence (gf)(u,v) = f(du—bv, —cu + av).
The last formula shows that if f is polynomial, then ¢f is so, too. Hence we have a
representation of SLy(k) on the sub k-algebra k[z,y] of F', and even better, this action

preserves the total degree, i.e., the direct sum decomposition:

(10.2.1) klz,y] = @k[m,y]d.

d>0

Let us describe explicitly what ¢ = (%) does with z and y (this is useful, as z and y

generate k[z,y]). So we compute:

z(du — bv, —cu + av) = du — bv = (dz — by)(u, v)

(92)(u,v)
(gy)(u,v) = y(du — bv, —cu + av) = —cu + av = (—cz + ay)(u, v),

which means:

gr =dxr —by, gy=—cx+ay.

Alas, this is not the formula that I was hoping for. I would have liked to have: gx = ax+cy
and gy = bx + dy. The reason that I wanted these formulas is that this would have given
me the standard two dimensional representation on k[z, y]; with respect to the basis (z, ).

Now we can do two things. The first one is to change the action of SLy(k) on k[x, y],
and the other one is to simply choose an other set of generators of k[z,y]. We will explain
both ways. Actually, let us start by noting that we cannot get the formulas gxr = ax + by
and gy = cx +dy for the very good reason that those do not give a left action on k[x, y] but
a right action (exercise for the reader; I should add, many people get confused by this).

The first option: change the action. Instead of defining (¢f)a = f(¢7'a) we define
(9f)a = f(g*a), with ¢g* the transpose of g. It is left to the reader that this leads indeed
to gr = ax + cy and gy = bx + dy.
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The second option: define u = y, v = —z. Then we have k[z,y] = k[u,v], and:
gu = au + cv and gv = bu + dv.

The fact that both ways give us an action that is defined by the same formulas means
that the two actions (¢f)a = f(¢g~'a) and (gf)a = f(g*a) give isomorphic representations.
What is behind this is that for every g in SLy(k) we have:

(@) =05 g ()™
From now on, we will just write k[z, y|q for the representation of SLo(k) on k[z,y]s given
by the formulas we wanted: gx = ax + cy and gy = bx + dy. To finish this section, I want
to remark that for n > 3 there is no longer an element ¢ in SL,, (k) such that (¢*)~! = cgc™

for all g in SL,, (k). This is easy to see from the characteristic polynomials: cgc™' has the

same one as g, but (¢*)~! usually does not, for example, for diagonal matrices.

10.3 The k[z,y]; are irreducible

A representation on a k-vector space V of a group G is called irreducible or simple if it has

exactly two subspaces that are invariant under the action of G ({0} and V; in particular,

V' is not the zero space). In terms of matrices, V' being reducible means that, with respect
*

to a suitable basis, all matrices given by the action of elements of G are of the form (§ ),

with blocks of positive size.

10.3.1 Theorem. Let k be a field of characteristic zero. Then the representations k[z, y]q
of SLy(k) are irreducible for all d > 0.

Proof. We will give the proof for the case k = C, as we want to use some Lie algebra
arguments (we will do some infinitesimal computations). But as the action of SLy(k)
on each k[x,y]s is given by a polynomial map from SLy(k) X k[z,yls to k[z,yls, such
infinitesimal computations can be done over any field.

Let d > 0, and let V' be a non-zero subspace of C[x, y]; that is invariant for the action
of SLy(C). We have to show that V is equal to Clz,y|s. In order to do this, we will use
that V' is stable for the action of the Lie algebra L := Lie(SLy(C)). So first we compute
how L acts on C[z,y]. We recall that L is the subset of My(C) consisting of those elements

whose trace equals zero. Hence we have the following C-basis for L:

(10.3.2) L = Lie(SLy(C)) = Ch & Ca; & Ca_,
where:
(10.3.3) h=(0%), a+r=(8¢), and a_=(}3])



The Lie bracket is given by:
(10.3.4) [h,a+] =2ay, [hya_] =—2a_, Jay,a_]=h.

The action of SLy(C) on C[z,y| gives a representation of L on Clxz,y] such that for all a

in L and f in C[z, y] we have (modulo £2):
(10.3.5) (1+ea)f = f+e(af).

We compute the endomorphisms of the C-vector space Clz,y| given by h, a; and a_.

Applying the definitions gives that for all (7,7) in N? we have:

(1 +eh)zty’ = (1 +e)2)' (1 —e)y) = 'y +e(i — j)a'y’
(1+ecap)z'y! = 2'(ex +y)! = 2"y +eja' Ty’ ™!
(1+ea_)z'y’ = (z +ey)'y’ = 2'y? + iz’ 1y

Note that the terms jz**'y/~! and iz~ 'y’*! are zero if some exponent is negative. By

looking at the terms with a factor £, we get:

(10.3.6) ha'y’ = (i —5)x'y?, ay o'y’ = jatlyiTh e atyd =axt iyt

With these formulas at our disposal, we can now easily prove that the Clz,yls are ir-
reducible. Recall that V' is a non-zero subspace of C[z,y]; that is stable for the action
of SLy(C). The formula for the action of L on elements f makes it clear that for v in V
and a in L we have av € V. So now let v = Y v; j2'y? be a non-zero element in Clz, y]q4.
Take 7 minimal with the property that v;; # 0. Then a% v is a non-zero element of Cz?
(here that we use that the field over which we work is of characteristic zero). Hence V/
contains . But then V contains all the a’ z%, hence all the 27y (here we use again
that the field is of characteristic zero). U

10.3.7 Remark. The hypothesis that & is of characteristic zero is necessary, as we see by
the following example. Let k£ be a field of characteristic p (for example, F,). Then the
subspace generated by =¥ and y? of k[z,y], is SLy(k)-invariant.

10.3.8 Remark. It is interesting to remark that h, a, and a_ act on Clz, y| as derivations,
since for all f in C[z,y] we have:

(10.3.9) hf = (20/0x —y0/0y)f, aif = (x0/0y)f, a_f= (yd/0x)f.

We can see this by considering only f of the form z'y’, but of course these formulas can

also be derived directly from the interpretation of i, a; and a_ acting by some kind of
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infinitesimal transformations of C?. The fact that a Lie group acting on an algebra leads
to the Lie algebra acting via derivations is true in general. Derivations from an algebra
to itself should be interpreted as infinitesimal automorphisms. Indeed, a vector field on a

manifold is the first order approximation of its flow.

In fact, the proof of the irreducibility of the C[z,y|,; that we have given contained the
following intermediate result, which is very useful by itself, for example because it works

in the same way for all fields & of characteristic zero.

10.3.10 Theorem. Let k be a field of characteristic zero. Then all k[z,y|q are irreducible
as representations of the Lie algebra L consisting of matrices of trace zero in My (k).

The fact that the R[z, y|q are irreducible representations of SLy(R) follows directly from this

theorem, using that a SLy(R) invariant subspace is a subrepresentation for Lie(SLy(R)).

10.4 The representations of SLy(R) and SLy(C).

10.4.1 Theorem. Every (finite dimensional) representation (of Lie groups) of SLo(R) is
isomorphic to a direct sum of copies of the R[z,y|;. Every complex (finite dimensional)
representation of SLy(C) (i.e., a finite dimensional C-vector space V with a given mor-
phism of complex Lie groups SLs(C) — GL(V)) is isomorphic to a direct sum of copies of
the Cl[z,y|q. In other words, the R[z,y|s and Clx,y|s give all the irreducible representa-
tions, and each representation is semi-simple (also called completely reducible) in the sense
that it is a direct sum of irreducible representions.

The analogous statements hold for finite dimensional representations of the Lie algebra

of trace zero elements in My(k), if k is a field of characteristic zero.

Proof. We begin with a little bit of terminology. Let £ be a field of characteristic zero,
let L denote the Lie algebra of trace zero elements in My(k). Recall that L has a basis
(h,ay,a_) as above. For V be a finite dimensional representation of L and for A in k& we
say that an element v of V' is of weight A if hv = Av, and we let V' (\) denote the subspace
of V' of elements of weight A. Then we have the following result.

10.4.2 Lemma. Let v be of weight A\. Then av is of weight A + 2, and a_v is of weight
A—2.

Proof. We have already seen that [h,a,] = 2a,. Hence:
h(ayv) = ay(hv) + 2a,v = (A + 2)a4v.

The argument for a_ is similar. O
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The essential step in the proof of the theorem is the next proposition.

10.4.3 Proposition. Let V be a finite dimensional representation of L, let v be a non-
zero element of V' of some weight A\, such that a v = 0. Then X is an integer d > 0, and

the subrepresentation of V' generated by v is isomorphic to k[x, y]q-

Proof. For i > 0, let v; := a* v. Then we have v; € V(X — 2i) by the previous Lemma.
We will now prove, by induction on ¢ > 0, what we can guess from applying the derivations

ay and a_ formally to z*, namely that:
aLv; = ’L()\ -1+ ]-)Ui—l-

This is true by the hypotheses of the proposition for ¢ = 0. Since h = aya_ — a_a, we

have, for ¢+ > 1:

a:v; = ara-vi—1 = (h+a_ap)viy = (A +2—=20)v 1 +a_(i — 1) (A — i+ 2)v;_o =

Note that the for i = 1 the occurrence of v;_5 is no problem because of the factor ¢ — 1.
The v; are in different eigenspaces for h. Since V' is finite dimensional, v; must be zero
for all but finitely many ¢. Let d be the smallest integer > 0 such that v4.; = 0. Then vy is
not zero, and hence A — d = 0. It follows that (vg,...,vy) is a basis for the representation
generated by v. The proof is now finished by comparing what happens in k[z,y|s and

v = ¢ O

10.4.4 Proposition. Let V' be an irreducible finite dimensional representation of L. Then
V' is isomorphic to some k[z, y|q. In particular, V is absolutely irreducible in the sense that
for k — k an algebraic closure, k ®; V is irreducible as representation of k ®;, L, and hence
(Schur’s Lemma) End (V) = k.

Proof. Let V be such a representation. Applying the previous proposition to the repre-
sentation k ®; V of k ®; L, with k — k an algebraic closure, shows that the roots of the
characteristic polynomial of A acting on V are all integers. (Namely: for such a root A,
take a non-zero element v in ker(h — )), and consider the a’,v.)

Let d be the largest among the roots of the characteristic polynomial of A acting on V.
Then d is called the highest weight of V. Let v be a non-zero element of V' (d). Then we
have a,v = 0 because a,v is in V(A + 2) = 0. Hence the proposition gives us an injective
morphism of representations f: k[x,y]y — V, sending 2% to v. As V is irreducible, f is an

isomorphism.
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Theorem 10.3.10 says that for each field k& of characteristic zero and for each d > 0,
k[x,y]q is irreducible as L-module. Hence V is absolutely irreducible. The subspace
End; (V) C Endg(V) of L-module endomorphisms of V is defined by linear equations,
hence any basis of it is also a basis of the subspace Endyg ; (k®; V) of Endg(k ®, V). But
each element of Endgy ; (k ® V) is scalar, because its eigenspaces are subrepresentations.
Hence End.(V) = k. O

Before we go on with the proof of Theorem 10.4.1, we need some definitions.

10.4.5 Definition. Let & be a field, V' a k-vector space, and V* = Homg(V, k) its dual.
If a group G acts on V, then it also acts from the right on V* by (I, g) — lg = v(— I(gv)).
Such a right action on V* can be transformed in a left action by defining:

gl :=1g7" = (v l(g7"v).

With this action, V* is called the dual or contragredient representation of V. If V is an A-
module for a k-Lie algebra A, then V* is a right A-module via: ([, a) — la = (v — [(av)).
In order to transform this right A-module structure into a left A-module, one defines:

al == —la = (v —l(av)).

The same terminology applies here: with this A-module structure, V* is called the dual or
contragredient representation of V.
More generally, if V' and W are representations of a group G, then the k-vector space

Homy (V, W) of k-linear maps from V to W is a representation of G if we define:

(g-f)v=g(f(g 'v).

Similarly, if V' and W are A-modules, for a Lie algebra A, then Homy(V, W) gets an

A-module structure if we define:
(@ f)(v) = a(f(v)) — flav).
The proof of the last part of Theorem 10.4.1 is completed by the next result.

10.4.6 Proposition. Fach finite dimensional representation V of L is isomorphic to a

direct sum of irreducible ones.

Proof. Induction on dim(V). (In fact, for those who know some homological algebra,

the usual short exact sequences reduce the problem to showing that Ext;(k,U) = {0}
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for irreducible U, which we will do “by hand”.) The result is true for V= {0}, so we
assume that V' # {0}. Let W be a non-zero submodule of minimal dimension. Then W is

irreducible. Applying Homy (-, W) to the short exact sequence:

(10.4.7) 0— W —>V —V/W-—0

gives a short exact sequence of L-modules:

(10.4.8) 0 — Homy (V/W, W) — Homy(V, W) — Homy (W, W) — 0.

Replacing Homy (W, W) = End, (W) by its submodule Endy, (W) = k and Homy(V, W) by

the inverse image of k£ in it gives a short exact sequence of L-modules:
(10.4.9) 0 — Homy(V/W, W) — H — k — 0.

By construction, a splitting s: & — H is this sequence is such that s(1) is an L-module
morphism from V' to W that splits (10.4.7). The existence of such a splitting therefore
finishes the proof of the proposition. We will show by induction on dim(U) that any short

exact sequence of L-modules of the form:
(10.4.10) 0—U—>F—k—0

is split. If U = {0} then the sequence is split. Suppose now that U is irreducible, isomorphic
to k[z,y]q, say. If d =0, then E = k? and L = [L, L] has image in the commutator algebra
of {(3%)}, hence acts as zero on E, so the sequence is split. Suppose that d > 0. Dualising

gives a short exact sequence of L-modules:
(10.4.11) 0 —k— E" — k[z,y]; — 0.

Applying Proposition 10.4.3 to the element (y%)* of k[z,y]; (with ((z%)*, ..., (y%)*)) the
basis dual to (z¢,...,y%) gives an isomorphism from k[z, y|4 to k[z,y];. So now we have
k[z,y]s as a quotient of E*. The eigenvalues of h on E* are those on k[z,y]; and on £k,
hence d is the highest weight of E*, E*(d) is of dimension one and has trivial intersection
with & so surjects to k[z,y]3(d). Now pick | in E*(d) whose image in k[z,y]} is (y%)*.
Then we have a !l = 0 because a,l € E*(d + 2) = {0}, so Proposition 10.4.3 says that
the subrepresentation W of E* generated by [ is isomorphic to k[z,y]s. Since W and
k[z,y]} are irreducible, the map from W to k[z,y]; is an isomorphism, and (10.4.11) and
(10.4.10)are split.
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Suppose now that U is non-zero and reducible. Let U’ be a non-zero proper submodule.

Then we have a commutative diagram with exact rows and columns:

0 0
U ——=U
(10.4.12) 0 >y U — F — — 0
|
0 s U — E — — 0
0 0

By induction, the bottom row splits, and replacing E by the image of such a splitting and

E by the inverse image E' of k via E — E gives an exact sequence
0—U —F —k—0
that is again split by induction. So we do obtain a splitting from & to FE. O

To prove the first part of the theorem, it suffices to say that the sub representations of V'
for the action of SLy(R) or SLy(C) are precisely the sub L-modules. O

P

10.5 The representations of SLy(R)

As a short intermezzo, we note that the results of the previous section show that each
representation of the universal cover SLy(R) of SLy(R) factors through its quotient SLo(TR).
This provides us with an example of a real Lie group that has no faithful (finite dimensional)

representation. Of course, for any Lie group G, the space C*(G) is a faithful representation
of G.

10.6 The representations of SU,(R)

As SU3(R) is a subgroup of SLy(C), every representation of SLy(C) gives by restriction a
representation of SUy(R). In particular, we have the (complex) representations C[z,y]q,
d > 0, of SU3(R). These are the only ones.
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10.6.1 Theorem. Let V be a finite dimensional complex vector space with an action
of SUs(R). Then V is isomorphic to a direct sum of copies of the C[x,y];. The same is
true for every finite dimensional complex representation of Lie(SU(R)). In fact, restriction
from SLy(C) to SU,(R) induces an isomorphism from the category of finite dimensional
complex representations of SLy(C) to that of SUy(R), and the same is true on the level of
Lie algebras.

Proof. As SUy(R) and SLy(C) are connected and simply connected, it suffices to prove
the very last statement. So let us study the real Lie algebra L' := Lie(SUs(R)), just as we
have studied the Lie algebra of SLy(k) for any field k. As SUy(R) is the subset of matrices
of the form (¢ ;5) of My(C) with |a]? + [b|> = 1, we have:

(10.6.2) LI'={(2")|acRibeC}=RioRj &Rk,
where:
(10.6.3) i=0§%), 7i=(%%), k=(3%)

From our computations with quaternions (from which we have taken the notation 4, j

and k), we have (without new matrix computations):
(10.6.4) i, 5] =2k, [j,k]=2i, [k,i]=2j.
These formulas give us a complete description of L'. We are now in for a pleasant surprise.

10.6.5 Proposition. The inclusion of L' in L¢ = Lie(SLy(C)) induces an isomorphism
from the complexification L = C Qg L' of L' to Lc.

Proof. By definition, the complexification L¢ is the C-vector space with basis (7, j, k) (or
(1®1i,1®7,1®k) if one wants to avoid confusion), equipped with the Lie bracket given by
the formulas (10.6.4) above. On the other hand, it is clear that (i, j, k) is a C-basis of L.
Since the inclusion of L' into L¢ is a morphism of real Lie algebras, the statement of the

proposition is clear. O

Let us now finish the proof of Theorem 10.6.1. In general, if A is a real Lie algebra,
then a complex representation V' of A is a complex representation of C ®g A, by the
usual properties of tensor products (or just of complexification, if one does not like tensor
products). Proposition 10.6.5 implies that the complex representations of L' are the same

as those of L¢, and those were described in Theorem 10.4.1. O

61



10.7 The representations of SO3(R)

As we have seen in Section 5.10, the Lie group SO3(R) is isomorphic to the quotient of
SUs(R) by its subgroup {1, —1}. As a consequence, to give a representation of SO3(R) is
to give a representation of SUy(R) that is trivial on {1, —1}. For d > 0, the element —1 of
SU,(R) acts on C[z,ylq as (—1)%. That proves the following result.

10.7.1 Theorem. Viewing SO3(R) as the quotient of SUy(R) by {1, —1}, the irreducible
complex representations of SO3(R) are the Clx,y|s with d > 0 even. All finite dimensional
complex representations of SO3(R) are semi-simple, i.e., direct sums of irreducible ones.

10.8 Conclusions, references

We have treated the simplest cases of the theory of representations of some simple Lie
groups by hand. A good reference for the general theory, of which we have in fact seen
all the ingredients, is [Hum]. In the next Section, we will prove by averaging arguments,
that all finite dimensional representations of compact Lie groups are semi-simple, just
as one does for finite groups. (So this also reproves (in a more simple way) that all
representations of SLy(R) and SLo(C) are semi-simple.) An excellent reference for the
theory of representations of finite groups is [Ser2]. An interesting topic that we did not
discuss in this section is which representations of SUy(R) can be realised over the reals,

i.e., have all their matrices real, with respect to a suitable basis.
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11 Integration on Lie groups

We want to integrate continuous functions with compact support on a Lie group G. What
one needs to do that is called a volume form on GG. Before choosing a particular kind of
volume forms on Lie groups (say left or bi-invariant), we fist discuss what volume forms
are on manifolds, and how one integrates them. And, before that, volume forms on finite
dimensional real vector spaces. What is behind this is simply that to say what the volume
is of a compact subset of a manifold, we first say what it is for a product of intervals in a

vector space.

11.1 Volume forms on vector spaces

Let V be a finite dimensional R-vector space, of dimension d, say. A function Vol: V¢ — R
is called a volume form on V if it has the following properties:

1. for all A in R? and all v in V% one has Vol(Ajv1, ... , A\gva) = | A1 -+ Ag[Vol(vy, - - ., va);
2. for every o in S and v in V% one has Vol(vy1y, - - - , Vs,) = Vol(vi, ... , va);
3. for all v in V¥ one has (if d > 2): Vol(vy + vg,vg, ... ,v4) = Vol(vy, ... ,v4).

Note that these properties are those for alternating multilinear forms, except that there
are no signs. Hence the same arguments as for determinants show that in order to specify
a volume form on V is equivalent to give its value on some basis. In particular, if w is a
non-zero alternating multilinear form on V¢, then the volume forms on V' are the functions
Vol, »: V% — R of the form v — A|w(v)|, with A in R.

11.2 Volume forms on manifolds

Let X be a C* manifold, with k£ > 1. A wvolume form on X then consists of the datum of
a volume form Vol, on Tx(z) for every x in X. If X is an open subset of R?, then every
volume form Vol on X is of the form Vol = f|dz; - - dz4|, where f is a function X — R
(uniquely determined by Vol) and where |dx1 - - - dz4| has value one on the standard basis
(e1,-.. ,eq) of R A volume form Vol on X is called C* if locally it is of the form as above,
with f a C*-function.

The (only) importance of volume forms is that they can be integrated: for Vol a C? vol-
ume form on a manifold X and for f in C°(X) (continuous functions with compact support)
one has [, f-Volin R (or in C if f is complex valued). In order to compute (or to define)

this integral, one takes a finite set of coordinate systems X; on X that cover the support
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of f, and in each of these coordinate systems one integrates as usual. Then, one does
some book keeping to count each contribution exactly once, i.e., one takes the sum of the
integrals over the X;, then subtracts the integrals over the X; N X, adds the triple inter-
sections, etc. As a matter of notation, we will often denote a volume form by the symbol v
(for volume) or by p (for measure), so that the integrals are denoted by [, fv or [ fu.
We note that | « Jv makes sense in fact for any continuous f with compact support on X
and with values in a real or complex Banach space (i.e., a complete normed real or complex
vector space). (The completeness is necessary so that limits of Riemann sums exist.)

If X is a Riemannian manifold, i.e., a C* manifold equipped with a metric (-,-) on
its tangent bundle, then we have a natural volume form p: for z in X say that u(e) =1,

where e is any orthonormal basis of Tx (z).

11.3 Invariant volume forms on Lie groups

On an arbitrary manifold, there are no especially nice volume forms, if one has not more
structure (as for example a Riemannian structure). The case of Lie groups is nice, as we
can use the left translations in order to trivialize the tangent bundle. A volume form v on
a Lie group G is called left invariant if it is invariant under left translations, i.e., for every g
in GG the isomorphism T, : Tg(e) — Tg(g) induced by the left translation I, maps v, to v,.
The left invariant volume forms (or their effect on C?(G)) are called Haar measures. In
fact, one can show that every locally compact topological group has such measures, unique
up to scalar (and not all zero).

If G is compact, a non-zero left invariant volume form can be uniquely normalized by
the condition that va = 1, in which case v is called the wnvariant probability measure
on G.

Of course, it is of significant interest whether or not the left invariant volume forms on
a Lie group G are also right invariant. This is easily seen to be the case if and only if the
representation of G' on Lie(G) induced by conjugation of G on G is such that the compo-
sition G — GL(Lie(G)) — R*" obtained by composing with | det|: GL(Lie(G)) — R**
is trivial. If this is so, then the volume forms are called bi-invariant. This happens com-
pletely automatically in two important cases: when G is compact (since the only compact
subgroup of R** is {1}), and when [G,G] = G (because then every morphism to any
commutative group is trivial). The last case occurs for example when G is connected and
[Lie(G), Lie(@)] = Lie(Q).

Hence the GL,(R), SL,(R), SO,(R) and so on have bi-invariant volume forms. An
example of a group that does not have a non-zero bi-invariant volume form is the subgroup
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(34) of GLy(R), because its action on its Lie algebra composed with det has image R*.

11.4 Explicit formulas for GL,(R)

Let n > 0 and let G := GL,(R). Let L = M,,(R)) denote Lie(G)). We have the coordinate
functions z; ; on L and on G (1 <4,j < ng). For g in G, we have T¢(g) = L, simply from
the inclusion G C M, (R) = R”. Note that this identification of T¢(g) with L = Tg(e) is
not necessarily the same as the one that one gets from left translation by g. In fact, as we
have seen when looking at examples of left invariant vector fields, the left invariant vector
field D, corresponding to a in L is given by: (D,), = ga (this follows directly from the
equality: ¢g(1 + €a) = g + £ga). Hence left translation by ¢ induces the map g-: a — ga
from L = Tg(e) to Tg(g) = L. The determinant of this map is det(g)” (note that each
column of a behaves as R", and that we have n columns). It follows that the volume form

given by:

1

(11.4.1) I

H d:ci,j

Y]

is left invariant, where |[[; ; dz; ;| denotes the standard volume form on L = R, i.e., the
one that has value one on the standard basis. Note that it is also right invariant because
right translation by g also changes the standard volume form | [, ; dz; ;| by | det(g)[" (use
the n rows of a instead of the columns).

11.5 Some computations for SUy(R)

Let G := SUy(R) = {(¢2*) | a, b in C with |a|? + [b|* = 1}. By construction, G acts via
isometries on C? (i.e., preserving the standard hermitian inner product), and hence on the
unit sphere S? in C?> = R*. But from the matrix description of G we see that the action
of G on S? is free and transitive, so that G — S2, g — ge; is a diffeomorphism. It follows
that invariant volume forms on G correspond to SO, (R)-invariant volume forms on S.
But these are easy to construct using the Riemannian structure on S3. For example, we
have the volume form v on S given by the property that for x in S?, and (z1, 2, z3) an
orthonormal basis of z+, v, (21, Te, 13) = 1.

Let us now compute the volume of G with respect to the volume | ¢V form v, so that
the invariant probability measure on G is v := ([, v)"'v. So what we have to compute is

the volume of S* with respect to v. But that is the same as the derivative at r = 1 of the
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function By: r — f‘ |dzy - - - dz4|. We compute:

z||<r

1 /2

4
(1= )% da| = gt [ cosy)ld

—7/2

B = [ BV as| = gt [

=—T -1

Aprt (T2 , , - 1
— (e4zz +4€2m + 6+4e—2zz + €—4zm)|dx| — _71_2,,,4.
316 J_pis 2

It follows that [, v = 27, so that the invariant probability measure on G is p := (1/27°)v.
An interesting question that one can ask now is the following: how are the elements

of G distributed in the conjugacy classes? In order to make this precise, let us first give

an explicit description of the conjugacy classes, and then compute the probability measure

that p induces on it.

11.5.1 Proposition. Let T be the diagonal subgroup of SUy(R). Then the map S* — T
that sends z to (%Y%) is an isomorphism. Fach conjugacy class intersects T, and the
intersection is then of the form {(32),(39)} for a unique z in S' with positive imaginary
part. It follows that the map tr/2: SUp(R) — [—1,1] that sends ((¢ %5) to R(a) classifies
the conjugacy classes: g, and gy are in the same class if and only if their images in [—1,1]

are equal.

Proof. This is linear algebra. Let g be in SUy(R). Then g has an orthonormal basis of

eigenvectors, the two eigenvalues are of absolute value one, and their product is one. [

So the question about distribution into conjugacy classes of elements of G = SUy(R) is
the question: what is the image of p on [—1,1] under tr/2? Or, equivalently, what is the
probability measure p’ on [—1,1] such that for each continuous function f: [-1,1] = R

we have:

1
"= o(tr/2)\u = — oxy)v?
| = et (fom)

- 271'2 g3
Taking for f the characteristic functions of the interval [y,y + €] (with —1 < y < 1 and
¢ € R small and positive), we see that ' = g|dt|, with g given by:

y+e

c90) + 0 = [ gldtl =

/ :
2
t=y 27% J{zes? | y<ai<y+e}

v = 2—7T247r sin(¢)?

€

Sin(9)

where cos(¢) =y and 0 < ¢ < 7, hence |dy| = sin(¢)|d@|. (Here it is quite useful to draw
a picture of the unit circle in R?.) So we see that:

oy) = 2 sin(6) = VT =7,

™

+0(e?),
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and hence:

2
i = SV1 = 2|dt].
m

This means that the trace of an element of SU,(R) is unlikely to be close to —2 or to 2,
and that the maximum of the distribution of the traces is attained at 0.

It is clear that such computations are not very easy to generalise to higher dimensions.
We will use the Peter-Weyl theorem to show how one can compute the analog of u’ without
a great effort in more general cases, and to illustrate some interesting phenomenon about
the distribution of the traces of the g” for n fixed and g varying.

11.6 Invariant inner products, and semisimplicity of representa-

tions

Let G be a compact Lie group, and let x4 be the bi-invariant probability measure on it. Let
V be a finite dimensional (real or complex) representation of G. Let (-, -)o be an arbitrary
inner product on V' (hence hermitian if V' is a complex representation). Then we define an
inner product (-,-) on V' by:

(z,y) = / EG<gx, GY)oh-

Indeed, (x,y) is an inner product, since it has the right linearity properties in z and y, and
it is positive definite since (-, -)q is. Moreover, since y is invariant, we have for all z and y
in V and all g in G that (gz, gy) = (z,y), i.e., (-, -) is G-invariant.

Hence any finite dimensional representation of G has a G-invariant inner product (-, -),
and with respect to an orthonormal basis of V', the representation takes values in SO, (R)
or SU,(R) (n the dimension of V'). This is extremely useful, since it implies that for W a
G-invariant subspace, W= (the orthogonal complement with respect to (-, -}) is G-invariant,
and one has V = W @ W+. So this proves quite trivially the following result.

11.6.1 Theorem. Every finite dimensional representation of a compact Lie group is a

direct sum of irreducible representations.
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12 Representations of compact Lie groups and the

Peter-Weyl theorem

Let G be a compact Lie group, and let p be its invariant measure. The theorem of
Peter-Weyl gives an orthonormal basis of the complex Hilbert space L?(G). We recall
that by definition, L?(G) is just the completion of the space C°(G) of continuous complex
valued functions on G with respect to the norm associated to the inner product given by
(f1, fo) = fG fifop. In order to show that a family f; (i in some set I) is an orthonormal
basis, it is enough to show that (f;, f;) is 1 is ¢ = j and 0 if ¢ # j, and that the set of f; is
dense. The f; that are used are “matrix coefficients” of the irreducible representations of
GG, a notion that we will now explain.

Since we are dealing with hermitian inner products, let us choose them so that they
are linear in the first variable, and anti-linear in the second, i.e., (Az,y) = A(z,y), and
(y,x) = W Then, if V' is a finite dimensional complex vector space with inner product

(-,-) and with orthonormal basis e = (e, ... ,€4), then we have, for every v in V:
v = Z(v, €i)e;.
i
Similarly, if f: V' — W is a linear map between finite dimensional complex vector spaces

with orthonormal bases v and w, then we have f(v;) = >_;(f(vi), wj)w;, so that:

Mat(f, v, w):; = (f(vi), wj),

where Mat(f, v, w) denotes the matrix of f with respect to v and w. In particular, if V' is
a finite dimensional complex representation of a group G, and if (-, -) is an inner product
on V and v an orthonormal basis of V, then each g in G gives an element, say p(g),
of GL(V), and we have:

Mat(p(g),v)i; = ((p(9))vi, v))-

12.1 Theorem. (Peter-Weyl) Let G be a compact Lie group, and let i be its invariant
measure. Let I be the set of isomorphism classes of finite dimensional irreducible complex
representations of G. For each i in I, let V; be an irreducible representation in the isomor-
phism class i, let (-,-) be an invariant inner product on V; and let v; = (v;1,... ,v;4;) be
an orthonormal basis of V;. For each (i,j,k) with 1 < j,k < d;, let f; i be the (j,k)th
matrix coefficient on G: f; ;1(g9) = (guvi ;, vix). Then the \/d;f; ;1 form an orthonomal basis
of L*(G). In more intrinsic terms: L?(G) is isomorphic, viewed as a representation of G via
the action of G on itself by right translations, to the Hilbertian direct sum of the End¢(V),
where V' runs through the set of isomorphism classes of irreducible representations.
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12.2 Remark. We should note that the theorem of Peter-Weyl as we state it is not the
general case: it is valid for compact topological groups. We will prove that the f; ;; is an
orthonormal family (the proof of that works for compact topological groups and just uses
the Haar measure. In the case of compact Lie groups embedded in some GL,,(C), we will
prove that the family is a Hilbert basis, i.e., that the subspace that it generates is dense
in L?(G). By classifying the compact Lie groups, one can see that they always admit a
faithful finite dimensional representation (we will not do that).

We note that not every compact group admits an embedding into some GL,(C). For
example, the infinite product (Z/2Z)N, with its product topology, is a compact group that
does not admit such an embedding, because if it would, it would be a Lie group by the

Theorem of Cartan and von Neumann.

We begin with proving that the family of functions f; ; is orthonormal, a statement that

is known under the name “Schur’s orthogonality relations”.

12.3 Proposition. Let G be a compact Lie group, p its invariant measure, and V and V'

two irreducible representations, with invariant inner products denoted by (-,-). Let u and
v be in V, and let u' and v' be in V'. Then:

/ (gu,v){(gu',v")pp =0 if V is not isomorphic to V',
9€eG

() )

ifV =V,
dim(V) itV =v

Proof. Let f: V — V' be any linear map. Then let F': V — V' be the map obtained by
averaging f for the action of G on Hom¢(V, V'):

F(z) = /EGg(f(g_lx)),u, for all z in V.
9

In terms of the action of G on Hom¢(V, V'), we simply have F' = fgeG(gF)u. Then, by
the invariance of u, we have gF' = F. Hence F' is a morphism of representations. Hence
F=0if V and V' are not isomorphic.

Now suppose that V' is not isomorphic to V' and take f as follows: f(z) = (z,u)u’.
Then we have F' = 0, so that:

0= (F(o),0) = ([

geG

:/ <<g_lvvu>ulag_lvl>:u' :/ (g_lv,u)<u', g_lvl>,u‘ = <QU,U><QU',U'>M-
geqG geG geqG

9(f(g~ ), ') = / (9(f(g7'v)),v"yu = /EG<f(g_1U),g_1v'),u

geG
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Now suppose that V = V'. We take f: V — V as before: z — (z,u)u’. Then F = Aidy

for some A\ in C. But then we have:

A-dim(V) = tr(F) = tr ( / Eg(g-f)u> — [ g€ Gulgru- / _ulfu= ()

= (v, u).

(To see the last equality, use that V = C-u/ @ u'".) So we see that A = (u',u)/ dim(V).
Now compute:

(u,u")(v,v" (', u)

dim(V) ~ dim(V) (0, 0") = Mo, v') = (F(v),v) = </geGg(f(g‘1v))u, v’>
:/gea<g(f(glv))’vl)“:/geG<f(g1”)’91“%:/ ({9~ v, upu', g 0 )

geaG

= [ e gt u= | ot = [ Gt

geG

d

As we remarked, this proposition proves that the family of f; ; x as in the Peter-Weyl the-
orem is orthonormal. In order to prove the Peter-Weyl theorem, it therefore suffices to
prove that the subspace F of L?(G) that it generates is dense. An important step in this
direction is to show that E is a C-subalgebra, closed under complex conjugation. These
two properties are consequences of two very important constructions with representations:
tensor products and dualization. We have already seen dualization, and we have already
used the tensor product to extend scalars from a field & to an algebraic closure k; complex-
ification of real vector spaces is usually the first example that one encounters. In order to
be able to compute with tensor products of representations, we include a small section on
tensor products of vector spaces over a field. For details one may consult any sufficiently
advanced book on algebra, for example [Lang].

12.4 Tensor products of vector spaces over a field

Let k£ be a field. For V and W two k-vector spaces, we have the k-vector space V ®, W
(also denoted simply by V ® W). By construction, V ® W is equipped with a map:

R:VXW —VeW, (v,u)—vQuw.
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This map is k-bilinear, and is universal for that in the sense that if b: V x W — U is a
k-bilinear map (with U a k-vector space, of course), then there exists a unique k-linear
map b: V@ W — U such that b = bo ®. This universal property shows that the pair
(V®W, ®) is unique up to unique isomorphism. (The map ® is not surjective if dim(V) > 1
and dim(W) > 1, hence not every element of V@ W is of the form v ®w). In order to work
with tensor products (of vector spaces at least), it suffices to know the following properties.

12.4.1 Proposition. The tensor product has the following properties:

1. ifv = (v1,... ,Vdim(v)) and w = (wy, ..., Waimw)) are bases of V and W, then the
v; ® w; form a basis for V.® W. In particular dim(V ® W) = dim(V') dim(W). We
note that even though the bases v and w are ordered, the resulting basis of V@ W
is not naturally ordered, and in pratice it is often a bad idea to want to put an order

on it.

2. if f1: Vi — Vy and fo: Vo — Wsy are linear maps between k-vector spaces, then there
is a unique linear map

H® fo: Vi@V — W1 @ W,
such that for all vy in V; and vy in Vi we have (fi ® fa)(v1 @ v2) = f1(v1) @ fa(va).

3. if V is finite dimensional, then the unique linear map V* @ W — Homy(V, W)
induced by (I, w) — (v — l(v)w) is an isomorphism of k-vector spaces. For W =V,
this isomorphism makes the maps tr: End(V) — k and e: V* ® V. — k given by
(I,v) — l(v) correspond to each other.

4. if by and by are bilinear forms on Vi and V5, respectively, then there is a unique bilinear
form by ® by on Vi @ Vy such that (b & be)(v1 ® va, v] @ vh) = by(vy, v})ba(va, vhy) for
all vy, v} in V] and all v, v4y in Vo. If by and by are non degenerate, then so is by ® bs.

12.4.2 Exercise. Let f; and f; be endomorphisms of finite dimensional k-vector spaces
Vi and Va. Show that tr(f; ® fo) = tr(fi)tr(f2).

12.4.3 Definition. For k a field, and G a group acting on two k-vector spaces, we let GG
act on V @ W such that g- (v ® w) = (gv) ® (gw) for all v in V' and w in W. Then we call
V ® W the tensor product of the representations V' and W of G.

12.4.4 Exercise. Check that the isomorphism V*®@W — Homy(V, W) is an isomorphism
of representations, if V and W are representations of a group G.
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After these generalities on tensor products of vector spaces we return to the proof of the

Peter-Weyl theorem.

12.5 Proposition. The sub C-vector space E of L*(G) generated by the f;;x is a sub

C-algebra closed under complex conjugation.

Proof. We have to show that products and complex conjugates of the f; ; are in E, i.e.,
are linear combinations of the f; ;.. Let us start with the complex conjugates. Let i be
in I, and let 1 < j,k < d;. Let p; denote the morphism G — GL¢(V;) that gives the
action of G on V. Since (-,-) is G-invariant and the basis v; is orthonormal, the matrix

Mat(p;(g),v;) of each p;(g) with respect to v; is unitary. Hence we have:

Mat (pi(g), vi) = Mat(pi(g), vi) .

This means that f;;x(g) is the (j, k)th coefficient of the matrix of g acting on V;*, with
respect to the dual basis of v;. Let i’ be the element of I that corresponds to V*, and let
¢: Vi — V* be an isomorphism. The fact that ¢(vy) and v} are bases of the same vector
space then implies that fz—Jk is a linear combination of the fi , p,, with 1 <n,m < dy = d;.

For products, we argue basically in the same way. So let i; and i3 be in I. Then
the products fi, j, k:(9) fis.joke(g) are the coefficients of the matrix of the action of g on
Vi, ®Vi,, with respect to the basis formed by the v;, j, x, ® i, j» k.- As any finite dimensional
representation of G, V;, ® V;, decomposes into a direct product of irreducible ones, i.e.,

there are r > 3, i3,... ,4, in I, and an isomorphism:
¢: V;3®®‘/Z’I‘ L)‘/;l ®‘/;2

It follows that the matrix coefficients f;, j, &, fis,jo.k. are linear combinations of those of the
Vi, 3<j<r. 0

12.6 Proof of the Peter-Weyl theorem for subgroups of GL,(C).

Let G be a compact subgroup of some GL,(C). Let I etc. be as in Theorem 12.1. By
Proposition 12.3 the f; ;; form an orthonormal family. By Proposition 12.5, the sub C-
vector space E of L?(G) that they generate is a sub C-algebra, stable under complex
conjugation. It just remains to show that E is dense. But now we use the coordinate
functions z;;, 1 < 4,5 < n, of GL,(C). These z;; are linear combinations of the f;;y,
hence are in E. But then we can apply the Stone-Weierstrass theorem, that tells us that
any continuous complex valued function f on a compact subset C' of C" is the limit, for
the sup norm, of a sequence of polynomials. It follows that E is dense in L?(G), because

its subspace of continuous functions is dense (for the L?-norm).
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13 Characters, the space of class functions, and the

decomposition of some tensor products

In order to compute in a simple way with representations of a compact Lie group, it is very
useful to consider its character. To motivate the definition, let us first look at the case of a
finite dimensional C-vector space V with a given diagonalisable endormorphism f. Then
we have the result that the conjugacy classe of such an f consist precisely of the set of
diagonalisable f’ that have the same characteristic polynomial as f has. The coefficients of
non maximal degree of the characteristic polynomial Py of f are (up to signs) the elemen-
tary symmetric functions of the roots A1,... , Aq (d = dim(V))) of P;. Newton’s identities
show that these coefficients can be expressed a polynomials with rational coefficients in
the Y-, \F, 1 <k < d. But >, \¥ is just the trace of f* (clear with respect to a basis with
respect to which f is diagonal, or even just upper triangular). So in fact, the conjugacy
class of f is determined by the traces of the powers of f.

Suppose now that G is a group, and p: G — GL¢(V) a representation on a finite
dimensional C-vector space V. For ¢g in G, the conjugacy class of p(g) in GL¢(V) is
determined by the traces of the p(g*). As we will see, the traces of the p(g) determine even
the isomorphism class of V', if G is a compact Lie group. This is a good motivation for the
following definition.

13.1 Definition. Let p: G — GL¢(V) be a representation of a group on a finite dimen-
sional C-vector space. Then we define the character of p to be the function y = xy: G — C,
x(g) = tr(p(g)). We note that if V' and V"’ are isomorphic representations, then xy = xy-.

13.2 Exercise. Show that the character of the tensor product of two representations is
the product of the characters.

The basis results about the relation between representations of compact Lie groups and

their characters are given in the following theorem.

13.3 Theorem. Let G be a compact Lie group, and let j be its invariant probability
measure. Let I be the set of isomorphism classes of irreducible complex representations
of G, and for each i in I let V; be a representation in the classi. Let x; denote the character
of V;. Then the x; form an orthonormal basis of the closed subspace L*(G)% of L*(G) that
consists of elements that are invariant under the action of conjugation by G on itself. (The

space L?(G)¢ is called the space of class functions on G.) If V is a complex representation
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of G, then we have:

geG

In particular, two finite dimensional complex representations V and W of G are isomorphic
if and only if their characters are equal. Moreover, a complex representation V of G is
irreducible if and only if {xv,xv) = 1.

Proof. Let us prove that the y; form an orthonormal basis of L?(G)¢. First of all, any

character xy is in L?(G)“ because we have, for all z and y in G:

xv(zyz ™) = tr(p(zyz ")) = tr(p(z)p(y)p(z) ) = tr(p(y)) = xv(y)-

Let us now show that the x; form an orthonormal family. We compute, using Schur’s
orthogonality relations, for ¢ and 7 in I:

<Xian>:/ Xi(g / sz kaPg 9k = Z/ Pi(9)kkpi(9)1ipt
9eG 9

€G3

= 0y, ;/_qEG 1pi(9) k|1 = i dlm(\/;)dim(vi) 8i s

where the matrix coefficients are taken with respect to orthonormal bases of V; and V},
and where §; ; is zero if i # j and one if ¢ = j.

In order to prove that the y; form a Hilbert basis of L2(G)Y, it suffices to prove that, for
every i in I, the subspace Homc(V;, V;)¢ is of dimension one, and hence generated by ;.
But this is just Schur’s Lemma, that says that Home(V;, V;)¢ = C-idy;.

The proof of the second statement is very simple. Let V' be a finite dimensional complex
representation of G. Then V is isomorphic to a direct sum of irreducible representations,
say to the direct sum of V", with n; non-negative integers (almost all zero). Then, by

comparing traces of elements of g on V' and the direct sum, one gets the result. O

As an application, we will now decompose the tensor products of pairs of irreducible

representations of SUs(R).

13.4 Example. Proposition 11.5.1 describes the intersections of the conjugacy classes of
SU2(R) with the diagonal subgroup 7', and gives an isomorphism between the diagonal

subgroup and S'. Consequently, we can view a class function on SUy(R) as a function f
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on S! that is invariant under inversion: f(z~') = f(z) for all x in S'. One computes that

if x4 denotes the character of C[z, y]4, then:
Xg ="+t T =
where ¢ denotes the coordinate function on S'.

13.5 Theorem. (Clebsch-Gordon) As representations of SUs(R) (and hence also as
representations of SLy(C) and of Lie(SLy(C))) we have, for all n > 0 and m > 0:

Clz,yln ®Clz,yln =2 € Clz, gl
i o)

Proof. We will show that both sides have the same character. Given what we already
know, this means that we have to prove that:

gl _gon—l gmAl _ pomed tk+1 _ tikil
t—t1 =t t—t1
[n—m|<k<nt+m
d=n+m (2)

But this identity is clear if we suppose that n > m and write the second factor as
tm+tm—2+-_‘+t—m. D

13.6 The space L?(G) as a representation of G x G

We start with a generality. If G; and G, are groups that act on k-vector spaces Vi and V5,
then we let G; X Gy act on Vi ® V5 by (g1, 92)(v1 ® v2) = (g1v1) ® (gav2).

13.6.1 Proposition. Let Gy and G5 be compact Lie groups. If V; and V5 are irreducible
representations of G1 and G5, then V := V; ® V4 is an irreducible representation of G1 X G.

Every irreducible representation of G; X (G5 is of that form.

Proof. Observe first that xv(g1,92) = x1(91)x2(g2). That gives:

<XV:XV> =/ XV(91792)XV(91792)M1H2 =/ Xl(gl)/ﬁl / X2(92)M2
(91,92)€G1 XG> g 92€G2

1€G1

= (x1,x1) - (X2, x2) = 1.

Hence V is irreducible. The fact that the matrix coefficients of the V;-®V}' , where the V; and
V;-' run through the irreducible representations of G; and G5, generate a dense subspace of
L*(G; x Gy), implies that all irreducible representations of G; X G are of that form (use
the Peter-Weyl theorem for all three groups). d
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13.6.2 Remark. Is it possible to give a proof of the proposition that does not use char-
acters and that does not use the Peter-Weyl theorem?

Let now G be a compact Lie group. In order to understand why L?*(G), viewed as a
representation of G via the action of G on itself via right translations, is isomorphic to the
(Hilbert) sum of the End¢(V;), we note that actually the group G x G acts from the right
on G via (z,y) - z = 27 zy. This induces an action of G x G on C°(G) by:

((z,y) - )z = f(z" 2y).

This action extends to the completion L?(G). It is not hard to see that the decomposi-
tion L?(G) = &; Endc(V;) is stable for this action, and that End¢(V;) is the irreducible
representation V;* ® V; of G X G, where G x G acts as (z,y)- (I ® v) = () ® (yv).
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14 Some equidistribution results

The aim of this section is to first compute the measure on the set of conjugacy classes
of SU(R) that is induced from the Haar measure, using the Peter-Weyl theorem and the
characters of the irreducible representations. Secondly, we will derive that certain powers

of elements of SUy(R) are equidistributed in the conjugacy classes.

14.1 Second computation of the distribution of SU;(R) into con-

jugacy classes

As we have seen in Example 13.4, to give a continuous class function on G = SU,(R)
is the same as giving a continuous function on S! = T, invariant under a — a . As
in Section 11.5, but now for S' instead of [—1,1], we define a measure y” on S' by the

property that for each continuous class function f: G — C we have:

/Sl flan" = /Gfu-

Of course, the group S' also has its Haar measure, and we will write it as 5-|dt/t| = 5-|d¢|,

L.
where ¢ = e?’ is the coordinate function on S'. Hence there is a unique function h: S! — C
such that:

1
" __ .
wo= h_27r |dt/t].

We will now compute this function h from a few properties of it that we know. First of all,
we know that h is real valued (since integrating real valued functions gives real results).
Secondly, we know that h(a) = h(a™?!) for all @ € S*. Thirdly, we know that for all d; and

dy non negative integers we have:

1
(141 [ o] = (v )
sl m

where the x4 are the characters of the irreducible representations of G. We write:

h=Y hat",

neZ

with the A, in C. The fact that h(z) is real for all z € S! gives:

Z hn2" = h(z) = h(z) = Zh_nz” = Zh_nz_”, so that h, = h_,, for all n.

The fact that h(z™!) = h(z) for all z in S' shows that h,, = h_,, for all n, so that we have,
for all n:
hy = h_na hp = h_p.
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Applying (14.1.1) with d; = dy = 0 gives:

1 dt
1=— hn, t”
2m ~ 2%rm /Sl ;

Applying it with d; = 0 and dy = 1, 2 etc. gives hy = h_1 =0, hy = h_y = —1/2, and

hn, = 0 for |n| > 3. Hence we have:

1 1 9 o 1 1 “1y2 4
- h—- = — — — —_— = —= - a_ dt t
holdtft] = 5(2 = 2 = t7%) o —|dt/1] 5t —17) 5 ldt/t]

=—;%mm»—4M|-wM)wm
It is a simple computation that this is consistent with the measure on [—1, 1] that we
computed by hand (it is the projection to the z-axis of the measure that we have here
on St). (Use that x = cos(¢), hence |dz| = sin(¢)|d¢|.) What is particularly interesting
in the formulas that we have obtained here is that u” is (2 — t* — ¢72)/2 times the Haar
measure on S!', i.e., a Laurent polynomial times that measure. The following result is

implied immediately by this formula, noting that the only exponents that occur are 0, 2
and —2.

14.1.2 Theorem. Let n be an integer, not in {—2,—1,0,1,2}. Then the nth powers of
the elements of SUy(R) are equidistributed in the conjugacy classes of SUy(R), in the sense

that for every continuous class function f on SUy(R) we have:

= [ gl

Proof. Let n be an integer, not in {0, £1,+2}. It suffices to show that for all continuous
functions f: S' — C we have:
dz dz
2 _ _ -2 — n
2€S1 Ut ) (2-7-2 )2i7rz /zesl I )2i7rz

As the fi, k € Z, given by fi.(2) = 2* are a basis of L?(S!), it suffices to show the equality
for the fi, in which case it is clear.

Another more probabilistic way of proving the result is to argue as follows. The new
measure on S' that we get is the image of x4’ under the map F,: S* — S!, z — 2™; we

denote it by F,, .u". As F, is a morphism of groups, with kernel the group u, of nth roots

1
n § n
Ceun

where the multiplication is convolution, and where the J. are Dirac measures. The fact
that > .., ¢ =0 implies the result. O

of unity, we have:
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15 Quelques exercices; exemple pour ’examen.

Tous les documents seront autorisés. La durée de ’examen sera de 3 heures.

1. Donner une base e = (ey, ey, ...) de 'algebre de Lie du groupe de Lie réel SO3(R),

et exprimer les [e;, e;] en combinaisons linéaires des ey.

2. Soit b la forme bilinéaire sur R® donnée par:

b(x,y) = v'uy, avec u= (_81 g g) )

Notons G le sous-groupe de GL3(R) des g tels qui stabilisent b, c’est & dire, tels que

b(gz,gy) = b(z,y) pour tous les x et y dans R®. C’est un sous-groupe de Lie de

GL;(R) par le théoréeme de Cartan et von Neumann.

(a) Montrer que les algébres de Lie complexes C®g Lie(G) et CRg Lie(SO3(R)) sont
isomorphes. (Indication: le plus simple est d’argumenter en termes de formes

bilinéaires complexes.) Cette partie est peut-étre dure; elle ne sert pas dans le

reste, mais vous pouvez en conclure que GG est de dimension 3.

(b) Calculer une base f = (fi,...) de Lie(G) vue comme sous espace de M3(R), et

exprimer les [f;, f;] en combinaisons linéaires des f;.

(c) Calculer exp(ta) pour tout ¢t dans R, et pour:

010
a=1100].
000

(d) Est-ce que G est compact? (Indication: utiliser la partie précédente, ou con-

sidérer directement l'intersection de G avec le sous-groupe GLy(R) de GL3(R)

plongé par a — (&9).)

3. Combien de représentations complexes irréductibles de dimension 12 (& isomorphisme

pres) ont SUy(R) x SU3(R) et SO4(R)?

4. En quelles représentations irréductibles et avec quelles multiplicités se décompose la

représentation V®V de SO3(R), avec V = C? la représentation fournie par I'inclusion

de SO3(R) dans GL3(C).
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16 Further theory

This part of the notes consists of some indications about the general theory that we did
not discuss in the course; it is not part of the material that will be tested in the exam.
The material of this section can be found in any sufficiently advanced text on Lie groups,
as for example [Vara].

Let L be a Lie algebra (real or complex). Then L has a maximal sub Lie algebra S
that is an ideal and that is solvable: it has a filtration S = S° > S > - - with S* = 0 for 4
sufficiently large such that each S*™! is an ideal in S® with S?/S**! commutative (see [Vara,
Ch. 3, §3.8]). This S is called the solvable radical of L, and it is denoted rad(L). A Lie
algebra L is called semisimpleif rad(L) = 0. Hence in general a Lie algebra L is an eztension
of its maximal semisimple quotient L/rad(L) by its maximal solvable ideal rad(L). In fact,
L is even a semidirect product of L/rad(L) by rad(L) (Levi decomposition, see [Vara,
Ch. 3, § 3.14]).

The typical example of a solvable Lie algebra is the one of upper triangular matri-
ces. The finite dimensional complex representations of a solvable Lie algebra are upper
triangular, with respect to a suitable basis (this is a theorem of Lie, see [Vara, Ch. 3,
Thm. 3.7.3], or [Serl, Part I, Thm. 5.1]). Equivalently, all irreducible finite dimensional
complex representations of a solvable Lie algebra L are one dimensional.

The semisimple complex Lie algebras are classified as follows (see [Vara, Ch. 4]). Such
a Lie algebra L is the product of its minimal ideals L;, which are simple complex Lie
algebras. The simple complex Lie algebras have a particularly simple classification: they
arise in four series: A, (n > 1), B, (n >2), C,, (n > 3) and D,, (n > 4), and there are six
exceptional ones: G, Fy, Fg, 7 and Eg. The four series are also called the classical ones,
as they correspond to the groups SL,,(C), SOg,:1(C), Sp,,(C), and SO, (C).

The classification of the real semisimple Lie algebras is a bit harder, but well known,
and obtained from the complex case

These results on Lie algebras that we have cited here have of course their consequences
for Lie groups (recall that G — Lie(G) is an equivalence between Lie algebras and sim-
ply connected connected Lie groups). The theory of finite dimensional representations of
semisimple Lie groups is well known (see [Vara, Ch. 4]). The main point is that each
such representation is a direct sum of irreducible ones, and that the irreducible ones are
classified by their highest weight.

Just to give an example, the equidistribution result that we have seen in Section 14 has
a simple analog for arbitrary compact connected semisimple Lie groups; one can deduce it
from [Vara, Ch. 4, Cor. 4.13.8] and [Vara, Ch. 4,(4.13.9)].
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In order to finish the discussion on the general theory, it is worthwile to note that
there are other fields than R and C, that are important (in particular in number theory for
example), such as finite fields and the p-adic fields Q,. The p-adic fields do have a norm
for which they are locally compact, and for them there does exist a theory of Lie groups
almost the same as what we have seen; see [Serl] for example. For finite fields, and in fact
for arbitrary fields, one has the theory of algebraic groups, where the differential geometry

is replaced by algebraic geometry. For an account of this, we recommend [Spri].
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17 Some physics

This section still has to be written. It will contain some results about an orthonormal basis
of L*(S?) obtained from the Peter-Weyl theorem, some application of that to the hydrogen
atom, and a short description of the representation theory of SU3(R) behind Gell-Man’s

quark model.
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Examen “Groupes et algebres de Lie”, DEA Mathéma-
tiques, 27/03/2001.

Tous les documents sont autorisés, ainsi que l'utilisation des calculettes. La durée de

I’'examen est de 3 heures.

1. Soit » > 1 un entier. Soit G un sous-groupe de Lie de GL,(R), et soit L son
algeébre de Lie, vue comme sous-algebre de Lie de M,(R). L’action de G sur lui-
méme par conjugaison fixe I’élément neutre 1 de G, donc induit une action sur L car
L est 'espace tangent de G en 1. Ceci donne donc un morphisme p: G — GLg(L) de
groupes de Lie. Comme Lie est un foncteur, ceci nous donne un morphisme d’algebres
de Lie

Lie(p): L — Endg(L).

Montrer que pour tout = et y dans L on a: (Lie(p)x)y = [z, y]. Indication: calculer

ce que fait la conjugaison par 1 4 ex sur y, pour € dans R petit.

2. Notons G := SLy(R) et L := Lie(SLy(R)). Soit p: G — GLgr(L) la représentation
de G sur L donnée par I'action de GG sur lui-méme comme dans 1’exercice précédent.
Donner la décomposition en irréductibles de la représentation L, c’est a dire, les
multiplicités des Rz, y]4. Incidation: utiliser le résultat de I’exercice précédent, et

appliquer ce que le cours dit sur les représentations de SLy(R).

3. Soit h la forme hermitienne sur C? donnée par h(x,y) = 7,91 — 2272. Soit G le

sous-groupe de GLy(C) des g tels que h(gz, gy) = h(z,y) pour tous z et y dans C?.

(a) Montrer que G est un sous-groupe fermé de GLy(C). C’est donc un groupe de

Lie réel.
(b) Calculer la dimension de G.

(c) Est-ce que G est compact?

4. Soit V = C? la représentation complexe de SO3(R) donnée par Iinclusion de SO3(R)
dans GL3(C). En quelles représentations irréductibles et avec quelles multiplicités se
décompose V @ V ® V7 Indication: penser a SU3(R), et utiliser que V@V Q@ V est
la méme chose que (V@ V)@ V.



5. (a) Montrer que SLo(C)/{1, —1} et SO3(C) sont isomorphes. Indication: considérer
une représentation convenable V' de SLy(C) et montrer que SLy(C) fixe une

forme quadratique de rang maximal sur V.

(b) Est-ce que SLy(R)/{1,—1} est isomorphe & SO3(R)?



Exam “Lie groups and Lie algebras”, DEA Mathéma-
tiques, 27/03/2001.

All texts can be used during the exam. Calculators too. The exam lasts three hours.

1. Let n > 1 be an integer. Let G be a sub Lie group of GL,(R), and let L be its
Lie algebra, viewed as a sub Lie algebra of M, (R). The action of G on itself by
conjugation fixes the identity element 1 of GG, hence induces an action on L because
L is the tangent space of G at 1. This gives a morphism p: G — GLg(L) of Lie
groups. As Lie is a functor, this gives us a morphism of Lie algebras

Lie(p): L — Endg(L).

Show that for all  and y in L one has: (Lie(p)z)y = [z,y]. Hint: compute the
conjugation of 1 4+ ex on y, for € in R small.

2. Let G := SLy(R) and L := Lie(SLy(R)). Let p: G — GLg(L) be the representation
of G on L given by the action of G on itself as in the preceding exercise. Give
the decomposition in irreducibles of the representation L, i.e., the multiplicities of
the Rz, y];. Hint: use the result of the preceding exercise, and apply what we have

seen in the course on the representations of SLy(R).

3. Let h be the Hermitian form on C? given by h(z,y) = 7191 — 22%5. Let G be the
subgroup of GLy(C) consisting of the g such that h(gx, gy) = h(x,y) for all z and y

in C2.
(a) Show that G is a closed subgroup of GLy(C). Hence it is a real Lie group.

(b) Compute the dimension of G.
(c) Is G compact?

4. Let V = C® be the complex representation of SO3(R) given by the inclusion of
SO3(R) in GL3(C). In which irreducible representations and with which multiplicities
decomposes V ® V ® V? Hint: think of SUy(R), and use that V @ V ® V is the same
as (VoV)eV.



5. (a) Show that SLy(C)/{1, -1} and SO3(C) are isomorphic. Hint: consider a suitable
representation V' of SLy(C) and show that SLy(C) fixes a quadratic form of

maximal rank on V.

(b) Is SLy(R)/{1,—1} isomorphic to SO3(R)?



Corrigé de I’Examen du 27/03/2001.

1. On note que pour g dans G la conjugaison par g sur GL,(R) induit la conjugaison
par g sur M,(R), donc que lautomorphisme p(g) du sous-espace L de M,(R) est
donné par conjugaison par g. On a (1 +ex)™! =1 — ez + O(e?), donc:

(1+ex)y(l1+ex)™t =y +e(zy — yx) + O(?).

Cela montre que (Lie(p)z)y = [z, y].

2. Dans la section 10 on trouve que L a une base (h,ay,a_), avec:
[h: a'-l-] = 2a+7 [h: a’—] = —QCL_, [a’+7 CI,_] = h.

Il en résulte que le plus grand poids de h agissant sur L est 2, et que a, est un
“highest weight vector”. Donc, par la Proposition 10.4.3, L contient une copie de la
représentation R[x, y]o. Comme L et Rz, y]o sont tous les deux de dimension 3, L et
R[z, y]» sont des représentations isomorphes de G.

3. Notons u := (§ % ). On a alors, pour tout = et y dans C?:
h(z,y) = z'u 7.

Un élément g de GLo(C) est dans G si et seulement si g'ug = u. Ceci montre que
G est un sous-groupe fermé de GLy(C), et donc, par le théoreme de Cartan et Von
Neumann, un groupe de Lie réel. Pour déterminer la dimension de G, calculons son

algebre de Lie L. Soit a dans My(C). Pour ¢ réel et petit on a:
(14 ea)u(l+ea) = (1 +ca')u(l +ca) = u+ e(a'u + ua) + O(e?).

Donc a € L si et seulement si a'u + ua = 0. Un calcul donne que cette condition est

équivalente a: a11 € iR, azo € iR, et az; = @1 2. On trouve une R-base:
((§8),(89),(96), (35D

Donc G est de dimension 4. Comme G contient tous les exp(#(

__ rcosh(¢) sinh()
(1))) o (sinh((t) cosh(t) )
).

0
1
(avec t dans R), G n’est pas compacte car non borné dans My (C



4.

d.

Notons que SO3(R) = SU(R)/{1,—1}, donc les représentations de SO3(R) sont
celles de SUy(R) ol —1 opeére trivialement. Montrons d’abord que V = C[z,y]s en
tant que représentation de SU5(R). Comme V est de dimension 3, il suffit de montrer
que V est irréductible (Clz, y], est la seule représentation irréductible de dimension 3
de SU(R)). Comme SO3(R) fixe le produit scalaire (hermitien) standard de V, il
suffit de montrer que dans V il n’y a pas de droite complexe fixé par SO3(R). Pour
une droite Cv de V = C? il existe toujours un élément w de R* tel que Cw # Cv et
tel que (v, w) # 0; les éléments de SO3(R) d’axe Rw ne fixent pas Cuv.

Donc V = C[z, y];. Par le Théoreme 13.5 on a:
(C[iﬁ, y]Q & (C[.Z', y]? = C[‘Ia y]4 S (C[.’L', y]Q D C[$, y]Oa
donc, encore par le méme Théoreme:

(V ® V) RV = (C[.T, y]4 ® C[xa y]?) S ((C[mvy]Q ® C[xvy]Q) ©® ((C[.T, y]O ® (C[.Z‘, y]Q)
= (C[.T, y]ﬁ @ (C[.Z‘, y]?l S C[x: y]g S C[xvy]o-

(a) Nous choisissons pour représentation V' := Lie(SLy(C)) de SLy(C), ou Iaction
est induite par conjugaison comme dans l’exercice 1. Notons p le morphisme
SLy(C) — GL¢ (V) correspondant. Comme SLo(C) est connexe, ker(p) est égal
au centre de SLy(C), donc & {1,—1}. Comme 'action sur V' C M;y(C) est
par conjugaison, le déterminant est fixé. Visiblement, (§ ) — —a® — bc est
une forme quadratique de rang 3 sur V. Par rapport a une base convenable,
la forme bilinéaire symétrique associée a cette forme quadratique est donnée
par la matrice identité, ce qui nous donne un morphisme f: SLy(C) — O3(C)
avec ker(f) = {1,—1}. Pour g dans O3(C) on a det(g) = =+1, donc, par
connexité de SLy(C), f a son image dans SO3(C). Comme SO3(C) est con-
nexe (ceci mérite quelques détails) et de méme dimension que SLy(C), on a
SLy(C)/{1, -1} = im(f) = SO3(C).

On peut aussi prendre V' := C[z, y]o. Dans ce cas, SLy(C) fixe la forme quadra-

tique az? + bxy + cy? — b — 4ac, le discriminant.

(b) Non, car sinon SLy(R)/{1, —1} serait connexe, donc SLy(R) aussi.

Le baréme appliqué est: 2+345+5+5=20.
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