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1 Intr oduction.

It is well known thatthe j-invariantestablisheabijectionbetweerC andthesetof isomorphism
classef elliptic curvesover C, seefor example[10]. The endomorphisnring of an elliptic
curve E over C is eitherZ or anorderin animaginaryquadraticextensionof @Q; in thesecond
caseF is saidto be a CM elliptic curve (CM meaningcomplex multiplication). A comple
numberz is saidto be CM if the correspondingelliptic curve over C is CM. A point (z1, z2)
in C? is definedto be CM if bothz; andz, are CM. The aim of this article is to determine
all irreduciblealgebraiccurvesC in C? containinginfinitely mary CM points. In otherwords,
we wantto determineall irreduciblepolynomialsf in C[z,, 2] thatvanishat infinitely mary
CM points. The motivation for doing this comesfrom a conjectureof FransOort (see|7,
ChaptenV, §1] for a precisestatement)sayingroughlythatthe irreduciblecomponent®f the
Zariski closureof any setof CM pointsin any Shimuravariety aresubShimuravarieties.For
theirreduciblecomponent®f dimensionzerothis is trivially true. For thoseof dimensionone
Oort’s conjecturewvasin factstatedearlierby YvesAndré asa problemin [2, ChapterX, §1].

We view C? asthe Shimuravariety which is the moduli spaceof pairsof elliptic curves.
ThentheirreduciblesubShimuravarietiesof dimensiononearethefollowing: C x {z,} with
zo aCM point, {z;} x C with z; aCM point, or theimagein C?, underthe usualmap,of the
modularcurve Y, (n) for someintegern > 1. Recallthat,for n > 1, Y;(n) is themodularcurve
classifyingelliptic curveswith a cyclic subgroupof ordern, or, equivalently, cyclic isogenies
of degreen betweerelliptic curves. The usualmapfrom Y;(n) to C? sendsanisogely to its
sourceandtamet,i.e.,¢: E; — E,issentto (j(E4), j(E2)). Wewill provethefollowing result,
giving evidencefor the conjecturgust mentioned.

1.1 Theorem. AssumethegeneralizedRiemannhypothesidor imaginaryquadratidields. Let
C beanirreduciblealgebraiccurve in C? containinginfinitely mary CM pointsandsuchthat
neitherof its projectionsto C is constant.ThenC' is theimageof Y,(n) for somen > 1.

1.2Remark. Intheproofof Theoreml.1lwewill seethatthestateof theartin analytichumber
theoryis suchthatthe Riemannhypothesiss “almostnot needed’(seeRemark5.4). It is clear
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thatTheoreml.limpliessimilar statement$or curvescontainedn the productof two modular
curves.In particular if oneassume&RH, Oort’s conjecturds truefor curvescontainedn the
productof two modularcurves. O

1.3Remark. Ben Moonenhasproved Oort’s conjecturefor the setsof CM pointsin moduli
space®f abelianvarietiessuchthatthereexists a prime numberp at which all the CM points
arecanonicaln the sensdhatthey have anordinaryreductionof which they arethe Serre-hte
canonicalift (see[7, ChaptenV, §1]). YvesAndré hasprovedthe conclusionof Theoreml.1
with theRiemanrhypothesiseplacedy theassumptiorthatthe Zariskiclosureof C in P! x P!

meets{oo} x C only in points(oco, z5) with 2, aCM point(see[1]). In thecasewhereC meets
theunionof {oo} x C andC x {oco} only in co x oo hehasavery simpleproof. O

The ideaof the proof of Theorem1.1 is the following. We usethe Galoisactionon the set
of CM j-invariantsto show that for all but finitely mary CM points (z;, z;) on C the CM
fieldsof x; andz, coincide.Thenwe considerintersection®f C' with its imagesundercertain
Hecle operatorsThe RiemanrhypothesismpliesthatC' is actuallycontainedn someof these
images.To finish,we consideranirreduciblecomponentX of theinverseimageof C in H x H,
the productof the complex upperhalf plane by itself, and shawv that the stabilizerof X in
SLy(R) x SLy(R) is of thekind it shouldbe.

1.4Remark. At the time this article cameback from the referee(June1997), Yves André
succeededh proving the conclusionof Theoreml.1 unconditionally usinga resultof Masser
on Diophantineapproximatiorandthe j-function. O

2 Somefactsabout CM elliptic curves.

Beforewe startwith the proof of Theoreml.1, we needto recall somefactsaboutCM elliptic
curves. Thesefactscanbefoundfor examplein [10, AppendixC, §11]. Firstof all, CM elliptic
curves are definedover Q. Let K be an imaginary quadraticextensionof Q, with a given
embeddingn Q. Let Ox C K bethering of integers. Every subringof O of finite index is
of theform Ok, s := Z + fOg for auniqueinteger f > 1. For f > 1 let Sk ; bethe setof
isomorphismclassef pairs(E, o), with E anelliptic curve over Q anda: Ok ; — End(E)
anisomorphisnof ringsinducingthe givenembeddingf K into Q via theactionon Lie(E).
ThegroupGk = Gal(Q/K) actson S ;. But alsothe PicardgroupPic(Og,;) actson Sk
by thefollowing formula:

(2.1) (E,[L]) = E®oy; L,

whereL is aninvertible O ;-module,[ L] its equivalenceclassand £ ®o, , L the cokernelof
themapp: E* — E” if p:O% ; — O% ; hascokernel L (view p asa matrix with coeficients
in Ok,y). If we chooseanembeddingf Q in C andwrite E(C) asC moduloallattice A, then
(E ®oy,; L)(C) isthequotientof C ®o, ; L by A ®¢, , L. Theactionsby Gk andPic(Ox.y)
on Sk, commute.



2.2Proposition. ThesetSk,; is a Pic(Ok,s)-torsor i.e., the actionof Pic(Ok,y) is free and
hasexactly oneorbit.

Proof. (Sketch.)Forevery (E, ) andA asabove,Endo, (A) = Ok,r. Moreover, O is of
theform Z[z]/(g). It followsthatA is aninvertible Ok, ;-module. O

It followsthatG i actson Sk, s viaamorphismGx — Pic(Ok ). This morphismis surjective
andunramifiedoutsidef. TheFrobeniuslementat a maximalidealm notcontainingf is the
elemen{m]~! of Pic(Ok,) (all this canbeseerfrom deformatiortheory usingthetheoremof
Serre-Thte,or from classfield theory). Let Hy ; bethe Galoisextensionof K corresponding
to this quotientPic(Ok ) of Gx. We remarkthatwe have Hy ; = K(j(E)) for all (E, «)
in Sk .

3 Thetwo CM fields are almostalwaysequal.

Let Cc C C? beasin Theoreml.1(i.e., it is irreducible,it containsinfinitely mary CM points
andits two projectiongto C arenot constant) Sinceall CM pointshave coordinatesn Q, C¢ is

definedover Q, in the sensehatit is the locusof zerosof anirreduciblepolynomial,call it f,

with coeficientsin Q. It will be corvenientfor usto work with a curve definedover Q, hence
we let C' betheunion of thefinitely mary conjugateof Cc. ThenC' is definedby the product
F of the Galoisconjugate®f f, if wetake f suchthatit hasanon-zerocoeficientin Q. Letd;

andd, bethe degreesof F' with respecto the secondandfirst variable. Thend; is the degree
of the ith projectionfrom C to C. For z in C we will denotethe endomorphisnring of the
correspondingelliptic curve by End(z). For aCM pointz in C we will call Q ® End(z) the
CM field of 2. Notethattheisogely classof a CM elliptic curve over Q consistsof all elliptic

curveswith thesameCM field. We wantto prove thatC' is theimagein C? of someY;(n). Our
first stepin this directionis thefollowing proposition.

3.1Proposition. LetC beasabove. For all but finitely mary CM points(z+, z5) in C the CM
fieldsof x; andz, coincide.

Proof. Supposehat(z1,z2) is aCM pointin C(Q) suchthatthetwo CM fields K; and K,
aredifferent.SinceC is definedoverQ, Q(z1, z2) hasdegreeat mostd, over Q(z; ) anddegree
atmostd; over Q(z;). Let L bethefield generatedy K; and K,, and M theintersectionof
L(z,) andL(z2). Letuswrite End(z;) = Ok, 5, for i = 1 and2. Thefield L(z;) is anabelian
Galoisextensionof L, of degreeat least|Pic(Ok; f,)|/2. Thedegreesof L(z;, z5) over L(z,)
andL(z,) areequalto thoseof L(z,) andL(z>) over M, respectrely. This givesus:

(3.2) Pic(Ox,.1,)| < 2d;[M : L].

We will now work to geta suitableupperboundfor [M : L]. The groupGal(L(z1,z2)/Q)
is an extensionof Gal(L/Q) by the abeliangroup Gal(L(z1,z,)/L). Hencethe action of
Gal(L(z1,z2)/Q) onGal(L(z4, z2)/L) by conjugatiorfactorsthroughanactionof Gal(L/Q).
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In the sameway, Gal(L/Q) actson the two groupsGal(L(z;)/L), which we view as sub-
groupsof Gal(K;(z;)/K;). Now Gal(L/Q) is equalto Gal(K;/Q) x Gal(K,/Q), hence
equalto Z /27 x Z/2Z. Theactionof Gal(L/Q) on Gal(L(z;)/L) factorsthroughGal( K;/Q)

andassuchcoincideswith the restrictionof the actionof Gal(k;/Q) on Gal(K;(z;)/K;) =

Pic(Ox,,f,)-

3.3Lemma. Let K bea quadratidmaginaryfield andf > 1. Thenthe non-trivial element>
of Gal(K/Q) actsas—1 on Pic(Ok ).

Proof. Theendomorphisna + 1 of Pic(Ok s) factorsthroughthe normmapfrom Pic(Ok¢)
to Pic(Z). O

Now notethatGal(M/L) is aquotientof bothGal(L(z;)/L), sotheactionof Gal(L/Q) onit
is by the non-trivial charactegiven by the first projection,but also by the secondprojection.
ThisimpliesthatGal(M/L) is killed by multiplication by two.

3.4Lemma. Let K be animaginaryquadraticfield and f > 1. Thenthe dimensionof the
I, -vectorspacePic(Ok,r) ® T, is at mostthe numberof oddprimesdividing the discriminant
discr(Ox,f) of Ok s plusten.

Proof. (Sketch.) The exact boundwe give doesnot matterso much, so we just give some
indications.First onenotesthatthereis anexactsequence:

(3.4.1) (K ® Q,)" — Pic(Ox.;) — Pic(Ox 4[1/2]) = 0.

Let S := Spec(Ok, ¢[1/2]) andT := Spec(Z[1/2]). The Kummersequencegivesa surjection
from H!(S,;, F,) onto the 2-torsion subgroupof Pic(S), which hasthe samedimensionas
Pic(S) ® F,. Onedealswith H! (S, Fy) by projectingto Ty;. O

SinceGal(M/L) is killed by 2 anda quotientof a subgroupof Pic(Ok, r,), we have:
(3.5) log,[M : L] < [{2 # p|discr(Ok, s,) }| + 10, i€ {1,2}.
Ontheotherhand,we have Siggel'stheorem(se€[8]), statingthat:

(3.6)  log|Pic(Ok, r,)| = (1/2 + o(1)) log |discr(Ok; ;)| (|discr(Ok,,z,)| — 00).

Combiningequationg3.5) and(3.6) showvs that |Pic(Ok, r,)|/[M : L] tendsto infinity asthe
discrminiantof Ok, , tendsto infinity. But thenequation(3.2) canhold for only finitely mary
(x1,z2). Thisendsthe proof of Proposition3.1. O

3.7Remark. The proof of Proposition3.1 showvs actually more: the function on the set of
CM pointson C' thatsends(z, z2) to f1/ f> takesonly finitely mary values. Using this, one
canreducethe proof of Theoreml.1 to the casewherethereare infinitely mary CM points
(x1,22) onC with End(z;) = End(z,) (onereplaces” by its imageundera suitableHeclke
correspondencefs we do not know how to exploit this, we donotgo into furtherdetail. [

3.8Remark. Propositior3.1wasalsoprovedby YvesAndréin [1], andalsoby Ching-Li Chai
(notpublished). d



4 Intersecting C with something

We continuethe proof of Theoreml1.1. Sowe let C' be asbefore. At this point we already
know thatwe have infinitely mary CM points(z, z2) onC for whichz; andz, areisogeneous
becausdhey have the sameCM field. We have to prove thatthereis anintegern > 1 such
thatfor infinitely mary (z1, z2) thereexistsanisogery of degreen between:; andz,. A direct
approactfor thisis thefollowing. Considera CM point (z1, z5) suchthatz; andz, have the
sameCM field, say K, andanisogery from z; to z, of minimal degree,sayn. Onecangetan
upperboundfor n in termsof thediscriminantof theEnd(z;). By Remark3.7,onecanassume
thatEnd(z;) = End(zy) = Ok,; andgetanupperboundfor n from Minkowski’'s theoremon
idealsof small norm representinglementsof the classgroup; the boundis a constantimes
discr(Ox f)|*/2. Thenone considersthe intersectionof C' with Y;(n). The degreesof both
projectionsrom Yy(n) to C areequatto ¢(n), wherep(n) = n[],,(1+1/p). ThePicardgroup
of P! x P! (overafield, sayQ) is isomorphicto Z x Z, theisomorphismsendingan effective
divisor to the degreesof its two projectionsto P!. The intersectionform is the following:
(a,b) - (¢,d) = ad + bc. Hencethe intersectionnumberof the Zariski closuresin P! x P!
of C andY;(n) is ¢(n)(d; + dy). Sinceboth curveswe intersectare definedover Q, the
intersectioncontainsall Galois conjugatesof (z;, z2), of which thereare |Pic(Og )|. Soif
|Pic(Ok,f)| exceedsy(n)(d; + ds), the proof is finished, since then the intersectionis not
proper Unfortunately equation(3.6) doesnotimply suchaninequality

Neverthelessthe ideaof intersectingC' with somethingis a good one. Natural “some-
things” to take areimagesof C' itself underHecke correspondencesAgain, we considera
CM point (z1, z2) on C suchthatthe CM fields of z; andx, coincide. Let K, f; and f, be
definedby: End(z;) = Ok,j,. Let f betheleastcommonmultiple of f; and f,. Thefield
generatedy Hg ;, and Hg y, is containedn Hg ¢, andoneeasilychecksthat Hy ; hasde-
greeat mostthreeover it. Hencethe orbit of (z,z2) underthe action of Gx hasat least
|Gal(Hg r/K)|/3 elementsRecallfrom §2 thatwe canidentify Gal(Hg, s/ K) with Pic(Ok,f).
For o in Gal(Hg,/K) correspondingo the class[I] of aninvertibleideal I of Ok, there
areisogeniesrom z; to o(z;) andfrom z, to o(z2) whosekernelsareisomorphic,as O, -
modulesto Ok /1. Henceif we take I suchthatOg /I is a cyclic groupof someordern,
theno(z;) isin T, (z;) for i equalsl and2, whereT,, is the correspondencen C thatsendsan
elliptic curve to thesum(asdivisors)of its quotientsby its cyclic subgroup®f ordern. (Letus
notethatthis 7;, is notthe sameasthe correspondencen C thatis usuallycalledT,, if n is not
squarefree, sincethe usualoneinvolvesa sumover all subgroup®f ordern.) LetT,, x T, be
the correspondencen C x C thatis the productof 7,, on eachfactor: it sendsa pair (E1, E2)
of elliptic curvesto the sumof the (E;/G1, E2/G2), whereG; is a cyclic subgroupof order
nin E;. Then(z,x9) is in theintersectionof C and(7,, x T,,)C, becauser; isin T, (o(z;))
and(o(z1),0(z2)) isin C. SincebothC and(T,, x T,,)C aredefinedover Q, theirintersection
containsall Galoisconjugate®f (z1, z2). Hencetheintersectiorhasatleast|Pic(O,f)|/3 el-
ementsLet usnow calculatethe degreesof the projectionsof (7;, x 7,,)C to C. By definition,
(T,, x T,,)C consistof the (z, y) suchthatthereexist v andv in C with (u, v) in C, andcyclic



isogenief degreen from u to x andfrom v to y. Letz bein C. Thenthereare(n) u’'swith
z € T,(u). For eachsuchau thereared; v’'s with (u,v) on C. For eachsuchawv thereare
¥(n) y'sin T, (v). This shawsthatthe degreeof thefirst projectionof (7, x T,,)C is ¥ (n)?d,.
Of coursefor thesecondorojectiononehasthe analogousesult. So, for theintersectiomum-
berof C and(7,, x T,,)C we find 2d;dyt(n)?. We concludethatif |Pic(O f)| is biggerthan
6d,da1)(n)?, thenC is containedn (7, x T;,)C. Thenext thingto dois to seeif theredo exist
ideals! with therequiredproperties.

Letz,, zo, K and f beasabove. Let p beaprimenumberthatsplitsin Ok, i.e., suchthat
Ok,r ® I, isisomorphicto IF,, x F,. For I we take oneof thetwo maximalidealscontainingp.
As explainedabove, we have thefollowing implication:

(4.1) 6d1dy(p + 1)* < |Pic(Ok,;)| implies C c (T, x T,)C.

Equation(3.6) tells us that | Pic(Og ;)| = |discr(Og ;)|/>°(V). Sowe wantp to be at most
somethingas|discr(Ox f)|'/%. More precisely:

4.2 Proposition. Supposéhatthereexistse > 0 suchthat,whenK rangeshroughall imag-
inary quadraticfields and f throughall positive integers, the numberof primesp lessthan
|discr(Ok;)|/4¢ thataresplitin Oy ; tendsto infinity as|discr(Og ;)| tendsto infinity. Then
thereareinfinitely mary primesp suchthatC' is containedn (1, x T,)C.

Proof. Becauseve have infinitely mary CM points(z;, zo) on C, we know thatthe discrim-
inants |discr(Ok, )| associatedo themasabove tendto infinity. The implication (4.1) and
equation(3.6) give ustheinfinitely mary requiredprimes. O

5 Existenceof small split primes.

The aim of this sectionis to prove the hypothesisn Proposition4.2. It turnsout thatthis is
no problemat all if one assumesGRH for imaginary quadraticfields and usesthe resulting
effective Chebotare theoremof LagariasMontgomeryandOdlyzko asstatedn [9].

For K animaginary quadraticfield, f a positive integerandx > 2 a real number let
7k, r(z) bethe numberof primesp < z thataresplitin Ok s, let dx := |discr(Ok)| andlet
di,; := |discr(Og,y)|. Notethatdy ; = f2dk. AsusualletLi(z) := [} dt/log(t). Theoremd
of [9] andthe secondemarkfollowing it saythat,for z sufficiently big andfor all K asabove
for which GRH holds,onehas:

1

i (¢) = 5Li)] < L1/2 (log(dic) + 2Tog(z)

(5.1) <<

Sincethe numberof primesdividing f is at mostlog,(f), equation(5.1) implies:
(5.2)

T, f(T) >

(log(dk) + 2log(z))

T (Li(m) log(z) log(z)

_ 2log(z) log(f))
2log(x) T 3z1/2 :

xlog(2)



If  tendsto infinity, Li(z)log(z)/x tendsto 1 andlog(x)?/x'/? tendsto 0. One checks
easily that for = sufficiently big (i.e., bigger than someabsoluteconstant),and bigger than
log(dxk f)?(log(log(dxk )%, onehaslog(z) log(dx)/3z'/? < ¢ < 1, with ¢ independenbf K
and f. Underthe sameconditions,log(z) log(f)/x tendsto zeroif x tendsto infinity. This
meanghatwe have provedthefollowing proposition.

5.3Proposition. Let C be as before(i.e., asin the beginning of §3). AssumeGRH for all
imaginaryquadraticfields. Thenthereexist infinitely mary primesp suchthatC' is contained
in (T, x T,)C. O

5.4Remark. Of coursethe questionremainswhetheronecanprove the hypothesif Propo-
sition 4.2 without assumingGRH. EtienneFouvry tells me the following. He shows that for
r > 0 andall n, thesetof dg, ; suchthatthenumberof primesp < dj, , thataresplitin O, is
atmostn, hasdensityzero(i.e., the numberof suchdg,; < z is o(z) for x — o). Moreover,
he saysthatthe exponentl /4 is critical, in the sensehatonecanprove thatfor all £ > 0, the
numberof primesp < d}{/ifs thataresplitin O ; tendsto infinity asdx ¢ tendsto infinity. To
provethis,heusesaresultof Linnik andVinogradw in [6], seealso[4]. Thecentralpointin [6]
is anupperboundfor shortcharactesumsby Burgessjn which theexponentl /4 + ¢ appears.

This 1/4 hasnotmovedin thelast30years. O

6 Sometopologicalarguments.

In this sectionwe finish the proof of Theorem1.1 by combiningProposition5.3 with the fol-
lowing theoremwhich givesyet anothercharacterizatioof modularcurves.

6.1 Theorem. Let C in C*> beanirreduciblealgebraiccurve. Let d, andd, be the degreesof
its two projectionsto C. Supposehatd, andd, are both non-zero,andthatwe have C C
(T, x T,)C for somesquarefreeintegern > 1 thatis composedf primesp > max{5,d; }.
ThenC is theimageof Yy(m) in C? for somem > 1.

Let usfirst shav thatthis theoremandProposition5.3imply Theoreml.1. Solet C¢ andC be
asin the begginning of §3. RecallthatC' is the union of the finitely mary Galoisconjugatesf
theirreduciblecomponentCc of it. We know thatthereareinfinitely mary primesp suchthat
C is containedin (7, x T,,)C. For suchaprimep, let T, denotethe correspondencen C
inducedby 7, x T,. By thiswe meanthefollowing. Thecorrespondencg, x T, onC? is given
by themapfrom Y, (p) x Ys(p) to C* x C* thatsendsapoint (¢, 1) to (s(¢), s(v), t(¢), t(1)),
wheres andt standfor sourceandtarget, respectiely. Take the inverseimageof C x C'in
Yo(p) x Yo(p), and deleteits zero-dimensionapart; that, togetherwith its two mapsto C,
is T¢ . We have to shav thata suitableproductTy,, - - - T, With 7 > 1 andthe p; distinct
inducesanon-trivial correspondencieom C to itself, becauseéhenwe canapply Theoremg.1
to Cc with n = p; - - - p,. Let S bethefinite setof irreduciblecomponentsf C. Theneachl,
inducesa correspondencés, on S thatis surjectvein thesensehatbothmapsfrom 75 , to S



aresurjectve. Moreover, theGaloisgroupGg actstransitively on S, andall T's , arecompatible
with this action. Let z, in S correspondo Cc. If thereis someT , suchthatz isin Tz,
we cantaken = p. Sosupposehatfor all T, we have zy ¢ T's,x9. Thenwe havefor all T,
andall z thatz ¢ Ts,x. Onenow easilyseeghattherearep,, . .., p, distinctwith 1 < r < |S|
andzy € Tsp, - - Tsp,%o.

Proof. (Of Theorem6.1.) We take anintegern asin the theoremwe are proving. Let T¢,

be the correspondencen C inducedby T,, x T,,, in the senseexplainedabove. (In fact, for

everythingthatfollows we could alsoreplacel,, by oneof its irreduciblecomponentshut it

is usefulto seehow to exploit all of it.) We view T, asasubsebf C' x C. Theimageof T,

underthe map(pr,, pr;) from C' x C to C x C is theimageT;,, of Yy(n) in C x C. Consider
thecommutatve diagram:

c —» C
(6.2) 1 1
TC,n — T’n

in which the vertical mapsareinducedby the projectionsfrom C x C' andC x C on thefirst
factor

6.3Lemma. ThemapfromTc., to thefibredproductC xc T;, inducedby (6.2)is surjectize.

Proof. By constructionall four mapsin (6.2) arefinite asmorphismsof (possiblyreducible)
algebraiacurves. Thereforethemapfrom 7t ,, to C x¢ T,, is alsoafinite morphismof algebraic
curves. Henceto shaw thatit is surjectve, it sufficesto show thatC' x¢ T, is irreducible,or,
equivalently, thatthe tensorproductof the functionfieldsof C' andY;(n) over C(j) is afield.
For this, it is enoughto prove that the tensorproductwith Y,(n) replacedby Y (n) is a field
(Y'(n) is the modularcurve parametrizingelliptic curveswith a symplecticbasisof their n-
torsion). Thefunctionfield of Y (n) is Galoisover C(j) with GaloisgroupSLy(Z/nZ)/{+1}.
The groupSLy(Z/nZ) is isomorphicto the productof the SLy(F,, ), 1 < ¢ < r; onechecks
easilythatit hasno non-trivial subgroupof index atmostd;. This meanghatthefunctionfields
of C'andY (n) arelinearly disjoint. O

For reasongo becomeclearsoon,we now first prove thefollowing lemma.

6.4Lemma. Theorbitsin C of Ti,, arenotdiscretefor the strongtopology

Proof. Themorphismpr, from C' to C is proper hencethe imageof a closedsubsef C' is
closedin C. In particular theimageof theclosureof ary subsedf C' is theclosureof its image.
Henceit is enoughto seethattheimagesin C of the orbitsof 7, arenot closed.Let z bein
C, andlety beits imagein C. Lemma6.3impliesthatpr, T,z = T,y, hencewe justhave to
shaw thattheorbitsin C of 7;, arenotclosed.For thiswe view C asthequotientof thecomplex
upperhalf planeH by thegroupSLy(Z) viathemapn: 7 — j(C/(Z+Z7)). Letz bein C, and
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chooser in 7='z. Thenfor all a andb in Z, 7(7 + a) andr (n’7) arein theorbit of z underT;,.
By composingheseoperationswe seethat(n’r + ) andn (7 + n~%a) arein the orbit of .
Takinga non-zeroandb big showvs thattheorbitis notclosed.(In fact, it is easyto shaw, using
T +— —7 !, thatall orbitsin C of T, aredense.) O

Weview C x C asthequotientof H x H by thegroupI := SLy(Z) x SLy(Z), viathemap:
(6.5) THxH—>CxC, (r,7)— (J(C/(Z+7Zmn)),j(C/(Z + ZTs))).

Let X be an irreducible componentof the analytic subvariety 7 'C of H x H. The group
G := SLy(R) x SLy(R) actstransitvely on H x H. We will studyits subgroupGy, the
stabilizerof X. Whatwe have to prove is that Gx is the graphof aninner automorphisnof
SLy(R); this automorphisnthentells usfor whichm our curve C' is theimageof Y;(m). The
decisve stepin the proof of thisis to seethat G x is notdiscrete(if C' is anarbitrarycurve in
C?, thenG x is typically discrete).

6.6Lemma. ThegroupGyx is ananalyticsubgroupofG.

Proof. Theactionof G onH x H is algebraidit is givenby fractionallineartransformations).
The subgroupG x consistsf exactly thoseelements; in G thatsatisfy for all z in X, thetwo
conditionsgr € X andg~'z € X. All theseconditionsareanalytic. O

6.7Lemma. Thekernelsof thetwo projectionsfrom G x to SLs(R) arediscrete.

Proof. This kernel K, sayfor the secondprojection,is the sameasthe stabilizerof X in the
subgroupSLy(R) x {1} of G. For all 7 in H, it stabilizesX, := X N (H x {7}), whichis
discretesinced, > 0; hencetheconnecteadomponent<® of K stabilizesevery elemenibf X.
We concludethat K° actstrivially on X. Now the stabilizerin SLy(R) of the element; of H
is SO2(R). Becausel; > 0, K is containedn all conjugate®f SO, (R), the intersectionof
whichis {£1}. O

6.8Lemma. Theimagein SLy(Z) of T'x, the stabilizerof X in ', undertheith projection,
hasindex at mostd;.

Proof. We dotheprooffor i = 2. We factorthemapm: H x H — C x C asfollows:
(6.8.1) HxH—-CxH—CxC.

Let Y betheimageof X in C x H. ThenY is anirreduciblecomponenbf theinverseimage
Z of C in C x H. Let S bethesetof cin C suchthateveryz in 7—1c is containedn morethan
oneirreduciblecomponenpf 7~!C. ThenS is containedn the finite subsetof C' consisting
of singularpointsand pointsof which at leastone of the coordinatess in {0, 1728}. Let C’
beC — S, andlet X’ andY’ betheinverseimages,jn X andY’, respectiely, of C'. Themap
from X’ to C’ is the quotientfor theactionof I'x, hencethemapfrom Y’ to C' is the quotient
for theactionof pr,I"x. It followsthatpr,I'x is the stabilizerin SLy(Z) of Y in Z, sothe set
SLy(Z)/pryIx is the setof irreduciblecomponent®f Z. But 7 is alsothe fibred productof
pry: C' — C andH — C, whichimpliesthatZ hasat mostd, irreduciblecomponents. O
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Lemmass.6,6.7and6.8arein factvalid for any curve C in C? for whichd; andd, arenon-zero.
Thenext onecrucially exploitsthatC' C (T, x T,,)C.

6.9Lemma. ThetopologicalgroupGyx is notdiscrete.

Proof. The subgroupGx of G is analytic, henceclosed. It containsI'x. The inclusion
C c (T, x T,)C implies that it containssomelesstrivial elementsas well. The corre-
spondencd’;,, on C canbe describedasfollows. Take z in C; take its inverseimagein Hi;
applythemapr — nr = (g?)r to it andtake its imagein C; thatis 7,,z. Anotherway
to saythis is: take representatiest; in GL,(Q) (thereare(n) of them)for the quotientset
SLy(Z)(}2)SLa(Z) /SL(Z); thenfor z in C andr in H mappingto it, T,z is theimageof the
sumof thet;r. It follows thatfor each(s, j) suchthat(¢;, ¢;) X is containedn 7—'C we getan
elementy; ; in G x of theform

_ n0 _ n 0
Gij = i1 - (n 1/ (01) Xy 1/2 (01>> " V4,25

with 7; ;1 and-; ;» in I'. For cin C andz in X mappingto ¢, T¢ ,c is theimageof the sumof
theg; ;z. Let H bethesubgroupf G x generatedby I' y andtheseelementsy; ;. We will prove
that H is notdiscrete Let H betheclosureof H. We take anelementz in X. Themapfrom G
to H x H sendingyg to gx is proper becausehe stabilizersof elementof H x H arecompact.
HenceHz is alsothe closureof Hz. Thesubsetd z of X is discreteif andonly if its imagein
C is discrete since H containsl'x andthemap X — C' is the quotientfor the actionof I'x.
By constructiontheimageof Hz in C is theorbit of x for T¢ ,, which, by Lemma6.4,is not
discrete.This provesthatGx is notdiscrete. O

We cannow quickly finishtheproof of Theorem6.1. ConsidettheLie algebralie(G x ), which
by Lemma6.9is non-zero.Lemmas.7 tells us thatthe two projectionspr;Lie(Gx) arenon-
zero.Butpr;Lie(Gx) is normalizedoy pr,I" x, whichis Zariskidensen SL,(R) by Lemma6.8.
SinceLie(SLy(R)) is simple,it followsthatpr;Lie(Gx ) is equalto Lie(SLs(R)) for bothi. So,
sinceSL,(R) is connected(Gx projectssurjectively on both factorsSLy(R) of G. Now we
apply whatis called Goursats lemma: let H be a subgroupof a productG; x G,, suchthat
the projectionsp; andp, from H to G; and G, aresurjectve, thenker(p;) andker(p,) are
normalsubgroupsf G, andG, respectiely, and H is the inverseimageof the graphof an
isomorphismbetweenG, / ker(p,) and Go/ ker(p;). The kernelof pr,: Gx — SLo(R) is a
normalsubgroupof SL»(R), viewedasSLy(R) x {1}. Sinceit is discreteandcontains{1, —1},
it is {1,—1}. The sameholdsfor the otherprojection,and G'x is the inverseimagein G of
the graphof ananalyticautomorphismg say of SLy(R)/{£1}. Every suchautomorphisms
inner. Sincethe pr,I"x have finite index in SLy(Z), it follows thato is inducedfrom aninner
automorphisnof the algebraicgroupSL;, o. The algebraicgroup of automorphism®f SL; o
is PGLy . SincethemapGL,(Q) — PGL,(Q) is surjective (for exampleby Hilbert 90), o
is given by conjugationby someelementg in GLy(Q). So Gy is theset{(h,+ghg™')|h €
SLy(R)}. Letz beanelementof X, andwrite it asz = (7, A7) with 7 in H andh in SLy(R).

10



SinceG xz isin X, whichis of dimensiontwo, the stabilizerof z in Gx hasdimensionat least
one. Let H bethe stabilizerof 7 in the connecteccomponenbf identity G%, for the action
of G% onthefirst factorH; thenthe stabilizerof hr for the actionon the secondfactoris the
conjugateg 'hHh g of H. SinceH is of dimensiononeandconnectedit is isomorphicto
SO, (R)) we musthave H = g 'hHh 'g, i.e., g 'h normalizesH. Sincethe normalizerof
SO,(R) in SLy(R) is just SO, (R) itself, this meansthat g~'4 is in H, or, equivalently; that
ht = gr. ThismeanghatX = {(r, g7) | 7 € H}. We mayreplaceg by multiplesag of it, with
a anon-zerorationalnumber Sowe cananddo supposéhat gZ? is containedn Z? andthat
Z?/gZ* is cyclic, sayof orderm. It is now clearthatC is Yy(m). O

7 Someremarks.

7.1Remark. Our proof of Theorem1.1 shaws in fact that, assumingGRH, for eachpair
(dy, dy) of positive integersthereexists an effectively computablenumberB(d;, ds), suchthat
on every irreduciblecurve C in C? of bi-degree(d, d) thatis definedover Q andnota mod-
ular curve thereare at most B(d;, d2) CM points. (Note that underGRH, the statementhat
|Pic(Ok)|/|Pic(Ok)[2]| — oo is effective.) O

7.2Remark. It is nottruethatall irreduciblecurvesC in C? with C c (T,, x T,,)C for some
n > 1 aretheimageof someY,(m). Herewe constructsomeexamples.Letn > 1. Let w,, be
the Atkin-Lehnerinvolution of Y5(n): it sendsanisogery to its dual. The correspondencég,
on C hasthefollowing description.For z in C, take its inverseimagein Y;(n), take theimage
of thatunderw,, andthentheimagein C. It follows thatfor anirreduciblecurve C in C? such
thatat leastone of the irreduciblecomponentf its inverseimagein Yy(n) x Yy(n) is stable
undertheinvolution (w,, w,) wehave C C (T,, x T,,)C. Let Z bethequotientof Y, (n) x Yy (n)
by thatinvolution. Bertini’'s theorem seefor example[5, Theorem6.3], givesthe existenceof
whole familiesof curvesin Z with irreducibleinverseimagein Y, (n) x Y;(n). Take C to be
theimagein C? of suchaninverseimage. O

7.3Remark. Theconditionthatn besquardreein Theorem6.1shouldnotbenecessanyi is
dueto thelazinessof theauthor O

7.4Remark. It is very temptingto try to generalizehe methodsof this articleto the general
caseof Oort’s conjecture. O
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