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This course was given in Rennes at the DEA level, simultaneously with a course on ho-
mological and commutative algebra (referred to as Berthelot’s course in the text that follows).
The two courses, of 30 hours each, were meant to form an introduction to some basic notions
and results in algebraic geometry, real algebraic geometry, analytic geometry and differential
geometry, preparing for more specialized courses in the second semester. It should be possible
to understand these course notes without having followed the other course, by working through
Section 1 of Chapter II and Sections 1 and 2 of Chapter III of Hartshorne’s book “Algebraic

Geometry”.

Contents
1 Differentiable varieties 3
2 Analytic manifolds and varieties 12
3 Algebraic varieties 16
4 Vector bundles 20
4.1 Tangent Spaces . . . . . . . . ..o e 20
4.2 Vector bundles, the tangent bundle . . . . .. .. ... .. 000000, 23
4.3 Vector bundles as sheaves of modules . . . . . .. ... ... ... ..., 24
5 Tensor constructions 28
5.1 Multi-linear algebra . . . . . . . . ..o oo 28
5.1.2 The tensor algebra . . . . . . ..o oL o Lo 28
5.1.3 The symmetric algebra . . . . . . ... o000 29
5.1.4 The exterior algebra . . . . . .. ... .o oL 29
5.2 Tensor products of vector bundles and locally free sheaves . . . . . .. ... .. 30
5.3 Metrics on vector bundles . . . . . . ..o o000 33
5.4 Differential forms . . . . . . . ... L 35
5.5 Volume forms, integration and orientation . . . . . .. ... ... ... ... .. 37
5.6 Pullback of vector bundles and of differential forms . . . .. . .. ... ... .. 41
B.7T S0mMe eXEICISES . . . . v v v v e i e e e e e e e e e e e 42



De Rham cohomology
Comparison between de Rham and sheaf cohomology
Cohomology of some Lie groups

The cohomology of constant sheaves

45

48

57

62



1 Differentiable varieties

We are going to study various kinds of geometrical objects, such as differentiable varieties,
analytic varieties and algebraic varieties. These objects occur in many areas of mathematics,
ranging from physics (general relativity, conformal field theory, mechanics) to algebra and
number theory (algebraic geometry) and analysis (Lie groups, differential equations). Our time
is quite limited (30 hours), so many details will not be discusssed in the lectures. The lectures
will therefore be very incomplete; the students taking this course are advised to fill in the gaps
as much as possible by studying text books on the subject. Some books I can think of at
this moment are: Spivak’s series of books (differential geometry), the book by Bott and Tu
(differential forms in algebraic topology), Lang’s book (differentiable manifolds) and Bourbaki’s
book (variétés différentielles et analytiques: fascicule de résultats).

We begin with differentiable varieties, also called manifolds. These are usually defined in
terms of charts. Intuitively, they are objects that “locally” look like R™ for some n. We begin
by making that precise.

1.1 Definition. Let X be a set. An atlas for X then consists of the following data: a set I,
for each v in I a subset X; of X, an integer n; > 0, an open subset U; of R* and a bijection
¢;: U; — X;. These data are required to satisfy the following conditions. Firstly, the X; cover
X, that is, U;X; = X. Secondly, the charts ¢; are compatible, in the sense that we will now
explain. Fori and j in I let X, ; be X;NXj, and let U; ; be (bi_lXi,j. Then ¢; induces a bijection,
still denoted ¢;, from U; ; to X; ;. Saying that ¢; and ¢; are compatible means that U, ; is open
in U;, U;; open in Uj, and the bijection qﬁj’lo(/ﬁi: Ui; — U, is differentiable.

Some remarks are in order here. First of all, the differentiability of (;Sj_logb,- in the definition can
mean various things. When we just say differentiable, we mean in fact infinitely differentiable,
that is, the n; R-valued functions making up ¢j’10¢,~ are C'*°-functions on U; ;. But we could
also consider functions of class C* for some k > 0; in that case we will say that the atlas is C*.
Note that the terminology “differentiable” is misplaced in the case £ = 0; in that case we speak

of a topological atlas. The second remark concerns the integers n;.

1.2 Definition. Let k > 0 be an integer or co. A variety or manifold of class C* is a set X
equipped with a C*-atlas. Notation: (X, I,n,U, ).

For X a C*-variety and z in X, all n; for i such that X; contains x are equal; this integer
is called the dimension of X at z; we denote it by dimx(x), so that we can view dimy as a
Z-valued function on X. (For £ > 0 the equality of the n; is easy to prove (consider derivatives
and use linear algebra); for £ = 0 one needs some algebraic topology.) Most of the time we will
just consider the C* case. As usual, defining the objects to study is not too interesting; we
should also say what maps between them we want to consider. For example, we want to say

what it means that two manifolds are isomorphic.

1.3 Definition. Let (X,1,n,U,¢) and (Y, J,m,V,1) be manifolds. Let f be a map from
X toY. Let z be in X. Then f is called differentiable at z if for every (i,j) such that
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z € X; and f(x) € Y; the subset ¢; '((f~'Y;) N X;) C R™ is open and the map ;' f¢; from
o7 ((f71Y;) N X;) CR% to R™ is differentiable at ¢; ' (z). The map f is called differentiable,

2

or a morphism of manifolds, if it is differentiable at all x in X.

Note that this definition does not change if we require the openness and differentiability at x
only for one pair (z,5). If /: X - Y and ¢g:Y — Z are morphisms, then gof: X — Z is also a
morphism. So we have the category of manifolds: we have objects, morphisms, composition of
morphisms, the composition is associative and each object X has an identity morphism idyx. A
morphism f: X — Y is called an isomorphism if and only if there exists a morphism ¢g: Y — X
such that fg = idy and gf = idx. Equivalently: a map f: X — Y is an isomorphism if and
only it is bijective and f and f~! are differentiable. Let us look at some examples of manifolds.

Let n > 0. Then R" with the atlas consisting of the chart idg-» is a manifold, that we
will denote by R". In the same way, every open subset of some R" becomes a manifold. If
X and Y are manifolds (we have already dropped the atlas from the notation), then X x Y
is easily equipped with an atlas (take K := I x J, W, ,; := U; x V}, etc.). We leave it as an
exercise to the reader to verify that the two projections pry and pry from X xY to X and Y are
differentiable, and that (X x Y, pry, pry ) has the following universal property: for Z a manifold
and morphisms f: Z — X and g: Z — Y there exists a unique morphism h: Z — X x Y such
that f = pryh and g = pryh. Let V be a finite dimensional R-vector space, say of dimension n.
Then an isomorphism of R-vector spaces ¢: R* — V makes V into a manifold. It is clear that
two such isomorphisms ¢ # ¢’ give different atlases but that idy is an isomorphism between
the manifolds.

For n > 0 the subset GL,(R) of M, (R) consisting of invertible n by n matrices with
coefficients in R is an open subset (it is det *(R — {0})). It is easy to check that the maps
m: GL,(R) x GL,(R) - GL,(R) and i: GL,(R) — GL,(R) given by m(z,y) = zy and i(z) =

z~! are differentiable (for 7, use the formula for z!

in terms of the matrix of cofactors and
det(z)). In general, a group G equipped with an atlas such that the multiplication and inversion
are differentiable is called a Lie group. We will see more examples soon.

Our next example is in a sense more interesting, because it is not isomorphic to an open
subset of R" for any n. We consider the circle S* in R?: it is the set of (z,y) such that
2?2 + 32 = 1. One way to make an atlas is the following. The projection on the first coordinate
gives a bijection from {(z,y) € S'|y > 0} to the open interval | — 1, 1[; the same holds for
{(z,y) € S'|y < 0}. We also have the projections on the second coordinate from the sets
{(z,y) € S|z > 0} and {(x,y) € S'|z < 0}. The four inverses of these maps form an
atlas. Another atlas is obtained by restricting the map (sin,cos) from R to R? to suitable
subsets of R. Yet a third atlas is given by projection from points of S'. For ¢ in R consider
the line through (¢,0) and (0,1). This line intersects S* in (0,1) and a unique other point:
(2t/(t*+1),(t* —1)/(t>*+1)). This map gives a bijection from R to S* — {(0,1)}. Considering
lines through (0, —1) gives a second chart. The map idg: is an isomorphism between all three
atlases for S' that we have just seen. It is interesting to note what kind of functions we get

from the charts and transition maps (i.e., the qb]-_lqﬁi) in these three cases. In the first case the



charts and the transition maps are algebraic functions (they are built up from rational functions
and square roots). In the second case the charts are given by the transcendental functions sin
and cos, but the transition maps are just translations in R. In the third case all functions are
rational functions.

We could treat the n-sphere S™ in a similar way (it is defined as the subset of (o, ..., z,)
in R"* such that 22 + --- + 22 = 1). In particular, the first and third methods we used for
n = 1 are easily adapted (not the second method, as far as I can see; it has to do with the fact
that S™ is simply connected for n > 2 (well, of course, one has the usual spherical coordinates
r, @ and ¢, but it is not as nice)). But it is more useful to develop a systematic way to make
subsets of R" that are defined by suitable equations into manifolds. In order to do this we need
the implicit function theorem. We will state this theorem in a quite general context, so that it
will suffice for the whole course.

1.4 Theorem. Let K be either R or C. Let X, Y and Z be normed K -vector spaces, with Y
complete. Let U be an open subset of X x Y, k > 1 and f:U — Z a C*-map. Let (z,y) be
in U such that the derivative (Dof)(z,y):Y — Z of f with respect to the second variable is
an isomorphism of topological vector spaces (i.e., it is bijective and its inverse is continuous).
Then there exist open neighborhoods V of x in X and W of y in Y such that V x W C U and
for every v in V there exists a unique w in W with f(v,w) = f(z,y). The map g:V — Y thus

defined is C*. Moreover, if X and Y are finite dimensional and f analytic, then g is analytic.

For a proof the reader is referred to the standard text books, or to course notes from analysis
courses. In the complex case, i.e., K = C, we say that f:U — Z is C* if it is so when we view
X, Y and Z as R-vector spaces. When we want to talk about differentiability in the complex
sense, we will allways explicitly say so. The reason for this terminology is that a function
f:U — C, with U C C" open, is analytic if and only if it is C' in the complex sense (see
section 2).

Let us now consider the following situation. We have positive integers n and m, we have
an open subset U of R* and a C* map f from U to R™, for some k£ > 1. Let X be the set of
zeroes of f: X :={zx € U| f(x) = 0}. We want to equip X with an atlas, in some natural way
(for example, the charts should be C*-maps to R"). It turns out that at least some conditions
have to be satisfied for this to be possible. For example, consider the function f: R? — R given
by f(z,y) = zy. Then X is the union of the two coordinate axes; consequently, X, with its
induced topology, cannot be a C°-manifold, since no neighborhood of (0,0) is homeomorphic
to an open interval in R. Note that (0,0) is special, since both partial derivatives of f vanish
at that point, i.e., f has derivative zero at (0,0). So, in the situation above, we assume that
for all z in X the derivative (D f)z is surjective (i.e., f is a submersion at all z in X). Let
now z be in X. Let V be the kernel of the linear map (Df)z: R* — R™. Let V' be the
orthogonal of V' (for the standard inner product on R*). We view R" as the product V x V-,
and hence U as an open subset of V x V+. In this situation we can apply Theorem 1.4, since
(Do f)z is an isomorphism from V+ to R™. We get an open subset V' C V and a C*-map
g:V' — V4 such that z is in V' x V4 and for all v in V' we have f(v,g(v)) = 0. Hence the



map ¢: V' — X defined by ¢(v) = (v,9(v)) is a chart at . We can obviously cover X with
such charts (for example, take one chart for each z). These charts are compatible because ¢!
is just the orthogonal projection on V*. Note that dimy(z) = dimV*+ =n — m.

1.5 Exercise. Suppose we have U C R” open, and two C*-maps f:U — R™ and f: U — R™,
defining the same X and both submersions at all x in X. Then show that any two atlases

obtained from the construction above are such that idx is an isomorphism between them. [J
We can now easily give some more examples of Lie groups: the classical matrix groups.

1.6 Example. Let n > 1. The group special linear group SL,(R) is defined as the kernel of
the morphism of groups det: GL,(R) — R*. We have to show that for all z in SL,(R) the
derivative (D det)z is non-zero. So we have to “compute” det(x + €y) for small ¢ in R and any
y in M, (R). We have:

(1.6.1)  det(z +ey) = det(x(1 + ez ty)) = det(z) det(1 + ez ly) = 1 + etr(zy) + O(e?),

with tr(z~'y) the trace of z7'y. It follows that ((Ddet)z)y = tr(z~'y). This cannot be zero

for all y, since ! is invertible. U

1.7 Example. Let again n > 1. The orthogonal group O, (R) is the subgroup of z in GL,(R)
that preserve the standard scalar product of R”, i.e., the x such that 2z = 1. The special
orthogonal group is the subgroup SO, (R) of z in O,(R) with det(z) = 1. We consider the
map f:GL,(R) — M,(R)* given by f(z) = z*z — 1, where M, (R)" denotes the set of real
symmetric n by n matrices. We have to show that this map is submersive at all z in O,(R).
For z in O,(R), y in M,,(R) and small € in R we have (with z := z'y):

flx+ey) = fla(l+e2)=Q+ex)latz(l+ez)—1=(1+ez")(1+ez)—1=

(1.7.1) = g(z'+2) + O(e?).

It follows that ((Df)z)y = 2'+ z,which clearly shows that (D f)z is surjective. So O, (R) is now
a manifold. Our computation above also shows that it has everywhere the same dimension,
namely (n? —n)/2 = dimg(M,(R))~, the dimension of the R-vector space of anti-symmetric

n by n matrices. For every z in O,(R) we have 1 = det(z! z) = det(z)?, hence det(z) = +1.

There are z in O, (R) with det(x) = —1, hence we have a short exact sequence:
(1.7.2) 1 — SO,(R) = O,(R) — {1} — 1.
This sequence is split: send —1 to the diagonal matrix diag(—1,1,...,1), for example. If n is

odd, we even have a splitting with image in the center: send —1 to —1; hence for odd n we
have an isomorphism of Lie groups from O,(R) to SO,(R) x Z/27Z. For even n there is not
such a splitting, and one cannot do better than say that O, (R) is isomorphic to the semi-direct
product SO, (R) X4 Z/2Z, with «: Z/2Z — Aut(SO,(R)) the morphism of groups that sends
—1 to the inner automorphism given by conjugation by diag(—1,1,...,1). O



1.8 Example. Again, n > 1. The symplectic group Sp,, (R) is the subgroup of GL,(R) that
0-1
10

which the coefficients are n by n matrices. One computes easily that Sp,,(R) is the subset of
GLy, (R) of the z that satisfy z'1x = 1). So we consider the map f from GLy,(R) to My, (R)~
given by f(z) = 2%z — 1. Let z be in Spy,(R), y in My, (R) and € in R. Put z := z~'y. Then

we have:

preserves the “standard” alternating bilinear form on R*" that is given by the matrix (% ), in

(1.8.1) fla+ey) = fle(l+ez)) = (1 +e2')(1 +e2) — ¥ = ("¢ +9z) + O(e?).

This shows that ((Df)z)y = 2% + 12, so we have to show that the map 2 — 2% + 1z from
Mz, (R) to Ma, (R) ™ is surjective. To do this, we compute its kernel (this is interesting anyway,
since this kernel is what is called the Lie algebra of Sp,, (R)). So write z as a two by two matrix

of n by n matrices: z = (¢ Z) Then a short computation gives:
(1.8.2) 2P +1pz=0 <= (¢! =cand b' = b and d = —a').

It follows that the kernel has dimension 2n? +n. This is equal to Mo, (R)~ = ((2n)% — (2n))/2.

Linear algebra then implies that our map z — 2% + 1z is surjective. ]

1.9 Exercise. Let n > 1. Show that the Lie groups SL,(R), SO,(R) and Sp,,(R) are con-
nected (the last one is more difficult to do). Show also that Sp,,(R) is contained in SLo,(R).
U

1.10 Exercise. Let n > 1. Show that GL,(C) is a manifold (i.e., make it into one, in the
right way). The unitary group U,(R) is the subgroup of GL,(C) consisting of those x that
preserve the standard scalar product on C" (the one that sends (v, w) to v1wy +- - - + v, W,), or,
equivalently, the z with ' x = 1. Make U, (R) into a manifold. Compute its dimension. Show
that it is connected and compact. Do the same things for its subgroup SU,(R) consisting of
those z with det(z) = 1. O

We have already quite a few examples at our disposal, and it seems a good moment to do
something about the foundations again. The reader is certainly aware that up to now each
time we had various atlases on one set X, they had the property that idx was an isomorphism
between them. There should be a much more natural way to express this. In fact, we should
replace the atlases by something else, giving us an equivalent category (this will be made
precise). For example, when one studies groups, it is very clumsy to deal only with groups in
terms of generators and relations. So we look for an object associated to an atlas for X such
that two atlases such that idx is an isomorphism between them give exactly the same object.
We do this by considering a topology on X and the notion of differentiable functions on open
subsets of X.

Let X be a set equipped with a C*-atlas (some k > 0) (I,n,U, ¢). Then we can define a
topology on X by saying that a subset V' of X is open if and only if for all 7 in I the subset
¢;7'(V N X;) is open in R™. (The verification that this works is left to the reader, and also that



of the following assertion.) A subset V' of X is open if and only if for all z in V' there exists an
i such that the subset ¢;'(V N X;) of R% is open. Suppose now that V' C X is open. Then a
function f:V — R is called of class C* if and only if for all i the function fo¢; on ¢; *(V N X;)
is C*. The reader will verify that f:V — R is C* if and only if for all z in V there exists ¢
such that fo¢; on ¢;'(V N X;) is C*. The set of C* functions on V will be denoted by C%(V);
it is clearly an R-algebra, usually of infinite dimension. For an open subset W contained in
V we have the restriction map res(V,W): C%(V) — C%(W), that sends a function f on V
to its restriction f|w to W. It is clear that for Z an open subset contained in W we have
res(V, Z) = res(W, Z)res(V, W). In Berthelot’s course it will be explained that such a collection
of sets CX (V) and maps res(V, W) is what one calls a presheaf on the topological space X,
denoted C%. A very important property of this presheaf C% is the following direct consequence
of the local nature of a function being C*¥: if we have an open subset V of X, and a covering
of V by open subsets V; with the j in some set J, and for each j an element f; of C%(V})
such that for all j and j' we have res(V;,V; N V) f; = res(Vy,V; N V) fjr, then there exists a
unique f in C% (V') such that res(V, V;)(f) = f; for all j. (I apologize for the long sentence.) In
general, a presheaf that satisfies this glueing condition will be called a sheaf. For the moment,
the notions of sheaf and presheaf are just convenient for us for notational matters; we won’t
do anything complicated with sheaves for some time. The real work concerning sheaves will be
done in Berthelot’s course.

Given a set X with an atlas, the object we associate to it is the pair (X, C%), consisting
of a topological space and a sheaf of rings on it. Such objects are called ringed spaces, and all
geometrical objects we will consider in this course will be ringed spaces. Let us now look at

what it means for a map to be a morphism in terms of these sheaves.

1.11 Proposition. Let X and Y be manifolds, and let f: X — Y be a map (of sets). Then
f is a morphism of manifolds if and only if f is continuous and for each open U in Y and
g € Cy(U) the function gf is in Cx(f1U).

Proof. Suppose that f is a morphism of manifolds, i.e., f is differentiable. Then it follows
directly from the definitions, and the fact that compositions of differentiable maps are differ-
entiable, that f is continuous and that for each open U in Y and g € Cy(U) the function gf is
in Cx(f7'0).

Suppose now that f is continuous and that for each open U in Y and ¢ in Cy(U) the
function gf is in Cx(f~'U). Then X; N f~'Y; is open in X;, hence o; (XN f7'Y;) is open in
U;, hence in R". We have to show that the map wj_lfq&i from ¢;1(Xi N f1Y;) to V; C R™
is differentiable. It is equivalent to show that the m; coordinate functions kaj_l f&; of this
map are differentiable. Now kaj_l is in Cy (Yj), hence kaj_lf is in Cx (f'Y;). It follows that
a:kz/zj_l f; is differentiable. U

We are now ready to formulate a new, improved definition of the category of manifolds. Note
that a morphism of manifolds f: X — Y induces, for every open U in Y, a morphism of R-
algebras f*(U): Cy(U) — Cx(f~'U). In the language of sheaves, this is just a morphism of



sheaves from Cy to f,Cx. For f: X — Y a morphism of topological spaces and F' a sheaf
on X, f,F is the sheaf defined by (f.F)(U) = F(f 'U). A morphism of ringed spaces from
(X, Ox) to (Y,Oy) is a pair (f,#) with f a continuous map from X to ¥ and ¢ a morphism
of sheaves from Oy to f,Ox. Let (f, ¢) be a morphism from (X, Ox) to (Y,Oy) and (g,7) a
morphism from (Y, Oy) to (Z,0z). Then k := gf: X — Z is continuous, and for every open
U C Z we have a morphism of rings «(U) from Oz(U) to Ox(k~*U) obtained by composing
Y(U): Oz(U) — Oy (g7tU) and ¢(g7'U): Oy (g7U) = Ox(f~Lg~'U). In the case where X,V
and Z are obtained from manifolds as above, these maps are just the maps that do pullback
of functions. Anyway, one easily verifies that x is a morphism of sheaves (i.e., the x(U) are
compatible with te restriction maps) so that (k,x) is a morphism of ringed spaces. This
composition of morphisms gives us a category: the category of ringed spaces. So now we also
have the notion of isomorphisms between ringed spaces.

But in fact all this is not exactly what we need at this moment. Our ringed spaces (X, Cx)
are somehow special: the sheaf C'x is a sheaf of R-valued functions. If (X, Ox) and (Y, Oy) are
topological spaces with sheaves of R-valued functions, we define a morphism from (X, Ox) to
(Y, Oy) to be a continuous map f: X — Y such that for all U C Y open and all g in Oy (V) the
function f*g:= gf is in Ox(f~'U). One checks immediately that this also gives us a category
(let us call it the category of topological spaces with a sheaf of R-valued functions), hence also
a notion of isomorphism. For (X, Ox) a topological space with a sheaf of R-valued functions,
and U C X open, we have the ringed space (U, Ox|y), with Ox|y (V) = Ox (V) for all open
V' C U; this topological space with a sheaf of R-valued functions is called the open subspace U

of X. We can now state our improved definition of manifolds.

1.12 Definition. Let k > 0. A C*-manifold is a topological space with a sheaf of R-valued
functions (X, Cx), that is locally isomorphic (in the category of topological spaces with sheaves
of R-valued functions) to some (U,C}), with U an open subset of some R* and C§ the sheaf
of C*-functions on U. (Note that n may vary.) A morphism from a C* manifold (X,Cx)
to a C*-manifold (Y, Cy) is a morphism in the category of topological spaces with a sheaf of

R-valued functions.

Let us now see what it means that this definition is equivalent to the older one. So let, for a
moment, Man and Man' denote the categories of C*-manifolds in the old and the new sense,
respectively. Then we have a functor F' from Man to Man' that sends a set X with a C*-
atlas to the space (X,C%) as explained above, and sends a morphism f: X — Y in Man to
the morphism (f, f*) in Man'. By saying that our two definitions are equivalent, we mean
that F is induces an equivalence of categories from Man to Man'. By definition, this means
that there is a functor G from Man’ to Man such that GF and F'G are isomorphic to idpygan
and idman, respectively. General category nonsense says that such a G exists if and only if F'
is full and faithful (i.e, for all X and Y in Man F gives a bijection from Hompan(X,Y) to
Homypa (F(X), F(Y))) and essentially surjective (i.e., every (X, Ox) in Man' is isomorphic to
the image under F of some object of Man). Proposition 1.11 means that F is full and faithful.
It remains to show that F is essentially surjective. So let (X, Ox) be an object of Man'. Then

9



we can cover X by open sets X; such that the (X;, Ox|x,) are isomorphic to some (U, C¥) with
U open in some R". These isomorphisms form an atlas on X for which one easily verifies that
it induces the sheaf Ox.

We can give another interpretation of the manifold structure on sets of zeroes of equations
that we defined just after Theorem 1.4. The situation is the following: we have an open subset
U of some R*, a C*-map (some k > 1) f:U — R™ such that (Df)z is surjective for all z in
X := f~10. Note that X is a closed subset of U. Let Z be any closed subset of U. Then we
get a sheaf C% of R-algebras on Z by:

CE(V):={g:V = R|3h € CE(V') with V' C U open, V. =V'NZ and g = h|y}.

It is left to the reader to show that for X as above, this space (X, C%) is in fact the manifold
obtained by the construction mentioned above. (I realize that in this last part I really skipped
a lot of details.)

We finish this section with some more examples: projective spaces and Grassmannians.

1.13 Example. Let & be a field, and V' a k-vector space. Then we define the projective P(V)
space associated to V to be the set of 1-dimensional subspaces of V' (i.e., the set of lines through
the origin). Clearly, we have a bijection (V —{0})/k* — P(V) induced by the map that sends
v # 0 to the subspace kv. For n > 0 we define P"(k) to be P(k"™'). An element in P"(k)
will be denoted as (ag : a1 : --- : a,) with a; € k not all zero; in this notation we have
(ag : -+ :ap) = (b :---:by) if and only if there exists X\ € k* with b; = Aa; for all 7. Clearly,
P°(k) is just the one point (1). We can describe P! (k) as follows: it is the disjoint union of the
set {(a: 1) |a € k}, that we can identify with &, and the point (1 : 0) “at infinity”. In the same
way, P"(k) is easily seen to be the disjoint union of k%, k' ... k™. If we want to equip P*(k)
with an atlas (say for £ = R or C), then these disjoint unions are not so useful: we need “open
subsets”. So we consider the covering of P"(k) by the sets P"(k); := {aop : --- : a,|a; # 0},
for 0 < i < n. For each i we have a bijection ¢; from k™ to P"(k);, sending (z1,...,x,) to the
point (ag : -+ - : a,) such that a; = 1, a; = x; for j > i and a; = ;4 for j < i. The inverse of
¢; sends (ag : --- : a,) to the ntuple of a;/a; with j # i. So, in the usual notation for charts,
we have U; = k™ for all . For j > i the subset U, ; of U; = k™ is the set {z € k" |z; # 0},
which is an open subset if £ = R or £k = C. The map gzﬁj_l@- from U; ; to k™ sends (z1,...,2,)
to the ntuple consisting of the z;/z; with [ < 4, 1/x;, and the x;/x; with j # [ > i. Clearly,
these maps are differentiable if £ = R or C. U

1.14 Exercise. Show that the P"(R) and P"(C) are connected and compact. Show that P! (R)
is isomorphic to S' and that P!(C) is isomorphic to S2. O

1.15 Example. For k a field, V' a k-vector space and d > 0, let Grg(V) be the set of d-
dimensional subspaces of V. Define Gry,(k) := Grq(k"™). Note that Gr;(V) = P(V) and
Gry (k) = P (k). For k = R or C, we want to make the Gry, (k) into manifolds. We will do
this in two ways: first by making charts, then by considering Gry, (k) as a quotient of GL,, (k)
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by a certain subgroup (in this case we can define charts, or a topological space with a sheaf of
functions).

Let n > 0, d > 0 and a field £ be given. Let V be a k-vector space of dimension n. Let
x be in Gry(V), i.e., x is a d-dimensional subspace of V. Choose a subspace y of V' such that
V =1z ®y. Let Gryg(V), be the subset {z|z Ny = {0}} of Grg(V). For each z in Gry(V),
the projection from z to x along y is an isomorphism. It follows that we have a bijection ¢,
from Homg(z,y) to Gry(V), sending f to im(id, + f). Note that x = ¢,(0). We view the set
Homy(x,y) as a k-vector space in the usual way. We leave it to the reader to study the maps
¢, and to verify that, for £ = R or C, they form an atlas. It might be a good idea to look first
at what happens when one takes various y’s for one x, and then to take one y for various x’s.
Anyway, it is not necessary to do this, since the next method we use shows that the charts are
compatible.

Let us now study Grg, (k) from a different point of view. The group GL,(k) acts on the
vector space k™, hence on Grg,(k): an element g sends x to gz, the image of z under g. It is
easy to see that GL, (k) acts transitively on Gry, (k) (for a given z, choose a basis for = and
extend it to a basis of k™). Let 2 be the subspace ke; + - -+ + keq of k™, where e denotes the
standard basis of k™. The stabilizer P := GL,(k), of = is the subgroup of GL, (k) consisting
of those g such that g;; = 0 for all (¢,7) with j < d < 4. Hence we get a bijection from
GL,(k)/P to Grgn(k). Suppose now that £ = R or C. It suffices to equip GL,(k)/P with
a differentiable structure in order to do so for Gry,(k). As already said above, we can make
an atlas for GL,(k)/P, but we can also make GL,(k)/P into a topological space with a sheaf
of functions, directly. Since we have already seen numerous atlases, let us first construct the
ringed space. For the sake of notation, let G := GL,(k), X := G/P and m:G — X be the
quotient map. We equip X with the quotient topology: a subset U of X is open if and only if
71U C G is open. Then we equip the topological space X with the sheaf of functions that are
P-invariant. Note that for U C X open, P acts on Cq(m~'U) by the formula (pf)(g9) = f(gp)-
For a set S with a P-action, let S¥ be the set of elements fixed by P. The we define a sheaf
Cx on X by: Cx(U) := Cg(r~tU)?. Of course, now we have to verify that the topological
space with sheaf of functions (X, Cy) is a manifold. To do this, we have to show that every
point has an open neighborhood that it isomorphic to some (U, Cyy) with U some open subset
of some R", and Cy the sheaf of differentiable functions. This is of course almost the same as
to make an atlas. Let g be in G. Then the translate gP of P is the orbit of g under P. Let T
be the subspace of M, (k) consisting of the m with m;; = 0 if i < d or j > d. Then M, (k) is
the direct sum of 7" and the tangent space of P at 1. Let U, := T and ¢,:U, — X be given
by ¢4(t) = m(g(1 +¢)) (note that 1+ ¢ is in G). One verifies that ¢, induces an isomorphism
between (T',Cr) and (X, Cx|x,) with Xy = 7(g(1 + T') P) open since (1 + T))P is exactly the
set of g in G with det((g;,)1<ij<d) # 0. What makes this method work is the fact that the
map T X P — G, (t,p) = (1 +1t)p, is an isomorphism from 7' x P to the open subset (1+7)P
of G. That this is so follows from the simple computation (;9)(2%) = (2 tbid).

Let us finish by noting that the charts obtained here and above are in fact the same, so we

have now also shown that the charts above are compatible. O
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2 Analytic manifolds and varieties

A standard textbook on complex analytic manifolds and varieties is the book “Principles of
algebraic geometry”, by Griffiths and Harris.

Let n > 0, U C R” open and f:U — R a function. Then f is said to be (real) analytic at
a point v in U if there exists an open neighborhood v € V' C U and a formal power series F' =
Y iso @iz’ in R[[z]] (multi-index notation: @ = (w1,...,2p), i = (i1,...,0,), 2° = 2% +ooqin),
such that F is convergent on V —u = {v—u|v € V} and f(v) = F(v — u) for all v in V.
The function f is said to be analytic on U if it is analytic at all » in U. Analytic functions
are easily seen to be differentiable, with analytic derivative (use what you know about radii
of convergence); hence they are C*°. The set of analytic functions on U is an R-algebra.
Clearly, for V' C U open, the restriction to V' of an analytic function on U is again analytic.
Since the property of a function to be analytic is local, it follows that we have a sheaf of R-
algebras Cyj on U such that, for all open V' C U, C¢(V) is the R-algebra of analytic functions
on V. (The notation C* inspired from set theory: w is the first infinite ordinal.) What makes
analytic functions very special compared to C°*°-functions is that on connected open sets they
are determined by their power series expansion at one point.

There is a similar definition, of course, of complex analytic functions. Forn > 0and U C C*
open, a function f:U — C is (complex) analytic if it is locally given by a convergent power
series. As in the real case, we get the sheaf C} of analytic functions. If we need to distinguish

between the real and the complex case, we will use the notations C ;; and C¢ ;.

2.1 Definition. A real analytic manifold is a topological space with a sheaf of R-valued func-
tions (X, CY) that is locally of the form (U, Cy), with U an open subset of some R" and Cy the
sheaf on U of real analytic functions. A complex analytic manifold is a topological space with a
sheaf of C-valued functions (X, C%) that is locally of the form (U, Cyy), with U an open subset
of some C" and Cy the sheaf on U of complex analytic functions. Morphisms are morphisms
of topological spaces with a sheaf of R-valued or C-valued functions, respectively.

2.2 Remark. One can define analytic manifolds in a more general setting, namely, by replac-
ing R or C by an arbitrary field equipped with an ultrametric absolute value for which the
field is complete and non-discrete (see Bourbaki, “Variétés différentielles et analytiques”). For
example, one could work with the fields Q, of p-adic numbers (p prime). The fact that groups
like GL,(Q,) can be seen as p-adic manifolds has important consequences for their structure
as topological groups. [l

It is certainly possible to define (real and complex) analytic manifolds in terms of atlases: one
demands that the ¢;1¢i are analytic, meaning that their n; coordinates are analytic functions
on U; ;. As in the previous section, the two definitions are equivalent. In fact, all the atlases
of the previous section that were explicitly given are real analytic, hence they give examples of
real analytic varieties. More important, the construction given after Theorem 1.4 of a C*-atlas

for sets defined by suitable systems of C*-equations also works in the analytic case.
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2.3 Construction. Let K be R or C. Suppose that we have positive integers n and m, an
open subset U of K™ and an analytic map f:U — K™. Let X := f 10, and suppose that f is
submersive at all z in X: (Df)z: K™ — K™ is surjective for all z in X. Let  be in X. Let V
be the kernel of (Df)xz, and let V+ be its orthogonal (for the standard inner product on K™
(hermitian if K = C)). We view K™ as the product V x V1. Applying Theorem 1.4 gives us
an open subset V' of V and an analytic map ¢g: V' — V+ such that z is in V' x V+ and for all
v in V' we have f(v, g(v)) = 0. Hence the map ¢: V' — X given by ¢(v) = (v, g(v)) is a chart

at . Such charts form an atlas for X for the same reasons as before in section 1. O

It is now easy to give examples of analytic manifolds. Just as in section 1, one sees that
GL,(R), SL,(R), SO,(R), Sp,,(R), SU,(R), are real analytic groups, and that P"(R) and
Grgn(R) are real analytic manifolds. One also sees that GL,(C), SL,(C), SO,(C), Sp,,(C),
are complex analytic groups, and that P"(C) and Grg,(C) are complex analytic manifolds.
Note that SU,(R) is not a complex analytic manifold, because the defining equations are not
analytic (they involve complex conjugation, also: the dimension of SU,(R) is not necessarily

even).

2.4 Construction. Let (X,C¥) be a real analytic manifold. We will now show how to asso-
ciate to X a C'*°-manifold. Let U C X be open, and f:U — R. For x in U, we say that f is C'*®
at z, if there is an open neighborhood U’ of z in U and an isomorphism between (U’, C%|v)
and (V, Cy) for some open V in some R", such that the corresponding function V' — R is C*°.
We say that fis C*® on U if it is C*™ at all z in U. Let C§ be the sheaf on X of C*°-functions:
C¥(U) is the R-algebra of C'*°-functions on U. One verifies immediately that (X,CY) is a
C*°-manifold. Another way to see this construction is: choose an atlas for (X, C%), view this
atlas as a C'*°-atlas and take the associated C'*°-manifold.

In the same way, one can of course associate to a C*-manifold a C*-manifold, whenever
k>FK.

Let (X, C%) be a complex analytic manifold. Then we can associate a real analytic manifold
to it, in more or less the same way. View C as R?, say via the R-basis (1,7). Choose an atlas
for X. View this atlas as a real analytic atlas (note that the dimension doubles, since C* = R?").
Let (X,C%R) be the associated real analytic manifold. The elements of C§ R(U), for U C X
open, are those functions f: U — R that can locally be expressed in terms of power series in
the real and imaginary parts of the coordinates of a chart. O

2.5 Exercise. Show that the real analytic variety associated to P!(C) is isomorphic to S*

(hint: use stereographic projection). U

Before we go on, we state some standard results on analytic functions, in one and more variables.
These facts can be found in §0.1 of the book of Griffiths and Harris, and very probably in every

book on analytic functions in several variables.

2.6 Proposition. (Cauchy’s integral formula) Let A C C be an open disk, with closure A
and boundary OA. Let f: A — C be C" in the complex sense (i.e., there is an open neighborhood
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U of A and an extension of f to U that is complex differentiable with continuous derivative).

Then for all z be in A one has:

f(z) = @miy [ LW

oA W — 2

where the integral is taken in the counterclockwise direction.

The proof of this proposition uses the theorem of Stokes, or a simple version of it based on the

fact that we are just dealing with a disk here. We won’t give it here (see analysis textbooks).

2.7 Proposition. Let n > 0, U C C* open and f:U — C. Then f is analytic if and only if f
is C' in the complex sense.

Proof. We just sketch the proof. Of course, if f is analytic, it is C! in the complex sense. So
suppose now that f is C' in the complex sense. Let us first suppose that n = 1. Let z; be in U.
We will show that f is analytic at zy. After a translation in C we may assume that zo = 0. Let

A be an open disk with center 0, contained in U. Then for all z in A we have:

f(z) = @2m)™ M = (2mi) ™" /BA (1 + (z/w) + (z/w)? + - - ) f(w)

oA W — 2

dw
-~

From this expression it is easily seen that one has:

flz)= Zanz”, with a, = (27Ti)_1/ w_”f(w)d—w,
7>0 A w
for all z in A.
Let us now do the general case: n > 1. Let z; be in U. We want to show that f is analytic
at zg. After a translation we may assume that zo = 0. Let » > 0 be in R such that the polydisk
(i.e., product of disks) A := {z € C"||z| <r for 1 <i<n} is contained in U. A repeated

application of Cauchy’s integral formula gives.for all z in A:
1) = er) " [ TCwi— 20" fw)dun sy
OA =1

The power series expansion in the z;/w; of the product of the (w; — z;)~! gives the result. [

This last proposition is the reason that we did not define what complex differentiable manifolds
are: they are just the complex analytic manifolds. So when we speak of the differentiable mani-
fold associated to a complex analytic manifold, we always mean the associated real differentiable
manifold.

To indicate that there are surprising differences between the one-variable and more than

one variable cases, we state the following theorem.

2.8 Theorem. (Hartog’s theorem) Let n > 2. Forr > 0 let A,(r) := {z € C" | |z]| < r}.
Let 0 < r' < r. Then any analytic function f:U = A,(r) — A,(r") — C extends to one
on Ay (r).
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Proof. Take 7" such that 7' < 7" < r. Put V := A,(r") — A,(r"). For ¢ in C*7!  let V,
be the set of z in V' with (z3,...,2,) = ¢. For ¢ outside A,_1(r"), V. is empty. For ¢ in
Ay 1 (r") — Ap_1(r"), Vi is A1(r"), and for ¢ in A,_1(r"), Vo is A (r") — Aq(r'). We define a
function F on V by:

RYRPSY R N T

w1 |=r W=z
Then F' is complex differentiable, hence analytic. On the V, with ¢ in A, _1(r") — A,_1(7"), it
agrees with f, hence it agrees with f on V. O

Analytic functions are also called holomorphic (I don’t know really why). An important prop-
erty of analytic functions is the following: let U be open and connected in C*, and f:U — C
analytic and non-constant; then the real valued function |f| on U has no maximum. This is
very easy to prove, so we leave it to the reader. It implies the following result (proof also left
to the reader).

2.9 Proposition. Let (X,C%) be a compact connected complex analytic manifold. Then
C{(X)=C.

2.10 Exercise. Show that the analog of Proposition 2.9 for real analytic functions does not
hold. For example: show that the R-vector space of real analytic functions on S! is infinite

dimensional. O

We end this section with the definition of analytic varieties. These are just ringed spaces that
are locally isomorphic to ringed spaces of some kind that we will first describe.

Let K beRor C. Let n > 0and m > 0. Let U C K" be open, and f:U — K™ be analytic.
Let X := f~'{0}, with its induced topology. For V C X open, g:V — K and x € V, g is said
to be analytic at z if there exists an open neighborhood W of x in U such that g restricted to
W NV is the restriction to W NV of some analytic function on W. Such a function g that is
analytic at all x in V' is called analytic on V. Let C% be the sheaf on X of analytic functions.
Then we call (X, C%) the analytic variety (complex if K = C, real if K = R) defined by the
system of equations f = 0.

2.11 Definition. A complex (real) analytic variety is a ringed space (X,C%) that is locally
isomorphic to a complex (real) analytic variety defined by a system of equations.

Note that here it is hard to think of a definition of such objects in terms of an atlas, and that
the use of sheaves becomes essential. The study of the local fundamental properties of analytic
varieties is postponed until later. For example, we would like to know that allowing arbitrary
sets of analytic equations gives the same result. This has to do with certain finiteness properties

of sheaves such as C%..
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3 Algebraic varieties

Some references I can think of for this chapter are: Hartshorne’s book “Algebraic geometry”,
Serre’s article “Faisceaux algébriques cohérents”, Shafarevich’s book “Basic algebraic geome-
try”, a recent book by Eisenbud (in the series “graduate texts in mathematics”, Springer), a
recent book by Perrin, and the classical texts SGA and EGA (see Harthorne’s book for precise
references). I recommend the first chapter of Hartshorne’s book. Another excellent reference
is Mumford’s book “The red book of varieties and schemes”

Recall that differentiable manifolds have to do with differentiable functions, and analytic
manifolds and varieties with analytic functions. It is clear that functions defined by rational
functions are still nicer, and also that they occur at lots of places in mathematics. So it is useful
to set up a kind of geometry using this kind of functions. This geometry is called algebraic
geometry. It is meant to be a systematic study of the sets of solutions of systems of polynomial
equations. Here one would take these polynomials to have coefficients in some fixed ring A
(commutative), and study the solutions with values in A-algebras B. In this course we will
take A to be an arbitrary algebraically closed field, but it should be noted that the language
of schemes (see Hartshorne, Chapter 2) makes it possible to use arbitrary rings. Restricting
ourselves to an algebraically closed field £ has the advantage that the the set of solutions with
values in £ itself of a system of polynomial equations almost determines the set of equations (see
later, when we discuss Hilbert’s Nullstellensatz). Maybe we will have time to say something
about non-algebraically closed fields and about real algebraic geometry.

So let kK now be an arbitrary algebraically closed field. As we have already said, our geometric
objects will allways be ringed spaces. A ringed space (X, Ox) will be called a variety over k if
it is locally of some type, just as in the cases of differentiable and analytic varieties. So first we
want to specify this “type”. As a set, this is quite easy. Let n > 0 and S C A := k[z,...,2,]
be a set of polynomials. Then we define V(S) to be the set of common zeroes of all elements
of S:

V(S):={a€k™| f(a) =0for all f e S}.

These sets V(S) are the sets we are interested in, we call them algebraic subsets of k™. Now
we have to give them a topology. Clearly, since we want to work with rational functions,
polynomial functions should be continuous. Note that saying this already supposes a topology
on k. We want the subset {0} of k& to be closed. Then it follows that the subsets of V(S) of
the form V(S) N V(T) must be closed. One easily notes the following: () and k™ are algebraic,
Nicr V(S;) = V(U S;)- For S; and S, subsets of A, let S1S2 be the set {fife| f; € S;}. Then
one has V(S;) UV(Sy) = V(S5152). This leads to the following definition.

3.1 Definition. The Zariski topology on k™ is the topology for which a subset of k™ is closed
if and only if it is algebraic. The Zariski topology on a subset of k™ is the induced topology.

So now our algebraic subsets of £™ are topological spaces. Before we proceed to describe the
sheaf of functions that we want to consider, let us look a bit closer at this topology. For n =1,

our topology on k itself has as closed sets only the finite sets and k£ itself; in particular, the
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topology is not separated (note that k is infinite). The reader should not be discouraged by
this fact, one gets used to it. Another property of the Zariski topology is that the topology
on k? is strictly finer than the product topology from the two factors k. Namely, the diagonal
in k? is not closed in the product topology. Now some nice facts about the Zariski topology.
For S a subset of A and I C A the ideal generated by S we have V(S) = V(I). Now A is
a noetherian ring, hence every ideal I C A is finitely generated. It follows that the algebraic
subsets of k™ are of the form V(fi,..., f.), i.e., defined by finitely many equations. (Exercise:
show that for a given n > 0 there is no bound on 7.) For f in A we let D(f) be the complement
in k™ of V(f); D(f) is called the fundamental open subset of k™ defined by f.

3.2 Lemma. The D(f) form a basis for the Zariski topology on k™.

Proof. The D(f) are open by definition. Let a be in k™ and let U be an open subset of k"
containing a. The complement Y of U in k™ is of the form V(S) for some S. Since a is not in
Y, there is an element f in S such that f(a) # 0. Then D(f) contains a and is contained in U.
U

We can now define our sheaves.

3.3 Definition. Let X C k™ be an algebraic set, let U C X be open and let f:U — k be a
function on U. Then f is called regular at x in U if there is an open neighborhood V of x in U,
and elements g and h of A, with V' .C D(h) and f(y) = g(y)/h(y) for all y in V. The function
f is called regular if it is regular at all x in U. We denote by Ox the sheaf on X of regular

functions.

3.4 Definition. An affine algebraic variety over k is a topological space with a sheaf of k-
valued functions that is isomorphic to some (X, Ox), with X an algebraic set in some k™ and
Ox its sheaf of regular functions. An algebraic variety over k is a topological space with a sheaf
of k-valued functions (X, Ox) that is locally an affine algebraic variety over k. Morphisms of

algebraic varieties over k are morphisms of topological spaces with a sheaf of k-valued functions.

3.5 Remark. In Hartshorne’s book the definition of (algebraic) variety over £ is a lot more
restrictive: he requires them to be quasi-projective and irreducible (terms that hopefully will
become clear later in the course). At this moment, we just want to be able to talk about
algebraic varieties, and to illustrate the usefulness of ringed spaces. We wait a bit before going
into the study of the fundamental properties of algebraic varieties. (The local properties, such

as dimension and smoothness, are part of Berthelot’s course.) O

3.6 Example. Of course, every affine algebraic variety over k is an algebraic variety over k.
The matrix groups GLy,(k), SL,(k), SO, (k), On(k), Spy, (k) are examples of affine algebraic
varieties. For example, GL, (k) can be seen as the algebraic subset of M,,(k) x M, (k) defined
by the system of equations zy = 1; the other groups are subgroups of some GL,,(k) defined by
polynomial equations. So these groups are examples of affine algebraic groups.
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For f in k[zy,...,z,], the open subset D(f) of k™, with its induced topology and sheaf, is
in fact affine: it can be identified with the closed subset of £"*1 = k" x k consisting of those
(a,b) such that f(a)b = 1. (It is because of this that in the definition of algebraic variety we
demand that locally the ringed space is isomorphic to an affine algebraic variety, and not only
an open subvariety of such.) Every open subset of an algebraic variety over k, with its induced

sheaf of regular functions, is an algebraic variety over &. O

3.7 Construction. If (X, Ox) is an algebraic variety over k£, and Y C X a closed subset, we
can give Y the structure of an algebraic variety over k£ as follows. First, give Y the induced
topology. Then, for U C Y open and f:U — k a function, one says that f is regular at y
in Y if there exists an open neighborhood V' of y in X and an element g in Ox (V) such that
f(w) = g(v) for all v in V N U. This gives us a ringed space (Y, Oy). To see that it is an
algebraic variety over k, it suffices to prove it for X affine, say X = V(S) in some k™. Then Y
is XNV(T) =V(SUT) for some T, and one verifies by hand that the sheaf Oy coincides with
the sheaf of regular functions on V(SUT). O

3.8 Example. The ringed space (k™, Okn) is called affine n-space over k, and will be denoted
by A"(k). The projective spaces P"(k) and more generally the Grassmannians Grgy,(k) are
equipped with the structure of algebraic variety over k by the charts given in §1.13 and §1.15.
Indeed, one verifies that the U, ; are Zariski-open, and the qﬁ;loqﬁi given by regular functions.
A set S of homogeneous elements of the graded ring k[xo, ..., z,] (graded by the total degree)
defines a closed subset V(S) of P"(k), hence an algebraic variety over k (also denoted V(S5)).
It can be shown, by the usual process of homogenization and dehomogenization, that all closed
subsets of P"(k) are of this form. Varieties that can be embedded as closed subvarieties of some
P"(k) are called projective algebraic varieties. A nice feature of projective algebraic varieties
is that they have properties similar to those of compact analytic varieties. More on this later.
O

3.9 Remark. The algebraic varieties P"(k) and Grg, (k) can be described by charts involving
regular functions. This is something very special for algebraic varieties; it implies for example
that they are “rational varieties”. Varieties that do not admit any chart are easy to give. For
example, the plane algebraic curve given by the equation y?> = z® — 1 (suppose that k& has
characteristic different from 2 and 3) has that property. More precisely: every solution of this
equation in the field k(¢) is actually a solution in k. I do not know if there is a very simple
proof for this. O

3.10 Exercise. Show that A!(k) is homeomorphic to P! (k). Show that A% (k) is homeomorphic
to neither A'(k) nor P?(k). O

3.11 Construction. We will now explain how to associate, to an algebraic variety (X, Ox)
over C, a complex analytic variety (X2, C%..). Of course, for X = V(fy,..., f,) in some C"
we want X2" to be the analytic variety in C" defined by the f;. It is possible to show that

this construction for affines is well-defined and “glues”, but we do not really have the necessary
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techniques for that yet. So let us consider the following construction. Let (X,Ox) be an
algebraic variety over C. As a set, we put X*" := X. Now we put a topology on X?". For
U C X open and f € Ox(U), let V1(f) be the set {x € U||f(x)| < 1}. We take the coarsest
topology for which the sets V1(f) are open, i.e., the open sets of X®" are arbitrary unions of
finite intersections of sets of the type V1 (f). Let U C X" be open and f:U — C a function.
Then f is said to be analytic at x in U if there exist n > 0, regular functions fi,..., f, on
some open neighborhood of z with |f;(z)| < 1 and a formal power series F' € C[[z1, ..., z,]]
that converges on the polydisc of radius one, such that f(y) = F(fi(y),..., fu(y)) for all y in
some neighborhood of z. This gives us a sheaf C'Y...

Let us now check that for X = V(fi,...,f,) C C", the ringed space (X", C%..) is the
analytic variety defined by the system of equations f; = 0,...,f, = 0. First of all, let us
verify that our topology on X" is the topology induced from C". Clearly, the open sets of
X2 are open for the induced topology, since the absolute value of a regular function is a
continuous function for that topology. On the other hand, the intersection of X with polydiscs
N* Vei(x1 — a;) (where z,...,z, are the coordinate functions) are open in our topology
on X?". It follows that the two topologies are the same. We leave it to the reader that the two
notions of analytic functions are the same.

It is straightforward to check that this construction defines a functor from the category of
algebraic varieties over C to the category of complex analytic varieties. A reference for this

construction is Appendix B in Hartshorne’s book. Ul

Because of the course on semi-algebraic geometry in the second semester, let us also give the
definition of a real algebraic variety. A subset X of R" is called algebraic if it is the set of
zeros of a subset of R[zy,...,z,]. Just as in the case of an algebraically closed field, these
algebraic sets are the closed sets for a topology, called the Zariski topology, on R". Note that
this topology coincides with the topology induced by the inclusion R* C C".

Let X C R" be an algebraic set, equipped with the Zariski topology. Let U C X be
open, and f:U — R. Then f is called regular at x in U if and only if there exists an open
neighborhood V of z in U, and elements g and h of R[zy,...,z,], such that, for all y in V,
h(y) # 0 and f(y) = g(y)/h(y). The function f is called regular if it is regular at all  in U.
The set of regular functions on U is an R-algebra; we denote it by Ox (U). This gives us the

sheaf Ox on X of regular functions.

3.12 Definition. An affine real algebraic variety is a topological space with a sheaf of R-valued
functions that is isomorphic to some (X, Ox) with X an algebraic set in some R" and Ox its
sheaf of regular functions. Morphisms of real algebraic varieties are morphisms of topological

spaces with a sheaf of R-valued functions.

3.13 Exercise. Let k be an algebraically closed field. Determine the global regular functions
on A'(k) and on P'(k). O
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4 Vector bundles

Before defining what a vector bundle is, let us study a most important example: the tangent

bundle of a manifold. So first we recall what the tangent spaces of a manifold at its points are.

4.1 Tangent spaces

Let (X,Cx) be a manifold, say of class C! at least. For z in X we want to define its tangent
space. There are several ways to do this (which are of course equivalent). For a detailed
discussion of all of those I know, see Spivak’s book, Volume I, Chapter 3. We will discuss some
of them. Intuitively, the tangent space of X at a point x in X is the first order approximation
of X at x. We need it in order to speak of the derivatives of morphisms of manifolds.

Suppose that we have an atlas (X, I,n,U, ¢) for X. Let x be in X. A tangent vector v at
x will then be a compatible system of pairs (4, v;), with v; in R™, for the 7 in I such that z is
in X;. The compatibility is defined as follows. Let ¢ and j be in I with z € X; and z € Xj.
Then the transition isomorphism qﬁj_lqﬁi from U, ; to U;; has the property that:

(4.1.1) (D(qﬁj_lgbi))(gb;lx) sends v; to v,.

Since for every such pair (7, j) the map (D(qﬁ;lqbi))(qzﬁix) is an isomorphism of R-vector spaces
from R™ to R%, it is clear that a compatible system of (i,v;) is determined by any of its
elements, and that such an element can be arbitrary in R%. So to give such a compatible
system, it is equivalent to give, for one 7 in I with X; 5 x, an element v; of R". In particular,
the set of such compatible systems, that we call the tangent space of X at x and that we denote
Tx(x), has a natural structure of R-vector space and is, via this construction, isomorphic to
the R-vector space R".

Our second description of Ty (z) uses parametrized curves, and does not require charts. Let
z be in X. A parametrized curve at z is a differentiable map ¢:U — X with U C R an open
interval containing zero and with ¢(0) = . We want to define the tangent space at x as the set
of equivalence classes of such curves, where ¢; and ¢, are to be equivalent if and only if they give
the same tangent vector. Of course, we do not want to use the previous definition in terms of
charts, so we want another way to say that c¢; and ¢y define the same tangent vector. One way
to do this is the following. Let ¢:U — X be a parametrized curve at z, and f in Cx (V) with V
an open neighborhood of z. Then, after shrinking U if necessary, c¢*f := fc is a differentiable
function on U; let (fc)'(0) be its derivative at 0. Then we say that ¢; and ¢y are equivalent
if for all open neighborhoods V' of z in X and all f in Cx(V) we have (fc1)'(0) = (fec2)'(0).
Now we have some work to do: we have to show that this relation is an equivalence relation,
and that the set of equivalence classes is in some natural way (this will be made precise below)
an R-vector space and as such isomorphic to the one defined above. The relation is clearly an
equivalence relation. Let ¢ be a parametrized curve at x, and i in I with X; > z. Then ¢; *c is
defined at 0; we get an element v; := (D(¢; 'c))0 of R*. One checks immediately that this is a

compatible system of (i, v;) in the sense explained above. If ¢; and ¢, are equivalent, then they
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give the same v; (view ¢, ! as an n;tuple of functions). Suppose now that c; and c, give the
same v;. We want to show that ¢; and ¢y are equivalent. For doing this, we may suppose that
X = U; and that ¢; = idx. Then we know that (Dc;)0 = (Dcy)0 (consider partial derivatives).
But then we have, for f in C'x(V), that

(4.1.2) (fe)'0 = ((Df))((Der)0) = ((Df)z)((De2)0) = (fe2)'0.

This shows that, as a set, the set of equivalence classes of ¢ is the same as Tx(z) as above,
so we will use the same notation for both. The R-vector space structure on Tx(z) has the
following interpretation (we denote the class of a curve ¢ by [c]): [e1] + [c2] = [e3] if and only if
for all V' and f we have (fc¢;)'(0) + (fc2)'(0) = (fes)'(0). Likewise: afci] = [co], for a in R, if
and only if a(fc;)'(0) = (fe2)'(0) for all f. So indeed we have a description of Tx (z) that does
not use charts.

From the previous description it is just a small step to the third and last one. But in order
to define it, it is really convenient to use the notions of germ and stalk. So here follows a short
intermezzo.

Suppose that X is a topological space, I’ a sheaf (of sets) on X and z an element of X. The

stalk F, of F' at x is then defined as the direct limit lim  F(U) (the notion of direct limit will
— Usx
be explained in the seminar; one can look it up for example in Hartshorne’s book). Concretely,

this means that F, is the set of equivalence classes of pairs (U, s), with U an open neighborhood
of x and s in F(U), for the following equivalence relation. Two such pairs (Ui, s1) and (Ua, s2)
are equivalent if and only if there is an open neighborhood V' of x contained in U; N Us, such
that the elements s;|y and ss|y are equal. The elements of F, are called germs of sections of
F, and the class s, of (U, s) is called the germ of s at z. If F' is a sheaf of R-algebras, then F,
is an R-algebra.

Let us now go back to our tangent spaces. So X is again a manifold and z is in X. For c a
parametrized curve at z, we get a map 0.: Cx , — R defined by: 0.(f) = (fc)'0 (note that this
makes sense). This map is clearly R-linear, and it turns out to be a derivation, i.e., it satisfies
the product rule for differentiation:

(4.1.3) 0:(f9) = ((f9)-c)'0 = ((f-c)(9°0))'0 = (0:f)g(z) + f(2)(Deg)-

Let us now consider the set Derg(Cx ;, R) of all R-linear derivations from the R-algebra Cx , to
R (here we view R as a Cx z-module via the map f — f(z)). (For A a commutative ring, B a
commutative A-algebra and M a B-module, an A-linear derivation from B to M is an A-linear
map D: B — M satisfying D(bb') = D(b)b' + b'D(b) for all b and ' in B. The set Der4(B, M)
of such maps is clearly a B-module: (bD + D")' = bD(V') + D'(V).) We claim that, in the
C> and CY-cases, Derg(Cx z, R) is canonically isomorphic, as R-vector space, to Tx(x) (the
cases C* k > 1 will be explained in an exercise). To prove this, let us first show that ¢ — 0,
defines a map from Tx(z) to Derg(Cx 4, R). Suppose that ¢; and ¢, are equivalent. Then by
the definition of this equivalence, we have J,., = 0.,, hence we have our map. By the definition

of the R-vector space structures, this map is R-linear. To show that it is an isomorphism is a
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local question, so we may and do assume that X is an open subset of R* and that x = 0. For
1 <i < nlet 0; be the element of Derg(Cx o, R) that sends f to its ith partial derivative at 0.
The elements 0; are linearly independent because of the relations 0,z; = §;; (where z; is the
jth coordinate function, and ¢; ; the Kronecker symbol). Let 0 be in Derg(Cx o, R). We claim
that 0 =), d(x;)0;. To prove this, let f be in Cx. In the C*¥-case, we can clearly write

(4.1.4) f=10)+> zig, withg;in Cxp.
i=1
Note that 0;(f) = ¢:(0). It follows that in this case we have O(f) = >, 0(x;)0;(f) as desired.

Now consider the C'°-case. Rewriting the equality:

15) [ (st = 560 - 500,

with z in some neighborhood of 0, gives:

(4.1.6) F@) = 10)+ Y7 / (D) (t)dt,

with D; the ith partial derivative. Since the D, f are C'®°-functions, the last formula shows
that once again we have an identity as in (4.1.4). The proof is then finished as before. So now
we know that the 0; form a basis of Derg(Cx 4, R). It follows that our map from Tx(z) to
Derg(Cx 4, R) is an isomorphism.

4.1.7 Exercise. Let k be a field, A a k-algebra and ¢: A — k£ a morphism of k-algebras. We
view k as an A-module via ¢. Let m := ker(¢); note that m is a maximal ideal of A. Show
that for all 9 in Derg(A, k) and all f in m? we have d(f) = 0; let 9:m/m? — k be the map
such that d(f) = 0(f) for all f in m, where f is the image of f in m/m?. Show that 0 — 0 is
an isomorphism of k-vector spaces from Dery (A4, k) to (m/m?)V, the dual of m/m?.

Now let k& > 0 be an integer. Let A be the R-algebra Cf , of germs of C* functions on
neighborhoods of 0 in R. Let ¢: A — R be defined by ¢(f) = f(0), and let m be its kernel.
Show that m/m? = 0 for k¥ = 0, and that m/m? is infinite dimensional if k& > 0.

Let k> 1,k = oo or k = w. Let X be a C*-manifold and z € X. Let Derg(C% ., R)’ be
the set of 0 in Derg(C% ,,R) such that 9(f) = 0 for all f in C% , N mymy_y, where my (resp.,
my—1) is the maximal ideal of C% , (resp., Cf(;l) (the intersection takes place in Cfg;l). Show

that there is a canonical isomorphism as above from Tx (z) to Derg(C% ,, R)'. O

Let now f: X — Y be a morphism of C*-manifolds, with £ > 1, and z in X. Then we get
an R-linear map Ty (z): Tx(z) — Ty (fz) as follows. In the first description of tangent spaces,
the map is (D(¥; ' f¢:))(¢; 'x) (in the notation of Definition 1.3). In the second description it
is the map that sends [c| to [fc]. In the last description it is the map that sends 0 to 0-f*,
with f*:Cy s, — Cx 4 given by g — gf. It is left to the reader to show that these three maps
are compatible with respect to the identifications between the various kinds of tangent spaces.

The map Ty(z) is called the tangent map of f at z, or also the derivative of fat . One can
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say that the main purpose of defining tangent spaces is just to have these tangent maps. In
the same way, the main purpose of defining the tangent bundle is to have a tangent map T
for all = at once.

4.1.8 Exercise. Let n and m be positive integers, and £ > 1. Let U C R be open, and
f:U — R™ be a C*-map. As in Section 1, let X := 10, suppose that f is a submersion at
all z in X, and consider X as a C*-manifold. Let i: X — U be the inclusion map. Show that
for z in X the map T;(x) identifies Tx (z) with ker(T (x)). O

4.2 Vector bundles, the tangent bundle

Let X be a C*-manifold with k¥ > 1. We want to make an object Tx, called the tangent bundle
of X, that combines all the Tx(z). As a set, Tx is just the disjoint union of all the Tx(z),
x € X. But in order to have something useful, for example second derivatives of morphisms of
manifolds, we need to equip Tx with the structure of a manifold, reflecting the fact that it is
a disjoint union of vector spaces. The notion of vector bundle is made exactly for doing this.
Note that we have a canonical map p: Tx — X, such that the fibre p~'z over z is Tx(x). The

following definition is meant to be a warming up for what comes after it.

4.2.1 Definition. Let p: E — X be a morphism of manifolds. Then p is called a fibration
if for every x in X there exists an open neighborhood U, a manifold F' and an isomorphism
¢: F x U — p~tU such that pe¢ is the projection F x U — U. The triple (U, F, ¢) is called
a trivialization over U. A fibration is called trivial if there exists such an isomorphism with
U=X.

4.2.2 Remark. The reader is supposed to understand what a product such as F' x U is. See
Section 1. 0

4.2.3 Example. The Mobius strip with its map to the circle is a non-trivial fibration with
fibre the closed interval [—1,1]. O

Roughly speaking, a vector bundle is a fibration in which all the fibres are vector spaces (say

over R), such that there are local trivializations compatible with the vector space structures.

4.2.4 Definition. Let X be a manifold. A real vector bundle over X is a five tuple (E, p,0,+, -)
with p: E — X a fibration, (0,4, ) the structure of R-vector space on all fibres of p, such that
for all z in X there exists a local trivialization ¢: F x U — p~U, with U > x, respecting the

vector space structures. A complex vector bundle is defined analogously.

4.2.5 Remark. If one wants to give a set theoretic meaning to the triple (0,4, -) above, it is
the following. The element 0 is a section of p, i.e., it is a map from X to F such that p0 = idx.
The element + is a map from the fibred product E x x E to E. The fibred product F x x E is
the subset of elements (e, ez) of E x E with p(e;) = p(ez), i.e., it is the set of pairs of elements

of E that lie in the same fibre over X. The map + is then of course the sum map of the
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vector space structure on the fibres. The element - is a map from R x E — FE that gives the
multiplication in the fibres.
It is certainly possible to equip the sets above with the structure of manifolds, in a natural

way. The maps 0, + and - are then morphisms of manifolds. Il

Now that we know what a vector bundle is, let us construct tangent bundles. So let X be a
C*-manifold with k& > 1. As a set, Tx is the disjoint union of the Tx (z), for z in X. The map
p from Tx to X is the unique map such that p~'z = Tx(x) for all . Suppose that we have an
atlas (X, I,n,U, ®). Then we get an atlas for Tx as follows. For i in I, let Tx; := p~'X;. Put
Vi = R" x U; and define 9;: V; — Tx,; by: ¢;(v,z) = [(i,v)] € Tx(x), where [(i,v)] denotes
the compatible system corresponding to (i,v) as in our first description of Tx (¢;x). These 1;

are easily seen to form a C*~!-atlas, since
(4.2.6) U7 e R x Uy = RY x Uy, (v,2) = ((D(¢7' 1)) (), (65 ' di)).-

The C*~-manifold thus obtained does not depend on the choice of the atlas (verification left
to the reader). It remains now to show that the five tuple (Tx, p, 0, +, ) is a vector bundle, i.e,
that it has local trivializations as in Definition 4.2.4. But such trivializations are given by our
maps ;.

Suppose that f: X — Y is a morphism of C*-manifolds, with k¥ > 1. Let T;:Tx — Ty
be the map that is T;(z) on Tx(z). Then T; is a morphism of C*~'-manifolds, it induces a

commutative diagram:

Ty - Ty
(4.2.7) \LPX \LPY
x 4L vy

and it is R-linear on the fibres. This motivates the following definition.

4.2.8 Definition. Let f: X — Y be a morphism of manifolds, pg: ¥ — X and pp: F' — Y
vector bundles. A morphism from E to F over f is then a morphism of manifolds g: E — F

with prg = fpg that is a morphism of vector spaces on the fibres.

It is clear that morphisms of vector bundles can be composed, and that we get a category of
vector bundles. So finally we can say that associating to a manifold its tangent bundle, and
to morphisms their derivative, is a functor T from the category of manifolds to the category of

vector bundles.

4.3 Vector bundles as sheaves of modules

In this section we are interested in vector bundles over a fixed manifold X. A morphism of

vector bundles over X is a morphism as in (4.2.7) with f = idx.
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Let p: E — X be a real Cl-vector bundle over a C*-manifold X (with & > [, of course). In
practice one is very often more interested in the sections of E then in E itself. A C'-section of
E over an open subset U of X is a morphism of C'-manifolds s: U — E such that ps = idy.
The set of C'-sections of E over U will be denoted E(U). (For example, Tx(X) is the set
of C*~L.vector fields on X.) If V C U is an inclusion of open subsets of X, then we have a
restriction map from E(U) to E(V'). These restriction maps clearly make the system of E(U)’s
into a sheaf that we will still denote by E. Consider a set E(U). It has the structure of R-vector
space, and as such it is usually infinite dimensional. But it also has the structure of a module
over the R-algebra C% (U). This structure is compatible with the restriction maps, hence the

following definition says that the sheaf E is a sheaf of C%-modules.

4.3.1 Definition. Let X be a C*-manifold, and | < k. A sheaf of C%-modules (or just a
CY%-module) is then a sheaf M on X together with the structure, for all open U in X, of
C% (U)-module on M(U), compatible with the restriction maps. A morphism of C'-modules
is a morphism of sheaves such that on each open subset U of X it gives a morphism of C% (U)-

modules.

The category of C-modules is in fact an abelian category with sufficiently many injectives,
but for the moment we do not need this (it will probably be shown in Berthelot’s course).
Associating to a vector bundle its sheaf of sections is a functor from the category of C'-vector
bundles to the category of C%-modules. We will show that this functor induces an equivalence
of categories from the category of C'-vector bundles to the full subcategory of C’-modules that
are “locally free of finite rank”. The category of vector bundles on X is not an abelian category
if dimx (z) > 0 for some z. These facts show that the category of C-modules is very useful.

If M is a C4-module and U C X an open subset, then M|y is a C},-module. For M, and
M, two Cl-modules we define a presheaf M;® M, by: (M1®Mo)U = M (U)®M,(U). This
presheaf is in fact a sheaf (exercise), of C-modules (trivial), with canonical morphisms from
M and M, to it, such that it is the direct sum of M; and M, in the category of C%-modules
(exercise). The same then works of course for arbitrary finite direct sums. A finite direct sum
of C%-modules has projection morphisms to its components, making it into the direct product
of those (exercise).

Suppose now that M is a C-module, and that we have global sections my, ..., m, of it.
Then we get a morphism from (C%)" := &I_,C% to M such that for all open U C X and all
fi,. -, frin C5(U) the element (fi,..., f.) of (C%)"(U) is sent to fimy + -+ fym, in M(U)
(we omit the restriction maps). The sequence (my,...,m,) is said to be a basis of M if this
morphism is an isomorphism. A C%-module M is called free of rank r if it is isomorphic to
(C%)", or, equivalently, if it has a basis with r elements. A C%-module M is called locally free
of rank r (with r a locally constant function on X) if every z in X has an open neighborhood
U such that M|y is a free C}-module of rank r(z).

4.3.2 Exercise. Let E be a real C'-vector bundle on X. Show that its sheaf of sections F is
locally free of finite rank as C’-module. Show that for U C X open and ey,...,e, in E(U) the
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sequence (e, ..., e,) is a basis for F|y if and only if for all z in U the sequence (e1(x),. .., e (x))
is a basis for the fibre F(x) of E at z. O

4.3.3 Theorem. Let X be a C*-manifold, and let | < k. The functor that sends a C'-vector
bundle to its sheaf of sections, viewed as a Cl-module, is an equivalence from the category
of C'-vector bundles to the full subcategory of the category of C%-modules consisting of the
CY-modules that are locally free of finite rank. A quasi-inverse of this functor is described in

the proof below.

Proof. We will first describe a functor G from the category of locally free C%-modules of
finite rank to the category of C'-vector bundles on X and then show that it is a quasi-inverse
of the functor F' mentioned in the Theorem (i.e., FG and GF' are isomorphic to the identity
funtors of the two categories in question).

So let M be a locally free C-module of finite rank r. Let  be in X. We consider the
stalk C% , of C at z and the stalk M, of M at . It follows from the definition of stalk that
M, is a C% ,-module. Since M is locally free of rank r, its stalk M, is a free C ,-module of
rank r(z). Let C’&,CE — R be the map that sends f to f(x). It is a morphism of R-algebras; let

mg C C% , be its kernel. Then we define:

E(2) == My/meMy =R @y M, E =[] E2).
zeX
By construction, we get a map p: E — X, such that p~'z = F(x). The E(z) are clearly R-
vector spaces. Let U be an open subset of X on which M is trivial; let m := (my, ..., my) be
a basis of M|y. For z in U and s in M(U), let s(z) be the image of s in E(x). Then for all z
in U, the m;(x) form an R-basis of E(z). Hence we get a bijection:

bum:RExU = p~'U, (\,z) (Z Aim;, ).

This bijection gives p U the structure of a C'-manifold. One checks that this structure does
not depend on the choice of the basis m, since if m’ is another basis, one has a (unique) element
g in GLy(C% (U)) such that m} = gm, for all i. It is now clear that p: E — X, with the R-vector
space structures on the E(z), is a C'-vector bundle. From the construction it is also clear that
a morphism between C%-modules that are locally free of finite rank induces a morphism of
C'-vector bundles on X. We have thus defined our functor G.

To finish the proof, we have to show that GF (resp., F'G) is isomorphic to the identity
functor of the category of C'-vector bundles (resp., the category of locally free C%-modules of
finite rank).

Let E be a C'-vector bundle on X. Then F(E) is the sheaf of sections of E. From the
definition of F(F) and the definition of stalk, it follows that we have a map F(E), — E(z)
that sends s to s(x). This map of C% ,-modules is surjective and its kernel is m,F(E), (use
a local trivialization of E at z). Hence F(z) is canonically isomorphic to F(E),/m,F(E), =
(GF(E))(x). It is left to the reader to verify that this fibre wise isomorphism between E and
(GF)E is an isomorphism of C'-vector bundles, and that it is functorial.
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Let M be a locally free C%-module of finite rank. Let U be an open subset of X, and s
in M(U). For z in U, let s(z) be the image of s in (GM)(z). Then x — s(z) is a C'-section of
GM over U (the verification of this, which can be done locally, is left to the reader). Hence we
have a map from M(U) to (FGM)U. It is again left to the reader to check that these maps
define an isomorphism of C%-modules, and that this isomorphism is functorial. O
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5 Tensor constructions

In multi-linear algebra, there are constructions that associate, to a given collection of vector
spaces, a vector space. For example, to a k-vector space V' (k a field) one can associate its dual
VYV :=Hom(V, k). For k-vector spaces V and W, one has Hom(V, W) and V ®; W. We will
show that the constructions in the examples carry over to vector bundles, and to their sheaves
of sections. Before we do that, we recall some facts about tensor products, the symmetric
algebra and the exterior algebra, mainly for free modules over a ring (that is assumed to be
commutative, as usual). As a reference for multi-linear algebra one can consult any algebra

book, for example Lang’s “Algebra”, Bourbaki, or Jacobson’s “Basic algebra I and II”.

5.1 Multi-linear algebra

Let A be a commutative ring. For A-modules M and N we have the A-module M ®4 N, called
the tensor product of M and N over A. This A-module M ® 4 N is defined as follows: we have
a universal A-bilinear map M x N — M ®4 N, denoted by (m,n) — m @ n. (This means that
for all A-bilinear maps b: M x N — P, there exists a unique A-linear map b: M ®4 N — P
such that b(m,n) = b(m ® n) for all (m,n).) If M and N are free, with bases m;, i € I, and
nj, j € J, then M ®4 N is free and m; ® nj, (i,7) € I x J, is a basis. For an A-module M we
define MY to be the A-module Hom4 (M, A).

5.1.1 Proposition. Let A be a commutative ring, and M and N A-modules. Then we have
an A-linear map MY @4 N — Homu (M, N) that sends | ® n to m > I[(m)n. If M is free of

finite rank, then this map is an isomorphism of A-modules.

Proof. Since m + [(m)n is bilinear in [ and n, the required map exists and is unique. Assume
now that M is free of some rank r. To prove that the map is an isomorphism, we may suppose
that M = A", because the map is functorial in M. But then we may identify M"Y with A", via
the dual basis of the standard basis. Hence MY ® 4 N = A" 4 N = N". On the other hand,
Hom,4 (A", N) = N7. We leave it to the reader to see that our map is this identification. 0

5.1.2 The tensor algebra

Let A be a commutative ring, and M an A-module. For i > 0 let T¢(M) := M®! be the ith
tensor power of M. One way to define T?(M) is to say that we have a universal i-linear map
M — TY(M), sending (my,...,m;) to m; ® - - - @ m;. We define the tensor algebra of M to be
the A-module T(M) := ®;5oT"(M), with the A-algebra structure defined as follows. Let 7 and
j be > 0. Consider the map M*x M7 = M"™ — T**(M). Since this map is i-linear in the first
variable, it induces a map T*(M) x M7 — T*"/ (M) that is linear in the first variable. This last
map is j-linear in the second variable, hence induces a map T¢(M) x T/(M) — T (M) that
is bilinear and defines our multiplication map. The reader will check that T(M) becomes an
associative graded A-algebra. We have T°(M) = A and T'(M) = M. Let B be an associative
A-algebra, and ¢: M — B a morphism of A-modules. Then there exists a unique morphism of

28



A-algebras ¢: T(M) — B such that the restriction of ¢ to T'(M) is ¢. This situation gives us
an example of adjoint functors: we have a functor F from the category of associative A-algebras
to the category of A-modules, that sends B to B viewed as an A-module, and the functor T in
the other direction, such that

Hom g_moa(M, F(B)) = Homyss— a—aig(T(M), B),

functorially in M and B. If M is a free A-module of rank n, then T*(M) is free of rank n® (the

reader will provide a basis).

5.1.3 The symmetric algebra

Let again A be a commutative ring, and M an A-module. We define the symmetric algebra
S(M) to be the quotient of T(M) by the ideal generated by all zt® y —y ® x with z and y in M.
Since T(M) is generated, as A-algebra, by M, S(M) is a commutative A-algebra. Since the
kernel of T(M) — S(M) is generated by homogeneous elements, the grading on T (M) induces
a grading on S(M). For i > 0, S*(M) is called the ith symmetric product of M, and denoted
Sym’, (M). As in the case of the tensor algebra, the functor S, from the category of A-modules
to the category A-alg of commutative A-algebras, is the left-adjoint of the forget functor in the
opposite direction:
Hom 4_moda(M, B) = Homu_,ig(S(M), B).

If M is free of rank n, say with basis mq,..., m,, then the morphism of A-algebras from the
polynomial ring Az, ..., z,] to S(M), sending x; to m;, is an isomorphism (use the universal
property of S(M) to define the inverse). In particular, S*(M) has basis m?* - - -mir, iy +- - -+i, =
i, hence S'(M) is free of rank (“;’i_ll) It is left as an exercise to see that, for any A-module M,
the map M® — S*(M) that sends (my,...,m;) to my---m; is a universal symmetric i-linear

map.

5.1.4 The exterior algebra

This section is somewhat less trivial than the previous two, since as a special case we construct
the determinant of a square matrix. Let again A be a commutative ring, and M an A-module.
The exterior algebra A(M) of M is then defined to be the quotient of T(M) by the ideal
generated by the £ ® z, with = in M. Then A(M) is a graded associative A-algebra. We have
A°(M) = A and A'Y(M) = M. We claim that A(M) is what is called “graded-commutative”:

yr = (=1)7zy, foralli,j >0,z in A(M), y in A(M).

To see this, first note that it is true when 7 and j are one, since then 0 = (z+y)(z+y)—zz—yy =
zy + yx. Then it follows for all ¢ and j, since M generates A(M). The product in A(M) is
called the wedge product, and is sometimes denoted (z,y) — = Ay. The exterior algebra A(M)
has the following universal property: if ¢: M — B is an A-linear map from M to an A-algebra
B, such that ¢(m)@(m) = 0 for all m in M, then there exists a unique morphism of A-algebras
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¢ from A(M) to B whose restriction to M is ¢. We leave it as an exercise to show that the map
M* — AY(M) that sends (my,...,m;) to my---m; is a universal alternating i-linear map. If
M is free of rank n, say with basis mi,. .., my, then A’(M) is free of rank (%), and mj, - - - m;,,
Jj1 < --- < Ji is a basis. Since this is not so obvious, we will give a proof.

So assume that mq,...,m, is a basis of M. Let ¢ > 0. It is clear that the m; ---m;,
J1 < --- < ji, generate A'(M), so it remains to show that they are linearly independent.
This follows if we can construct, for all j = (j1,...,7), with j; < --- < 7j;, an A-linear
map ¢; from A'(M) to A, such that for all & = (k1,...,k;) with &y < --- < k; we have
Gi(mey, ..., mk,) = 6k Note that T*(M) has basis my, ---my,, Iy € {1,...,n}. Define an
A-linear map ¢; from T*(M) to A by: ¢;(my, ---my,) = 0 if {l,..., L} # {j,-.-,Ji}, and
dj(my, - my) = e(o) if {l,...,l;} = {j1,...,ji} and o is the permutation sending ji to [y
(¢ is the sign of a permutation). Then ¢; induces the desired alternating i-linear form on M.

5.1.5 Exercise. Let k be a field, V a k-vector space and d > 0 an integer. Recall that we
have defined the Grassmannian Gry(V') of d-dimensional subspaces of V', with the structure of
algebraic variety over k if £ is algebraically closed and V finite dimensional.

Let W be a d-dimensional subspace of V', and let wy,...,wy be a basis of W. Then we
get an element w; - - -wy of A4(V). Show that this element is non-zero, and that its image in
P(A4(V)) only depends on W. Hence we have a map ¢ from Grg(V) to P(A%(V)). Show that
this map is injective. It is called the Plicker embedding.

Suppose now that k is algebraically closed and that V is finite dimensional. Show that f
is a morphism of algebraic varieties. Try to describe the image of f in the case d = 2 and
dim(V) = 4. (It is possible to describe the image by just one homogeneous equation of degree

two.) More on this in the seminar! O

5.2 Tensor products of vector bundles and locally free sheaves

Let X be a C*-manifold (k > 0), and p: E — X a real (or complex) C'-vector bundle on it
(I < k). Then we define the dual EV of E, which is also a real (or complex) C'-vector bundle,
as follows. As a set, EV is the disjoint union of the F(z)Y, z in X. Let ¢: EY — X be the map
with g7z = E(z)Y. To give EV the structure of a C'-vector bundle, choose a covering of X
by open subsets X;, and trivializations ¢;: F; x X; — p~'X; of E. Then, for z in X;, we have
an isomorphism of vector spaces ¢;(z): F; — E(xz;). Consequently, we have an isomorphism
¥i(z) := (¢i(x)V)~™" from F to EV(x;). For all i, we have a bijection ¢;: F¥ x X; — ¢ ' X;.
These bijections give EV the structure of a C'-vector bundle. One checks that this structure
does not depend on the choice of the X; and the ¢;. Defined like this, we have, for each x in X,
a bilinear map (-, -), from EY(z) x E(z) to R (or C), given by evaluation. For U C X open, s
in E(U) and t in EV(U), the function (¢, s)y on U that sends x to (t(x), s(z)) is in C4 (U). We
want to show that these maps define an isomorphism from the C-module EV to the dual of
E, as C%-module. But in order to do this, we first have to define what such a dual is supposed
to be.
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5.2.1 Definition. Let (Y, Oy) be a ringed space, M and N be Oy-modules. Then we define
the presheaf Homo, (M, N) as follows:

HomOY(MaN)(U) = Hom@y|U(M|U7N‘U)7 uvcy open,

with the obvious restriction maps. This presheaf is actually a sheaf (the rather long verification
is left to the reader), and moreover a Oy-module. The Oy-module Home,, (M, Oy) is called
the dual of M and will be denoted M" .

We will define a morphism of C-modules from the sheaf of sections of EV to Homg (E, C%),
and then show that it is an isomorphism. So let U C X be open, and ¢t in EV(U). Let V C U
be open, and s in E(V). Then we have (t|y, s)y in C4 (V). This defines a morphism of C% (U)-
modules from EY(U) to HomC&‘U(EV|U,C§(|U). One verifies that we get indeed a morphism
from EY to Homg (E, C%) as desired. Let us now show that it is an isomorphism. So let
U C X be open and let ¢ be in Hom (E, CL)(U). Then, for each z in U, ¢ induces, via
the equivalence between vector bundles and sheaves of modules (that is, Theorem 4.3.3), an
element ¢(z) of EV(z). It is easy to check that these ¢(x) form an element of EV(U).

So we have now seen that the operation £ — EY on C'-vector bundles corresponds to
E +— Homg (E,C%) on Ck-modules. Our next goal is to define tensor products, on both
sides. Let us first treat the case of vector bundles. So let E and F be C!-vector bundles on X.
We define a vector bundle E® F' as follows. As a set, it is the disjoint union of the vector spaces
E(z) ® F(z), for z in X. The map from it to X is clear. Then E ® F' is given the structure of
C'-manifold via local trivializations of E and F. Let U C X be open, s in E(U) and t in F(U).
For each z in U we get s(z) ® t(z) in (E'® F)(x). These define an element s®1t of (E® F)(U).
The map from E(U) x F(U) to (E ® F)(U) sending (s,t) to s ® t is C% (U)-bilinear. Varying
U, we get a Ck-bilinear map from F x F to E ® F. We will prove a bit further that this map
is the universal C-bilinear map from E x F to C&-modules. Before that, we define the tensor

product on the side of sheaves.

5.2.2 Definition. Let (Y, Oy) be a ringed space, M and N locally free Oy-modules of finite
rank. By definition, every y in Y has an open neighborhood U on which M and N are free, say
of ranks m and n. For such open subsets U we put: T(U) := M(U) Qoyw) N (U). For V an
open subset of such a U we have a restriction map T (U) — T (V) (note that indeed M and N
are free on V). Choosing, for such a U, isomorphisms (Oy|y)™ — M|y and (Oy|y)™ = Ny,
we see that V +— T (V) is a Oy|y-module. The next lemma implies, among other things,
that there is a unique Oy-module M ®o, N on Y such that for all U as above we have
(M ®o, N)(U) =T(U). This Oy-module is locally free of finite rank.

5.2.3 Lemma. Let X be a topological space, U a collection of open subsets of X that covers
X and that is a sieve on X (i.e., U € U and V C U open imply V € U). A presheaf on U is
defined to be a contravariant functor from U (morphisms are just the inclusions) to the category
of sets. A presheaf F' on U is called a sheaf if, for all U in U, F' defines a sheaf on U. Let
Sh(X) and Sh(U) denote the categories of sheaves on X and U, respectively. Then the functor
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F — F|y from Sh(X) to Sh(U) is an equivalence of categories. A quasi-inverse is described in

the proof.

Proof. Let F be a sheaf on Y. Let V be an open subset of X. Let U|, be the set of U in U
with U C V. We define F* (V) to be the projective limit liin F(U), taken over the U in Uy .
Concretely, this means that an element of F*(V) is a compatible system of sy in F'(U), indexed
by U|y. Since the restriction of F' to any U in U is a sheaf, we see that F*(U) = F(U) for
such U. It is left to the reader to define the restriction maps for F*, and to verify that F'* is a
sheaf. The verifications that F' — F'T is a functor, and that it is a quasi-inverse of G — G|y,
are left to the reader. O

5.2.4 Proposition. Let (Y, Oy) be a ringed space and let M and N be Oy-modules. Let U
be the sieve on X consisting of the U on which both M and N are trivial. Lemma 5.2.3 implies
that the maps:

M(U) x N(U) = M(U) @oy ) N (U) = (M ®oy, N) (U)

define a morphism of sheaves M x N' - M ®p, N on X. This morphism is a universal
Oy -bilinear map from M x N to Oy-modules.

Proof. Everything but the universality is clear. So let P be a Oy-module and b a bilinear map
from M x N to P. Then, for each U in U, we get a unique morphism of Oy (U)-modules from
(M ®o, N)(U) to P(U) that, composed with the universal bilinear map from M(U) x N (U),
is b(U). Lemma 5.2.3 shows that these maps give the desired unique morphism of Oy-modules
from M ®o, N to P that, composed with the bilinear map from M x N, is b. dJ

Let us now go back to our manifolds and tensor products of vector bundles: we had a C*-
manifold X and C'-vector bundles £ and F. We have already defined the C’-vector bundle
E ® F. Tt is easy to check that, for an open subset U of X on which E and F are trivial, we
have (E ® F)U = E(U) ®cu vy F'(U) (or, more precisely, the natural map between them is an
isomorphism). Lemma 5.2.3 tells us that (the sheaf of sections of) F ® F' is the same as (more
precisely, uniquely isomorphic to) E Rct. F.

From what we have done up to now, it is clear how to define, for a C'-vector bundle E on
a manifold X, the bundle analogs T(E), S(E) and A(E) of the tensor algebra, the symmetric
algebra and the exterior algebra, and that these constructions coincide with their analogs for
Cl-modules that are locally free of finite rank. (Here we forget for a moment that vector
bundles, as we have defined them, have finite dimension.) It is clear that the approach via
sheaves of modules works in the context of analytic and algebraic varieties. (This is also true
for the approach via bundles.) In order to consider complex C'-vector bundles on a C*-manifold
X it suffices to consider the sheaf Cé(,(c of complex valued C’~-functions on X, where, as explained
in §1, a C-valued function on X is called C' if both its real and imaginary part are. Before
indulging in differential forms and de Rham cohomology we take a brief look at metrics on

vector bundles.
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5.3 Metrics on vector bundles

Let X be a C*-manifold, with £ > 0, and E a C'-vector bundle on X. There are various ways
to describe what a metric on E is. Viewing E as a bundle, a metric on F is a collection of
non-degenerate symmetric bilinear forms (-,-), on the E(z), “varying C' with z”. This last
condition means that after local trivialization, the coefficients of the matrix describing the (-, ),
are C'-functions. Equivalently, for U open in X and s and ¢ in E(U), (s, t)y:z + (s(z),t(z)),
is in C%(U). Viewing E as a locally free C-module, a metric is a symmetric bilinear map
b: E x E — CY% such that, for all x in X, the symmetric bilinear form b(x) on E(z) is non-
degenerate. Equivalently, b induces an isomorphism of C’-modules from E to EY. Or also:
a metric on F is a symmetric isomorphism of C%-modules from E to EV. Considering the
universal symmetric bilinear form on E, one sees that a metric on F is an element b of S*(E)Y (X)
such that all b(z) are non-degenerate. To conclude: all various equivalent descriptions of
symmetric bilinear forms that one sees in a linear algebra course work in the contexts of vector
bundles and C%-modules. For example, a metric b on F has a signature, which is a locally
constant function s: X — Z? such that s(z); (resp., s(x)s) is the number of positive (resp.,
negative) coefficients of b(z) in any diagonal form.

Usually when working with vector bundles with a metric, the metric comes naturally with
the vector bundle. But sometimes it is useful to just choose a metric on a given vector bundle,
if one exists (for example, if one wants to split short exact sequences of vector bundles). So
a natural question to ask is: under what conditions does a vector bundle £ admit a metric
b (say with a fixed signature)? We will see, when discussing partitions of unity, that, for X
paracompact (i.e., X is separated and every open cover has a locally finite refinement), every
vector bundle has a positive definite metric. This has to do with the fact that the set of positive
definite symmetric bilinear forms on R” is convex. On the other hand, there are topological
obstructions against the existence of metrics of signature (1, 1), because the set of symmetric
bilinear forms on R? of that signature is homotopically equivalent to the circle. For example, it
can be seen that the tangent bundle of the two-sphere S? does not admit a metric of signature
(1,1) (namely, from such a metric one can construct a nowhere zero vector field on S?, and
everybody knows that the sphere can’t be combed).

Before going on, let us look a bit at what is happening here. So let E be a vector bundle of
constant rank r on a manifold X, and let s be a fixed signature. For x in X, the set of metrics
of signature s on F(z) is an open subset Y (z) of S?(E(z))V. The Y (x) are all (non-canonically)
isomorphic, as manifolds, to the open subset F' of S*(R")Y consisting of metrics of signature s.
Using that E' is locally trivial, it is easy to equip the disjoint union Y of the Y (z) with the
structure of a fibration over X with fibre F'. The question of whether or not F has a metric
of signature s is then the same as the question of whether or not this fibration has a section.
Let us now give two fibrations, with non-empty fibre, that have no section. The first example
is the complement of the zero section of the Mébius strip, viewed as a fibration over S' with
fibre [-1,1] — {0}. The other example is the Hopf fibration of S® over S?%; it is obtained as
follows. View P!(C) as the two-sphere S?. Then S? is the quotient of C* — {0} by the action
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of C*. View S? as the quotient of C* — {0} by the subgroup R%, of C*. Then we see that
S?% is the quotient of S? by the group C*/R?%,, which is isomorphic to the subgroup S* of C*.
Since the action of C* on C? — {0} is free, the action of S* on S® is so too. Hence we have our
fibration. To see that there is no section, note that if there is a section, we get an isomorphism
from S! x S? to S2, but the first of these two is not simply connected whereas the second is.

5.3.1 Definition. Let X be a C*-manifold, with k > 1. A Riemannian metric on X is then a

positive definite metric on T x.

As we have said, we will show later that every paracompact manifold has a Riemannian metric.
Suppose now that X is a C*-manifold and that (-,-) is a Riemannian metric on it. Suppose
that c: I — X is C', with I = [a, b] some non-empty closed interval in R. Then we can define
the length of ¢ as follows:

b
(5.3.2) length(c) := / 1" (®) [legey it

with || - || the norm associated to (-,-). The reader should note that when X is R* and (-,-) is
the standard Riemannian metric, this definition of length coincides with the standard one. An
important fact is that if ¢; := co¢p with ¢: J — I a diffeomorphism of closed intervals, say with
J = [a1, by], then the length of ¢; equals that of c:

b1 b1 b
(5.3.3) / 14 () ey s = / 16(5)] 1€/(6(5)) ooy ds = / 1)l .

1 al
This implies that the length of a curve c is independent of the choice of the parametrization.
Suppose now moreover that X is connected. Then X is arcwise connected, hence we can define

a real valued function d on X x X by:
(5.3.4) d(x,y) := inf{length(c) | ¢ a smooth curve from z to y}.

It is quite clear that d is symmetric and that it satisfies the triangle inequality. One can show
without too much pain that if X is separated, then one has d(z,y) = 0 if and only if x = y. See
for example Chapter 9 of Spivak, Volume 1. The problem of finding the shortest path between
two given points leads to variational calculus (see Baird’s course in the second semester) and
to the definition of a geodesic.

Not all metrics that arise naturally are positive definite. For example, in the theory of
general relativity one studies four-dimensional manifolds with a metric of signature (1, 3); so-
called Lorentzian manifolds. The path from x to y that corresponds to a free fall is then a path
of maximal length from x to y (of course one only considers paths that do respect the speed
limit imposed by the speed of light, because otherwise the square root in the definition of || - ||
becomes imaginary). There is an excellent book on this matter, by Sachs and Wu, with the
title “General relativity for mathematicians”.

To finish this section: not even all bilinear forms that occur naturally on vector bundles
are symmetric. For example, anti-symmetric bilinear forms, also called symplectic forms, play
an important role in classical mechanics (Hamilton systems). Here the reader should think of

formulas such as ), dp; A dg;.
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5.4 Differential forms

Let X be a C*-manifold, with £ > 1. Then we have the C*~!-vector bundle Tx on X. The
dual TY of T is called the bundle of 1-forms on X, and is denoted Q%. Note that with our
conventions, 2% also denotes the sheaf of sections of Q%. We define Qx to be A(Q%). This
Qx) is a graded-commutative C% !-algebra, and its degree i component Q% is called the sheaf
or bundle of i-forms. We will do two important things in the next two sections: we define the
usual morphisms of sheaves d: Q% — Q?l that give us the de Rham complex of X, and we
define what integration of forms of top degree is.

Our first step is to define a map d: C% — QL. But even to do this, we have to go back to
Ty itself: namely, we have to give an interpretation of Tx (U) for U C X open. Solet U C X
open, and let 0 in Tx(U). We will show that & defines a derivation from C%|y to C% |y, So
let V C U be open, and let f be in C% (V). Let x be in V. Then we have () a tangent vector
at , and f, in the stalk C% .. We define: (0f)z := 9(x)f,, which is in R. No matter how
we view tangent vectors, this number is simply the derivative at x of f in the direction 0(z).
Looking in a chart, it is clear that the function 0f from V to R is in C%7'(V), that 0 is indeed
a morphism of sheaves from C% |y to C% |y and that it is a derivation: d(fg) = f9(g) +0d(f)g.

5.4.1 Question. Let X be a C*-manifold with ¥ > 1. Does the construction above give an
isomorphism of C*~'-modules between Tx and Derg(C%,C%")? T don’t know. If it is not
true, and one still wants an interpretation of Tx of this kind, it seems a good idea to impose

some local continuity condition on the derivations themselves. ]

We can now define our map d:C% — QL. Let U C X be open and let f be in C%(U). By
construction, Q% (U) is equal to Homcéc(—l(TX, C¥1)(U). We define df to be the element in
QL (U) that sends 9 in Tx(V), with V C U open, to 0f. The reader will verify that d is a
morphism of sheaves, that it is R-linear and that it satisfies:

(5.4.2) d(fg) = fdg + gdf,

for U open in X and f and g in C%(U). Intuitively, the expression (df)z can be thought of as
a measure for the infinitesimal rate of change of f at x in an unspecified direction, and that,
when evaluated on a tangent vector at x, it gives the derivative at x of f in that direction. The
map d itself can be thought of as a universal derivation (this is really so in the C* and the
C%“-cases). One should note that the morphism of sheaves d: C% — QY is not a morphism of
vector bundles (except in the case where QY is zero, of course), because it is not C%-linear (it
is a derivation, after all).

5.4.3 Proposition. Let X be a C*-manifold with k > 1. Let U C X be an open set and
T1,...,T, local coordinates on U, i.e., the x; are in C%(U) and the map z:U — R" sending
u to (z1(u),...,w,(u)) is an isomorphism of C*-manifolds from U to an open subset V of R™.

Then Q% |y is a free Cﬁ_l—module and (dzi,...,dx,) is a basis. This basis is the dual basis
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of the basis Dy, ..., D, of Tx|y given by the partial derivatives. For f in C%(U) we have the

formula:

df = (Dif)dz;.
i=1

Proof. The fact that the D; form a basis of Tx|y was proved, point-wise, in §4.1. By con-
struction, the dx; form the dual basis. The formula above follows from evaluating both sides
on the D;. Il

5.4.4 Corollary. Let X be a C*-manifold with k > 1. Let U C X be open, z1,. ...z, local
coordinates on U, and r > 0 an integer. Then QY% |y is a free C’,’}_l—module and the dx;, - - - dz;,
with 11 < - -+ < 1, form a basis.

5.4.5 Proposition. Let X be a C*-manifold with k = co or w. There exists a unique morphism
of sheaves d: QQx — Qx such that:

1. d is R-linear and maps Q% to Q4*;

2. the restriction of d to Q% is d: Cx — Qk;

3. for U C X open, x in Q% (U) and y in Q% (U), we have d(zy) = (dz)y + (—=1)"zdy;
4. d*>=0.

Proof. Since Q) generates Qx as a Cx-algebra, there exists at most one such morphism.
Because of this uniqueness, it suffices to prove the existence locally. So we may and do assume
that X is an open subset of R”. Let r > 0 be an integer. The dx;, - --dx;, with 1y < --- <4,
form a Cx-basis of %. Conditions 2 and 4 of the proposition we are proving imply that we
must define

(5.4.6) d(fdx;, - - dz;,) = df da;, -~ da;, =Y (D;f)daidas, - - - da,.
i=1
Let us now show that the morphism d defined by this formula satisfies all the conditions of the

proposition. Conditions 1 and 2 are clearly satisfied. Let us now do 4. One computes:

d(d(fdw;, -+ dx;,)) = dO_(Dif)dwidw;, - day,) =Y d(D;f)da; du;, - - da;, =

= Z ZDj(D,-f)d:cj dx; dxgy - - - dx;, =
]

2
To prove 3, we may write x = fdz;, - --dz;, and y = gdx;, - - -dz;,. One computes:
d(zy) = d(fgdx;, ---dx;, dzj, ---dzj,) = (fdg + gdf )dz;, - - - dx;, dzj, -+ -dzj, =
= df dz;, ---dx;, gdxj, ---dxj, + (=1)" fdzy, - - - d;, dg dzj, - - - dxj, =
= dry+ (—1)"zdy.
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5.4.7 Remark. Note that the previous Proposition only talks about the C'* and the analytic
cases. It is certainly possible to formulate an analogous result for £ > 2, but I find that too
much of a hassle. Let us consider the case where X is open in R®. For f in Cx(X) one has df =
(D1 f)dzy 4+ (D2 f )dze + (D3 f)dxs, which is just an expression for the gradient of f. The reader
should verify that d(fidz; + fodxe+ f3dx3) gives the curl and d( fidzodzs + fodxsdx: + fadzidzs)
the divergence. Usually, in calculus, the gradient of a function is a vector field, and not a one-
form; this comes from the identification between Ty and Q% given by the standard Riemannian
metric. Likewise, in calculus one applies divergence to vector fields, not to two-forms; here one
uses that the multiplication Q% x Q% — Q3 is a perfect pairing (i.e., it identifies both sides
with the dual of the other). A similar remark holds for the curl. O

5.4.8 Exercise. Let X be a C*¥-manifold with k£ > 0. Show that X is the disjoint union of its
connected components; let m(X) denote the set of connected components of X. Assume now
that k is in {oo,w}. Show that the kernel of d: Cx — QY is the constant subsheaf Ry of Cx.
Conclude that:

ker(d: Cx (X) = Q% (X)) = RX),

g

5.4.9 Remark. We will see later that the complex of sheaves (Qx, d) is exact in all degrees ¢ >
0. This means that (Qx, d) is a resolution of the sheaf Ry. We will show that the sheaves Q%
are acyclic for the functor I'(X, -) when X is paracompact. It follows that under that condition,
the complex (Qx(X), d) computes the cohomology of Rx . Since the cohomology of this complex
is by definition the de Rham cohomology, we see that the de Rham cohomology of X is the
cohomology of Ry . U

5.5 Volume forms, integration and orientation

Thinking about what kind of objects one can expect to be able to integrate over manifolds, one

comes to the following definition.

5.5.1 Definition. Let V be a finite dimensional R-vector space, say of dimension n. Let W
be an R-vector space. A volume form on V with values in W is then a map v: V"™ — W such
that:

1. v(Vs(1)y - -+ Vom)) = V(V1,--.,Vp), for allvy,...,v, in'V and o in Sy;
2. v(Avy,vg .., v,) = [Av(v, ... vp), for allvy,...,v, inV and X in R;
3. v(vy + Ve, V2, ..., U,) =0v(V1,...,0,), for all vy, ... v, in V.

All volume forms as in the definition are obtained as follows (proof left to the reader). Let
w be in W and [ in A"(V)Y. Then the map v defined by v(vy,...,v,) = |[{(vi,...,v,)|w
is a volume form. It follows that for v a volume form, v,...,v, in V and g in GL(V), we
have v(g(v1),...,9(v,)) = |det(g)| v(vy,-..,v,). The set Vol(V, W) of W-valued volume forms
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on V his itself an R-vector space (sum and scalar multiplication are defined as usual). For
f:W — W' an Rlinear map of R-vector spaces, we get an R-linear map f, from Vol(V, W) to
Vol(V, W), that sends v to fov. In fact, Vol(V,-) is a covariant functor.

5.5.2 Lemma. LetV be as above. The functor Vol(V, ) is representable, by a one-dimensional

R-vector space that we denote |A"(V')|. Equivalently, we have a universal volume form V" —
(V).

Proof. Take [ to be a non-zero element of A"(V'), and consider the R-valued volume form ||.

The discussion above shows that this volume form is universal. O

The set of R-valued volume forms on V' is |A"(V)|Y. An R-valued volume form is called positive
if all its values are > 0. We have a map A"(V)Y — |A"(V)|Y that sends [ to |I] := |- |ol. The

image of this map is the set of positive volume forms.

5.5.3 Definition. An orientation on a one-dimensional R-vector space L is a connected com-
ponent of L — {0}. The union of this component with {0} will be denoted Lt and it will be

called the positive component.

It is clear from the definition that |A"(V)|¥ has a given orientation, for which the positive
component consists of the positive volume forms. We are now ready to apply the notion of a

volume form to manifolds.

5.5.4 Definition. Let X be a C*-manifold, for some k > 1. We define the vector bundle Vol x
of volume forms on X to be the C*~'-vector bundle with Volx(x) = |AY™x@Tx (x))|V for all
x in X, with local trivializations induced by those of T x. For W a finite dimensional R-vector
space W ®g Volx is defined to be the C*~'-vector bundle with (W ®g Volx)(z) = W ®g Volx (z)
for all x in X, with local trivializations induced by those of Tx. ForU C X open and | < k—1,

a C'-section of W ®g Volx over U is called a W -valued volume form on U.

5.5.5 Remark. The sheaf of C*~!-sections of W ®g Vol is the tensor product Wy ®ry Volx,
where Wx and Ry denote the constant sheaves on X associated to W and R.

It follows immediately from the definitions that, for U C X open with local coordinates
T1,- .., Ty, every element of (W®gVolx)(U) can be uniquely written in the form w-|dz; - - - dz,|,
with w: U — W a C*~'-function.

The finite dimensionality of W is there just because we have decided that vector bundles
should have finite rank (they have to be manifolds themselves). Working with sheaves, there

is no problem whatsoever to allow W to have infinite dimension. O

5.5.6 Definition. Let X be a topological space, F a sheaf of abelian groups on X and f an
element of F(X). The support of f, denoted Supp(f), is defined to be the set {x € X | f, # 0};
it is a closed subset of X.
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We will now be concerned with defining the integral of continuous W-valued volume forms with
quasi-compact support (recall that a topological space is called quasi-compact if every open
cover of it has a finite subcover). Intuitively, the integral of such a form is the sum of all its
values (which are elements of W). More precisely, one should think of Riemann sums; the
volume form itself tells us how to measure the size of “small cubes”. But the term “cube”, or
“block”, do not make much sense in X. So first we explain what we want to do locally; after
that we set up an administration system to make sure that everything gets counted exactly
once. I should also admit that the usual definition of integration of volume forms is in terms
of paritions of unity. In this course I want to show that there is another definition that is
closer to the way one actually computes integrals, and which does not need that the manifold
is separated. Of course, both definitions give the same result for separated manifolds. We
will probably need the usual definition do prove some general results on integration (such as
Stokes’s theorem).

So let X be a C*-manifold, with & > 1. Let W be a finite dimensional R-vector space
and v a W-valued volume form on X. Let ¢:U — X be a chart, with U C R" open. For all
w in U, Ty(u) is an isomorphism from Ty (u) to Tx(¢(u)). This gives us isomorphisms from
(W ®g Voly)(u) to (W ®gr Volx)(¢(u)), and hence a W-valued volume form ¢*v on U. We
have, uniquely, ¢*v = w|dz; - - - dz,|, with w:U — W a C*"l-map. Let V C U be a bounded

measurable (in the sense of Lebesgue) subset of U (for example, a bounded open or closed

subset in U). Then we define:
/ o'v = / w,
v v

where the last integral is in the sense of Lebesgue. To make things a bit more concrete: if
(w1, ..., wq) is a basis for W, and w = 3, faw;, then [, w =>".(f,, fi)w;. We are now ready
to define the integral on X itself.

5.5.7 Construction. Let X be a C*-manifold with & > 1. Let W be a finite dimensional
R-vector space. Let v be a W-valued volume form on X with quasi-compact support. Suppose
that we have an integer m > 0, charts ¢;: U; — X, 1 <1 < m, V; C U; bounded and measurable,
such that Supp(v) C U;¢p;V;. Then we define the integral of v over X, with respect to these

data, to be:
/ vi= Z(—l)“rl Z / b v,
X ,,.:1 V

i1<---<i7- 1] 5enes ir

g1
where Vi, i = ¢; " Ny &3, Vi, .

The sum over r, and the signs in it, are there to make that we do not count the intersections
twice, etc.; it is called the inclusion exclusion principle, easily understood in terms of the
characteristic functions of the V;. Note that the ¢; 1‘/;]. NU;, are measurable subsets of U;,, hence
that Vi, s
subsets V; of U; with Supp(v) C U;¢;V; can be obtained. For each x in Supp(v), choose a

is indeed a measurable subset of U;,. Let us show how charts ¢; and measurable

T

chart ¢,: U, — X and a measurable neighborhood V, of ¢’z in U, (for example, a compact

neighborhood). Since Supp(v) is quasi-compact, it is covered by a finite number of the V.
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Numbering those x gives the desired charts and measurable subsets. Of course, in practice one

usually tries to take the V; disjoint, or at least such that the V;NV; have measure zero for 7 # j.

5.5.8 Proposition. The integral of v as defined in Construction 5.5.7 does not depend on the
choice of the charts ¢; and the sets V.

Proof. Suppose we have two sets of data: m, m’, ¢;, ;., etc. Then we construct two new sets of
data as follows: m" := mm’, U;; := ¢; (¢ U; N GSUY), bij = dilu,,;, ULy = (8) (Ui N sUY),
b o= Wslur,s Vig = o7 (VN @5V)), and Vi == ()7 (#:V; N ¢;V]). Let us first argue that
these new two sets of data give the same integral. For that purpose, consider a pair (i, 7). Let
U :=U; and U := Uj;. Then f := d)é-_lqﬁi defines an isomorphism from U to U’, such that
V =V, has image V' := V};. Let us write ¢;v = v|dz; - - - dz,,| and ¢} v = v'|d2! - - - dz;,|. The
partial derivatives 0/0z;, 1 <1 < n form a basis of Ty, and likewise for 9/0x; for Tyr. Written
in this basis, the tangent map T is given by the matrix whose (4, j)th coefficient is 0f;/0x;,
where f is written (fy,..., f,). Note that |dx, - - - dz,| is a basis for Voly, and that |dz] - - - dx!,|
is one for Volyr. Let w be in U and put v’ := f(u). Then T;(u) induces an isomorphism
from Voly(u) to Voly/(u'). Using the defitions of Voly(u) and Voly: (u'), one sees that under
this isomorphism |dz} - --dx;,| is mapped to |det(T;(u)||dz;---dz,|. By construction, this
isomorphism sends v'(u')|dx] - - - dz,| to v(u)|dz; - - -dz,|, hence we get v'(u')|det(Tf(u))| =
v(u). The “change of variables formula” from vector calculus says:

[v= ] viaeadi = [ @enidnedl = [ @en)iae)

So, from what we have just seen, it follows that fv' v = fvv. This equality is also valid for
V= Viiy i)yl yge) @0d V' = ‘/({il,jl),---,(ir,jr). That means that indeed our two new sets of data
for integration give the same result.

It remains now to be shown that two sets of data, one of which is a refinement of the other,
give the same integral. In order to see this, let us reconsider what happens for just one set of
data m, ¢; and V;. Considering all possible intersections of the V; and their complements gives
us 2™ subsets that partition X. All these subsets are contained in some V;, except one: the
complement of the union of the V;. Note that on this last set v is zero. So on each of our subsets
we can integrate v, and the sum of these integrals equals the integral of v over X relative to
the set of data m, ¢;, V;. (To see that, use that f — fRn f is additive.) Of course, what we
are doing here is the standard game with the boolean algebra generated by the characteristic
functions of the V;. Now suppose that we have a refinement m’, ¢}, V. The 2™ subsets of
X obtained from the V; give a partition of X that refines the partition obtained from the V;.
Then our claim is clear. U

Now that we know how to integrate volume forms (i.e., sections of Volx), let us discuss the

relation between volume forms and differential forms of top degree, i.e., sections of Q?ﬁmx .

5.5.9 Definition. Let X be a manifold and L a rank one vector bundle on X. An orientation
of L is a collection of orientations of all L(z), x € X, which is locally constant. If X is C* with

k > 1, then an orientation of X is an orientation of Q3™ .
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Some examples. The trivial line bundle R x X has a standard orientation. The same is true
for Voly, but not always for Qu™%_ If w is a global section of Q™% such that w(z) # 0 for all
2 in X, then w is a basis for Q4™ hence gives an isomorphism from R x X to Q3™ hence

. . . di
gives an orientation on Q5 ™.

5.5.10 Remark. It is not true in general that all orientations on a line bunlde L come from a
trivialization of it (example: take X to be two copies of R, glued via the identity along R— {0},
and take an ugly line bundle). If X is paracompact, then all orientations come indeed from

trivializations. N

5.5.11 Proposition. Let X be a C*-manifold with k > 1. An orientation on X induces a
unique isomorphism from Volx to Qg(imx, such that, at each x in X, it coincides with the map
from Q3™ (z) to Volx(x) that sends [ to |I|. Conversely, an isomorphism from Volx to Q3™*
with this property induces an orientation on X and the two constructions are inverses.

Proof. Letzbein X,V := Tx(x), n:=dim(V), L := Q¥ (z) = (A*(V))Y, L' := Volx(z) =
|[A™(V)|Y. Recall that we have the map |- |: L — L’ that sends [ to |/|. This map is, of course,
not linear. We get a linear map as follows: choose [ in Lt non-zero and send M, for Ain R,
to All]. Check that this map does not depend on the choice of /, that it coincides with |- | on
L* and that it is the only linear map with that property. O

It is now clear that for X an oriented C*-manifold we can integrate sections of Q3™ that have
quasi-compact support, by using the isomorphism corresponding to the orientation to transform
these sections in volume forms. The procedure to integrate a differential form of top degree w
with quasi-compact support is then the same as in Construction 5.5.7, except that one should
take charts that are compatible with the orientation on X and the standard orientation on R”.
The standard orientation on R™ is the one such that dz; ---dz, (in this order!) is positive.
Of course, if W is an R-vector space, then we can also integrate sections with quasi-compact
support of W ®g Qg(imx .

To finish this section, let us define a canonical volume form on a Riemannian manifold.
So suppose that X is a C*-manifold, with £ > 1, and that (-,-) is a metric on Tx. Let x
be in X. Suppose that vy, ..., v, is an orthonormal basis of Tx(z). Let v(x) be the volume
form on Tx(z) such that (v(x))(vy,.-.,v,) = 1. One checks that this does not depend on the
orthonormal basis chosen. Hence it defines a volume form v on X.

To give some example where one uses this, note that a submanifold of a Riemannian manifold
inherits the structure of Riemannian manifold. For example, consider the group SO3(R) as a
compact submanifold of R? with its standard Riemannian metric. Then one can ask: what is
the volume of SO3(R)?

5.6 Pullback of vector bundles and of differential forms

Let us first discuss pullback of vector bundles. Let f: X — Y be a morphism of manifolds, and
let E be a vector bundle on Y. Then we define a vector bundle f*E on X by: (f*E)(z) :=
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E(f(z)) for all z in X, and the local trivializations of f*E are induced by those of E. For
U C Y open, and s in E(U), we get an element f*s of (f*E)(f'U), defined by: (f*s)(z) :=
s(f(z)) for all z in f~'U. (Note the special case E = R x Y, where s is just a function and
[*s = sof.) The sheaf of sections of f*E is the tensor product Cx ®-1¢, f 'E, where f !
is pullback of sheaves. For an arbitrary Cy-module M, its pullback as a module is defined as
[*M:=Cx ®;-1¢c, f~'M. Hence on the side of locally free sheaves of modules this operation
corresponds to the pullback of vector bundles.

Suppose now moreover that F' is a vector bundle on X, and that g: F — FE' is a morphism
of vector bundles (see Definition 4.2.8). We claim that such a g corresponds naturally to a
morphism from F' to f*E of vector bundles on X. The proof is trivial, because, for all z in X,
(f*E)(z) = E(f(z)).

In particular, the morphism Ty from Tx to Ty corresponds to a morphism, also written
Ty, from Ty to f*Ty. Dualizing gives us a morphism f*: f*Q3 — Q. Doing our tensor
operations gives us f*: f*(2y — (0x. One easily verifies that this f* is a morphism of sheaves of
graded algebras, and that for U C Y open and w in Qy(U) one has f*dw = d(f*w) (it suffices
to prove this for forms of degree one; one has: (f*dg)0 = (dg)(T;0) = (dg)(0-f*) = (0-f*)g =
d(gof) = (d(f*g))0). Suppose now that for all  in X one has dimy(z) = dimy (f(z)). Then
one has f*: f*Voly — Volx and f*: Q?,imy — Q§§mX. If f is an isomorphism from X to an open

subset U of Y, and v is in Voly (YY) with quasi-compact support contained in U, then one has

Jfyv=[x [

5.7 Some exercises

Let G be a Lie group, i.e., G is a C*-manifold, with k > oo, with a C*-group structure. Let e
be its unit element. We consider the following group actions. The (left) action of G on itself by
left translations: for z in G we have [,: G — G sending y to xy. The (right) action of G on itself
by right translations: r,:y +— yx. The action of G on itself by conjugation: c,:y — zyz~!. The
action of G x G on G by translations on both sides: b, ,: z — zzy~". Let [ denote the morphism
of groups from G to Autpyan(G) given by the action by left translations. Similarly, we have the
anti-morphism 7 from G to Autyan(G) given by the right translations, the morphism b from
G X G to Autpian(G) and the morphism ¢ from G to the group Autp;(G) of automorphims of
G as Lie group.

For every z in G we have the two isomorphisms Ty (e) and T, (e) from L := Lie(G) := Tg(e)
to Tg(z). These two isomorphisms need not be the same. Show that in fact T, (e)™'T;, (e) is
the automorphism T, (e) of L. (By the way, L is called the Lie algebra of G; we will discuss
the structure of Lie algebra on L a bit further.) Show that x — T, (e) defines an action of G
on L by linear maps; this action is called the adjoint representation of G. Show that both [
and r define isomorphisms, still denoted [ and r, from the trivial vector bundle L x G to Tg.
In particular, all Lie groups have a trivial tangent bundle, and are orientable.

Let us consider the vector space Tg(G) of vector fields on G. The group G acts on it via
[, r and ¢; G x G acts via b. A vector field 0 on G is called left-invariant if it is invariant
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for the action given by [; similarly, it is called right-invariant if it is invariant under r, and
bi-invariant if invariant under b. Explicitly: 0 is left-invariant if and only if for all x in G one
has 0(z) = T, (e)d(e). Show that 0 — 0O(e) gives an isomorphism from the vector space of
left-invariant vector fields on G' to L. Show the same with left replaced by right. Show that
the space of bi-invariant forms is isomorphic in this way to the subspace of L on which G acts
trivially via its adjoint representation.

Before we define the Lie algebra structure on L we need a general result on derivations.
Let k be a field and A a k-algebra. Then we have the A-module of k-derivations Dery(A) :=
Derg(A, A). One verifies immediately that for 0; and 0, in Dery(A), the commutator [0y, O] :=
010, — 0,0, is in Dery(A). We apply this to vector fields. Let X be a C*-manifold (with k > oo,
remember?), U C X open, 0; and 0, vector fields on U. Then we may view 0; and 0, as elements
of Derg(C¥) (recall that we have a canonical isomorphism between Tx and Derg(Cx)). Hence
we get [01,02] in Tx(U). (Assuming that U is an open subset R, compute explicitly what this
operation looks like.)

We go back to our Lie group GG. Show that for 9; and 0, two left-invariant vector fields on
G, |04, 09] is left-invariant too. (Of course the same holds for right-invariance; one should in fact
prove a lemma concerning 0; and 0, on a manifold X that are invariant under an automorphism
o of X.) Because the space of left-invariant vector fields is just L (via 0 — 0(e)), we get a map
[-,:] from L x L — L. This map is called the Lie bracket. Show that it is bilinear, alternating
and that it satisfies Jacobi’s identity:

[z, [y, 2]] + [y, [2, z]] + [2, [z, y]] = 0.

A vector space L with such an operation is called a Lie algebra. We will compute the Lie
algebras of the Lie groups that we have seen in §1. We start with the group G := GL,(R)
(some n > 0). Since G is an open subset of M, (R), we identify the Tg(x) with M,(R). Let
a bein L = T.(G) = M, (R). We wish to describe explicitly the left-invariant vector field 0,
on G such that d,(e) = a. Verify that for g in G we have 0,(9) = ga. Now we compute J,; ;,
where the z; ; are the coordinate functions on M, (R). For g in G, (9,2;;)(g) is by definition the

derivative of z; ; at g in the direction given by 0,(g), i.e., in the direction ga. So we compute:
7;(9 +ega) = (9 +ega)i; = gi; +e(ga)i; = ij(g) + 5Zgi,kak,j-
k

It follows that 0,(z;;) = Y, Tixak,;. Applying this formula twice gives:

(aaab)xi,j = aa(z -Tz',lcbk,j) = in,k'ak',kbk,j = Z xz‘,k'(ab)k',j = aabxi,j-
k kK K
From this we get:

[0, Ob)Tij = OlagTij, and [Oa, Ob) = Oap,

since the z; ; are linearly independent over R. So the Lie bracket for GL,,(R) is just the ordinary
commutator of matrices. The reader should check that if we had used right-invariant vector

fields to define the Lie bracket, we would have found the opposite result (use that z — z7!
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induces multiplication by —1 on L). Let us now reconsider the subgroups of GL,(R) that
we considered in §1. From the computations we did there, it follows that Lie(SL,(R)) is the
subspace of M, (R) consisting of the elements with trace zero, that Lie(SO,(R)) = M,(R)",
the space of anti-symmetric matrices, and that Lie(Sp,,(R)) is the space of (‘(’;3) with ¢ = ¢,
b* = b and d = —a'. From the construction of the Lie bracket it follows that the Lie bracket
for any of these subgroups is just the restriction of the one for M,,(R) in the first two cases and
Mz, (R) in the last.

Let us now look at differential forms on Lie groups. Just as for vector fields, we have
the notions of left-invariant, right-invariant and bi-invariant elements of Q. Of particular
importance are bi-invariant differential forms of top degree, since those give us bi-invariant
volume forms. Show, by pure thought, that SO, (R) has such a non-zero bi-invariant form (use
that SO, (R) is compact and connected). Show that O2(R) has a non-zero bi-invariant volume
form, but not a non-zero bi-invariant 1-form. Show that GL,(R) and SL,(R) both have non-
zero bi-invariant forms of top degree (use that the commutator subgroup of SL,(R) is SL,(R)
itself).

Of particular fun should be the following exercise. Compute explicitly the bi-invariant
volume form v on G := SO3(R) for which G has volume one. Compute the distribution g,
with respect to v, of the angles of rotation, say in the interval [0, 7], of the elements of G.
More precisely, let f be the function G — [—1, 1] that sends z to (tr(xz) — 1)/2; determine the

continuous function g on | — 1, 1] such that for every continuous h:[—1,1] — R one has:

/Gf*(h)v = /_11 gh.

In the same way, compute the distribution g, for the function f, from G to [—1, 1] that sends
T to (tr(z?) — 1)/2. Why is the result so remarkable? (Hint: it might be useful to use the
following chart for G; let U := {x € R® |0 < ||z|]| < 7} and let 1): U — G be the map that sends

a to the rotation of angle |a| with (oriented) axis Ra.)
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6 De Rham cohomology

6.1 Definition. A differential graded-commutative R-algebra is an R-algebra A with a grading
A = ®jezAq, which is graded-commutative (i.e., for x in A; and y in A; one has yz = (—1)Yzy),
and which is equipped with a differential d of degree one (i.e., an R-linear map d from A to A
such that d? = 0, d(A;) C A;y1 and d(zy) = (dz)y + (—1)'zdy for x in A; and y in A).

We have a contravariant functor X — (Qx(X),d) from the category of C*¥-manifolds (k = oo
or k = w) to that of differential graded-commutative R-algebras. Note that the vector spaces
Qx(X) tend to be very big (the typical dimension is |R|). Although this functor does transform
morphisms of manifolds into R-linear maps, it does not really simplify the study of the category
of C*-manifolds. For example, a compact manifold X can be reconstructed from Q5% (X) alone
(the points of X correspond to the maximal ideals, the topology is the Zariski topology, etc.).
But, if one composes the functor X — (Qx(X),d) with the functor that takes homology of
differential graded-commutative algebras, then a miracle happens. This composed functor,
called de Rham cohomology, has reasonable finiteness properties, and, most importantly, is

homotopy invariant. Before proving that, let us write down the definitions in detail.

6.2 Lemma. Let A be a differential graded-commutative R-algebra. Then its homology H(A),

defined as ker(d)/im(d), has an induced structure of graded-commutative R-algebra.

Proof. Details are left to the reader. Show that ker(d) is a graded-commutative subalgebra

of A, in which im(d) is a homogeneous ideal. O

6.3 Definition. Let X be a C*-manifold with k > oo. Then the de Rham cohomology of X
is the graded-commutative R-algebra H,g (X) := H(Qx(X), d). Hence one has:

 ker(d: Qi (X) — Qi1 (X))

Hon(X) = im(d: Q5 HX) = QL (X))

As explained above, Hyg(-) is a contravariant functor from manifolds to graded-commutative
R-algebras. For f: X — Y we will write f* for the morphism H g (f) from Hx (V) to Hyr (X).

6.4 Remark. Be careful with de Rham cohomology defined like this for analytic manifolds,
and also for C'*°-manifolds that are not paracompact. In those cases one should consider the
hypercohomology Hyy (X) := H({2x, d) of the complex of sheaves {2x. Maybe we will have time
to discuss this. O

6.5 Theorem. The de Rham cohomology of C*-manifolds, k € {oo,w}, is homotopy invariant,
ie, if fo and fi from X to Y are homotopic, then the two maps fi and f; from Hyx(Y) to
H,gr (X) are equal.

Proof. By definition of homotopy, we have a morphism of C*-manifolds F: X x I — Y with
I an open interval containing 0 and 1, such that F|xyg} = fo and F|xxpy = fi. (It would

be enough to have F' a C'-morphism such that its restrictions to all X x ¢ with ¢ in I are C¥,
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but let us not bother.) We will construct a homotopy from 0 to fj — f;, i.e., a sequence of
R-linear maps K% Q% (Y) — Q% '(X) such that fi — ff = dK + Kd. In order to construct
this K, we need to consider {2x.; more closely. Let px and p; denote the projections from
X x I to X and I, respectively. (More generally, one should consider the vector bundle of
differential forms on a product of two manifolds.) At a point (z,7) of X x I, the tangent space
Txxr(z,4) is canonically isomorphic to the direct sum Tx(z) @ T;(¢) (note that this follows
from the functorial property of tangent spaces; use px, p; and the inclusions ix; and i7,). On

the level of vector bundles this gives us:
Txxr =pxTx ®p;Tr.

Dualizing this gives:
s = PxQx ® P19y

We suggest to the reader to prove that for a ring A and A-modules M; and M, one has

N(My @ My) = €D N (My) @4 A*(My)
jtk=i
(in fact, the two sides are naturally isomorphic). For what we want to do it suffices of course
to check this for free modules. A nice abstract proof could go like this: show that A(M; @ M)
is naturally isomorphic to the quotient of A(M;) ®4 A(Ms) by the ideal generated by the
my ® meo + ms ® my, because they have the same universal property; then look at what this
means for the A‘(M; & M,). It follows that we have a natural isomorphism:

exr = Px % ® (PxQ% ' @ i) -

In local coordinates, this means the following. Suppose that zi,...,x, are coordinates on
U C X, and let ¢ be the coordinate on I. Then . ; has the basis:

dxj, - - - dzj,, 1< <---<ji <m,
dﬂfjl"'d.fﬂji_ldt, I1<pn<--<jgi-1<n.

For w in Q% (X x I) we can write uniquely w = w; + wq dt, with w; in p%Q% (X x I) and
wy in pi Q% (X x I). This decomposition of the Q% ; also induces a decomposition of the
differential dx«; on Qx«;: we have, uniquely, dxx; = dx + dr, with dx increasing the degree
with respect to X by one, and d; the same for I. (For an arbitrary product, this displays the
complex Qx .y as the total complex associated to the double complex p%Qx ® p3Qy.)

We can now define our homotopy operators K¢ from 2%, (X x I) to Q" (X); the operator
K we want to have will be Kj-F*. With the notation as above (w = w; + ws) we define:

1
(6.5.1) Kiw:= (—1)2'/ we dt.
0

Since the object to be integrated does not look like a function that one usually integrates, let
us write it a bit more explicit. Let z be in X. Then (Kiw)(z) = (—1) fol wy(x,t) dt, and
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wy(,t) is an element of the vector space Q% *(z) that does not depend on ¢. This means that
the integral is exactly of the kind we considered in the previous section: we integrate a vector
space valued volume form (namely: ws |dt|) over a compact subset [0, 1] of the manifold I. Let
ip and i; denote the inclusions of X into X x I that send z to (x,0) and (z,1), respectively.
Then we claim that for all w in Q% ;(X x I) we have:

(6.5.2) (dK! + KM d)w = ifw — itw.

To prove this identity, note that it is a local problem on X, and that both sides are additive
in w. Hence we may assume that xq,...,xz, are local coordinates on X and that w is of the
form fdx;---dz; or gdzy---dx; 1dt with f and g in Cx.7(X x I). Let us first consider the
case w = fdx; ---dz;. Then Kiw = 0 because wy = 0. On the other hand,

It follows that:

1
Kidw = (=1 K, ((0f /ot)dxy - - - daydt) = — (/ (af/at)dt) dzy -+ -dr; = ijw — ijw.
0

One should note that the last identity is exactly the fundamental theorem of calculus. Let us

now consider the second case: w = gdx; - - -dx; 1dt. Now we have: w = ws, hence:
1
Kiw=(-1) (/ gdt) dz, - --dz;_y = (—1)'Gdxy - - - dw;_y,
0

where G is the function on X defined by G(z) = fol g(z,t)dt. It follows that:
dK{w = (—1)Zdel‘1 s d.ﬁi_l.

On the other hand, dw = (dxg)dz; - - - dz;_1dt.

1 1
(—1)i+1Kf+1dw = (/ (ng) dt) dl‘l e dfz'_l =d (/ gdt) dl‘l e dﬂ?i_l = (dG)dﬂ?l e dwi_l,
0 0

where the middle equality is the theorem in calculus that says that the derivative with respect
to parameters of an integral is the integral of the derivative. So we find that (dK; + Kid)w = 0.
This is just what we need, since i§(dt) = d(ijt) = d(0) = 0, and also ij(dt) = 0.

To finish the proof of the theorem, define K’ := K!sF* and note that, for w in Q% (Y),
10" w = fyw and i1 F*w = ffw. g

We can now compute the de Rham cohomology for some manifolds. The empty manifold gives
the zero ring, and a one point manifold gives the R-algebra R itself. Now suppose that X is a
contractible C*-manifold (i.e., there is a point x in X such that the constant map f: X — X
that sends every element of X to z is homotopic to the identity morphism idx of X. Then f*
induces the identity endomorphism of Hy, (X). But we can write f = i 0p, with i, the inclusion
of {z} in X and p the unique map X — {z}. But then we see that i} and p* are inverses,
hence Hyp (X) =R
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7 Comparison between de Rham and sheaf cohomology

7.1 Proposition. Let X be a C*-manifold, with k > oo. Then the de Rham complex of
sheaves (§1x,d) is a resolution of the constant sheaf Ry .

This proposition is usually called Poincaré’s lemma.

Proof. It suffices to show that for each x in X, the complex of R-vector spaces ({2x ,d) is a
resolution of R. Note that every z in X has a cofinal system of contractible open neighborhoods.
Hence the result. U

7.2 Definition. A topological space X is called quasi-paracompact if every open covering of
it has a locally finite refinement (i.e., every x in X has a neighborhood meeting only finitely
many elements of the refinement). A topological space is called paracompact if it is separated

and quasi-paracompact.

In Appendix A of Spivak’s book (Volume one) it is shown that, for X a separated manifold,
paracompactness is equivalent to X being metrizable, and also to every connected component
of X having a countable basis for its topology, and also to every connected component being
a countable union of compact subsets. For example, every separated manifold that has a
countable atlas is paracompact. Spivak also gives examples of separated non-paracompact
manifolds.

Our next step will be to establish that for X a paracompact C*°-manifold, the sheaves %
are acyclic for the functor that takes global sections, as well as for several other interesting
functors. We will prove something more general. Note that even for X paracompact, the
sheaves (2% are not, in general, flabby; it suffices to take X := R and to see that the function
z +— 27! on R — {0} is not the restriction of a C*®-function on R. We will show that, for X
paracompact, all Cx-modules are “soft”, and hence acyclic for the global section functor. A
good reference for soft sheaves is Godement’s book “Théorie des faisceaux”. Or also Iversen’s
book “Cohomology of sheaves”. Or the book “Sheaf theory” by Bredon. Most of the text below

is taken more or less from Godement’s book.

7.3 Definition. Let X be a topological space. A sheaf of sets F on X is called soft (“mou”
in french) if for every closed subset Y of X the map F(X) — (iy' F)(Y) is surjective (iy is of

course the inclusion map).

In order to simplify the notation in what follows, we will denote, sometimes, for ¥ any subset
of X, with its induced topology, the set (iy'F)(Y) just by F(Y). This set will be called the
set of sections of F over Y. Note that for Y open in X this coincides with the F(Y') we already
had. For Y C X an arbitrary subset, we have the following “explicit” description of F(Y): it
is the set of maps:
s:Y — H Fy,
yey

such that, for all y in Y, s(y) is in F,, and such that every y in Y has an open neighborhood
U in X such that the restriction of s to Y N U is induced by an element of F(U).
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7.4 Lemma. Let X be a quasi-paracompact topological space, F a sheaf of sets on X and
Y C X a closed subset. Let s be in (iy' F)(Y). There exists an open subset U of X containing
Y, and an element t of F(U), such that s = i,'t. As a consequence of this, every flabby sheaf

on X is soft, and, consequently, every injective sheaf of abelian groups is soft.

Proof. By construction, for every y in Y we have (i,,'F), = F,. For every y in Y, choose
an open neighborhood U, of y in X and an element ¢V in F(U,) such that ¢t = s, for all z
in U, NY. These U,, together with X — Y, form an open cover of X. Hence we get a locally
finite open cover V;, 7 in some set I, and X —Y, such that V; is contained in some U,,. Let ¢; be
the restriction of ¢,, to V;. Let now y be in Y. Let W, be an open neighborhood of y, contained
in the union of the V;, meeting only finitely many of the V;, say V;,,...,V;,. Let Uy, be the
open subset of W), consisting of the z such that the ¢;, , = --- =, , (here we used the local
finiteness; a finite intersection of opens is open). We have a unique ¢, in F(U,) that equals the
restriction of the ¢;,. By construction, the ¢, are compatible. Hence we take U := U,U, and
have a unique ¢ in F(U) with t|y, = ¢, for all y. It is clear from the construction that s = iy't.
O

7.5 Lemma. (Shrinking lemma.) Every paracompact topological space is normal (i.e., for
Y and Z disjoint closed subsets of X there exist disjoint open subsets U and V with U DY
and V D Z). For a locally finite open covering U: I — Open(X) of a normal topological space
X there exists an open covering V: I — Open(X) such that for every i in I one has V; C U;.

Proof. Let X be paracompact, and Y and Z disjoint closed subsets of X. We want to show
that Y and Z can be separated by opens. Let y be in Y. Since X is separated, we have, for
every z in Z, an open neighborhood U, of z in X such that ¥ is not in U,. The U,, together
with X — Z, form an open cover of X. Hence we have open subsets U; of X, ¢ in some set I,
with each U; contained in some U,, such that the U; together with X — Z form a locally finite
open cover of X. Then U;U; is closed in X (because locally it is a finite union), hence X — U;U;
is an open neighborhood of y, disjoint from the open neighborhood U;U; of Z.

For every y in Y, let U, be an open neighborhood of y in X such that Uyﬁ Z is empty. The
Uy, together with X — Y, form an open cover of X. Hence we have open subsets U;, 7 in some
set I, refining the Uy, such that the U; together with X — Y form a locally finite open cover
of X. Define U := U,;U;. Then U = U;U; is contained in Uyﬁy, hence U does not meet Z. This
shows that X is normal. If the set I is countable, we can just repeat this argument to prove
the existence of V. In general, we use Zorn’s Lemma.

Let us now show the second statement of the lemma. Let us first show that one can always
shrink one of the U;. More precisely, let ¢ be in I. We will show that there exists V; open in
X such that V; C U; and such that V; together with the U; with j # i cover X. Let Y; be the
union of the complements of all the Uj;, j # ¢. Then Y; is a closed subset of X, contained in Uj.
Let Z; be the complement of U;. Then Y; and Z; are disjoint closed subsets of X. Take V;
an open subset of X that contains Y; and that does not meet some open subset containing Z;
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(recall that we have already proved that X is normal). Then V; is contained in U; and together
with the Uj, j # 1, it covers X.

Consider pairs (V,J), with J C I and V:J — Open(X) such that for all j in J one has
V; C U; and such that the V;, j € J together with the U;, i ¢ J, cover X. Define a partial
order on the set of such pairs as follows: (V,J) < (V',J') means that J C J' and that for all j
in J one has V; = V;-’ . We want to apply Zorn’s lemma, to this partially ordered set, call it S.
First of all, S is not empty, because it has a unique element with J = (). Secondly, we must
show that each totally ordered subset of S has an upper bound. So suppose that A C S is a
totally ordered subset. Write the element a of A as (V,,J,). Take J to be the union of all the
Ja, and define, for each j in J, the open subset V; to be (V});, for any a such that j isin J,. It
follows from the local finiteness of the cover (U;);c; that (V,J) is in S. By Zorn’s Lemma, we
have a maximal element (V,J) of E. Suppose that J # I. Take ¢ in I — J. The fact that one
can always shrink one element of an open cover shows that there exists a V; open in X such
that V; C U; and such that V;, together with the V; for j in J and the U; with j in I — J — {3}

cover X. This shows that (V,J) is not maximal, which is a contradiction. O

7.6 Lemma. Let X be a paracompact topological space. Let F be a sheaf of sets on X.
Suppose that X can be covered by open subsets U with the property that for every closed
subset Y contained in U the map from F(U) to F(Y') is surjective. Then F is soft.

Proof. Let Y C X be a closed subset and let s be in F(Y). Let U;, i € I, be an open cover
such that all U; have the property mentioned above. Since that property is stable under taking
smaller open subsets, we may suppose that the U; form a locally finite open cover. Let V;, i € I,
be an open cover such that for all  one has C; :==V; C U;. For J C I, let C; be the union
of the C; for j € J. Consider the set S consisting of pairs (¢, J) with J C I and t in F(C}),
such that ¢t and s are equal on Y N C';. Clearly, the set S is not empty, because it has a unique
element of the form (¢,0). Define a partial order on S as follows: (¢,J) < (¢, J') if and only
if J C J' and t is the restriction of ¢ to C;. One checks that every chain in S has an upper

bound. Zorn’s Lemma gives us a maximal element (¢, J). One checks that J = I. O

7.7 Lemma. Let X be a paracompact topological space. Let Ox be a sheaf of (not necessarily
commutative) rings on X. If Ox is soft, then every Ox-module is soft. The sheaf Ox is soft if
and only if every x in X has a neighborhood U such that for all pairs of disjoint closed subsets
Y and Z of X contained in U, there exists f in Ox(U) with f|y =1 and f|z = 0.

Proof. Suppose that Oy is soft. Let M be an Ox-module, ¥ C X closed and s in M(Y).
By Lemma 7.4, there is an open subset U of X with Y C U, and ¢t in M(U) such that t|y = s.
Take V open in X with Y C Vand V Cc U. Let Z := X — V. Then Y and Z are disjoint
closed subsets of X, hence Ox(Y U Z) = Ox(Y) x Ox(Z). Let f be in Ox(X) such that
its restrictions to Y and Z are 1 and 0, respectively. Let ¢ := ft. Then t' is in M(U), its
restriction to Y is s and its support is contained in V, which is closed in X. It follows that ¢’
can be extended by zero outside of U. The second statement to prove is a direct consequence
of the argument above together with Lemma 7.6. O
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7.8 Theorem. Let X be a paracompact C'*°-manifold. Then all C'x-modules are soft.

Proof. By Lemma 7.7, it suffices to show that every x has an open neighborhood U such that
for all pairs of disjoint closed subsets Y and Z of X contained in U, there exists f in Cx(U)
with f = 1 in a neighborhood of Y and f = 0 in a neighborhood of Z. Let x be in X. Let
¢:V — X be a chart such that = is in ¢V, say with V' an open subset of R*. Take U to be
the image under ¢ of an open ball B with B C V and ¢~'(z) € B. Let Y and Z be disjoint
closed subsets of X that are contained in U. Then A := ¢ 'Y and C := ¢~'Z are disjoint
closed subsets of V, contained in B, hence in B. It follows that A and C are compact. We will
now first produce a continuous function f: R" — R that is > 1 in a neighborhood of A and < 0
in a neighborhood of C. For z in R", let d4(z) and d¢(x) be the distances of z to A and B,

respectively. We take:
3dc(l‘)
T) = —1
/(@) de(x) + da(x)

(Note that this function still works for disjoint closed subsets that are not necessarily compact.)

Let g be any continuous function from R to R such that g = 0 in a neighborhood of |in fty, 0],
and g = 1 in a neighborhood of [1,00[. Then f; := gof is continuous, is 1 in a neighborhood
of A and 0 in a neighborhood of C. The last step is to “smoothe” f; by convoluting it with a
suitable C*°-function. Let 7 > 0 be a real number such that fi(z) = 1 for all z with da(z) <r
and such that fi(z) = 0 for all x with dc(z) < r. Let h:R* — R be a C*™-function with
support contained in the ball with radius r centered at the origin, and with fIR” h = 1. Then
define fo: R" — R by:

fa(z) == - filz —y)h(y) dy.
0

Let us now prove some properties of soft sheaves on paracompact topological spaces. First of

all, they have “partitions of unity”, in the following sense.

7.9 Definition. Let X be a topological space, and F a sheaf of abelian groups on it. Let s be
in F(X) and let U: I — Open(X), be a cover of X. A partition of s, subject to the cover U,
is a family s: I — F(X) of sections of F, such that for all i one has Supp(s;) C U;, such that
every x in X has a neighborhood that meets only finitely many of the Supp(s;), and such that
s = .1 5i (locally this sum is finite, hence defined).

7.10 Proposition. Let F be a soft sheaf of abelian groups on a paracompact topological
space X. For every cover U:I — Open(X) and every s in F(X) there exists a partition of s
subject to U.

Proof. The cover U has a locally finite refinement, hence we may suppose that U is locally
finite. Take, using Lemma 7.5, in every U;, a subset C; that is closed in X, such that the C;
still cover X. For each subset J of I let C; be the union of the C; with j in J. Let S be the
set of (¢,J) with J C I and ¢t: J — F(X) such that for all j in J one has Supp(t;) C C; and
such that, in F(Cy), one has s = >, s;. Applying the usual Zorn type argument finishes the
proof. O
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7.11 Lemma. Let X be a paracompact topological space, and
0>F > F—->F">0

a short exact sequence of sheaves of abelian groups on X. Suppose that F' is soft. Then the
sequence:
0= F(X)—= F(X)—F"(X)—0

is exact.

Proof. Let s” be in F"(X). Locally on X, s” is the image of a section of F, hence there
exists a locally finite cover U: I — Open(X) of X such that for each i we have s; in F(U;)
mapping to s|y,. For each i, let V; be an open subset of U; such that the V; cover X and that
C; :=V; C U; (use Lemma 7.5). For J C I, put Cy := U;e;C;. Let S be the set of pairs (s, J)
with J C I and s in F(C;) such that s maps to s”|¢,. Again, the usual Zorn type argument
finishes the proof. O

7.12 Lemma. Let X be a paracompact topological space, and
0-F - F—->F"=0

an exact sequence of sheaves of abelian groups on X. Suppose that F' and F are soft. Then
F" is soft.

Proof. Let Y be a closed subset of X. Since iy’ is exact, we have the exact sequence of
abelian sheaves on Y:

0= iy F =iy’ F =iy F' = 0.
By definition, the first two of these sheaves are soft. Hence, by Lemma 7.11, the map from

F(Y) to F"(Y) is surjective. Since F is soft, the map F(X) — F(Y) is surjective. It follows
that the map F"(X) — F"(Y) is surjective. O

7.13 Proposition. Let X be a paracompact topological space. All soft abelian sheaves are
acyclic for the functor I'( X, ).

Proof. We prove by induction on 7 > 1 that H!(X, F) is zero for all soft abelian sheaves F
on X. Let F be a soft abelian sheaf on X. Let F — I be an injection into an injective sheaf,
and let F' := I/F. The long exact cohomology sequence, plus Lemmas 7.4, 7.11 and 7.12 do
what is needed. O

7.14 Theorem. Let X be a paracompact C*°-manifold. Then the complex of sheaves (x is a
resolution of Rx, acyclic for I'(X,-). Consequently, for all i > 0:

Hir (X) = H'(X, Ry).

Proof. This is a standard argument in homological algebra, using the previous proposition
and Prop. 7.1. O
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Note that the right hand side of the last equality depends only on the underlying topological
space of the C'*°-manifold X. So one consequence of the result is that the obstruction to
solving the differential equation dw = 7, for n a closed i-form on X, is of a topological nature.
Secondly, let us note that on the de Rham side, we have a multiplicative structure since H g (X)
is a graded-commutative algebra. It is in fact true that there is also a multiplicative structure
in sheaf cohomology, called the cup-product. The cup-product looks as follows. For X a
topological space, Ox a sheaf of commutative rings on X and F; and F; two Ox-modules, one

has maps:
H'(X, 1) ®ox (x) B (X, F) = HM (X, Fi Qo Fo).

The easiest way to define these maps is to view the cohomology groups as Ext groups, and to
use the multiplicative structure on those. Another way is to use the canonical flabby resolution
(called Godement’s resolution) of abelian sheaves. Let us now look at some other applications

of soft sheaves.

7.15 Proposition. Let f: X — Y be a morphism of topological spaces, with X paracompact.
Soft sheaves on X are acyclic for the functor f,. Hence R'f, can be computed with soft

resolutions.
Proof. Let y be in Y. By definition, one has, for > 0 and F an abelian sheaf on X,
(RIf.)F), = T H (f~U, Fly),

where the limit is taken over all open neighborhood of y. So in fact the argument shows that
sheaves that are acyclic for all I'(V, -) with V' C X open, are acyclic for f.. O

Another example is cohomology with compact support. Let X be a topological space, and F an
abelian sheaf on it. Then we define the group I'.(X, F) of sections with quasi-compact support
to be the subgroup of F(X) of those elements s with Supp(s) quasi-compact. Note that if X
is separated, this is equivalent to Supp(s) being compact. It is clear that I'.(X, F) is functorial
in F. It is easy to see that this functor I'.(X,-) is left-exact. Its derived functors are denoted
H!(X,-), and called cohomology with compact supports.

7.16 Lemma. Let X be a paracompact topological space, and
0=F =-F—=>F" =0
a short exact sequence of abelian sheaves on X. Suppose that F' is soft. Then the sequence:
0= (X, F) > T(X,F) > T (X, F") =0
is exact.

Proof. This is a simplified version of the proof of Lemma 7.11, so it is left to the reader. Just
copy that proof, and show that the support of s”, which is compact, only meets finitely many
of the Uj;. [l
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7.17 Proposition. Let X be a paracompact topological space. All soft abelian sheaves are
acyclic for the functor T'.(X,-).

Proof. Adapt the proof of Proposition 7.13. O

7.18 Definition. Let X be a C*-manifold with k > oco. The de Rham cohomology with
compact supports is defined to be the homology of the complex I'.(X,x). Explicitly:

() = e (@ T 9) = DX, 05)
R T i (d:To(X, Q1) — T (X, 04))

7.19 Theorem. Let X be a paracompact C*-manifold. The complex Qx is a I'.(X, -)-acyclic

resolution of Ry, hence, for all 1 > 0:
Hjp o(X) = HL(X, Rx).
Proof. Just as for Theorem 7.14. O

In order to compute cohomology with compact suppport, even of constant sheaves on R”, it is

useful to relate it to the ordinary cohomology.

7.20 Lemma. Let X be a quasi-compact topological space. Then for all abelian sheaves F on
X and all i > 0 one has H (X, F) = H(X, F).

Proof. Just note that T'.(X, ) =[(X,-). O

7.21 Lemma. Let X be a topological space and U an open subset. Let j denote the inclusion
from U into X. Let F be an abelian sheaf on U. We define the sheaf 3 on X to be the sheaf
associated to the presheaf that sends an open subset V of X to F(V) if V. .C U, and to {0}
if not. Then j ' F = F, and i ' F = 0, where Z = X — U and i: Z — X is the inclusion.

- it is exact. For all abelian sheaves F on X we have a

The functor j, is a left adjoint of j~
functorial exact sequence:

0— jij *F = F —=id 'F —0.
Proof. Exercise for the reader. O

7.22 Lemma. Let X be a topological space, U C X open and j:U — X the inclusion.
Let Y C X be a subset, and F an abelian sheaf on U. Then there is a canonical map
(HF)Y) = F(Y NU), which is injective and whose image is the set of s in F(Y NU) such
that the closure in 'Y of Supp(s), denoted my, is contained in U. In particular, if X is
separated then T'.(X, 1 F) =T (U, F).
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Proof. An element s of (j1F)(Y) is a map from Y to the disjoint union of the (jiF),, y € Y,
such that for every y in Y one has s(y) € (jiF), and for every y in Y there is an open
neighborhood V of y in U and an element ¢ of (jiF)(V') such that s(v) =t, forallvin VNY.
Now use that (1 F), = F, for all z in U, and that (jiF), = 0 for all z in X —U. Then it follows
that we have a unique map from (jiF)(Y) to F(Y NU) that preserves germs. This property
implies that it is injective. The support of an s in (5F)(Y) is a closed subset of Y, contained
in U. On the other hand, let s be an element of F(Y NU). Then s can also be seen as an
element of (71 F)(Y NU). Suppose now that the support of s is closed in Y. Then s can be
extended by zero to a section of i F over Y (Y is the union of the two open sets UNY and the

complement of Supp(s); s on the first one and 0 on the second one are compatible). U

7.23 Lemma. Let X be a normal topological space, U C X open and j the inclusion, and F
an abelian sheaf on U. If F is soft, then j\F is soft.

Proof. Suppose that F is a soft abelian sheaf on U. Let Y C X be closed, and let s be in
(71 F)(Y). Then, by the previous lemma, s is an element of (Y NU) whose support S is closed
in Y, hence in X. Let A and B be open disjoint subsets of X with A containing S and B
containing X — U. Then S and B N U are disjoint closed subsets of U. It follows that s on
Y NU and 0 on BN U are compatible, hence we have an element ¢ in F((Y U B) N U)) with
tlynr = s and t|g,y = 0. Hence there exists u in F(U) whose restriction to (Y U B)NU is t.
It is clear that u can be extended by zero to an element of (5.F)(X). O

7.24 Lemma. Let X be a paracompact topological space, U C X an open subset, and j the
inclusion. Let F be an abelian sheaf on U. Then we have functorial isomorphisms H:(U, F) —

Proof. Since soft sheaves are I'.-acyclic, we may compute the H’ with soft resolutions. Let

F — I be a soft resolution. Then 5 F — ji[ is a soft resolution. According to Lemma 7.22 we
have T'o.(X, jiI) = T.(U, I). O

7.25 Proposition. Let X be a paracompact topological space, and U C X open. Define
Y:=X-U, 5:U - X and i:Y — X the inclusions. Let F be an abelian sheaf on X. Then

we have a functorial long exact sequence:

Proof. This is just the long exact sequence of cohomology with compact support associated
to the short exact sequence of sheaves on X given in Lemma 7.21. Indeed, H.(X, jij1F) is
equal to H (U, F|y) by Lemma 7.24, and that H'(X, 4.5 'F) equals H (Y, 'F) follows from

the facts that i, is exact and sends injectives to injectives. U

7.26 Theorem. For all integers ¢ > 0 and n > 0 and abelian groups A one has:

i oo o ) 0ifi#n,
H(R, Age) :{ Aifi=n
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Proof. Let n > 0 be an integer. The topological space R" is isomorphic to the open ball B
in R” centered at 0 and with radius 1. We apply Proposition 7.25 with X := B, U := B and
hence Y = S™!. It follows that H’(B, Ap) is isomorphic to H; ' (S"!, Aga-1) for all . We
assume that the reader knows how to compute the cohomology of S™ (use Mayer-Vietoris, for
example). O

Concerning the functoriality of H'(X, ) in X one has the following.

7.27 Proposition. Let f: X — Y be a morphism of topological spaces, such that for every
Z C Y closed and quasi-compact the subset f~'Z of X is quasi-compact. Let F be an abelian

sheaf on Y. Then one has functorial morphisms:
HL(Y, F) = H(X, [ 71 F).

Proof. The argument is the same as for ordinary cohomology. Let F — I be an injective
resolution. Then f~!F — f~1I is a resolution. Let f~'F — J be an injective resolution. Then
there exists a morphism of complexes f~'I — J inducing the identity on f~!F, unique up
to homotopy. This gives morphisms of complexes I'.(Y,I) — T'.(X, f~'1) and T.(X, f~'I) —
['.(X,J). The composition of the two induces the desired morphism. U

There is a lot more to say, but we are running out of time. By now, the reader should be ready
to read for example the books by Bott and Tu, and Iversen. I strongly recommend the reader
to learn the necessary things about spectral sequences, a technique that is almost always used
when one studies the derived functors of the composition of two functors (see Lang’s Algebra
for the statements and proofs, and the book by Bott and Tu for some spectacular applications
to topology).

The two things of which I most regret that we have to omit them are the Kiinneth formula
and Poincaré duality. The Kiinneth formula, in de Rham cohomology, says that for X and
Y paracompact C*°-manifolds one has a functorial isomorphism between Hgp (X x Y) and
Hyr(X) @ Hyg (Y) (the tensor product in the sense of graded-comutative algebras). Poincaré
duality says the following. Let X be an orientable paracompact connected C'*°-manifold, of
dimension n. Then H7(X,R) = Hgy .(X) is a one-dimensional R-vector space. An orientation
of X gives an isomorphism to R: the class of an n-form with compact support is sent to
S x w (the orientation being used to define integration of n-forms). One has a pairing between
Hip (X) and Hj3*(X) that simply sends two elements to their product in Hf .. This pairing
indentifies Hyp' (X) with the dual of Hjg .(X) (and not the other way around, in general). The
proofs are quite simple (with the tools we have now at our disposal); the interested reader can
look them up in Bott and Tu, for example.

One last thing that I regret not to have talked about it Stokes’s Theorem, and the pairing
between singular homology and de Rham cohomology, on paracompact C'*°-manifolds, that is

given by integration. This one can find in Spivak.

26



8 Cohomology of some Lie groups

To illustrate the methods that we have developed up to now, I think it is a good example to
“compute” the de Rham cohomology of some Lie groups. Let G be a Lie group. For example,
G could be one of those groups that we have seen in §1. Consider the action b of G X G on G by
translations from both sides. Let G denote the connected component of the identity element
e of G; it is a normal subgroup of G. Every (z,y) in G° x G° gives the automorphism b, , of
the C'*°-manifold G' that is homotopic to the identity. By Theorem 6.5, the induced action of
G x G on Hyg (G) (say on the right, (z,y) acts as b} ,, where b, ,(2) = zzy™") factors through
G/G° x G/G°. Suppose now that G is connected. Then the action of G x G on Hy(G) is
trivial. A natural question is then whether or not we can represent the cohomology classes
by bi-invariant differential forms. This turns out to be true and rather elementary to prove
if we assume moreover that G is compact, as we will now show (by elementary we mean, not
using much functional analysis and representation theory). An important tool in the proof is
integration over GG, which give us a way of “averaging” functions, vector fields and differential

forms on G.

8.1 Lemma. Let G be a compact Lie group. Then there is a unique bi-invariant volume form
v on G such that va = 1. This form v will be called the normalized invariant volume form
on G.

Proof. It is clear that there is a non-zero left-invariant positive volume form v on G. Since
(G is compact, we can integrate v over G. Locally, one sees that the integral is strictly positive.
Hence fG v > 0. We multiply v by the inverse of this integral. Then we have v left-invariant,
with integral one; these conditions determine v. Let us now argue that v is also right-invariant.

Let  be in G. Then r}v is again a left-invariant volume form of integral one, hence rjv = v.
g

Before we start averaging differential forms and such, let us look at a situation that is a bit
more general. Suppose that we have a C'*°-manifold X with a vector bundle F on it and a
compact Lie group G that acts on (E, X). This means that G acts on the manifolds X and
on FE, preserving the map from F to X, such that for each x in X and g in G the map from
E(z) to E(gz) is linear. Then we get an action, from the right, of G on the R-vector space
E(X), as follows. Let s be in E(X) and g in G. Then sg is the section of F over X defined by:
(s9)(z) = g7 (s(gx)), which is indeed an element of E(z). This action of G on E(X) allows us
to define the averaging operator p on E(X), defined by:

(8.2) p:E(X) = E(X), (ps)(z) = / (sg)(@)v(g) = / 9 ' (s(gz)) v(9)-
9eG e
The reader should check that indeed ps is a C'*°-section of E.

8.3 Lemma. The operator p is a projector on the space of G-invariants E(X)¢.
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Proof. Let s be in E(X), g in G and z in X. Then we have:

(9)9) () = g M ((ps)(gz)) = ¢ * / 1 s(hge) o(h) = (p3) (o)

where the last identity follows from the fact that v is right-invariant (consider the change of
variables h' := hg). Hence ps in G-invariant. On the other hand, for s in E(X)%, one sees from
the defition of p that ps = s. U

Note that for s in E(X)“ and z in X we have s(z) € E(x)%, where G, denotes the stabilizer
of z.

Now we go back to the original situation: GG is a compact connected Lie group. We consider
the action b of G X G on G as before. This action lifts to an action on Qg: for z in G and (y, 2)
in G x G, note that b, , sends = to yzz ', and that by , is an isomorphism from Qx (yzz1)
to Qg(z). By the considerations above, we get a projector p from Qg(G) to its subspace of

bi-invariant forms Qg (G)“*¢ defined by:
E)@ = [ Bl o))
(y,2)EGXG

8.4 Lemma. The projector p:Qc(G) — Qg(G) is R-linear, respects the grading and commutes
with d and the G' x G-action.

Proof. Everything is clear, except the statement that p commutes with d. If one writes out
the definitions, it turns out that the required equality just says that the derivative of an integral
over G X (G with respect to a parameter is the integral of the corresponding derivative of the

integrand. U

8.5 Corollary. The complex Q¢ (G), with its G x G-action, decomposes as a direct sum of

complexes:

Qg(G) = Qg(G)GXG @ (1 — p)Qg(G)

This induces a decomposition of graded vector spaces with G x (G-action:
Hyr(G) = H(Q26(G)) = H(Q26(G)*¢) @ H((1 - p)Q6(G)).
8.6 Lemma. The complex (1 — p)Q¢q(G) is exact.

Proof. We would like to argue as follows: we know that the action of G x G on Hy,(G) is
trivial; the decomposition of (1—p)Qg(G) into irreducible representations of G X G only contains
non-trivial irreducible representations, hence the same is true for the space H((1 — p)Qa(G)),
which has then to be the zero space. The problem with this argument (that can be made
correct) is that we should equip Q¢(G) with a G x G-invariant inner product, and complete
it, in order to apply the theory of representations of compact Lie groups on Hilbert spaces.

Moreover, we would have to show that the map from ker(d) to Hyz(G) is continuous, for the
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topology defined by the inner product. As I said, all that can be done, but I want to try to use
less heavy machinery to get the result.

We choose a positive definite metric on g (left or right invariant, or bi-invariant, if you
want; all metrics are equivalent, because G is compact). For z in X let || - ||, denote the
norm on Qg(z) given by this metric. We have the corresponding sup norm | - || on Q¢(G):
|lw|| = sup{||lw(z)||z|x € X}. Let V be the R-vector space of continuous sections of Qg,
and let || - || be the sup norm on that space. Then V is the completion of the normed vector
space Qc(G). The action of G X G on Qg(G) is continuous, in the sense that the map from
(G x G) x Q(G) to Qe(Q) is continuous. Likewise, the operator p on Q¢ (G) is continous.

We can now reinterprete the operator p. Let P be the operator on V' defined by:

(8.6.1) P(w) = / _)ila).

Here, some remarks should be made. Note that the function f, from G to V, given by g —
wg, is continuous, and that V is a complete normed R-vector space. Therefore, the usual
theory of integration of continuous compactly supported functions still works. In this theory
of integration, it is clear that, for f a continuous V-valued function on G, and I:V — V' a

continuous linear map of normed R-vector spaces, one has:

(8.6.2 / bl =1 ( [ v(g)) -

Applying this to the maps V' — R, sending w to w(z), for  in G, one finds that P = p.
It follows that P preserves 2g(G). Let ker(d) denote the kernel of d on Qg(G), and let
q:ker(d) — Hyi (G) be the quotient map. We will use Poincaré duality to show that H,y (G) is
finite dimensional, and that ¢ is continuous. We choose an orientation on G. Since Poincaré
duality says that Hyg (G) is isomorphic to its own dual, it has to be of finite dimension (this is
an interesting and not so simple exercise in linear algebra). Another way to prove that Hy, (G)
is finite dimensional is to show that every compact manifold has a finite good cover, i.e., a cover
such that all non-trivial finite intersections are contractible. Let ¢ > 0 and let ker(d)’ denote
the kernel of the map d: Q% (G) — Q5 '(G) and let g:ker(d)! — Hz (G) be the quotient map.
Poincaré duality gives an isomorphism from Hiy(G) to Hlz*(G)Y, where n is the dimension
of G. Choose 1, ..., 7, in Q% *(G) such that their images [n1], ..., [n,] in Hjz*(G) form a basis.
This basis also gives a basis for Hiz (G). With respect to that basis, the jth coordinate of the

map q is given by:

(8.6.3) g ker(d)" — Hiz(G), w— / wn;.-
G

From this it is clear that ¢ is a continuous map, for the usual topology on the finite dimensional

vector space Hyg (G) and the sup norm on ker(d). Formula 8.6.2 says that the diagram:
ker(d) - ker(d)
(8.6.4) 1 X

Pl

Hir(G) — Hg(G)
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in which P’ is the averaging operator on Hy, (G), is commutative. The proof is now finished,

because P’ is the identity map, whereas P = p is zero on (1 — p)Qg(G). O

8.7 Lemma. Let G be any Lie group. The differential d is zero on Qg (G)“*. In other words,

every bi-invariant differential form on G is closed.

Proof. Let v: G — G be the morphism of manifolds that sends g to g~!. Then w in Qg(G)
is left-invariant if and only if ¢*w is right-invariant. The map Ty (e): L — L is multiplication
by —1, for purely formal reasons. Hence the automorphism of Q% (e) that is induced by % is
multiplication by (—1)*. Let now w in Q% (G) be bi-invariant. Then 1*w is bi-invariant too, and
(P*w)(e) = (—1)'w(e), hence Y*w = (—1)'w. But ¥* commutes with d, and dw is bi-invariant,
hence (—1)"dw = ¥*(dw) = dy*w = (—1)'dw. O

8.8 Theorem. Let G' be a compact connected Lie group. Then the inclusion of the complex
of bi-invariant forms Qg(G)?™™ in Qg(G) gives an isomorphism of graded-commutative R-
algebras:

A(LY)S = Qa(G)"™™ — Hep(G),

where the G-action on A(LV) is induced by the adjoint representation of G on L.

Proof. For the second isomorphism, combine Corollary 8.5 and Lemmas 8.6 and 8.7. The
first isomorphism is standard, and follows from the fact that a form is bi-invariant if and only

if it is left-invariant and invariant under the action of G by itself by conjugation. O

8.9 Remark. Let G be a connected Lie group. The group of automorphisms Aut(G) of G as
a Lie group is itself a Lie group; it is an algebraic subgroup of GL(Lie(G)). Let Aut(G)° be the
connected component of identity of Aut(G). Is it true that the complex of differential forms on

G that are bi-invariant and Aut(G)%invariant is isomorphic to Hyp (G)? O

To finish the course, let us look at an example. For n > 0 let U,(R) be the unitary group in
dimension n. That is, U,(R) is the subgroup of GL, (C) fixing the standard (hermitian) inner
product on C". The Lie algebra L of U,(R) is the R-vector space of z in M,,(C) with z*+x = 0,
where z* denotes the complex conjugate of the transposed matrix. It has the following basis:
for 1 < j < n one has ie;;, and for 1 < j < k < n one has e — ex; and i(ejx + eg,;). Since
this basis is also a C-basis for M,,(C), we see that the inclusion of L in the C-vector space
M,,(C) induces an isomorphism of Lie-algebras over C from C ®g L to M, (C). It follows that
C ®r Hyg (U, (R)) is isomorphic to A(M,(C)V)%(©  as graded-commutative C-algebras (to
see that the U,(R)-invariants are the same as the GL,(C)-invariants one has to use that the
invariants are precisely the “infinitesimal invariants”, i.e., invariants for the action of the Lie
algebra). The next question is of course, what is this algebra? I do not know how to describe
this algebra, by generators and relations, directly. But we can of course use Theorem 7.14,
which gives an isomorphism of algebras between Hgp (U, (R)) and H(U,(R), Ry, &)). One can
compute this last algebra by induction on n, using fibrations, as follows. The group U; (R) is
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the circle, hence its cohomology is the graded-commutative R-algebra R[z;], with z; in degree
one. Let n > 1. The orbit under U,(R) of the vector e, in C* is the unit sphere S?*~!. The
stabilizer of e, is the subgroup U,_;(R) of U,(R). Hence the map f: U,(R) — S?"~! that sends
g to ge, is a fibration with fibre U,, ;(R). There is a general theory, called Leray’s spectral
sequence, relating the cohomology of the total space (in this case U, (R)) of a fibration to the
cohomology, on the base (S?"~! in this case), of the higher direct images of the constant sheaf
on the total space (the R f,Ry, (®) in this case). In our case the conditions are perfect, because,
by the fact that S?"* ! is simply connected, all locally constant sheaves on it are in fact constant.
It is very easy to see that the Leray spectral sequence degenerates, in this case, “at E,”. The

result is the following.

8.10 Theorem. We have an isomorphism of graded-commutative algebras:
Zix1, %3, - . Top—1] — H(Up(R), Zuy,®),

where z; has degree i.

8.11 Corollary. We have an isomorphism of graded-commutative algebras:
Clzy,xs, . .., Ton_1] —— A(M,(C)V)E©).

Note that this Corollary is a purely algebraic statement, which has in fact also to be true over Q.
One should also ask to describe the images y; of the x; explicitly. I have a good candidate ¢;
for y;: the i-linear alternating map that sends an ituple (aq,...,a;) of elements of M, (C) to
the alternating sum of the traces of all of their products:

(8.12) ti: (ag,...,a;) — Z sgn(o)tr(aqsq) -« - Gog),
oES;
where S; is the symmetric group on {1,...,7} and sgn the sign of permuations, and tr the

trace. Whether or not these candidates are the right ones is no doubt known by those who
know about Lie algebra cohomology.

To finish, note that some standard decomposition (décomposition polaire in french) for
GL,(C) says that every element g of GL,(C) can be written uniquely as uxz with v in U, (R)
and with 2* = = and z positive definite. The space of such x is convex, hence contractible. So
GL,(C), as a topological space, is homotopically equivalent to U,(R), which implies that we
also have:

(813) Z[.Tl, T3y - - - ,Ign_l] - H(GL,,L((C), ZGLR(C))-
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9 The cohomology of constant sheaves

This section was not part of this course, but I include it anyway, because I want to show that
the cohomology of constant sheaves on manifolds, and, more generally, on CW-complexes, say,
is not more difficult to compute than singular homology or cohomology. There will be two
results. The first concerns the cohomology of constant sheaves on the topological space R. The
second result is about homotopy invariance for the cohomology of constant sheaves. With these
tools available, the usual Mayer-Vietoris and Cech type arguments that one finds for example
in the book by Bott and Tu can be applied directly for sheaves. We begin by recalling the
Mayer-Vietoris and Cech arguments. We assume that the reader is familiar with section 1 of
Chapter II and sections 1 and 4 of Chapter III of Hartshorne’s book.

9.1 Theorem. (Mayer-Vietoris for open subsets.) Let X be a topological space, X, and
Xy two open subsets such that X = X; U Xy. Let X5 := X; N Xy, and let j;, jo and j1 2 be

the inclusions. Let F be an abelian sheaf on X. Then we have a long exact sequence:
oo HY(X, F) = H(X1, Flx,) @ H(Xo, Flx,) = H(Xi1, Flxy,) = (X, F) = - -,
functorially in F.

Proof. Let F — I be an injective resolution. Then we have the short exact sequence of
complexes:
0—)I(X) —)I(Xl)@I(XQ) —)I(Xl,g) —>O,

because the I* are sheaves (the first map takes the two restrictions, the second map the dif-
ference of the two restrictions). All we need to do now is to identify the associated long exact
homology sequence as the sequence in the Theorem. This follows directly from the fact that,

1

for j:U — X an open immersion, the functor j~' is exact and preserves injectives (it preserves

injectives because it has an exact left-adjoint, ji, called extension by zero, see Hartshorne’s
book, Chapter II, exercise 1.19). d

9.2 Theorem. (Mayer-Vietoris for closed subsets.) Let X be a topological space, X
and Xy two closed subsets such that X = X, U X,. Let X9 := X; N Xy, and let 1y, 13 and 41 5
be the injections, which are closed immersions. Let F be an abelian sheaf on X. Then we have

a long exact sequence:
= H(X, F) = HY(Xy, i ' F) @ H(Xy, 4, ' F) = HY(X 12,4 ,F) - HTHX, F) — - - -,
functorially in F.

Proof. For f a morphism of topological spaces, f, is a left-adjoint of f~!. This allows us to

define a complex of sheaves:

(9.2.1) 0= F = i1,07 ' F @iy F — i12,4073F — 0,
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where the first map is the sum of the two tautological maps, and where the second map is the
difference of the two tautological maps. One verifies that this complex is exact, by looking at
the stalks. It remains to show that the long exact cohomology sequence is the one we want. To
see that, note that for 7:Y — X a closed immersion, and F an abelian sheaf on Y, we have a
natural isormorphism between H'(Y, F) and H*(X,7,F) (use that 7, of an injective resolution
of F is an injective resolution of i, F). O

9.3 Theorem. Let X be a topological space, F an abelian sheaf on X, and U: I — Open(X)
an open cover of X such that for all p > 0, for all i,...,%, in I and all i+ > 1 one has
Hi(UiO,___,ip,}") = 0, where Uj,, _;, denotes the intersection of the U;; and F the restriction of
F to it. Then for all i > 0 one has a natural isomorphism between H'(X,F) and the Cech
cohomology group H (U, F).

Proof. One adapts the proof of Theorem 4.5 of Chapter I1II of Hartshorne’s book to this case.
In that theorem, it is proved that Cech cohomology coincides with the real cohomology for
quasi-coherent sheaves on separated schemes. Let us note that this proof does not use double
complexes or spectral sequences. [l

The results that we just mentioned help to reduce the computation of cohomology groups
to suitable open subsets. But to really compute some cohomology groups, one has to start
somewhere. There are two cases in which the cohomology of an abelian sheaf is very easy: the
cases where X has at most one element. In case X is empty, all cohomology is zero, of course.
In case X is just a point, taking global sections is the same as taking the stalk at that point,
hence is an exact functor, so all higher cohomology is zero. Our starting point to compute more

general cases is a direct computation of the H'(R, Ag), for all 7 and all abelian groups A.

9.4 Theorem. Let A be an abelian group. Let R be the set of real numbers, equipped with
the usual topology. Then we have:

Aifi=0,

(R, Ag) = { 0ifi>0

Proof. Let Ag — F be an injection into a flabby sheaf. For example, one can take F to be
the “sheaf of discontinuous sections” of Ag, i.e., for U an open subset of R, F(U) is the set
of all R-valued functions on U. Since F is flabby, we have HY(R, F) = 0 for all i > 0. Let F
be the quotient of F by Ag. So by construction we have the short exact sequence of abelian

groups on R:
(9.4.1) 0= Ag = F - F —0.
9.4.2 Lemma. The map F(R) — F'(R) is surjective, hence H*(R, Ag) = 0.

Proof. (In fact, we prove the surjectiveness without the assumption that F is flabby.) Let
f! be in F'(R). We have to show that f’ is the image of an element of F(R). Locally this is
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so. Let S be the set of pairs (I, f) with I C R an open interval and f in F(I) with image f'|]
in F'(I). We define a partial order on S as follows: (I, f) < (J, g) if and only if I is contained
in J and g|; = f. It is clear that every totally ordered subset of S has an upper bound (take
the union of the I’s and the section of F induced on it), and that S is not empty. Zorn’s lemma
gives us a maximal element (]a,b[, f) of S. We claim that |a,b[= R. Suppose that b # co.
We take e > 0 and g in F(]b — ¢,b + ¢[) lifting f’. Then the difference of the restrictions of f
and g to |b —e,b[ is in Ag(]Jb —&,b]) = R = Ar(b —€,b+¢€). Let ¢’ be the sum of g with this
difference. Then f and ¢’ are compatible, hence define a section of F over |a, b + ¢] lifting f'.
Hence (]a, b[, f) was not maximal. The contradiction shows that b = co. In the same way one

shows that a = —oo. O
9.4.3 Lemma. The sheaf F' is flabby.

Proof. Let U be an open subset of R. We have to show that the restriction map from F'(R)
to F'(U) is surjective. It is easy to see that for every x in U there is a maximal open interval
containing x and contained in U. This implies that U is, as a topological space, a disjoint
union of non-empty open intervals. Each of these intervals is isomorphic, as topological space,
to R itself. Hence the previous lemma implies that the map F(U) — F'(U) is surjective. Since
F(R) — F(U) is also surjective, F'(R) — F'(U) must be surjective, too. O

The fact that F and F' have trivial higher cohomology implies the same for Ag. O

9.5 Corollary. Let I be a non-empty interval in R (that is, open, closed, or half-open). Let
A be an abelian group. Then H'(I, A;) is A if i = 0 and is 0 otherwise.

Proof. Using Mayer-Vietoris for open subsets, one easily computes the H*(S', Ag,). Then
one uses Mayer-Vietoris for closed subsets to relate those to the cohomology of closed intervals.
This gives the claim for closed intervals. Applying once more Mayer-Vietoris for open subsets,
one gets the claim for half-open intervals. Of course, it is also possible to do some variant of
the proof of Theorem 9.4. U

We can now start to work on the homotopy invariance. In order to state the result, we have
to see in what way cohomology groups are functorial with respect to morphisms of topological
spaces. So let for a moment f: X — Y be a morphism of topological spaces, and F an
abelian sheaf on Y. Then we claim that there are functorial maps f*: HY(Y, F) — H(X, f~1F).
To define these, note that for 2 = 0 we have indeed such a map, with the property that
(f*s)s = Sf) for all s in F(Y) and all z in X. Let F — I be an injective resolution
of F. Then f~'F — f~'I is a resolution of f~'F, and hence can be mapped to an injective
resolution f~!F — J, uniquely up to homotopy. Applying the map we have for i = 0 gives a
map I(Y) — (f1I)(X), that we compose with (f~I)(X) — J(X). Passing to homology gives
the required maps. Note that for A an abelian group we have f~'Ay = Ax. So in particular
f induces maps f* from H*(Y, Ay) to H* (X, Ax).
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Let X and Y be topological spaces, and let I be the closed interval [0,1]. We say that
two morphisms fy and f; from X to Y are homotopic (via I), if there exists a morphism
f: X x I — Y whose restrictions to X x {0} and to X x {1} are fy and fi, respectively.

9.6 Theorem. (Theorem 1.1 of Chapter IV in the book by Iversen.) Let fy, f1: X — Y be
homotopic morphisms of topological spaces. Let A be an abelian group and i > 0 an integer.
Then the maps f; and f; from H\(Y, Ay) to H'(X, Ax) are equal.

Proof. The strategy is the following. Let p: X x I — X be the projection. We will show that
the maps p* from the H*(X, Ax) to the HY(X x I,p *F) are isomorphisms. For t € I, let i,
denote the injection of X in X x I that sends z to (z,t). Then, for functorial reasons, the maps
iy from HY(X x I,p~1F) to H'(X, Ax) are the inverses of the p*, hence are independent of ¢.
Again by functorial reasons, it follows that the maps fj and f; in the Theorem are equal. Let

us now carry out this program.

9.6.1 Lemma. Let X be a topological space, Y an interval in R and F a sheafon X X Y. Let
x be in X, and let i,: Y — X denote the inclusion. Then the natural map:

lim F(U) = F(i,Y) :== (i, ' F)(Y),

UDizY

where lim indicates a direct limit, is an isomorphism.

Proof. Let us first recall a more or less explicit description of F(i,Y). The set F(i,Y) is the
set of functions s from ¢,Y" to the disjoint union of the F,, for y in 7,Y’, such that every y in
izY has an open neighborhood U, in X x Y such that the restriction of s to i,Y N U, is given
by an element of F(U,).

Let us prove the injectivity. So let U be an open subset of X x Y containing 7, Y, and let
s1 and sp be in F(U), such that their images in F(i,Y") are equal. Then we have, for every y
in 4,Y’, an open neighborhood U, of y, contained in U, such that the images in F(i,Y N U,)
are equal. Let V' be the union of the U,. Then V' is an open subset of X X Y containing ¢,Y
and contained in U, such that the images of s; and s, in F(V') are equal.

It remains to prove the surjectivity. If Y is empty or just one point, the proof is obvious.
So we suppose that Y has at least two elements. There are three cases to consider: Y is closed,
open or half-open. Let us first do the easiest case, where Y is closed, hence compact.

So suppose that Y is compact. Let s be in F(i,Y). For every y in i,Y we have an open
subset U, of X x Y containing y, and an element s¥ of F(U,) inducing s on i,Y NU,. Since Y’
is quasi-compact, 7;Y" is covered by finitely many of the Uy, say by U,,, ..., U,,. Now consider
the set U of z in the union of the U,, such that s¥ = s¥ whenever z is in Uy, NU,;. Then
U is an open subset of X x Y containing i,Y, and the s¥ define an element of F(U) whose
restriction to 7,Y is s.

Let us now do the case where Y is an open interval. Then Y is homeomorphic to R, so we
will work with R. Let s be in F(i,R). For every ¢ in R we have an open neighborhood U; of
¢t in R and an open neighborhood V; of z in X and an element s* of F(V; x U;) such that s*
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induces s on i,U;. The open cover of R by the U, can be refined to a locally finite one, say with
U;, V; and t*. Then one proceeds as in the previous case where Y was compact. More precisely,
the subset Z of the union of the V; x U; where the t* all agree is open.

The case of a half-open interval is done in the same way, and left to the reader. O

9.6.2 Lemma. Let X be a topological space, Y an interval in R and F a sheafon X xY. Let
x be in X, and let i,: Y — X denote the inclusion. Then the natural maps:

lim H'(U,F) — H'(Y,i;'F)

UDizgY

are isomorphisms.

Proof. Consider the functors 7" from the category of abelian sheaves on X xY to the category
of abelian groups, given by T%(F) := Uljigly HY(U, F). Since taking a filtered direct limit is exact,
the T form a §-functor (see Hartshorne, Chapter II, section 1 for the definitions). We also have
the functors S?, between the same categories, given by S*(F) := H(Y,i;'F). They form a é-
functor too, because i;' is exact. We have a morphism of §-functors from the 7" to the S’
which is an isomorphism for i = 0 by the previous lemma. We claim that, for > 1, S* and
T* are effaceable. To see it for 7%, note that one can embed every F into an injective one, and
that the restriction to an open subset of an injective sheaf is again injective. To see it for S?,
consider again an embedding F — I into an injective sheaf. We claim that i, T is flabby. So let
U C R be an open subset, and s in F(i,U). We want to show that s extends to a neighborhood
of i,U. Note that U is a disjoint union of open intervals, hence we get such an extension from
Lemma 9.6.1. By Hartshorne, Chapter II, Theorem 1.3A, both our d-functors are universal.
Since they agree for 7 = 0, they agree for all 1. O

9.6.3 Lemma. Let X and Y be topological spaces, with Y a closed interval in R. Let x be
in X. Let F be an abelian sheaf on X x Y and let i, denote the injection of Y in X sending y
to (z,y). Then the natural maps:

limH (U x Y, F) — H{(Y, i7" F)

U>x

are isormorphismes.

Proof. This follows from Lemma 9.6.2, taking into account that the U x Y form a cofinal

system of open neighborhoods of 7, Y by the quasi-compactness of Y. O

We are now ready to prove Theorem 9.6. In fact, we prove something that is a bit more general.

9.6.4 Lemma. Let X be a topological space, let I be the closed interval [0, 1] and let p: X xI —
X be the projection. Let F be an abelian sheaf on X. Then the maps p* from the H'(X, F) to
the H(X x I,p~'F) are isomorphisms.
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Proof. Let F — J and p~'F — K be injective resolutions. We have a morphism from p='.J
to K inducing the identity on p 'F, unique up to homotopy. Note that, by definition, this
morphism induces p* on the cohomology.

We claim that for any abelian sheaf G on X, the adjunction morphism from G to p,p ‘G is
an isomorphism. To see this, it suffices to check on the stalks. So let z be in X. Lemma 9.6.3,
with 4 = 0, says that the natural map from p,p~'G to (i;'p~'G)(I) is an isomorphism. But
(i7'p~'G) is the constant sheaf G, ; on I, hence (i;'p~'G)(I) = G,.

The adjunction morphism identifies p,p~'F — p,p~'J with F — J, hence p,p~'F —
p«p~'J is an injective resolution of F. If we prove that p,p~'F — p,K is also an injective
resolution, we have finished. By construction, the p,K* are injective. We have to show that
the complex p,.p 'F — p,K is exact. To do that, it suffices to consider the stalks. So let x be
in X. Let h*(,K) denote the homology in degree i of p,K; it is an abelian sheaf on X. By the
definition of kernel and cokernel in the category of sheaves, we have, for all 4:

R (psK)y = im H (U x I, p~'F).

Usx

Lemma 9.6.3 tells us that the natural maps

lm H (U x Y, p~' F) — H(Y, i7'p™' F)

Uszx

are isomorphisms. But i, 'p 'F is the constant sheaf F,; on I, hence, by Corollary 9.5, we

have:
Fp ifi=0,

(p.K) {0 ifi> 0.

O
The proof of Theorem 9.6 is now finished. O

9.7 Corollary. Let X be a contractible topological space, and A an abelian group. Then we
have H*(X, Ax) = A and HY(X, Ax) = 0 for i > 0. 0
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