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1 January 8, 1996

The aim of this course is to construct the jacobian varieties associated to smooth geometrically
irreducible projective curves over arbitrary fields. We will start with the definition of smooth geo-
metrically irreducible projective curves over a field and the study of some fundamental properties
of these objects. Our time is very limited (only 20 hours of lectures), so many details will not be
discussed in the lectures. The lectures are therefore very incomplete, and the students taking this
course are advised to fill the gaps as much as possible using the book [Har] by Hartshorne (GTM
52, Springer Verlag) and the text [Mil] by Milne in the book “Arithmetic Geometry”, Springer
Verlag, edited by Cornell and Silverman.

1.1 Definition. Let S be a scheme. A scheme over S, also called S-scheme, is a morphism of
schemes f : X → S. In the case where S is affine, say S = Spec(A), we will also write A-
scheme instead of S-scheme. A morphism of S-schemes from f : X → S to g : Y → S is a
morphism of schemes h : X → Y such that f = g◦h. This gives us the category (Sch/S) of
S-schemes.

1.2 Remark. This construction can be carried out in every category. One can also define what is
an object under a given object. For example: the category of A-algebras. By abuse of language
we will often speak of the S-scheme X , without mentioning the morphism f .

1.3 Exercise. Show that every scheme is, in a unique way, a Z-scheme; show that (Sch) is
isomorphic to (Sch/Z). Show that (Sch/Q) is isomorphic to the full subcategory of (Sch) whose
objects are those schemes X such that for every non-zero integer n the morphism of sheaves
OX → OX , f 7→ nf , is an isomorphism. Let X be a scheme; give a bijection between the set of
morphisms from X to Spec(Z[

√
2]) and the set {f ∈ OX(X) | f 2 = 2}. Give an example of a

scheme that does not admit a morphism to Spec(Z[
√

2]).

1.4 Definition. An A-scheme f : X → Spec(A) is of finite type if there exists a finite covering
of X by open affines Ui = Spec(Ai), such that every Ai is an A-algebra of finite type. An S-
scheme f : X → S is of finite type if there exists a covering of S by affine opens Si such that for
all i the Si-scheme f−1Si is of finite type.

1.5 Exercise. Do exercises 3.1, 3.2 et 3.3 of [Har, II].

1.6 Definition. Consider an S-scheme X . Let T be an S-scheme. A point of X with values in
T is a morphism of S-schemes P : T → X . The set of these points will be denoted X(T ). A
morphism T ′ → T of S-schemes induces a map X(T ) → X(T ′). This gives a contravariant
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functor (Sch/S) → (Set), that we will denote by X and that is nothing else than the functor
Hom(∗, X).

1.7 Exercise. Take S := Spec(Z). Let A1
Z be the affine line over Z: A1

Z := Spec(Z[x]). Give
an isomorphism between the functor A1

Z and the functor Γ: X 7→ OX(X). Find a scheme
representing the functor (multiplicative group) Gm : X 7→ OX(X)∗. Give a contravariant functor
F : (Sch)→ (Set) that is not representable.

Let k be a field and X a k-scheme. Let k → K be an extension of fields. Show that giving a
point of X with values in K is equivalent to giving a point x (of the underlying set) of X and a
morphism of k-algebras k(x)→ K, where k(x) is the residue field OX,x/mx of x. Special case:
K = k; the set X(k), that one can identify with {x ∈ X | k(x) = k}, is called the set of rational
points of X .

Let k be a field and X a k-scheme of finite type. Let x be in X . Show that x is closed if and
only if k(x) is a finite extension of k. Show that the set of closed points of X is dense. Give an
example of a k-scheme in which the set of closed points is not dense. Also give an example of a
field k and a k-scheme X , of finite type, in which the set of rational points is not dense.

1.8 Construction of Pn
A

Let A be a ring and n ≥ 0. We consider the A-algebra B := A[x0, . . . , xn], graded by the total
degree: B = ⊕d≥0Bd, with Bd the free A-module with basis the monomials of degree d. For f
a homogeneous element of some degree d > 0, i.e., f in Bd, we write Bf,0 for the subring of
degree zero elements in the localization Bf = B[f−1] (Bf is graded as follows: deg(b/fm) =

deg(b)−m deg(f), for b/fm 6= 0). For example, Bx0,0 is the A-algebra A[x1/x0, . . . , xn/x0] of
polynomials in n variables. For such an f , we put D+(f) := Spec(Bf,0); note that it is an affine
scheme.

Let now f and g be two homogeneous elements of B of degree > 0. Put h := fg. Then we
have a natural morphism Bf → Bh, compatible with graduations, hence also a morphism of A-
algebras Bf,0 → Bh,0. Put z := gdeg(f)/fdeg(g); this is an element of Bf,0. The image of z in Bh,0

is invertible, hence we have a morphism (Bf,0)z → Bh,0. This morphism is an isomorphism,
because (Bf,0)z = ((Bf )z)0 = Bh,0, where the first equality results from the more general
statement: let z be an element of degree zero in a graded ring R, then Rz,0 = (R0)z. This shows
that D+(h) is a principal open of D+(f), and hence also of D+(g). We can now glue D+(f) and
D+(g) along D+(fg). We can even glue all the D+(f), for f homogeneous of degree > 0 (do
exercise 2.12 of [Har, II]). The A-scheme obtained by this construction is called the projective
space of dimension n over A, and is denoted PnA. This scheme is by construction the union of the
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open affine subschemes D+(f), and the intersection of D+(f) and D+(g) is D+(fg). In fact,
PnA is covered by the open affines D+(xi), which are all isomorphic to An

A, the affine space of
dimension n over A. See [Har, II.2] for another construction of PnA.

1.9 Remark. The construction of PnA that we have just seen generalises trivially to the case of
an arbitrary A-algebra S that is graded in positive degrees; the scheme thus obtained is called
the projective spectrum of S and is denoted Proj(S). The importance of projective spaces is that
we can use them to “compactify”. The following proposition is the analog of the theorem of
Liouville that says that every holomorphic function on a complex projective space is constant.

1.10 Exercise. Show that the A-scheme P0
A is equal to Spec(A). Give, for k a field and n ≥ 0,

a bijection between PnZ(k) and the set of one-dimensional subspaces of the k-vector space kn+1.

1.11 Proposition. Let A be a ring and n ≥ 0. Then OPn
A

(PnA) = A.

Proof. Put Ui := D+(xi) and Ui,j := Ui ∩ Uj = D+(xixj). Since OPn
A

is a sheaf, we have the
exact sequence:

(1.11.1) 0→ OPn
A

(PnA)→
∏
i

OPn
A

(Ui)→
∏
i,j

OPn
A

(Ui,j),

where s in OPn
A

(PnA) is mapped to i 7→ s|Ui
, and s in

∏
iOPn

A
(Ui) to (i, j) 7→ s(i)|Ui,j

− s(j)|Ui,j
.

The D+(f) are affine, hence OPn
A

(D+(f)) = Bf,0, in the notation of construction 1.8. Let s be
in the kernel of the last morphism. Then every s(i) can be written in the form fi/x

di
i , with fi

homogeneous of degree di. After multiplying every fi by a power of xi, we can suppose that all
the di are the same, say equal to d. The condition that s be in the kernel means that for all (i, j)

we have the relation fi/xdi − fj/xdj = 0 in Bxixj ,0, which is equivalent to fixdj = fjx
d
i in B2d.

The A-module B2d is free as A-module, with basis the monomials of degree 2d in x0, . . . , xn.
Take i and j distinct (the case n = 0 is left as an exercise). The only monomial that can occur
both at the left and the right is xdix

d
j . This implies that there exists an a in A such that for all i we

have fi = axdi . It follows that s(i) = a for all i. Conversely, it is clear that all such s are in the
kernel. �
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2 January 15, 1996

2.1 The sheaves O(r) on Pn
A

Let A be a ring, n ≥ 0 and r in Z. For f in B := A[x0, . . . , xn] homogeneous of degree> 0

we have the quasi-coherent OD+(f)-module B̃f,r, where Bf,r is the homogenous part of degree r
ofBf . These sheaves glue together in a natural way on PnA: for h = fg with g inB homogeneous
of degree > 0 we have Bh = (Bf )z, with z = gdeg(f)/fdeg(g) as in (1.8), which shows that Bh,r

is the localization with respect to z of the Bf,0-module Bf,r. The sheaves O(r) are locally free
OPn

A
-modules of rank one: the restriction of O(r) to D+(xi) is free with base xri .

2.1.1 Exercise. Show that O(r1) ⊗OPn
A
O(r2) is isomorphic to O(r1 + r2). Compute, as in the

proof of Proposition 1.11, bases for the free A-modulesO(r)(PnA). Conclude that, for n > 0 and
A 6= 0, the classes in Pic(PnA) of the O(r) are all distinct. Find Cartier divisors Dr on PnA such
that, in the notation of [Har, II, Prop. 6.13], L(Dr) is isormorphic to O(r) for all r.

2.2 Morphisms to Pn
A

Let f : X → Y be a morphism of ringed spaces. Let L be an invertible OY -module; then the
OX-module f ∗L is invertible. LetM be anOY -module. InterpretingM(Y ) as HomOY

(OY ,M)

(morphisms of OY -modules) one obtains a map f ∗ : M(Y ) → f ∗M(X), that we will denote
s 7→ f ∗(s). One has f ∗(s)x = sf(x).

Let X be a ringed space and L an invertible OX-module. For s in L(X) let D(s) be the
subset of x in X such that the germ sx of s in x generates the fibre Lx of L in x: Lx = OX,xsx.
This is an open subset of X . LetM be an OX-module and let si ∈ M(X), i ∈ I , be a set of
global sections. We say that the si generateM if the morphism of OX-modules ⊕i∈IOX →M
given by the si is surjective.

2.2.1 Exercise. Let A be a ring and n, r ≥ 0. Let f in A[x0, . . . , xn] be homogeneous of de-
gree r. We consider f as a global section of O(r) on PnA. Show that D+(f) and D(f) are
equal.

Let A be a ring and r ≥ 0 an integer. Let X be an A-scheme. We want to give a description of
PnA(X) which is close to the classical definition of Pn(k) for k a field. We will do that in two
steps.

First step (see also [Har, II, Thm. 7.1]). Let φ : X → PnA be a morphism of A-schemes. This
gives us the invertible OX-module L := φ∗O(1) and sections si := φ∗xi, 0 ≤ i ≤ n of L. Since
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the xi generateO(1), the si generate L. We have φ−1D+(xi) = D(si). We will now see that one
can reconstruct φ from L and the si.

So let L be an invertible OX-module, and s0, . . . , sn global sections generating L. For 0 ≤
i ≤ n we define a morphism φi from D(si) to D+(xi). Recall that D+(xi) is the spectrum of
A[{xj/xi | j 6= i}], hence to give φi is equivalent to giving n elements fi,j , i 6= j, of OX(D(si)).
For each pair (i, j) there exists a unique fi,j in OX(D(si)) such that sj|D(si) = fi,jsi|D(si); we
take these fi,j to define φi. (It is reasonable and useful to introduce the notation fi,j = sj/si.)
One verifies easily that the restrictions of φi and φj to D(si) ∩D(sj) = φ−1D+(xixj) coincide.
One also sees that if L and the si come from a φ as above, they give us back φ.

2.2.2 Exercise. Let L and L′ be invertible OX-modules, generated by global sections s0, . . . , sn

and s′0, . . . , s
′
n, respectively. Let φ and φ′ be the two morphisms from X to PnA obtained from

the construction above. Show that φ and φ′ are equal if and only if there exists an isomorphism
α : L → L′ such that for all i one has α(si) = s′i.

Step two. Let L be an invertible OX-module, generated by global sections s0, . . . , sn. On the
one hand, this gives us an element φ of PnA(X), and, on the other hand, a surjective morphism
f : On+1

X → L of OX-modules. Let L′ also be an invertible OX-module, generated by global
sections s′0, . . . , s

′
n, giving φ′ in PnA(X) and f ′ : On+1

X → L′. One sees that f and f ′, viewed
as quotients of On+1

X , are isomorphic if and only if φ = φ′. This implies that we have con-
structed an isomorphism between the functor PnA : (Sch/A) → (Set) and the Grassmannian
functor Grass(n+ 1, 1) that sends X to the set of locally free quotients of rank one of On+1

X .

2.3 Yoneda’s lemma

See also [EGA 1] (the Springer edition). Let C be a category. For every object X of C we have
the contravariant functor hX := Hom(∗, X) from C to (Set). Every morphism f : X → Y in C
induces, in a covariant way, a morphism of functors h(f) : hX → hY . Hence we can consider
h as a contravariant functor from C to the category Ĉ := Hom(Co, (Set)) whose objects are
the contravariant functors from C to (Set), and whose morphisms are morphisms of functors.
Yoneda’s lemma says that h is fully faithful: all the maps HomC(X, Y ) → HombC(hX , hY ) are
isomorphisms. In fact, the statement is even a bit more general; one has natural bijections:

(2.3.1) F (X) −̃→ HombC(hX , F ).

2.3.2 Exercise. Construct morphisms (of bifunctors) αX,F and βX,F , inverses of each other, es-
tablishing the bijections (2.3.1).
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Yoneda’s lemma shows that to construct a morphism from X to Y , it suffices to construct maps,
functorially in Z, of X(Z) to Y (Z). Of course, this is not at all a deep result (take Z := X),
but the idea to view objects of C as objects of Ĉ is very useful. The essential image of h, i.e., the
F that are isomorphic to some hX , is the collection of representable functors. Many problems
in algebraic geometry are related to the representability of certain functors. For example, the
jacobians that we want to construct in this course represent “relative” Picard functors.

2.4 Fibered products, base change

See also [EGA 1] (Springer edition). Let us consider the following diagram in a category C:
we have objects X , Y and S, and morphisms f : X → S and g : Y → S. A fibered product
of this diagram is then a triple (Z, f ′, g′), with Z in C, f ′ : Z → Y and g′ : Z → X , such that
f ◦g′ = g◦f ′ and which is universal for this property: for every such triple (Z ′, f ′′, g′′) there
exists a unique h : Z ′ → Z such that f ′′ = f ′◦h and g′′ = g′◦h. From this definiton it follows
immediately that (Z, f ′, g′) is defined up to unique isomorphism, so that we can speak of “the
fibered product”, denoted X ×S Y ; f ′ and g′ are called the projections on the second and first
factor, respectively. Fibered products do not always exists (exercise: give an example where it
does not exist). In the category of sets it exists always: it is the subset of X × Y consisting of
the (x, y) with f(x) = g(y). This explains the terminology: the fibre of Z over an element s of
S is the product Xs × Ys of the fibers of X and Y over s.

2.4.1 Exercise. Show that in the category (Top) of topological spaces fibered products always
exist. Convince yourself that in the category of differentiable manifolds the fibered product does
not always exist. Show that the fibered product is associative: (X ×S Y ) ×S Z is canonically
isomorphic to X ×S (Y ×S Z). Let C be a category, and Ĉ as in Section 2.3. Show that in Ĉ all
fibered products do exist, and that one has the formula (F ×G H)(X) = F (X)×G(X) H(X).

Of course, there is also the dual notion of fibered product; it is the notion of amalgamated sum.
For example, it exists in the category of commutative A-algebras: it is the tensor product.

A diagram:

(2.4.2)

Z
f ′→ Y

g′ ↓ g ↓
X

f→ S

is called cartesian if (Z, f ′, g′) is a fibered product of the rest of the diagram.
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2.4.3 Exercise. Show that the diagram 2.4.2 is cartesian if and only if its image in Ĉ is. Consider
the diagram:

A → B → C

↓ ↓ � ↓
D → E → F

The square indicates that the square with corners B, C, E, and F is cartesian. Show that the
square with cornersA,B,D, andE is cartesian if and only if this is so for the square with corners
A, C, D, and F . This fact can also be expressed in the formula: D ×E (E ×F C) = D ×F C.

In (Sch) all fibered products exist, see [Har, II, Thm. 3.3] for a proof. That proof proceeds as
follows. Suppose that we want to construct a fibered product of f : X → S and g : Y → S.
If all three are affine, say S = Spec(A), X = Spec(B) and Y = Spec(C), one shows that
Spec(B ⊗A C), with its natural morphisms to X and Y , has the required universal property (use
that Spec(∗) is the right adjoint of Γ; one even sees that Spec(B ⊗A C) is a fibered product in
the category of locally ringed spaces). Next one remarks that, if one knows how to construct a
fibered product locally on S, one can do it globally, because the universal property gives glueing
data for the local fibered products. So one can suppose that S is affine, say Spec(A). Arguments
of the same type reduce the construction of a fibered product to the case where X and Y are
affine, too. It is useful to know that if U = Spec(A), V = Spec(B) and W = Spec(C) are open
affines in S, X and Y such that fV and gW are contained in U , then V ×UW = Spec(B⊗AC)

is an open affine of X×S Y . If U ′, V ′ and W ′ have the same property, then V ×UW ∩V ′×U ′W ′

is equal to (V ∩V ′)×U∩U ′ (W ∩W ′). The Spec(B⊗AC) cover X×S Y . It is not true in general
that the underlying set of X ×S Y is the fibered product of the underlying sets of X and Y over
that of S (see the exercise 2.4.5).

2.4.4 Definition. Let f : X → Y be a morphism of schemes. For y in Y we define the fibre of
f at y, which is a k(y)-scheme, to be Xy := Spec(k(y)) ×Y X . For Y ′ → Y a morphism of
schemes, put X ′ := Y ′ ×Y X and let f ′ : X ′ → Y ′ be the canonical morphism; we call f ′ the
morphism obtained from f by the base change Y ′ → Y . In the same style: let f : X → Y be a
morphism of S-schemes, and S ′ an S-scheme; then the base change S ′ → S gives us a morphism
f ′ : X ′ → Y ′.

In the next exercise we will see that the underlying topological space ofXy is the preimage under
f of y, with the induced topology.

2.4.5 Exercise. Do exercises 3.9 and 3.10 of [Har, II]. LetA→ A′ be a morphism of rings; show
that the base change Spec(A′) → Spec(A), applied to PnA → Spec(A), gives PnA′ → Spec(A′).
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This allows us to define, for S an arbirary scheme and n ≥ 0, the projective space of dimension
n over S as PnS := S ×Spec(Z) PnZ. Let f : X → Y be a morphism of S-schemes, and S ′ an
S-scheme; show that if f is a closed immersion given by a quasi-coherent sheaf of ideals I of
OY , then f ′ is the closed immersion defined by the sheaf of ideals I ′ of OY ′ which is the image
of g∗I → OY ′ , where g is the canonical morphism from Y ′ to Y .

9



3 January 26, 1996

Our goal for today is to define the notion of smooth geometrically irreducible projective curve
over an arbitrary field.

3.1 Some useful indications for some exercises in [Har]

This concerns exercises 3.1, 3.2 et 3.3 of Chapter II. It is often useful to know the following:
let X be a scheme, U and V open affines in X; then every point in U ∩ V has an open affine
neighborhood W contained in U ∩ V which is a principal open both in U and in V . Put U =

Spec(A) and V = Spec(B). Let x be in U ∩ V . Take f in A such that x ∈ DA(f) ⊂ V . Take g
in B such that x ∈ DB(g) ⊂ DA(f). This gives us a morphism of rings B → Af → Bg. Let h
be the image of g in Af . The universal property of localization gives us two morphisms of rings
between Bg and (Af )h, which are inverses of each other, hence DB(g) is a principal open in U
and in V .

In fact, for all schemes that we will encounter later in this course, the problem is easierm
since in these schemes the intersection of two open affines will be affine (this results from the
fact that those schemes will be separated).

Let us do exercise 3.1 of [Har, II]. So we have f : X → Y locally of finite type, and an
open affine V = Spec(A) in Y . We have to show that every x in f−1V has an open affine
neighborhood Ux = Spec(Bx) with Bx an A-algebra of finite type. The fact that f is locally of
finite type means that every y in Y has an open affine neighborhood Vy = Spec(Ay) such that
every x in f−1Vy has an open affine neighborhood Ux,y = Spec(Bx,y) in f−1Vy, with Bx,y of
finite type over Ay. For such y and Ay, let us note that for all a in Ay such that y ∈ D(a), the
Spec((Bx,y)a) cover f−1D(a), and that (Bx,y)a is an (Ay)a-algebra of finite type. We conclude
that there exists a basis of open affines of Y with the required property. Now let x be in f−1U .
Let y be its image in Y . We take an affine open neighborhood Vy = Spec(Ay) of y and an affine
open neighborhood Ux,y = Spec(Bx,y) of x in f−1Vy with Bx,y of finite type over Ay. We take
a in A such that y ∈ D(a) ⊂ Vy. Then Spec((Bx,y)a) is an affine open neighborhood of x and
(Bx,y)a is of finite type over A, since we have A→ Ay → Aa = (Ay)a → (Bx,y)a.

3.2 Projective and quasi-projective S-schemes

Let S be a scheme. Recall that for all n ≥ 0 we have the S-scheme PnS . An S-scheme X will
be called projective (resp., quasi-projective) if it is isomorphic to a closed subscheme (resp.,
locally closed subscheme) of some PnS . These definitions are those from [Har] (page 103) and
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are not exactly equivalent to those of [EGA] (see page 103 of [Har]). These notions generalize
the notions of projective and quasi-projective varieties.

3.2.1 Example. Let A be a ring and n ≥ 0. Put B := A[x0, . . . , xn]. Let I ⊂ B be an ideal. Put
Id := I ∩ Bd. Then I is called homogeneous if I = ⊕dId. This just means that I is generated
by homogeneous elements, or, equivalently, that for b =

∑
d bd in B with bd ∈ Bd, one has

b ∈ I if and only if for all d one has bd ∈ Id. Such an ideal defines a closed subscheme V (I)

of PnA as follows. For each f homogeneous of positive degree, the intersection of V (I) with
D+(f) = Spec(Bf,0) is Spec(Bf,0/(IBf )0); one verifies that this construction glues. For S a
set of homogeneous elements of B we will write V (S) for V (BS). The case where S has just a
single element F is already interesting; if A is a field and F is non-zero we will call V (F ) the
hypersurface defined by F . In fact, one shows [Har, II, 5.16] that every closed subscheme of PnA
is of the form V (I) with I a homogeneous ideal.

3.2.2 Example. Let us show that X := P1
Z×Z P1

Z is projective, by giving an isomorphism with a
closed subscheme of P3

Z. We have seen in (2.2) that to give a morphism from X to P3
Z, it suffices

to give an invertibleOX-module L and global sections s0, s1, s2 and s3 that generate it. For L we
take pr∗1O(1)⊗ pr∗2O(1), where pr1 and pr2 are the two projections. Let us write the first P1

Z as
Proj(Z[u0, u1]) and the second one as Proj(Z[v0, v1]). Then for the si we take u0v0, u0v1, u1v0

and u1v1. Let φ denote the morphism from X to P3
Z given by these data. Using the functorial

interpretation of P3
Z given in (2.2) it is not hard to show that φ induces an isomorphism between

X and the closed subscheme V (x0x3 − x1x2) of P3
Z.

3.3 Geometrically irreducible k-schemes

Let k be a field. For every k-scheme X and every k-algebra A we put XA := X ×Spec(k)

Spec(A). For example, for X the closed subscheme of An
k defined by equations f1, . . . , fr (so

the fi are in k[x1, . . . , xn]), XA is the closed subscheme of An
A defined by the ideal (f1, . . . , fr)

in A[x1, . . . , xn]. For X a closed subscheme V (f1, . . . , fr) of Pnk , XA is the closed subscheme of
PnA defined by the same equations.

Let k → k be an algebraic closure. A k-schemeX is then said to be geometrically irreducible
if Xk is irreducible. One shows that X/k is geometrically irreducible if and only if for every
extension of fields k → K one has XK irreducible [Har, II, exer. 3.15].

In the same way, X/k is said to be geometrically reduced (integral, regular) if Xk is reduced
(integral, regular).
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3.3.1 Example. The subscheme of A2
R defined by x2 − 2xy + y2 + 1 is irreducible and integral,

but not geometrically irreducible. Let k be a field of characteristic p > 0 and a in k an element
which is not a pth power (hence k is not perfect). Then the subscheme of A2

k defined by xp− ayp

is reduced, but not geometrically reduced.

3.4 Smooth k-schemes

Let k be a field. Let X be a k-scheme which is locally of finite type. Let x be in X . Then X
is called smooth at x if at every point x of Xk lying over x the local ring OXk,x

is regular. The
k-scheme X is called smooth if it is smooth at all x; this is equivalent to Xk being regular.

One can show that if k is of characteristic zero, thenX/k is smooth if and only ifX is locally
of finite type and regular.

3.4.1 Example. Let k be a field of characteristic p > 0 and a in k − kp. Then the subscheme of
A1
k defined by xp − a is regular, but not smooth.

3.4.2 Definition. Let X be a scheme, locally of finite type over a field k. For x in X , the
dimension of X at x is defined to be the sup of the dimensions of the irreducible components of
X containing x.

One knows that the dimension of an irreducible k-scheme which is locally of finite type is
equal to the transcendence degree of k(η) over k, where η is the generic point of X ([Har,
I, Thm. 1.8A]). The following result is very useful in practice for proving smoothness for k-
schemes defined by equations.

3.4.3 Theorem. Let k be a field. Consider a closed subscheme X of An
k given by equations

f1, . . . , fr. Let x in X be a closed point, and let d be the dimension of X at x. Then X/k is
smooth at x if and only if the rank of the matrix ((∂fj/∂xi)(x)) with coefficients in k(x) is equal
to n− d. If X/k is smooth at all its closed points, then it is smooth.

Proof. Let x be a point of Xk lying over x. Then x is closed and one has k(x) = k. This
induces an embedding k(x) → k. Let us also denote by x the element of X(k(x)) which
it corresponds to, and by x the corresponding element of X(k). For f in OX(X) we have
f(x) = x#(f) = x#(f) = f(x). So we have to show that OXk,x

is regular if and only if
the rank of ((∂fj/∂xi)(x)) equals n − d. It is left to the reader to show that the dimension of
Xk at x is equal to d. Knowing this, the proof is reduced to the case where k is algebraically
closed. So in what follows we suppose that k = k. We can write x = (a1, . . . , an) with the ai
in k. Let I ⊂ OAn

k ,x
be the ideal (f1, . . . , fr), m ⊂ OAn

k ,x
and m ⊂ OX,x the maximal ideals.

12



Finally, let I be the image of I in m/m2. Then m = m/I , hence m2 = (m2 + I)/I , hence
m/m2 = m/(m2 + I). So we have an exact sequence of k-vector spaces:

0→ I → m/m2 → m/m2 → 0.

The k-vector space m/m2 is of dimension n, because the images of x1 − a1, . . . , xn − an form
a basis. The Taylor expansions of the fj up to order one at x show that I is generated by the∑

i((∂fj/∂xi)(x))(xi − ai), hence the dimension of I is the rank of the jacobian matrix. The
exact sequence shows that OX,x is regular if and only if this rank is equal to n− d.

Suppose that X/k is smooth at all its closed points. Let x be a point of Xk. Then take a
closed point y of Xk in the closure of x. The local ringOXk,x

is then a localization of the regular
local ring OXk,y

, hence regular. �

13



4 February 2, 1996

4.1 Definition. Let k be a field. A curve over k is a non-empty k-scheme X , locally of finite
type, whose irreducible components are of dimension one.

We can now speak of the objects that we want to study: smooth projective geometrically irre-
ducible curves over a field. We will start by looking at some examples. The first example is the
projective line: P1

k. Our next examples are plane curves.

4.2 Plane curves

Let d ≥ 1 be an integer. Let F ∈ k[x0, x1, x2] be homogeneous, non-zero and of degree d. Then
the closed subscheme V (F ) of P2

k is a curve. We claim that V (F ) is smooth and geometrically
irreducible if and only if V (∂F/∂x0, ∂F/∂x1, ∂F/∂x2, F ) is empty, i.e., if and only if F and
its partial derivatives have no common zeros. Before we prove this claim, we remark that for F
homogeneous of degree d we have the identity:

(4.2.1) x0
∂F

∂x0

+ x1
∂F

∂x1

+ x2
∂F

∂x2

= dF

This identity implies that if d is invertible in k, then V (∂F/∂x0, ∂F/∂x1, ∂F/∂x2, F ) is equal
to V (∂F/∂x0, ∂F/∂x1, ∂F/∂x2). Let us now prove the claim. To do that, we compute the
functions x−d+1

0 ∂F/∂x1 and x−d+1
0 ∂F/∂x2 onD+(x0). Let x := x1/x0 and y := x2/x0; then we

can identify D+(x0) with A2
k = Spec(k[x, y]) and V (F ) ∩D+(x0) with V (f), with f := F/xd0.

Consider a monomial xn0
0 x

n1
1 x

n2
2 of degree d. One verifies immediately that x−d+1

0 ∂/∂x1 applied
to it gives n1x

n1−1yn2 , i.e., it gives ∂xn1yn2/∂x. By linearity, we get: x−d+1
0 ∂F/∂x1 = ∂f/∂x.

Likewise, we get x−d+1
0 ∂F/∂x2 = ∂f/∂y. Let us now prove the claim.

Suppose first that V (F ) is smooth and geometrically irreducible. To see that F and its three
partial derivatives have no common zeros we may assume that k is algebraically closed. Note
that V (F ) is of dimension one. Let us check that F and its derivatives have no common zeros
on D+(x0). Theorem 3.4.3 and the computations that we have just done imply that F , ∂F/∂x1

and ∂F/∂x2 have no common zeros on D+(x0). Of course, the analogous statements are true on
D+(x1) and D+(x2).

Suppose now that F and its partial derivatives have no common zeros. Again, we may sup-
pose that k is algebraically closed. The computations above, and Theorem 3.4.3 imply that V (F )

is smooth. It remains to be proved that V (F ) is irreducible. Suppose that V (F ) is not irreducible.
Then F is reducible, say F = F1F2 with F1 and F2 both homogeneous and of degree > 0, and
V (F1) and V (F2) are curves in P2

k. Bezout’s theorem implies that V (F1) ∩ V (F2) is not empty.

14



Let P be a k-rational point in the intersection. Theorem 3.4.3 shows that V (F ) is not smooth
at P . This finishes the proof of the claim.

4.2.2 Exercise. Give an example of an F in some k[x0, x1, x2] such that V (F ) is a smooth curve,
and V (∂F/∂x0, ∂F/∂x1, ∂F/∂x2) is not empty.

Let us now look at some low degrees. One immediately sees that for d = 1 the curve V (F )

is isomorphic to P1
k, so that we know all about it. We move on to d = 2. This is already less

trivial. So suppose that C := V (F ) is a smooth plane curve of degree two. We distinguish two
cases: C(k) = ∅ and C(k) 6= ∅. In the second case, C is isomorphic to P1

k, as one sees by
projecting from a point P in C(k) onto a line L not passing through P (in fact, to make this
argument rigorous one needs to show that this morphism that is defined on the complement of P
extends; there is a general result for this that says that a morphism from a non-empty open part
of an irreducible smooth curve to a projective k-scheme always extends to the whole curve, see
[Har, I, Prop. 6.8] and [Har, II, Thm. 4.7]). Note that if k is algebraically closed, one is always
in this second case. It is clear that in the first case, C is not isomorphic to P1

k, but that Ck is
isomorphic to P1

k
. This first case really occurs, for example, take x2

0 +x2
1 +x2

2 in R[x0, x1, x2]. So
we see that it can happen that two k-schemes are geometrically isomorphic but not isomorphic.
This is an interesting phenomenon, that can be described in terms of Galois cohomology (if k is
perfect).

4.2.3 Exercise. Show that there are infinitely many smooth plane curves of degree two over Q
that are pairwise not isomorphic. Show that for a smooth plane curve C of degree two over a
field k such that C(k) is empty, there is a quadratic extension K of k such that CK is isomorphic
to P1

K . Give an example to show that such extensions are not unique.

So every smooth plane curve of degree two becomes isomorphic to a projective line over an
extension of k of degree at most two. We will now see that things are completely different in
degree three.

Let C be a smooth plane curve of degree three, over some field k. We claim that C is not
isomorphic to P1

k. One way to see this is to remark that onC there are global non-zero differential
forms and on that on P1

k there aren’t. At this moment this method is not very convincing, because
we have not yet talked about differential forms. So let us try something else. Suppose that k is not
of characteristic two or three and that C = V (F ) with x−3

0 F of the form f = −y2 +x3 + ax+ b.
(One can show (we will do this later), that every smooth plane C of degree three over such a
field k is isomorphic to one given by an equation of this type, if and only if C(k) is not empty.)
Then C has an automorphism σ of order two: σ# maps x to x and y to −y. One verifies easily
that σ fixes exactly four elements of C(k). I leave it as an exercise to the reader to show that an
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automorphism σ of order two of P1
k with k not of characteristic two fixes exactly two elements

of P1(k). (First show, using Section 2.2, that Autk(P1
k) is the group PGL2(k) := GL2(k)/k∗.)

We will see later that for k algebraically closed there is a bijection between k and the set of
isomorphism classes of smooth plane curves of degree three over k. To give some idea of what a
smooth plane curve C of degree d looks like, we will consider the case k = C, and study C(C)

as a topological manifold.

4.3 Algebraic topology of complex smooth plane curves

Let C = V (F ) be a smooth plane curve of some degree d over C. Instead of considering C
with its Zariski topology, we will now consider C(C) with the topology induced from the usual
topology on C. Let us first note that P2(C) is a union of three copies of C2, whose mutual
intersections are open in C2. This gives a topology on P2(C) that induced the usual topology
on each of our three copies of C2. It is easy to give P2(C) the structure of a complex analytic
manifold of dimension two, but for the moment we will not use that. The topology that we have
just defined on P2(C) induces a topology on C(C). The fact that C is smooth and irreducible
implies that C(C) is a connected orientable compact topological manifold of dimension two (in
fact it is even a complex analytic manifold of dimension one). By the classification of such
topological manifolds, it follows that C(C) is homeomorphic to a sphere with g handles, for
some g ≥ 0. We will compute this number, which is called the genus of C(C).

Let P0 be in P2(C) but not in C(C) and let us study the morphism φ : C → P1
C given by

projecting from P0 onto some line not containing P0. First of all, we note that for all but finitely
many points Q of P1

C, φ−1Q has exactly d elements. In fact, there are only finitely many points,
say P1, . . . , Pr in C(C), such that the tangent line of C at it passes through P0. The implicit
function theorem implies that the morphism of topological spaces φ : C(C) − {P1, . . . , Pr} →
P1(C) is, locally on C(C)− {P1, . . . , Pr}, an isomorphism.

The number r depends on the point P , but we will argue that there is a non-empty Zariski
open subset of P2

C on which it takes its maximal value, and we will compute that value. It is
an exercise for the reader to compute that the tangent line to C at P in C(C) is given by the
equation:

(4.3.1)
∂F

∂x0

(P )x0 +
∂F

∂x1

(P )x1 +
∂F

∂x2

(P )x2 = 0

It follows that P0 = (p0, p1, p2) lies on the tangent line to C at P in C(C) if and only if

GP0(P ) := (∂F/∂x0)(P )p0 + (∂F/∂x1)(P )p1 + (∂F/∂x2)(P )p2 = 0,
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which is an equation of degree at most d−1 for P . The three partial derivatives of F are linearly
independent over C because C is smooth (verify!), hence GP0 is non-zero and of degree d − 1.
Since F is irreducible, V (GP0) and C have no irreducible component in common, hence by
Bezout’s theorem there are at most d(d− 1) points on C where the tangent line contains P0. For
P in C(C), let m(P ) denote the intersection multiplicity at P of C and its tangent line. By the
definition of tangent line one has m(P ) ≥ 2. We assume known the fact that (over a field of
characteristic zero) there are only finitely many P with m(P ) > 2 (these are called flexes; they
are given by the so-called Hessian equation), if d > 1. Let’s say that the case d = 1 is easy, and
that we suppose d > 1. Let P be in C(C) such that the tangent to C at P contains P0. A (not
so very nice but not difficult) computation shows that V (GP0) and C intersect transversally at P
if and only if m(P ) > 2. Hence if we take P0 outside the union of C and the tangents to C at
the finitely many P such that m(P ) > 2, then V (GP0) ∩ C has exactly d(d − 1) elements. We
suppose that we have taken P0 like that; then r = d(d− 1).

The fact that the m(Pi) = 2 (1 ≤ i ≤ r) implies that there are open neighborhoods Ui ⊂
C(C) of Pi and Vi ⊂ P1(C) of Qi := φ(Pi) such that φUi = Vi and φ|Ui → Vi is isomorphic to
D → D, z 7→ z2, with D the open unit disk in C.

We will now compare the Euler characteristics of C(C) and P1(C) by triangulating both of
them in a compatible way. We add a few points to the Qi, say Qr+1, . . . , Qv such that we can
triangulate P1(C) such that the vertices are exactly the Qi. Let e be the number of edges in
our triangulation, and f be the number of faces. From what we know about φ it follows that
we get a triangulation of C(C) by taking the elements of the φ−1Qi as vertices, the closures of
the inverse images of the edges minus their endpoints as edges, and the closures of the inverse
images of the faces minus their vertices as faces. The numbers of vertices, edges and faces in
this triangulation are (d − 1)r + d(v − r), de and dv. The Euler characteristic of P1(C), which
is a sphere, equals two, hence: v − e + f = 2. It follows that the Euler characteristic of C(C)

equals 2d − r = 2d − d(d − 1) = d(3 − d). By definition, this is equal to 2 − 2g, hence
g = (d− 1)(d− 2)/2. For example: for d = 1 and d = 2 we find what we knew, genus zero. For
d = 3 we have genus one, a torus. For d = 4, a sphere with three handles. As a consequence we
obtain that, at least over C, two smooth plane curves of different degrees cannot be isomorphic,
unless the degrees are one and two. Also, there are no smooth plane curves over C of genus two.
We will see that there exist smooth projective irreducible curves over C of genus two by some
other method.
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5 February 16, 1996

Last time we looked at plane curves to get examples of smooth projective geometrically irre-
ducible curves. We have seen that, at least over C, the genus of a smooth plane curve of degree
d equals (d− 1)(d− 2)/2. It follows that we cannot get examples of curves of genus two in that
way. We will now describe a construction that gives us more examples.

5.1 Normalization

See also [Har, II, exer. 3.8]. Let X be an integral scheme and let η be its generic point. The
local ring K(X) := OX,η is then a field, called the function field of X . Let U = Spec(A)

be a non-empty affine open subscheme of X . Then U contains η and K(X) is the fraction
field of its subring A. Let Ã be the integral closure of A in K(X). We get a morphism of
schemes Ũ := Spec(Ã) → U . Since taking the integral closure commutes with localization,
these morphisms glue and we get a morphism π : X̃ → X called the normalization of X . An
integral scheme is called normal if all its local rings are integrally closed in their fraction field; the
scheme X̃ has this property. Also, X̃ is integral and we have K(X̃) = K(X). By construction,
π is an affine morphism. It has the following universal property: if f : Z → X is a dominant
morphism with Z normal then f factors uniquely through π. Under certain conditions, e.g., if X
is of finite type over a field, π is a finite morphism, i.e., every Ã is an A-module of finite type,
and an isomorphism over a non-empty open subset of X . If all local rings of X are normal, for
example, when they are regular, π is an isomorphism.

This construction can be generalized as follows: let K(X) → L be a finite field extension.
Then instead of taking for Ã the integral closure of A in K(X), we can take it in L. This gives
a morphism π : X̃ → X that is called the normalization of X in L. It has a universal property
similar to that of the normalization of X . If X is a scheme of finite type over a field, π is finite.

5.1.1 Example. Let X = Spec(Z) and K a number field, i.e., a finite extension of Q. The
integral closure of Z in K is called the ring of integers in K and is denoted OK . One can show,
using the Q-bilinear form K × K → Q, (x, y) 7→ traceK/Q(xy), that OK is a free Z-module
of rank dimQ(K). It is a hard problem to determine a Z-basis of OK , if K is given in the form
Q[x]/(f); there is at present no polynomial time algorithm that can do this, not even for quadratic
fields. For quadratic fields the situation is not too complicated. Let K be a quadratic extension
of Q. There exists a unique square free integer d such that K = Q(

√
d). If d ≡ 1(4) then

OK = Z[(
√
d − 1)/2] and otherwise OK = Z[

√
d]. One can show this by showing that all

localizations at maximal ideals of these rings are regular.
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5.1.2 Proposition. Let k be an algebraically closed field and X a (geometrically) integral curve
over k. Then its normalization X̃ is a smooth integral curve. If X is projective, then so is X̃ .

Proof. We admit that π : X̃ → X is finite. That shows that X̃ is an integral curve over k.
By definition, it is smooth if and only if all its local rings are regular. The local ring at the
generic point is a field, hence regular. Let x be a closed point. Since k is algebraically closed,
it is a k-rational point. We know that its local ring A is integral, noetherian, of dimension one
and integrally closed. Proposition 3 of [Serre, Corps Locaux, I, §2] shows that A is a discrete
valuation ring, hence regular. (The proof of this proposition proceeds as follows: let m ⊂ A be
the maximal ideal, let m′ be the set of elements x in the fraction field K of A such that xA ⊂ m;
then mm′ is either A or m; if mm′ = m one has m′ = A since A is integrally closed and one has
m′ 6= A since A is local of dimension one; hence mm′ = A and it follows that m is principal.)

We admit for the moment that X̃ is projective if X is. We can show that later, as a con-
sequence of the Riemann–Roch theorem for smooth proper geometrically irreducible curves.
Another way to show that X̃ is a projective k-scheme is to show the more general statement that
if X is a projective k-scheme and Y → X is a finite morphism, then Y is a projective k-scheme.
�

5.1.3 Remark. The condition that k be algebraically closed in the previous proposition cannot be
dropped, as the following example shows. Let p > 2 be a prime number, k a field of characteristic
p and a in k − kp. The affine plane curve V (−y2 + xp − a) ⊂ A2

k is regular and geometrically
integral, but not smooth: over k it is isomorphic to V (−y2 + xp) which is singular at the origin.

5.1.4 Proposition. Let k be an algebraically closed field and X a (geometrically) integral curve
over k. Let K(X) → L be a separable finite field extension. The normalization X̃ of X in L is
a smooth integral curve. If X is projective, then so is X̃ .

After admitting that π : X̃ → X is finite, the proof of this proposition is the same as the one of
Proposition 5.1.2, so we don’t repeat it. Instead, we will look at some examples.

5.2 Hyperelliptic curves

Let k be a field of characteristic different from 2. Let L be a quadratic extension of the function
field k(x) of P1

k. We will use the following notation: P1
k is constructed from the graded k-

algebra k[x0, x1], x := x1/x0 and y := x0/x1. There is a square free f in k[x], unique up to
multiplication by squares of non-zero elements of k, such that L = k(x)(

√
f). Let π : C → P1

k

be the normalization of P1
k in L. We want to describe C at least locally on P1

k and we want to
prove that C is projective. If k = C we want to know what C(C) is, topologically.
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If f is of degree zero, then L is of the form k′(x), with k′ a quadratic extension of k. It is left
to the reader to show that C = P1

k′ .
We suppose that f is separable and of degree d > 0. Note that in general the condition that

f be square free does not imply that f is separable. Consider the ring A := k[x, u]/(u2 − f).
We claim that it is the integral closure of k[x] in L. To prove that, it is sufficient to see that A is
integrally closed. Now Spec(A) is a smooth curve, by the jacobian criterion (f has no multiple
root in k). Hence A is integrally closed. This is a perfectly simple description of C−π−1∞. Let
us now study what happens over the other standard affine open Spec(k[y]).

We write f = adx
d + · · · + a0. We have ad 6= 0. Since x = y−1 in k(x) = k(y) we also

have: f = ady
−d + · · · + a0 = y−d(ad + · · · + a0y

d). For d even we put g := ad + · · · + a0y
d

and for d odd we put g := ady + · · ·+ a0y
d+1. Then we have L = k(y)(

√
g). Consider the ring

B := k[y, v]/(v2 − g). Just as before, we know that g has no multiple root in k, hence Spec(B)

is smooth over k and it is the normalization of Spec(k[y]) in L.
So finally we have the following global description of C: it is covered by the two open affines

Spec(A) and Spec(B), the glueing datum being the isomorphismAx → By making y correspond
to x−1 and v to x−d/2u (resp., x(−d−1)/2u) if d is even (resp., odd). We conclude thatC is a smooth
and geometrically irreducible curve. The results on the projectivity of normalizations mentioned
in the proof of Proposition 5.1.2 imply that C is projective. It would be a nice exercise to show
directly, “by hand”, that C is projective.

Suppose now that k = C. Just as for plane curves, it is not so hard to find out what the
genus of C(C) is. Suppose for simplicity that d is even. Let Q1, . . . , Qd be the zeros of f in
P1(C). For each i, let Pi be the unique element of π−1Qi. Then the map π : C(C) → P1(C)

is ramified of degree two at each Pi and its restriction to C(C) − {P1, . . . , Pd} is a covering of
P1(C)−{Q1, . . . , Qd}. One finds that the Euler characteristic of C(C) is 4− d, hence the genus
of C is d/2− 1. An analogous computation shows that for d odd the genus is (d− 1)/2.

5.3 Curves and function fields

See also [Har, I, §6]. Let k be an algebraically closed field. If C is a smooth projective irre-
ducible curve over k, then its function field K(C) is a finitely generated field extension of k,
of transcendence degree one. Let f : C → D be a morphism of projective smooth irreducible
curves over k. Since C is projective and D is separated, the image of f is closed in D (see [Har,
II, exer. 4.4 and Thm. 4.9]). So either f is constant (i.e., its image is just one point), or it is
surjective. In the last case f induces a morphism K(D) → K(C) of k-algebras. It follows that
we have a contravariant functor X 7→ K(X) from the category of smooth projective irreducible
curves over k with dominant morphisms to the category of field extensions of k.
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We define a function field over k of dimension one to be a field extension K which is finitely
generated and of transcendence degree one. By definition, the functor X 7→ K(X) is in fact a
functor to the full subcategory of function fields over k of dimension one.

5.3.1 Theorem. The functorX 7→ K(X) is an anti-equivalence between the category of smooth
projective irreducible curves over k with dominant morphisms and the category of function fields
over k of dimension one.

A proof can be found in [Har]. In order to prove that the functor is essentially surjective, i.e.,
that each function field K over k of dimension one is isomorphic to the function field of some
projective smooth irreducible curve over k, one can argue as follows. Take x in K such that
the extension k(x) → K is finite and separable. Let C be the normalization of P1

k in K. Then
K = K(C).
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6 February 23, 1996

I recall that the principal aim of this course is to construct the jacobian varieties associated to
projective smooth geometrically irreducible curves over arbitrary fields. In order to do that, we
have to understand some properties of line bundles on such curves.

6.1 Line bundles and divisors on curves

See also [Har, II, §6]. Let k be a field and C a smooth projective geometrically irreducible curve
over k. A line bundle on C is by definition an invertible OC-module. Let C0 be the set of closed
points of C. The group Div(C) of (Weil) divisors on C is the free Z-module with basis C0.
Equivalently, Div(C) is the sub-Z-module of ZC0 of functions with finite support. (Note that
⊕C0Z is not equal to

∏
C0

Z. The second is the Z-dual of the first; it is an interesting exercise
to show that the canonical map from ⊕C0Z to the Z-dual of

∏
C0

Z is an isomorphism if C0 is
countable.)

The main interest in divisors comes from the connections between Div(C), k(C)∗ and Pic(C),
the group of isomorphism classes of line bundles on C. For x in C0 let vx : k(C)∗ → Z be the
valuation associated to x: if tx is a uniformizer at x, i.e., a generator of the maximal ideal mx

of OC,x, then ft−vx(f)
x is in O∗C,x; this does not depend on the choice of tx. Let f be in k(C)∗.

We claim that there are only finitely many x in C0 such that vx(f) 6= 0. To prove this, let
U = Spec(A) be a non-empty affine open of C, let a and b be non-zero elements of A such that
f = a/b, then all x in C0 for which vx(f) 6= 0 are in C − U or in V (a) or in V (b), which leaves
only finitely many possibilities. It follows that we can define the divisor map:

(6.1.1) div : k(C)∗ → Div(C), f 7→
∑
x∈C0

vx(f)x

This map is a morphism of groups. We will now first study its kernel and image. The image is
called the group of principal divisors.

6.1.2 Definition. Let D =
∑

x nxx be a divisor on C. Then the degree of D is given by:

deg(D) :=
∑
x

nx dimk k(x)

The reason to include the “weights” dimk k(x) is that after base change to k the point x gives a
divisor of that degree; if k → k(x) is separable then x gives dimk k(x) reduced points of Ck; if
k → k(x) is purely inseparable then x gives one point with multiplicity dimk k(x) of Ck. The
map D 7→ deg(D) is a morphism of Z-modules from Div(C) to Z. For r in Z we let Divr(C)
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be the set of divisors of degree r. In order to continue, we need the notions of pullback and
pushforward of divisors. Let f : C → C ′ be a dominating morphism between projective smooth
geometrically irreducible curves over k. Let x be in C ′0. We can view x as a reduced closed
subscheme of C ′. Let f−1x be the inverse image in C of this closed subscheme under f . The
support of f−1x consists of the finitely many y in C0 with f(y) = x. Let tx be a uniformizer
at x. At each y in f−1x, the closed subscheme f−1x is defined by the element f#(tx) of OC,y,
i.e., by the vy(f#(tx))th power of my. We define f ∗x in Div(C) to be

∑
y vy(f

#(tx))y, where
the sum runs over the y mapping to x. Since Div(C ′) is the free Z-module with basis C ′0,
we can extend this map f ∗ : C ′0 → Div(C) uniquely to all of Div(C ′). We can also define a
map f∗ : Div(C) → Div(C ′) as follows: f∗(

∑
x nxx) =

∑
x nx dimk(f(x))(k(x))f(x). Proposi-

tion 6.9 of [Har, II] says that deg ◦f ∗ = dimk(C′)(k(C)) deg, as maps from Div(C ′) to Z. The
number dimk(C′)(k(C)) is called the degree of f . The proof of [Har, II, Prop. 6.9] shows that
f∗◦f

∗ is multiplication by deg(f) on Div(C ′). Let us give a sketch of the proof of [Har, II,
Prop. 6.9]. By [Har, II, Prop. 6.8], f is a finite morphism. Let x be in C ′0 and let U = Spec(A)

be an open neighborhood of x in C ′. Then f−1U is an affine open, Spec(B) say, of C. Now
B is finitely generated as A-module, and torsion free since it is in k(C) which is itself a field
extension of k(C ′). It follows that B ⊗A OC′,x is a free OC′,x-module of rank deg(f).

6.1.3 Proposition. The kernel of div is the subgroup k∗ of k(C)∗, and the image of div is con-
tained in Div0(C).

Proof. If C is the projective line, one checks this proposition by hand. This verification is left
to the reader. Intuitively, it says that a rational function on C has as many poles as zeros, and
if it has no poles then it is constant. Let us first prove that ker(div) = k∗. Let f be in k(C)∗

such that div(f) is zero. Assume that f is not in k∗. The element f of k(C)∗ is transcendent
over k because otherwise C would not be geometrically irreducible. By Thm. 5.3.1 we can view
f as a dominating morphism to P1

k, namely, f gives a morphism of k-algebras k(t) → k(C)

that sends t to f . By [Har, II, Prop. 6.8], this morphism f is surjective. But then there exist x
in C such that f(x) is the point zero in P1

k and for such a point x one has vx(f) > 0, which
is a contradiction. Let us now prove that any principal divisor has degree zero. Let f be in
k(C)∗ and put D := div(f). If f is in k∗ then D = 0 hence deg(D) = 0. We assume that
f is not in k∗. Then, as we have just seen, we can view f as a surjective morphism from C

to P1
k. Again using [Har, II, Prop. 6.8] we see that f is a finite morphism. By definition, we have:

D = f ∗0− f ∗∞ = f ∗(0−∞). Hence deg(D) = deg(f) deg(0−∞) = 0. �

The next topic is the connection between divisors and line bundles. Let D =
∑

x nxx be in
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Div(C). Then we define a presheaf L(D) on C by:

(6.1.4) L(D)(U) = {f ∈ k(C) | ∀x ∈ U0 : vx(f) ≥ −nx}

One verifies immediately that L(D) is a sheaf and that it is an OC-module. We claim that it is
an invertible OC-module. Let us prove that. Let x be in C0. If nx = 0 let U be the complement
of the support of D; then L(D)|U is equal to OC |U . In general, let U := {x} ∪ (C − Supp(D)).
Let tx be a uniformizer at x. Let U ′ ⊂ U be a neighborhood of x on which tx is defined and
has x as its only zero. Multiplication by t−nx

x induces an isomorphism from OC |U ′ to L(D)|U ′ .
Since L(D) is an invertible OC-module, we get a map from Div(C) to Pic(C) sending D to the
isomorphism class [L(D)] of L(D).

There is also a (non-unique) way of associating divisors to line bundles. Let L be a line
bundle. Let η be the generic point of C. By definition, Lη is a one dimensional k(C)-vector
space. Let s be a basis of it. We will now define the divisor div(s) of the rational section s of L.
Let x be in C0 and sx a basis of theOC,x-module Lx. The valuation of s at x is then defined to be
vx(s) := vx(s/sx) (this does not depend on the choice of sx), and div(s) :=

∑
x vx(s)x. Write

D := div(s). Then we have a morphism of OC-modules L(D) → L which on every U sends f
to fs. By construction, this map is an isomorphism.

6.1.5 Proposition. The map D 7→ [L(D)] is a morphism of groups from Div(C) to Pic(C), and
the following sequence is exact:

0→ k∗ → k(C)∗ → Div(C)→ Pic(C)→ 0

Proof. The fact that the map is a morphism of groups is left to the reader. Let us show that
the sequence is exact at Div(C). Let f be in k(C)∗. Then multiplication by f−1 induces an
ismorphism from OC to L(div(f)). This shows that [L(D)] is zero if D is a principal divisor. It
remains to show the converse. So let D be a divisor such that [L(D)] = 0. Let φ : OC → L(D)

be an isomorphism. Let f := φ(1). Since 1 is a basis of OC , f is a basis of L(D). Hence for
any open U ⊂ C and g in k(C)∗ we have gf ∈ L(D)(U) if and only if g ∈ O(U). The first
condition is equivalent to: div(g)|U + div(f)|U ≥ −D|U (the ordering is the partial ordering
in which

∑
x nxx ≥

∑
xmxx iff nx ≥ mx for all x). The second condition is equivalent to:

div(g)|U ≥ 0. It follows that div(f) = −D. Hence D is a principal divisor. We have now shown
exactness at Div(C). It remains to show exactness at Pic(C). But we have already seen that
every line bundle is isomorphic to one of the form L(D). �

Let us finish this section on divisors and line bundles with a motivation for the study of them. It
is reasonable to want to understand the set of rational functions on a curve with poles and zeros
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of some prescribed kind, for example, the f in k(C)∗ with div(f) ≥ −D for a given divisor D.
If one adds the function 0 to this set one obtains a k-vector space L(D). By the definition of
L(D), this space L(D) is the set of its global sections. One can then get information on the
dimensions l(D) of the spaces L(D) by applying the machinery of sheaves and cohomology.
The problem of determining l(D) as a function of certain invariants of D as for example deg(D)

is the Riemann–Roch problem. The answer to this problem will be given after we have treated
the necessary theory concerning differential forms.

6.2 Differential forms

See also [Har, II, §8]. Before introducing differential calculus on schemes, let us recall the defini-
tion of the tangent bundle and such on C∞-manifolds. The tangent bundle of Rn is by definition
just the product Rn × Rn. For X an n-dimensional manifold one defines its tangent bundle TX
by glueing the tangent bundles of charts of X . Up to canonical isomorphism, the TX one ob-
tains does not depend on the choice of the charts. There are more intrisic ways of defining TX .
The tangent space TX(x) of X at x is the set of equivalence classes of parametrized curves
through x, where two of them are equivalent if they give the same tangent vector in some chart
(and hence in all charts). A still more intrinsic way to define TX(x) is to make its elements
v act on germs of C∞-fuctions at x by taking derivative at x in the direction v. This identifies
TX(x) with the R-vector space of R-derivations DerR(OX,x,R), where OX denotes the sheaf
on X of C∞-functions. One easily sees that DerR(OX,x,R) is canonically isomorphic to the
dual of mx/m

2
x, where mx is the maximal ideal in OX,x. It is a general principle that instead of

working with vector bundles one can work with their sheaves of C∞-sections: to a vector bundle
p : E → X one associates the sheaf C∞E that sends U to the OX(U)-module of C∞-sections of
p : p−1U → U . This gives a locally free OX module C∞E . It is not very complicated to recon-
struct p : E → X from C∞E . A section of C∞TX over U is, by the usual definition in differential
topology, a vector field on U . The interpretation of the tangent space as a space of derivations
shows that C∞TX(U) = DerR(OX(U),OX(U)). This motivates the following constructions.

Let A → B be a morphism of rings. For M a B-module we let DerA(B,M) be the B-
module ofA-derivations ofB toM , i.e., DerA(B,M) is the set ofA-linear mapsD fromB toM
satisfying Leibniz’s rule: D(fg) = fD(g) + gD(f). One verifies that this is indeed a B-module
if one defines (bD)(f) = bD(f). ForD in DerA(B,M) one has: D(1) = D(12) = D(1)+D(1),
hence D(1) = 0, and it follows that D(a) = 0 for all a in A.

6.2.1 Proposition. Let A → B be a morphism of rings. There exists an A-derivation d : B →
Ω1
B/A such that for everyA-derivationD : B →M there is a uniqueB-linear map f : Ω1

B/A →M
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such that D = f ◦d. In other words, d is the universal derivation.

Proof. One constructs d as follows. Take the free B-module with basis {d(b) | b ∈ B} (here
the d(b) are supposed to be distinct). Then Ω1

B/A is the quotient of this free B-module by the
submodule generated by the relations d(ab) = ad(b), d(b1 + b2) = d(b1) + d(b2) and d(b1b2) =

b1d(b2) + b2d(b1) for all a in A and b, b1 and b2 in B. �

6.2.2 Example. LetB := A[x1, . . . , xn], the polynomial ring in n variables. We claim that Ω1
B/A

is the free B-module with basis dx1, . . . , dxn. To prove this, it is enough to note that the two
B-modules represent the same functor. So one just has to show that for a B-module M the map
DerA(B,M) → Mn that sends D to (D(x1), . . . , D(xn)) is an isomorphism. This is left to the
reader.

6.2.3 Example. Let A → B be a morphism of rings, let I ⊂ B be an ideal and put C := B/I .
Let π : B → C be the canonical projection. Let M be a C-module. We have an exact sequence:

0→ DerA(C,M)→ DerA(B,M)→ HomC(I/I2,M)

in which D in DerA(C,M) is mapped to D◦π and D in DerA(B,M) is mapped to D|I . Inter-
preting this in terms of the universal derivations, we get the exact sequence:

I/I2 → C ⊗B Ω1
B/A → Ω1

C/A → 0

Note that this gives an explicit presentation of Ω1
C/A if B = A[x1, . . . , xn] and I = (f1, . . . , fr).
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7 February 23, 1996

7.1 Differential forms, continued

We begin by listing some more properties of the module of differentials Ω1
B/A.

7.1.1 Proposition. 1. Let A→ B → C be morphisms of rings. We have a natural morphism
of C-modules: C ⊗B Ω1

B/A → Ω1
C/A. These morphisms will induce pullback morphisms

of differential forms on schemes.

2. Let A → B be a morphism of rings. Let S ⊂ B be a multiplicative system; then the
natural map S−1Ω1

B/A → Ω1
S−1B/A is an isomorphism.

3. Let A → B and A → A′ be morphisms of rings. Put B′ := A′ ⊗A B. The natural
morphism B′ ⊗B Ω1

B/A → Ω1
B′/A′ is an isomorphism.

4. Let A→ B → C be morphisms of rings. The sequence

C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0

is exact.

The proofs are quite straightforward and can be found in [Har, II, §8]. We will now define
differential forms on schemes. Let f : X → Y be a morphism of schemes. For each pair of
affine opens Spec(B) in X and Spec(A) in Y such that f(Spec(B)) ⊂ Spec(A) we have the
B-module Ω1

B/A. The fact that Ω1
B/A is compatible with localisation on Spec(B) implies that the

quasi-coherent OSpec(B)-modules Ω̃1
B/A glue together in a natural way. Hence we obtain a quasi-

coherent OX-module that we denote Ω1
X/Y . It comes with an OY -derivation d : OX → Ω1

X/Y ,
which is the universal OY -derivation on OX .

7.1.2 Proposition. Let k be a field, X a k-scheme and P in X(k). Then P ∗Ω1
X/k is canonically

isomorphic to mP/m
2
P , where mP is the maximal ideal in OX,mP

.

Proof. We can suppose that X is affine, say Spec(A); then P corresponds to a maximal ideal
m of A such that A/m = k. The exact sequence 0 → m → A → k is canonically split
since A is a k-algebra. Hence we have A = m ⊕ k, where the projection of A to m sends
f to f − f(P ). One verifies immediately that D : A → m/m2, f 7→ [f − f(P )], is a k-
derivation. This gives us an A-linear map α : Ω1

A/k → m/m2. Since A acts on m/m2 via k,
we get a k-linear map α : k ⊗A Ω1

A/k → m/m2. On the other hand, consider the composition
m → A → Ω1

A/k → k ⊗A Ω1
A/k. Since it lands in a k-vector space, it factors through a k-linear

map β : m/m2 → k ⊗A Ω1
A/k. One verifies that α and β are inverses. �
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7.1.3 Proposition. Let k be a field and X a k-scheme which is locally of finite type. Let x be
closed in X and let d be the dimension of X at x. Then X is smooth at x if and only if Ω1

X,x is a
free OX,x-module of rank d.

Proof. We may suppose that X = Spec(A), with A = k[x1, . . . , xn]/(f1, . . . , fr), and that k is
algebrically closed. It follows from Example 6.2.3 that Ω1

A/k has the presentation:

Ar → An → Ω1
A/k → 0,

where the map from Ar to An is given by the matrix (∂fj/∂xi), and where the ith element ei of
the standard basis of An is mapped to dxi. We know that the rank of the matrix (∂fj/∂xi)(x) is
at most n − d, with equality if and only if X is smooth at x (Thm. 3.4.3). It follows that X is
smooth at x iff dimk(x

∗Ω1
X/k) = d iff (Ω1

X/k)x is free of rank d as OX,x-module. Here we have
used the following lemma. �

7.1.4 Lemma. Let X be a locally noetherian scheme andM a coherent OX-module. Then the
function r : X → Z, x 7→ dimk(x) x

∗M is upper semicontinuous, i.e., for any n in Z, the set
{x ∈ X | r(x) ≥ n} is closed. Moreover, if X is reduced and r is constant, thenM is locally
free or rank r.

Proof. Do exercise 5.8 of [Har, II]. �

7.1.5 Corollary. Let C be a curve over a field k. Then C is smooth if and only if Ω1
C/k is locally

free of rank one as OC-module.

Let C be a projective smooth geometrically irreducible curve over a field k. Then Ω1
C/k is an

invertibleOC-module. Any divisor D such that L(D) is isomorphic to Ω1
C/k is called a canonical

divisor on C. Of course, such D are unique up to linear equivalence. Let us look at some
examples.

7.1.6 Example. Consider C := P1
k. Then C = U0 ∪U1 with U0 = Spec(k[x]), U1 = Spec(k[y])

and xy = 1. Let ω be a global section of Ω1
C/k. The restriction of ω to U0 is of the form

(
∑n

i=0 aix
i)dx. On U1 ∩ U0, in terms of y, this is equal to −(

∑n
i=0 aiy

−i)y−2dy. One sees that
this has a pole at∞ as soon as ω 6= 0. Hence: Γ(P1

k,Ω
1
P1

k/k
) = 0.

7.1.7 Example. LetC be the smooth projective hyperelliptic curve over a field k of characteristic
6= 2 given by the affine equation u2 = f , with f in k[x] separable and of degree > 0. Suppose
that the degree d of f is odd. Then one can show that the elements ωi, 0 ≤ i ≤ (d− 3)/2, given
by ωi = xiu−1dx form a basis of the k-vector space Γ(C,Ω1

C/k). Hence dimk(Γ(C,Ω1
C/k)) =
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(d − 1)/2. We have seen in §5.2 that for k = C, C(C) has genus (d − 1)/2. This is not a
coincidence: for C over C one has g(C(C)) = dimC(Γ(C,Ω1

C/C)). This allows us to define the
genus of C to be dimk(Γ(C,Ω1

C/k)) in general. But, of course, we will have to show that these
dimensions are finite.

7.1.8 Definition. LetC be a smooth projective geometrically irreducible curve over a field k. Let
L be a line bundle on C. Let D be in Div(C) such that L(D) is isomorphic to L. We define the
degree of L to be the degree of D. This is independent of the choice of D because the difference
with another choice is a principal divisor, and hence of degree zero. It is immediate that two
line bundles that are isomorphic have the same degree. It follows that we have a morphism
deg : Pic(C)→ Z that sends [L] to deg(L).

This gives us a second numerical invariant of C: the degree of Ω1
C/k. It is not hard to compute

that for P1
k this degree is −2, and that for a hyperelliptic curve y2 = f with f of odd degree d it

is d− 3. In general it is 2g(C)− 2.
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8 March 8, 1996

8.1 The theorem of Riemann–Roch

Let C be a smooth projective geometrically irreducible curve over a field k. We have seen that
Ω1
C/k is an invertible OC-module. We define the genus g(C) of C to be the dimension of the k-

vector space Γ(C,Ω1
C/k). Let us admit for the moment that for L an invertibleOC-module the k-

vector space Γ(C,L) is of finite dimension. We will prove a bit further that in fact dimk(Γ(C,L))

is at most max(0, deg(L) + 1); in particular, it is zero if deg(L) < 0. Let K be any divisor on C
such that L(K) is isomorphic to Ω1

C/k (i.e., K is the divisor of some non-zero element of Ω1
C/k,η,

where η is the generic point of C; such divisors are called canonical divisors). Recall that for any
divisor D on C we have defined an invertible OC-module L(D) and that l(D) is the dimension
of the space of global sections L(D) of L(D). The following theorem, called the theorem of
Riemann–Roch, gives a relation between l(D) and l(K −D).

8.1.1 Theorem. For any divisor D on C we have

l(D)− l(K −D) = deg(D) + 1− g(C)

We do not have time to give a proof of this theorem. Proofs can be found in [Har] and in [Serre,
Groupes algébriques et corps de classes, II]. These proofs use cohomology of sheaves; the second
proof less than the first. I hope to say a few things about the proof at the end of today’s lecture.
A very useful consequence of Thm. 8.1.1 is that for D of degree greater than the degree of K
one has l(K − D) = 0, hence l(D) = deg(D) + 1 − g(C). Putting D := 0 in Thm. 8.1.1 and
using that Γ(C,OC) = k gives l(K) = g(C), which is in fact the definition of g(C). Putting
D := K in Thm. 8.1.1 gives deg(K) = 2g(C)− 2, a result that we already verified by hand for
plane curves and hyperelliptic curves. Of course, Thm. 8.1.1 has a version in terms of invertible
OC-modules instead of divisors: it says that for any invertible OC-module L one has:

(8.1.2) dimk(Γ(C,L))− dimk(Γ(C,Ω1
C/k ⊗ L−1)) = deg(L) + 1− g(C)

The following consequence of Thm. 8.1.1 will be most important for us in the construction of
the jacobian of C.

8.1.3 Corollary. Let L be an invertible OC-module of degree at least g(C) on C. Then there is
an effective divisor D such that L ∼= L(D).

Proof. Let L be as in the statement. Then the right hand side of (8.1.2) is > 0, hence, since
dimensions are ≥ 0, we have dimk(Γ(C,L)) > 0. Let s be a non-zero element of Γ(C,L). Then
the divisor div(s) of s is effective and L is isomorphic to L(div(s)). �
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Theorem 8.1.1 has many applications; see [Har, IV]. For example, one can show that a curve C
of genus zero with C(k) 6= ∅ is isomorphic to P1

k. One can show that a curve C of genus one
with a rational point P can be embedded in P2

k such that it is given by an equation of the form
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, and that C(k) has a natural group structure. One
can show that the complement of a closed point P on C is affine. One can show that C can be
embedded in P3 (for this one doesn’t need Riemann–Roch). One can show that there exists a
dominant morphism of C to P1

k of degree at most g(C) + 1. Again, we have no time to look at
this. Let us also note that there are applications to the theory of error correcting codes (take k a
finite field).

8.2 Hurwitz’s formula

Let π : C → C ′ be a dominant morphism between smooth projective geometrically irreducible
curves. We know that π is a finite morphism, and that for Spec(B) an open affine of C ′,
π−1Spec(B) is of the form Spec(C) with C a B-algebra which is locally free of rank deg(π)

as B-module. The exact sequences of Proposition 7.1.1(4), with A replaced by k, glue to an
exact sequence of sheaves on C:

(8.2.1) π∗Ω1
C′/k → Ω1

C/k → Ω1
C/C′ → 0

The two sheaves on the left in this exact sequence are both invertibleOC-modules. It follows that
π∗Ω1

C′/k → Ω1
C/k is either injective or zero. By looking at Ω1

C/C′,η one sees that π∗Ω1
C′/k → Ω1

C/k

is zero if and only if the field extension k(C ′) → k(C) is inseparable. Let us suppose that this
field extension is separable (in which case we say that π is separable). Then we have an exact
sequence:

(8.2.2) 0→ π∗Ω1
C′/k → Ω1

C/k → Ω1
C/C′ → 0

and Ω1
C/C′,η = 0. Since Ω1

C/C′ is a coherent OC-module, it has support in a finite number of
closed points of C. These points are exactly those at which the geometric fibre of π is not
reduced, and are called the ramification points. Let x be a point such that Ω1

C/C′,x 6= 0. Since
Ω1
C/k,x is a freeOX,x-module of rank one, Ω1

C/C′,x is isomorphic toOX,x/mrx
x for a unique rx > 0.

The divisor R :=
∑

x rxx is called the ramification divisor. One verifies easily that the injection
π∗Ω1

C′/k → Ω1
C/k identifies π∗Ω1

C′/k with the subsheaf Ω1
C/k ⊗ L(−R) of Ω1

C/k. It follows that
we have the following formula, relating the degrees of Ω1

C′/k, Ω1
C/k and R:

(8.2.3) deg(Ω1
C/k) = deg(π∗Ω1

C′/k) + deg(R) = deg(π) deg(Ω1
C′/k) + deg(R)
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Of course, this formula expresses the genus of C in terms of the genus of C ′ and the degree of R.
It generalises the results that we obtained by hand, for plane curves and hyperelliptic curves
over C (if we admit that the topological genus, i.e., the genus of C(C), equals g(C)). In certain
cases there is a simple formula for the rx. Suppose that k is algebraically closed and let x in C
be a ramification point of π. Let ex be the multiplicity of x in the divisor π∗y, where y = π(x).
Then we claim that rx ≥ ex − 1, with equality if and only if ex is invertible in k. The proof is
as follows. Let tx and ty be uniformizers at x and y, respectively. Then π#(ty) = tex

x u, with
u in O∗C,x. Note that dty is a OC′,y-basis of Ω1

C′/k,y, and that dtx is a OC,x-basis of Ω1
C/k,x. We

have:

(8.2.4) π∗(dty) = d(π#ty) = d(tex
x u) = tex−1

x (exu+ txu
′)dtx,

where u′ = du/dtx. This shows clearly what we claimed. For example, if k is algebraically
closed of characteristic zero one has R =

∑
x(ex − 1)x, where the sum ranges over all closed x

in C.

8.3 On the proof of the Riemann-Roch theorem

Let as usual C be a smooth projective geometrically irreducible curve of over a field k. We
suppose that k is algebraically closed. One basic tool to prove properties of the l(D) is the
following.

8.3.1 Proposition. Let D be a divisor on C and P a closed point on C. Then we have an exact
sequence of sheaves on C:

0→ L(D)→ L(D + P )→ P∗k → 0,

where the map L(D)→ L(D + P ) is the inclusion, and where P : Spec(k)→ C is the element
of C(k) corresponding to P .

Proof. Let us first define a morphism L(D + P )→ P∗k. Let t be a uniformizer at P and let n
be the multiplicity of P in D + P . Then t−n is a OC,P -basis of L(D + P )P . Let U be an open
neighborhood of P and f in L(D+P )(U). Then we send f to (tnf)(P ) (note that tnf is regular
at P ). The exactness of the sequence follows directly from the definitions. �

Since taking global sections is left exact, Prop. 8.3.1 gives exact sequences:

(8.3.2) 0→ L(D)→ L(D + P )→ k

8.3.3 Proposition. For all divisors D one has l(D) ≤ deg(D) + 1.
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Proof. We know that this is true if deg(D) ≤ 0, and that for D of degree zero l(D) = 1 iff D is
principal. So the proof is by induction on deg(D); (8.3.2) gives the induction step. �

Let us now discuss a very little bit the proof of the Riemann–Roch theorem. By the definition
of g(C), it is true for D = 0. The proof is by induction on

∑
x |nx|, if D =

∑
x nxx. For D a

divisor on C and P a closed point one constructs an exact sequence of k-vector spaces:

(8.3.4) 0→ L(D)→ L(D + P )→ k → L(K −D)∨ → L(K − (D + P ))∨ → 0

where, for V a k-vector space, V ∨ denotes its dual. It is clear that this provides the induction
step. The exact sequences (8.3.4) are constructed as long exact cohomology sequences
(8.3.5)

0→ H0(C,L(D))→ H0(C,L(D+P ))→ H0(C,P∗k)→ H1(C,L(D))→ H1(C,L(D+P ))→ 0

coming from the exact sequence of sheaves of Prop. 8.3.1. Serre’s duality theorem gives isomor-
phisms

(8.3.6) H1(C,L)→ H0(C,Ω1
C/k ⊗ L−1)∨

Probably more about cohomology later.

8.4 Effective divisors of degree g(C)

Let again C be a smooth projective geometrically irreducible curve over an algebraically closed
field k. Let g be the genus of C. We have seen that every invertible OC-module is isomorphic to
some L(D), with D an effective divisor of degree g. In other words, the map

(8.4.1) C(k)g → Picg(C), (P1, . . . , Pg) 7→ L(P1 + · · ·+ Pg)

is surjective. The aim of this section is to show that there exist (P1, . . . , Pg) in C(k)g such
that the fibre of (8.4.1) over the image of (P1, . . . , Pg) consists exactly of the permutations of
(P1, . . . , Pg). We will deduce later that this is then true for all (P1, . . . , Pg) in a non-empty open
subset of C(k)g.

Let us first study the problem of determining in some way the effective divisors D′ that are
linearly equivalent to a given divisor D, i.e., such that D′−D is a principal divisor. Now D′−D
is a principal divisor if and only if there exists f in k(C)∗ such that div(f) = D − D′. Such
an f is in fact a section of L(D), whose divisor (not as a rational function but as a section of
L(D)) equals D′. The converse holds too: let f be a non-zero section of L(D) and let D′ be the
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divisor of f as a section of L(D); then D − D′ is the principal divisor div(f). Hence we have
established a bijection:

(8.4.2) P(Γ(C,L(D)))→ {effective divisors D′ with D′ ≡ D}

where for V a k-vector space P(V ) := (V − {0})/k∗, and where ≡ denotes linear equivalence.
This reduces our problem to showing that there is a non-empty subset U in C(k)g such that for
all (P1, . . . , Pg) in U we have l(D) = 1, or, equivalently, l(K −D) = 0.

8.4.3 Lemma. Let D be a divisor on C. For all closed points P in C for which there exists an
s in L(D) which does not vanish at P (as a section of L) one has l(D − P ) = l(D) − 1. In
particular, if l(D) 6= 0 then for all but finitely many points P one has l(D − P ) = l(D)− 1.

Let us now construct (P1, . . . , Pg) as desired. If g = 0 there is nothing to prove, so suppose
that g > 0. Lemma 8.4.3 says that for all but finitely many P1 we have l(K − P1) = g− 1. Take
such a P1. Repeated application of Lemma 8.4.3 gives P2, . . . , Pg.
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9 March 15, 1996

9.1 Quotients by actions of finite groups: construction

This topic is almost completely absent in [Har]. Good references are [Serre, Groupes algébriques
et corps de classes, III, §12] and [Mumford, Abelian varieties, II, §7 and III, §12]. Let G be a
finite group, acting on a ring A. Let AG := {a ∈ A | ∀g ∈ G : g(a) = a} be the subring of
G-invariants of A. Let X := Spec(A) and Y := Spec(AG). Then G acts from the right on X
and the morphism π : X → Y is invariant under G in the following sense: π◦r(g) = π for all g
in G, where r(g) is the automorphism of X induced by g. From the construction of π and the
anti-equivalence between rings and affine schemes it is clear that π : X → Y is the quotient for
the action of G in the category of affine schemes: every G-invariant morphism f : X → Z with
Z affine factors uniquely through π. The following proposition says that the situation is in fact
much better: π is the quotient in the category of locally ringed spaces. To make sense of this, we
have to define the notion of quotient of a locally ringed space X by an action, say from the right,
of a finite group G. So let Y := X/G as sets, and let π : X → Y be the quotient map. We give
Y the induced topology: U ⊂ Y is open if and only if π−1U is open in X . For U ⊂ Y open G
acts on the ring OX(π−1U) since π−1U is G-stable; we define OY (U) := OX(π−1U)G. Then π
is the quotient for the G-action in the category of ringed spaces. We leave it as an exercise for
the reader to verify that (Y,OY ) is actually a locally ringed space and that for f : X → Z a G-
invariant morphism of locally ringed spaces the morphism from Y → Z given by the universal
property is actually a morphism of locally ringed spaces. Here are some hints. Let y be in Y ,
and x in X with πx = y. For U ⊂ Y open and containing y we have OX(π−1U) → k(x), with
k(x) the residue field at x. For f in OY (U) with f(x) 6= 0 in k(x), f is invertible on the open
G-invariant subset D(f) of π−1U .

9.1.1 Proposition. Let X = Spec(A) be an affine scheme with an action by a finite group G.
Then the morphism π : X → Y := Spec(AG) is a quotient in the category of locally ringed
spaces.

Proof. Let us first note that every a in A is a root of the polynomial
∏

σ∈G(X − σ(a)) which
is monic and has coefficients in B := AG. So π is integral and hence closed. We want to
show that π is set-theoretically the quotient map. The fibres of π are G-stable since π is G-
invariant, so it remains to show that each fibre of π consists of exactly one G-orbit. Before we
do that, let us show that for b in B we have Bb = (Ab)

G, in the sense that the natural morphism
Bb → (Ab)

G is an isomorphism. Localization is exact, hence the injection B → A induces an
injection Bb → Ab, which in fact factors through (Ab)

G. Let a/bn be in (Ab)
G. There exists
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m ≥ 0 such that for all σ in G we have bm(σ(a) − a) = 0. It follows that a/bn = abm/bn+m

is in Bb. Let now y be in Y , and let Xy be the set-theoretical fibre of π over y. Because π is
closed and dominant, π is surjective. Hence Xy consists of at least one G-orbit. Suppose that Xy

consists of more than one G-orbit. Let x1G and x2G be two distinct orbits in Xy. The fact that
Bb = (Ab)

G for all b in B implies that By = (A ⊗B By)
G. It follows that A ⊗B k(y) is integral

over k(y), hence that every prime ideal of A ⊗B k(y) is maximal. This implies that every point
in Xy is a maximal ideal of A⊗B By. The Chinese Remainder Theorem says that the morphism
A⊗B By →

∏
x∈x1·G k(x)×

∏
x∈x2·G k(x) is surjective. Let f be in A⊗B By having image 1 in

the k(x) with x ∈ x1·G and 0 in the k(x) with x ∈ x2·G. Then
∏

σ σ(f) has the same property
and is G-invariant hence in By which is impossible. Hence Xy consists of exactly one G-orbit,
and we have proved that, set-theoretically, π is the quotient map. Since π is closed, Y has the
quotient topology.

It remains to show that the morphism of sheaves OY → (π∗OX)G on Y is an isomorphism.
Since both are sheaves, it suffices to verify that on all D(b) with b in B they have the same
sections. But that we have already done, since it amounts to Bb = (Ab)

G. �

9.1.2 Corollary. Let X be a scheme with an action by a finite group G. Suppose that every
G-orbit in X is contained in an affine open subset of X . Then the quotient X/G in the category
of locally ringed spaces is actually a scheme.

Proof. Let us first prove that for every x in X there exists a G-stable affine open subset U of
X containing xG. In the case where X is separated over an affine scheme, finite intersections
of affine opens are affine, hence if U is an affine open containing xG, then ∩σUσ is a G-stable
open affine containing xG. In general one reduces to this case. Let U0 = Spec(A) be an affine
open in X containing xG. Let U1 := ∩σU0σ: this is a G-stable open subset of X , not necessarily
affine. Let I ⊂ A be an ideal such that U0−U1 = V (I), and let p1, . . . , pn be the prime ideals in
A corresponding to the elements of xG. A standard argument shows that there exists an element
a in A such that a is in I , but not in the union of the pi. Then U2 := D(a) ⊂ U1 is an affine open
subset containing xG. Since U0 is separated, U3 := ∩σU2σ has all the desired properties.

Let π : X → Y := X/G be the quotient in the category of locally ringed spaces. Let y be
in Y . Let U = Spec(A) be a G-stable affine open subset in X containing π−1y. Then πU is an
open subset of Y , and Prop. 9.1.1 implies that πU = Spec(AG). Hence Y is a scheme. �

9.1.3 Remark. If X is quasi-projective over a scheme S and G acts by automorphisms of X as
an S-scheme, then every orbit of G is contained in an affine open subset of X .
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9.1.4 Example. Let X := Spec(L) with L a field. Let G be a finite subgroup of the automor-
phism group of L. LetK := LG. Then π : X → Y := Spec(K) is the quotient byG. One knows
in this case thatK → L is a separable Galois extension of degree |G|, with Galois groupG. Note
that the geometric fibre of π, i.e., Spec(L⊗K K)→ Spec(K), is the disjoint union of copies of
Spec(K), indexed by G, and that G acts freely and transitively on the set X(K). So despite of
the fact that X consist of just one point, the G-action on it is free in a certain sense.

9.1.5 Example. Let X := A2
k = Spec(k[x, y]) with k of characteristic different from 2. Let σ

be the k-automorphism of X given by σ# : x 7→ −x, y 7→ −y. Then k[x, y]G has a k-basis
consisting of the monomials xayb with a + b even. We want to describe k[x, y]G by generators
and relations. Clearly x2, xy and y2 generate k[x, y]G. Let φ : k[u, v, w] → k[x, y]G be the
morphism of k-algebras sending u to x2, v to xy and w to y2. Obviously, uw − v2 is in the
kernel of φ. We claim that ker(φ) = (uw − v2). So let f be in ker(φ). We want to show that
the image f̄ of f in k[u, v, w]/(uw − v2) is zero. Replacing v2 by uw in f as many times as
possible, we see that f̄ can be written as g+hv, with g and h in k[u,w]. Since φ(f) = 0 we have
0 = g(x2, y2) + xyh(x2, y2) in k[x, y]. This clearly implies that g and h are zero, hence f̄ too. It
follows that the quotient Y := Spec(k[x, y]G) is isomorphic to V (uw − v2) in A3

k. Note that Y
is singular at the origin. So apparently it can happen that a quotient of a smooth k-scheme is not
smooth. We will see in the next section that this cannot happen if G acts freely.

9.1.6 Example. Let X be an integral scheme which is normal, with an action by a finite group
G satisfying the conditions of Cor. 9.1.2. Then one easily shows that the quotient Y is integral
and normal too. It follows that for X a smooth projective irreducible curve over an algebraically
closed field Y is the smooth projective irreducible curve corresponding to k(X)G. It also follows
that for X = Spec(OL) with L a number field, i.e., a finite extension of Q, Y = Spec(OK)

where K = LG.

9.1.7 Example. Let R be a ring, n ≥ 0 and A := R[x1, . . . , xn]. Let G := Sn be the group of
permutations of {1, 2, . . . , n}. We let G act on A by R-algebra automorphisms permuting the xi:
σ : xi 7→ xσ(i). Then B := AG is the sub-A-algebra generated by the elementary symmetric
polynomials p1, . . . , pn. Since the pi are algebraically independent, it follows that Spec(B),
which is An

R/G is isomorphic to An
R, with the quotient map given by the pi.

9.2 Quotients by actions of finite groups: properties

9.2.1 Proposition. Let R be a noetherian ring, X an R-scheme of finite type, G a finite group
acting on X as R-scheme such that the action satisfies the hypothesis of Cor. 9.1.2. Then the
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quotient Y := X/G is of finite type over R and π : X → Y is finite.

Proof. It suffices to prove this for X affine, say X = Spec(A). Let x1, . . . , xn be R-generators
ofA. LetC be the sub-R-algebra ofB := AG that is generated by the (finitely many) coefficients
of the polynomials

∏
σ(X − σ(xi)). Then C is of finite type over R, hence noetherian. By

construction, A is finite over C, hence B too. It follows that A is finite over B and that B is of
finite type over R. �

9.2.2 Proposition. Let R be a ring and X an R-scheme with an action by a finite group G

satisfying the hypothesis of Cor. 9.1.2. Let π : X → Y := X/G be the quotient. Let R′ be an R-
algebra, letX ′ := X×Spec(R) Spec(R′) etc. Then we have a natural morphismX ′/G→ (X/G)′.
If R′ is flat over R this morphism is an isomorphism.

Proof. Reduce to X = Spec(A) affine. Then the question is whether AG⊗RR′ → (A⊗RR′)G

is an isomorphism or not. We have an exact sequence of R-modules:

(9.2.3) 0→ AG → A→
∏
σ

A,

where the mapA→
∏

σ A sends a to σ 7→ σ(a)−a. SinceR→ R′ is flat, this sequence remains
exact after tensoring with R′, proving what we need. �

9.2.4 Theorem. Let R be a noetherian ring, X an R-scheme of finite type with an action by a
finite group G, satisfying the hypothesis of Cor. 9.1.2. Let π : X → Y be the quotient. Let y be
in Y . Then the diagram

(9.2.5)

X ←−
∐

x 7→y Spec(ÔX,x)
↓ ↓
Y ←− Spec(ÔY,y)

is Cartesian, and the second vertical arrow is also a quotient for the action byG. Let x be in π−1y

and let Gx be the stabilizer in G of x. Then ÔY,y = ÔX,x
Gx

. If G acts freely on X in the sense
that it acts freely on the sets X(S) for all R-schemes S, then π is finite étale (see Remark 9.2.7):
for every x in X the complete local ring ÔX,x is an ÔY,π(x)-algebra of the form ÔY,π(x)[t]/(f),
with f monic and (f, f ′) = ÔY,π(x)[t].

Proof. We replace Y by Spec(OY,y) and X by X ×Y Spec(OY,y). Then Y = Spec(B) with
B local, and X = Spec(A) for some A. We apply Prop. 9.2.2 with R := B and R′ := B̂. It
follows that (A⊗B B̂)G = B̂. Let mB be the maximal ideal of B. Since A is a finitely generated
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B-module, we have A⊗B B̂ = lim
←
A⊗B B/mn

B. The prime ideals of A⊗B B/mn
B are precisely

the x in π−1y (for n ≥ 1), and they are maximal ideals. It follows thatA⊗BB/mn
B is the product

of its localizations at these x. Hence A⊗B B̂ =
∏

x 7→y ÔX,x. Since we won’t use the fact that π
is finite etale if G acts freely, we won’t prove it either. �

9.2.6 Remark. Let X be a scheme with an action by a finite group such that every orbit is
contained in an open affine subset of X . One would like to understand the functor that X/G
represents, i.e., the sets (X/G)(S) with S any scheme. Of course, the map X(S)→ (X/G)(S)

factors through X(S)/G, but the maps X(S)/G → (X/G)(S) need not be injective nor surjec-
tive. For example, let G := Z/2Z, X := Spec(Q(i)) with the action of G given by σ : i 7→ −i;
then X/G = Spec(Q) and X(Q)/G→ (X/G)(Q) is not surjective. To show that it need not be
injective, take X := Spec(Q[ε]) with ε2 = 0, take G := Z/2Z that acts via σ : ε 7→ −ε; then
X/G = Spec(Q); take S := X . There is a positive statement, however: for k an algebraically
closed field the mapX(k)/G→ (X/G)(k) is bijective (left as an exercise to the reader; note that
if X is a k-scheme of finite type it follows from the facts that X/G is topologically the quotient
and that X(k) is the same as the set of closed points).

9.2.7 Remark. Let S be a scheme andX an S-scheme. ThenX is finite etale over S if it is finite
locally free and has geometrically reduced fibers. For example, if S = Spec(k) with k a field,
then the finite etale S-schemes are the spectra of finite products of finite separable extensions
of k. For S = Spec(A) affine the finite etale S-schemes are the Spec(B) with B an A-algebra
which is locally free of finite rank as an A-module and has the property that for every morphism
A→ k with k a field,B⊗Ak is reduced. For locally noetherian S, f : X → S is finite etale if and
only if f is finite and for every closed x in X the complete local ring ÔX,x is an ÔY,f(x)-algebra
of the form ÔY,f(x)[t]/(g) with g monic and (g, g′) = ÔY,f(x)[t]. If S is locally of finite type over
an algebraically closed field k, then f : X → S is finite etale if and only if f is finite and for
all x in X(k) the induced morphism of complete local rings ÔY,f(x) → ÔX,x is an isomorphism.
A good reference for etale and finite etale morphisms is [SGA 1] (Springer Lecture Notes in
Mathematics 224). See also Lemmas 10.1.2 and 10.1.3.

9.3 Symmetric products of curves

Let k be a field and C a smooth projective geometrically irreducible curve over k. Let n ≥ 1 and
let Cn denote the n-fold fibered product of C over k. The group Sn acts on Cn and since Cn is
projective, every orbit is contained in an affine open subset of Cn. The quotient C(n) := Cn/Sn

is called the nth symmetric product of C.
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9.3.1 Proposition. The k-scheme C(n) is smooth projective and of dimension n.

Proof. Let us first show that C(n) is of finite type and smooth of dimension n. It is of fi-
nite type because of Prop. 9.2.1. To say that it is smooth is to say that C(n)

k
is regular. By

Prop. 9.2.2 we have C(n)

k
= (Ck)

(n). Hence we may assume that k is algebraically closed and
we have to show that C(n) is regular at all closed points. Let us look a bit closer at C(n)(k).
According to Rem. 9.2.6, C(n)(k) = C(k)n/Sn, i.e., it is the set of unordered ntuples of el-
ements of C(k). Equivalently, C(n)(k) is the set of effective divisors of degree n on C. Let
y = m1P1 + · · · + mrPr be in C(n)(k), with the Pi distinct and the mi ≥ 1. Its local ring is
regular if and only if its completion is, and we can compute this completion using Thm. 9.2.4.
For each i, let ti be a uniformizer at Pi; then ÔX,Pi

= k[[ti]], the formal power series ring. Let
x = (P1, . . . , P1, . . . , Pr, . . . , Pr) in C(k)n, with m1 times P1, m2 times P2, etc. Let X := Cn

and Y := C(n). Then

ÔX,x = k[[t1,1, . . . , t1,m1 , . . . , tr,1, . . . . tr,mr ]].

The stabilizer Sn,x of x is the subgroup Sm1 × · · · × Smr of Sn. One easily proves that

ÔY,y = k[[p1,1, . . . , p1,m1 , . . . , pr,1, . . . . pr,mr ]],

where pi,1, . . . , pi,mi
are the elementary symmetric polynomials in the variables ti,1, . . . , ti,mi

.
(Use that over arbitrary rings, like k[[p1,1, . . . , p1,m1 , . . . , pr−1,1, . . . . pr−1,mr−1 ]], one knows that
every symmetric polynomial is a polynomial in the elementary symmetric polynomials in a
unique way.) This clearly shows that OY,y is regular.

It remains to show that C(n) is projective. The next example shows that (P1
k)

(n) is isomorphic
to Pn. Let f : C → P1

k be dominant. Then f is finite. It follows that the induced morphism
C(n) → (P1

k)
(n) is finite. Hence C(n) is finite over Pnk , and C(n) is projective. �

9.3.2 Example. Let k be any field. We want to show that (P1
k)

(n) is isomorphic to Pnk . So first
we construct a morphism f : (P1

k)
n → Pnk and then we show that it is the quotient for the action

of Sn. Let A be any k-algebra. Let P1, . . . , Pn be in P1
k(A). Locally on A (or, more correctly,

on Spec(A)) we can write Pi = (ai, bi) with ai and bi in A such that Aai + Abi = A. Consider
the polynomial (b1x − a1y) · · · (bnx − any) in A[x, y]. Its coefficients give an element f(P )

in Pnk(A). One verifies that this in fact defines a morphism f as desired. Let us now show that
f is a quotient for the action of Sn. It is clear that f is Sn-invariant, hence we get a morphism
g : (P1

k)
(n) → Pnk . Both source and target are integral and projective and smooth over k. The

morphism g is finite because f is. Now look at the function fields. One computes easily that
k((P1

k)
n) has degree n! over k(Pnk) and over k((P1

k)
(n)). It follows that the latter two fields are

the same. Since both Pnk and (P1
k)

(n) are normal, they are in fact the same.

40



The most important part of this section is to understand C(n) as a functor. In fact, Milne’s text
contains some mistakes: his Propositions 3.10 and 3.11 are not true; one would have to suppose
that the scheme T (in the notation of Milne) is reduced. One can prove that his Theorem 3.13 is
true (but the proof given by Milne is incomplete). To keep things as simple as possible, we will
use a somewhat weaker version of that theorem.

9.3.3 Definition. Let T be any k-scheme. An effective relative Cartier divisorD onCT of degree
n is a closed subscheme D of CT which is finite and locally free of rank n over T and whose
sheaf of ideals ID is locally generated by one element which is not a zero-divisor.

9.3.4 Remark. Let P be a T -valued point of C. Then P (T ) ⊂ CT is an effective relative Cartier
divisor P of degree one on CT (we view P as a section of CT → T ). One can add two effective
relative Cartier divisors D1 and D2 on CT : the sum D1 +D2 has ideal sheaf ID1ID2 . The degree
ofD1+D2 is the sum of the degrees ofD1 andD2. If one hasD1+D2 = D1+D3, thenD2 = D3

(this follows directly from the fact that a local generator of the sheaf of ideals is not a zero-divisor.
The set of effective relative Cartier divisors of degree n on CT will be denoted DivnC(T ). This
set varies functorially in T : a morphism T ′ → T induces a map DivnC(T ) → DivnC(T ′): D is
mapped to DT ′ which is in fact in DivnC(T ′) (here one uses that D is flat over T ). We have a
morphism of functors p : Cn → DivnC defined as follows: for T a k-scheme map (P1, . . . , Pn) in
Cn(T ) to the element P1 + · · ·+ Pn of DivnC(T ).

Milne’s Theorem 3.13 says the following.

9.3.5 Theorem. There exists a unique morphism of functors C(n) → DivnC compatible with
π : Cn → C(n) and p : Cn → DivnC . This morphism is an isomorphism.

The weaker version that we will use concerns two subobjects. Let ∆ ⊂ Cn be the union of the
“diagonals” ∆i,j with i < j: for i < j let pri,j : Cn → C2 be the projection on the ith and jth
factors; then ∆i,j := pr−1

i,j ∆ where this ∆ is the diagonal in C ×k C. By construction, ∆ ⊂ Cn

is Sn-stable. We denote its image in C(n) still by ∆. Then (Cn − ∆)/Sn = C(n) − ∆. The
subobject of DivnC that we consider is the following. For T a k-scheme we define Divet,n

C (T ) to
be the subset of those D of DivnC(T ) whose geometric fibres over T are reduced (i.e., the D that
are etale over T ). This Divet,n

C is a subfunctor of DivnC . It is clear from the construction that the
morphism p : Cn → DivnC induces a morphism p : (Cn −∆)→ Divet,n

C .

9.3.6 Theorem. There exists a unique morphism of functors C(n) − ∆ → Divet,n
C compatible

with π : (Cn−∆)→ (C(n)−∆) and p : (Cn−∆)→ Divet,n
C . This morphism is an isomorphism.
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10 March 18, 1996

10.1 Symmetric products of curves, continued

Our task is to prove Thm. 9.3.6. We will first show that there exists a unique morphism of
functors p : C(n) −∆→ Divet,n

C which is compatible with π and p. Then we will show that p is
an isomorphism. Recall that, by Yoneda’s lemma, Hom(C(n)−∆,Divet,n

C ) = Divet,n
C (C(n)−∆).

Let D′ be the element of Divet,n
C (Cn−∆) that corresponds to the morphism p. We have to show

that there is a unique element D of Divet,n
C (C(n) − ∆) such that D′ = π∗D. This D has to be

a closed subscheme of CC(n)−∆ with certain properties. We have a good candidate for D: the
quotient D′/Sn.

10.1.1 Proposition. Let D be the quotient of D′ by the action of Sn. Then D is a closed sub-
scheme of CC(n)−∆, one has π−1D = D′ and D is an effective relative etale Cartier divisor of
degree n. Moreover, D is the unique closed subscheme of CC(n)−∆ such that π−1D = D′.

Proof. Let us write X := Cn − ∆ and Y := C(n) − ∆. Let i′ denote the closed immersion
of D′ into CX . By construction we get a morphism i : D → CY . Since D′ is finite over Y , D
is finite over Y . One verifies that it suffices to prove the theorem after base change to k. So
now we suppose that k is algebraically closed. Let us show that i is a closed immersion. We
know that i is closed. We have to see that i is injective and that for each d in D(k) the morphism
i# : OCY ,i(d) → OD,d is surjective. Let y in Y (k) be the image of d, and choose x in X(k) with
image y. Then x = (P1, . . . , Pn) with the Pi in C(k) all distinct. We choose uniformizers ti at
the Pi. Then ÔX,x = k[[t1, . . . , tn]] = ÔY,y, as we have seen in the proof of Prop. 9.3.1. That
same proof, applied to CX and to D′ also shows that i, after base change from Y to Spec(ÔY,y),
coincides with the base change of i′ from X to Spec(ÔX,x). Using this, it is standard that i is
injective and that i# surjective at d. Hence i is a closed immersion. It also follows that D is
an effective relative etale Cartier divisor of degree n, and that π−1D = D′. Suppose that E is
a closed subscheme of CY such that π−1E = D. Then for all y in Y (k) the base changes to
Spec(ÔY,y) of D and E must coincide. It follows that E = D. �

In order to show that p : C(n) −∆ → Divet,n
C is an isomorphism we will construct an inverse of

it. To do that, we need some lemmas on finite etale morphisms.

10.1.2 Lemma. Let f : X → Y be a finite etale morphism with a section P : Y → X . Then P
is an open and closed immersion, and the Y -scheme X is the disjoint union of the image of P
and its complement, both of which are finite etale over Y .
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Proof. One reduces to Y affine, say Y = Spec(A). Then X is affine too, say X = Spec(B).
We may suppose that B is free of some rank n as A-module. Let I ⊂ B be the kernel of P# and
let J ⊂ B be the annihilator of I . We have B = A⊕ I as A-modules. The etaleness of X over Y
at P implies that (and is in fact equivalent too) I2 = I . Nakayama’s lemma implies that I locally
generated by one element as a B-module (note that I is finitely generated as A-module since it
is a quotient of B; hence I is finitely generated as B-module). It follows that I is a locally free
B/J-module of rank one. We may suppose that I is generated by an element x. Then x2 = ux

with u a unit B/J . Let v be in B such that v = u−1 in B/J , and put e := vx. We then have
e2 = v2x2 = v2ux = v(vux) = vx = e. This idempotent gives the decomposition we need. �

10.1.3 Lemma. Let S be a scheme, and X a finite etale S-scheme of some rank n. Then the
contravariant functor F : (Sch/S) → (Sets) sending T → S to the set of isomorphisms of T -
schemes φ :

∐n
i=1 T → XT is representable by a finite etale S-scheme S ′ of rank n!. The obvious

action of Sn on S ′ is free and has quotient S ′ → S.

Proof. Let us first consider the functor H : (Sch/S) → (Sets) that sends T → S to the set of
T -morphisms φ :

∐n
i=1 T → XT . This functor is obviously represented by the n-fold fibered

product Xn of X over S. The functor F is a subfunctor of H , so we want to show that it
is represented by some subscheme of Xn. Let us consider an S-scheme T and an element φ
of H(T ). Then φ is given by an n-tuple P := (P1, . . . , Pn) of elements of X(T ). We view the
Pi as elements of XT (T ). Then φ is an isomorphism if and only if the n sections Pi are disjoint,
i.e., iff for all i < j the closed subscheme of T defined by Pi = Pj is empty (note that in that
case the disjoint union of n copies of T is a closed subscheme of XT ; a degree consideration
shows that this closed subscheme is equal to XT ). It follows that φ is an isomorphism if and only
if the morphism (P1, . . . , Pn) from T to Xn factors through the open subscheme S ′ := Xn −∆,
where ∆ is the union over all i < j of the (i, j)th diagonal, just as defined in Section 9.3. This
means that F is represented by S ′. An iterated application of Lemma 10.1.2 shows that S ′ is
finite etale over S, its degree is equal to n!. The action by Sn is free in the sense that Sn acts
freely on all sets S ′(T ). It remains to show that the quotient is S. This is clear in the case where
X is isomorphic to

∐n
i=1 S. But this condition is verified after the base change S ′ → S. Hence

S ′S′ → S ′ is the quotient for the action by Sn on S ′S′ obtained by base change. Hence we have
(S ′/Sn)S′ = S ′ (use Prop. 9.2.2). Since S ′ → S is faithfully flat (i.e., it is flat and surjective) we
have S ′/Sn = S. �

We can now construct the inverse of p. Let S be a k-scheme, and let E be in Divet,n
C (S). Let

S ′ be the S-scheme given by Lemma 10.1.3. Then ES′ can be written as P1 + · · · + Pn, with
the Pi disjoint. These Pi define a morphism φ′ : S ′ → Cn −∆, such that φ′−1D′ = ES′ , where
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D′ is as in Prop. 10.1.1. Taking quotients by Sn gives a morphism φ : S → C(n) −∆ such that
φ−1D = E. This construction defines a morphism from Divet,n

C to C(n)−∆, of which on verifies
that it in inverse to p. This finishes the proof of Theorem 9.3.6.

10.2 Effective divisors of degree g, continuation of 8.4

Let C be a smooth projective geometrically irreducible curve over an algebraically closed field k.
In 8.4 we showed that for “most” (P1, . . . , Pg) in Cg(k) one has l(P1 + · · ·+ Pg) = 1. We want
to show that this condition in fact defines a Zariski open subset U of Cg.

10.2.1 Proposition. The subset of (P1, . . . , Pg) in (Cg −∆)(k) such that l(P1 + · · · + Pg) = 1

is Zariski open and not empty.

Proof. We define a line bundle L on Cg by:

L :=

g⊗
i=1

pr∗iΩ
1
C/k.

We choose a basis ω1, . . . , ωg of V := Γ(C,Ω1
C/k). An element P of C(k) defines a morphism of

k-vector spaces P ∗ : V → P ∗Ω1
C/k that we consider as a kind of functional on V since P ∗Ω1

C/k

is of dimension one. Just as in 8.4 one sees that an element (P1, . . . , Pg) of (Cg − ∆)(k) has
l(P1 + · · · + Pg) = 1 if and only if the functionals P ∗1 , . . . , P

∗
g are linearly independent (say if

one chooses bases of the P ∗i Ω1
C/k). This condition is equivalent to saying that the determinant

det(P ∗i ωj), which is an element of the one dimensional k-vector space⊗gi=1P
∗
i Ω1

C/k, is non-zero.
We can do this construction globally on Cg: consider the section s := det(pr∗iωj) of L on Cg.
Then D(s)∩ (Cg−∆) is the set of (P1, . . . , Pg) with l(P1 + · · ·+Pg) = 1. Hence the result. �

10.2.2 Remark. It is clear that our section s of L vanishes on ∆. Hence s can be considered as
a section s′ of L ⊗ L(−∆). It is not hard to see that in fact D(s′) ⊂ Cg is the open subset such
that (P1, . . . , Pg) has l(P1 + · · ·+ Pg) = 1 iff (P1, . . . , Pg) is in it. We will not use this, but it is
clear that it gives some interesting information on the morphism of Cg to the degree g part of the
Picard functor.

10.3 Definition of the relative Picard functor

Let C be a smooth projective geometrically irreducible curve over a field k. Let g be its genus.
The jacobian variety J that we want to construct should represent the degree zero part of what
we will call the relative Picard functor of C over k. One would be tempted to try to show that
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the functor (Sch/k)→ (Sets) that sends S to Pic(CS) is representable, and say that J is the sub-
scheme that represents the subfunctor that sends S to the subset Pic0(CS) of Pic(CS) consisting
of isomorphism classes of invertibleOCS

-modules that have degree zero on all fibresXs. But the
functor S 7→ Pic(CS) is not representable. For example, suppose that we have P in C(k). Then
for each S we have a section P ∗ of Pic(S) → Pic(CS). This shows that Pic(S) → Pic(CS) is
injective. But then Pic(CS) does not behave at all as a sheaf: let L be an invertible OS-module,
then p∗L is locally trivial on S, but it is easy to get examples where it is non-trivial globally
(e.g., take S := P1

k). So it is not S 7→ Pic0(CS) that will be represented by J , but a kind of
sheafification of it. In general, this sheafification is hard to describe, but if C(k) is not empty it
has an easy description. So we will assume from now on that we have an element P0 in C(k).
For each S we have P ∗0 : Pic(CS) → Pic(S). It is a section of Pic(S) → Pic(CS), hence it
induces an isomorphism between Pic(CS) and Pic(S) ⊕ Pic(CS)/Pic(S). The relative Picard
functor PicC/k is defined by: PicC/k(S) := Pic(CS)/Pic(S).

Let S be a k-scheme and L an invertible OCS
-module. Then the function degL : S → Z,

s 7→ deg(Ls) is locally constant on S (this is proved using the fact that the Euler characteristic
of L is locally constant; see the proof of [Har, III, Thm. 9.9). It follows that S is the disjoint
union of its open and closed subschemes Si, i ∈ Z, on which L has degree i. If L is isomorphic
to p∗M for some invertible OS-moduleM, then L has degree zero on all fibres. For i in Z we
define PiciC/k to be the functor S 7→ Pici(CS)/Pic(S). It follows that PicC/k is representable if
and only if Pic0

C/k is, and that in that case, PicC/k is a disjoint union indexed by Z of copies of
Pic0

C/k (use the −⊗ L(iP0)).

10.4 Representability of Pic0
C/k

We recall the situation: C is a smooth projective geometrically irreducible curve over a field k,
such that C(k) is not empty.

10.4.1 Theorem. The functor Pic0
C/k is representable. The k-scheme that represents it (unique

up to unique isomorphism) is called the jacobian variety J of C.

Proof. Because of lack of time, we will only give a proof in the case where k is algebraically
closed. So from now on we assume that k = k. As always, let g be the genus of C. Let U be
the open subscheme of Cg −∆ given by Prop. 10.2.1: U(k) is the set of (P1, . . . , Pg) such that
l(P1 + · · ·+Pg) = 1. By definition, U ⊂ Cg is stable under the action of Sg; let V be its quotient,
this is an open subscheme of C(g)−∆. As explained in 8.4, this V should be the open subscheme
on which the morphism φ : C(g) → PicgC/k is an open immersion, but since we do not know yet
that PicgC/k is a scheme, it is not directly clear what this means (we will see in a moment what it
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means). Anyway, we will try to construct a scheme J representing Pic0
C/k by glueing copies of V .

For each x in Picg(C) we define φx : V → Pic0
C/k to be t−x◦φ, where t−x : PicgC/k → Pic0

C/k is
the translation by −x. Let Vx be a copy of V . We will think of the φx : Vx → Pic0

C/k as charts.
The next step in the proof is to find certain subfunctors Pic0

C/k,x of Pic0
C/k such that φx induces an

isomorphism between Vx and Pic0
C/k,x. Let Lx be an invertible OC-module in the isomorphism

class x. Let D be in Vx(k). Then φx(D) is the isomorphism class of an invertible OC-module L
such that there exists a unique divisor E of degree g on C such that L ⊗ Lx ∼= L(E), and that
moreover this divisor E is etale (in fact, it is D). To define Pic0

C/k,x, we need to have a version of
this over arbitrary k-schemes. So let S be a k-scheme and L be an invertible OCS

-module which
has degree zero on all Cs. Let q : CS → C be the projection. Let S ′x ⊂ S be the set of s such
that Γ(Ck(s), i

∗
s(L⊗ q∗Lx)) has dimension one over k(s), where is : Ck(s) → CS is the morphism

obtained from the base change Spec(k(s))→ S. It follows from [Har, III, Thm 12.11] that S ′x is
an open subset of S, that p∗(L ⊗ q∗Lx) is locally free of rank one on S ′x and that the morphisms
(p∗(L ⊗ q∗Lx))s → Γ(Ck(s), i

∗
s(L ⊗ q∗Lx)) are surjective for s in S ′x. This gives us an effective

relative Cartier divisor Dx on CS′x . Let Sx be the biggest open subset of S ′x over which Dx is
etale. It follows from Thm. 9.3.6 that there is a unique morphism Sx → Vx such that Dx is the
pullback of the universal divisor over Vx. Let Pic0

C/k,x be the subfunctor of Pic0
C/k such that for

all k-schemes S, Pic0
C/k,x(S) consists of those L for which Sx = S. It follows that φx induces

an isomorphism from Vx to Pic0
C/k,x.

We can now get glueing data for the Vx. Let x and y be in Picg(C). Then we have open
subsets Vx,y ⊂ Vx and Vy,x ⊂ Vy. By construction, φx and φy induce an isomorphism between
them. These isomorphisms satisfy the transitivity condition necessary to glue the Vx. Let J be
the k-scheme obtained by glueing the Vx. It is then reasonably straightforward to show that the
φx glue to an isomorphism J → Pic0

C/k. �
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