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1 Intr oduction.

It is well knownthatthe
�
-invariantestablishesabijectionbetween� andthesetof isomorphism

classesof elliptic curvesover � , seefor example[10]. Theendomorphismring of an elliptic

curve � over � is either � or anorderin animaginaryquadraticextensionof � ; in thesecond

case� is said to be a CM elliptic curve (CM meaningcomplex multiplication). A complex

number� is saidto beCM if thecorrespondingelliptic curve over � is CM. A point ���
	�������
in � � is definedto be CM if both �
	 and ��� areCM. The aim of this article is to determine

all irreduciblealgebraiccurves � in � � containinginfinitely many CM points. In otherwords,

we want to determineall irreduciblepolynomials � in �����
	�������� thatvanishat infinitely many

CM points. The motivation for doing this comesfrom a conjectureof FransOort (see[7,

ChapterIV, � 1] for a precisestatement),sayingroughlythattheirreduciblecomponentsof the

Zariski closureof any setof CM pointsin any ShimuravarietyaresubShimuravarieties.For

theirreduciblecomponentsof dimensionzerothis is trivially true. For thoseof dimensionone

Oort’sconjecturewasin factstatedearlierby YvesAndréasa problemin [2, ChapterX, � 1].

We view � � asthe Shimuravariety which is the moduli spaceof pairsof elliptic curves.

ThentheirreduciblesubShimuravarietiesof dimensiononearethefollowing: ���������! with��� a CM point, ���
	" #�$� with �
	 a CM point, or theimagein � � , undertheusualmap,of the

modularcurve %�&'��()� for someinteger (+*-, . Recallthat,for (+*-, , %�&'��()� is themodularcurve

classifyingelliptic curveswith a cyclic subgroupof order ( , or, equivalently, cyclic isogenies

of degree ( betweenelliptic curves. The usualmapfrom %.&��/()� to � � sendsan isogeny to its

sourceandtarget,i.e., 0213�4	65 ��� is sentto � � �/�7	��"� � �8���"��� . Wewill provethefollowing result,

giving evidencefor theconjecturejust mentioned.

1.1Theorem. AssumethegeneralizedRiemannhypothesisfor imaginaryquadraticfields.Let� beanirreduciblealgebraiccurve in � � containinginfinitely many CM pointsandsuchthat

neitherof its projectionsto � is constant.Then � is theimageof %�&'�/(
� for some(+*-, .
1.2Remark. In theproofof Theorem1.1wewill seethatthestateof theart in analyticnumber

theoryis suchthattheRiemannhypothesisis “almostnot needed”(seeRemark5.4). It is clear9
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thatTheorem1.1impliessimilarstatementsfor curvescontainedin theproductof two modular

curves.In particular, if oneassumesGRH,Oort’s conjectureis truefor curvescontainedin the

productof two modularcurves. :
1.3Remark. Ben Moonenhasproved Oort’s conjecturefor the setsof CM points in moduli

spacesof abelianvarietiessuchthat thereexistsa primenumber; at which all theCM points

arecanonicalin thesensethatthey haveanordinaryreductionof which they aretheSerre-Tate

canonicallift (see[7, ChapterIV, � 1]). YvesAndré hasprovedtheconclusionof Theorem1.1

with theRiemannhypothesisreplacedby theassumptionthattheZariskiclosureof � in < 	 �=< 	
meets�?>@ ��A� only in points �B>C�����"� with ��� aCM point (see[1]). In thecasewhere� meets

theunionof �?>@ D�E� and �C�F�?>@ only in > �+> hehasaverysimpleproof. :
The ideaof the proof of Theorem1.1 is the following. We usethe Galoisactionon the set

of CM
�
-invariantsto show that for all but finitely many CM points ���
	������"� on � the CM

fieldsof �
	 and ��� coincide.Thenwe considerintersectionsof � with its imagesundercertain

Heckeoperators.TheRiemannhypothesisimpliesthat � is actuallycontainedin someof these

images.To finish,weconsideranirreduciblecomponentG of theinverseimageof � in HI�JH ,

the productof the complex upperhalf planeby itself, and show that the stabilizerof G inKML ����NO�P� KML ���QNR� is of thekind it shouldbe.

1.4Remark. At the time this article cameback from the referee(June1997), Yves André

succeededin proving theconclusionof Theorem1.1 unconditionally, usinga resultof Masser

on Diophantineapproximationandthe
�
-function. :

2 Somefactsabout CM elliptic curves.

Beforewe startwith theproof of Theorem1.1,we needto recallsomefactsaboutCM elliptic

curves.Thesefactscanbefoundfor examplein [10, AppendixC, � 11]. Firstof all, CM elliptic

curves are definedover � . Let S be an imaginaryquadraticextensionof � , with a given

embeddingin � . Let T7UWVXS bethering of integers.Every subringof T7U of finite index is

of the form T7UZY [\1^]_�I`C�aT7U for a uniqueinteger �b*c, . For �b*c, let d
UZY [ be the setof

isomorphismclassesof pairs �/�e�3fZ� , with � anelliptic curve over � and fO1�T7UgY [h5 i6jlk2�8�h�
anisomorphismof rings inducingthegivenembeddingof S into � via theactionon

L)mon �8�h� .
Thegroup pqUW1r]tsPuwv8� �DxwS+� actson d
UZY [ . But alsothePicardgroup y moz �8T7UZY [�� actson d
UZY [
by thefollowing formula:�B{}|~,'� �/�e�'���g�Q���5 ���q�M�l� �����
where � is aninvertible T7UZY [ -module, ���g� its equivalenceclassand �C�P�l�M� ��� thecokernelof

themap ;
13� � 5 � � if ;)13T �UZY [ 5 T �UZY [ hascokernel � (view ; asa matrix with coefficients

in T7UZY [ ). If we chooseanembeddingof � in � andwrite ���8��� as � moduloa lattice � , then�8���q�M�l� �g�����8��� is thequotientof ���P�l�M� �g� by �E�q�l�M� �Z� . Theactionsby pqU and y m~z �/T7UgY [!�
on d
UZY [ commute.
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2.2Proposition. The set d
UZY [ is a y moz �/T7UZY [�� -torsor, i.e., the actionof y moz �8T7UZY [�� is free and

hasexactlyoneorbit.

Proof. (Sketch.)For every �/�e�3fZ� and � asabove, i�jMk��l�M� ���/�R�6]CT7UZY [ . Moreover, T7UZY [ is of

theform �P� ���QxM���M� . It follows that � is aninvertible T7UZY [ -module. :
It follows that pqU actson d
UZY [ via amorphismpJU�5 y m~z �/T7UgY [�� . Thismorphismis surjective

andunramifiedoutside� . TheFrobeniuselementat a maximalideal � not containing� is the

element�����/� 	 of y m~z �/T7UgY [�� (all thiscanbeseenfrom deformationtheory, usingthetheoremof

Serre-Tate,or from classfield theory). Let �AUgY [ be theGaloisextensionof S corresponding

to this quotient y moz �8T7UZY [�� of pJU . We remarkthat we have �AUZY [�]�S�� � �8�h��� for all �/�e�3fZ�
in d
UgY [ .
3 The two CM fields arealmost alwaysequal.

Let ����V@� � beasin Theorem1.1(i.e., it is irreducible,it containsinfinitely many CM points

andits two projectionsto � arenotconstant).Sinceall CM pointshavecoordinatesin � , ��� is

definedover � , in thesensethat it is the locusof zerosof an irreduciblepolynomial,call it � ,

with coefficientsin � . It will beconvenientfor usto work with a curve definedover � , hence

we let � betheunionof thefinitely many conjugatesof ��� . Then � is definedby theproduct�
of theGaloisconjugatesof � , if we take � suchthatit hasanon-zerocoefficient in � . Let �M	

and � � bethedegreesof
�

with respectto thesecondandfirst variable.Then �¢¡ is thedegree

of the £ th projectionfrom � to � . For � in � we will denotethe endomorphismring of the

correspondingelliptic curve by i6jlk2�Q�a� . For a CM point � in � we will call �-�bi�jMk2���a� the

CM field of � . Notethattheisogeny classof a CM elliptic curve over � consistsof all elliptic

curveswith thesameCM field. Wewantto provethat � is theimagein � � of some%�&'�/(
� . Our

first stepin this directionis thefollowing proposition.

3.1Proposition. Let � beasabove. For all but finitely many CM points ���
	������"� in � theCM

fieldsof �
	 and ��� coincide.

Proof. Supposethat ���
	3������� is a CM point in �e� �#� suchthat the two CM fields S¤	 and Se�
aredifferent.Since� is definedover � , �J���)	�������� hasdegreeatmost ��� over �J���)	�� anddegree

at most �M	 over �J���.��� . Let � bethefield generatedby S¥	 and S¦� , and § the intersectionof�¨���
	�� and �¨�Q����� . Let uswrite i6jlk2����¡���]-T7U
©oY [B© for £g]ª, and { . Thefield �=�Q��¡/� is anabelian

Galoisextensionof � , of degreeat least « y m~z �/T7U
©¬Y [B©/�'«�x¢{ . Thedegreesof �=�Q�
	�������� over �=�Q����
and �¨���
	�� areequalto thoseof �¨���
	�� and �¨������ over § , respectively. Thisgivesus:

�8®¯|r{¢� «�y moz �8T7U
©¬Y [B©/��« °b{w�¢¡±��§ 1 �g�8|
We will now work to get a suitableupperboundfor ��§ 1��g� . The group sPuwvB�8�¨���
	������3��x?�²�
is an extensionof squ?v³�/�Ox��²� by the abeliangroup squ?vB�/�¨���
	��������xw��� . Hencethe action ofsPuwv8�8�¨���
	�����"�x?�=� on sPuwv8�8�¨�Q�
	���������xw��� by conjugationfactorsthroughanactionof sPuwv8�8��x?�²� .
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In the sameway, squ?v³�/�Ox��²� actson the two groups sPuwv8�8�¨����¡���xw��� , which we view as sub-

groupsof squ?v³�/S¦¡±�Q��¡/��x?S¦¡¬� . Now squwvB�8��x?�=� is equal to squwvB�8S¥	x?�=�\�@sPuwv³�/Se�"x��²� , hence

equalto ��x¢{?���¥��x¢{?� . Theactionof sPuwv8�8��x?�²� on sPuwv8�8�¨�Q��¡/��xw��� factorsthrough sPuwv8�8SA¡�x?�²�
andassuchcoincideswith the restrictionof the actionof sPuwv8�8SA¡�x?�²� on sPuwv8�8SA¡±����¡���xwSA¡��D]y moz �8T7U
©oY [B©/� .
3.3Lemma. Let S bea quadraticimaginaryfield and ��*´, . Thenthenon-trivial elementµ
of sPuwvB�8S¤x?�=� actsas ¶J, on y moz �8T7UZY [�� .
Proof. Theendomorphismµe`b, of y m~z �/T7UgY [!� factorsthroughthenormmapfrom y m~z �/T7UgY [!�
to y m~z ����� . :
Now notethat squ?vB�8§·xw��� is a quotientof both sPuwv8�8�¨����¡���xw��� , sotheactionof squ?v³�/�Ox��²� on it

is by the non-trivial charactergivenby the first projection,but alsoby the secondprojection.

This impliesthat sPuwv8�B§·xw��� is killed by multiplicationby two.

3.4Lemma. Let S be an imaginaryquadraticfield and �¸*¹, . Thenthe dimensionof theº � -vectorspacey m~z �8T7UZY [��)� º � is at mostthenumberof oddprimesdividing thediscriminantk m~»�z�¼ �8T7UZY [�� of T7UZY [ plusten.

Proof. (Sketch.) The exact boundwe give doesnot matterso much,so we just give some

indications.First onenotesthatthereis anexactsequence:�8®¯|¾½l|¿,'� �8SÀ�Á�¨���ÂO5 y moz �8T7UZY [���5 y moz �/T7UZY [��Ã,�x¢{��¬�65 ÄM|
Let dC1r] K}Åanz �8T7UZY [��Æ,'x¢{��¬� and Ç´1^] K¯Å.n�z �/�P�Æ,'x¢{��¬� . TheKummersequencegivesa surjection

from È 	 �BdaÉQÊ� º ��� onto the { -torsion subgroupof y moz �8d�� , which hasthe samedimensionasy moz �Bd��)� º � . Onedealswith È 	 �BdaÉQÊ�� º ��� by projectingto Ç.É�Ê . :
Since squ?v³�8§·xw��� is killed by 2 andaquotientof asubgroupof y moz �/T7U
©¬Y [B©/� , wehave:�8®¯|rË¢� v~Ì¢Í � ��§ 1 �g�Î°t«¾�?{¤Ï]�;g« k m~»�z¼ �8T7U
©oY [8©/�" �«`b,!ÄM� £�ÐF� ,w�"{}  |
On theotherhand,wehaveSiegel’s theorem(see[8]), statingthat:�8®¯|^Ñ�� voÌ¢Í7«�y m~z �8T7U
©oY [8©/�'«?]t�±,'x¢{�`�Ì��Ò,'��MvoÌ¢Í4« k mo»z�¼ �8T7U
©¬Y [B©/�'«^� �3« k m~»�z¼ �8T7U
©oY [8©/�'«w5 >Ó�"|
Combiningequations(3.5) and(3.6) shows that «�y moz �8T7U
©oY [B©/��«�xl��§ 1)�g� tendsto infinity asthe

discrminiantof T7U
©¬Y [B© tendsto infinity. But thenequation(3.2)canhold for only finitely many���
	�����"� . Thisendstheproof of Proposition3.1. :
3.7Remark. The proof of Proposition3.1 shows actually more: the function on the set of

CM pointson � that sends���
	������3� to �¢	�x¢��� takesonly finitely many values.Using this, one

canreducethe proof of Theorem1.1 to the casewherethereare infinitely many CM points���
	�����"� on � with i6jlk2�Q�
	�P]Ài6jlk2������� (onereplaces� by its imageundera suitableHecke

correspondence).As wedonot know how to exploit this,wedonotgo into furtherdetail. :
3.8Remark. Proposition3.1wasalsoprovedby YvesAndré in [1], andalsoby Ching-Li Chai

(notpublished). :
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4 Intersecting Ô with something.

We continuethe proof of Theorem1.1. So we let � be asbefore. At this point we already

know thatwehave infinitely many CM points ���
	������� on � for which �
	 and ��� areisogeneous

becausethey have the sameCM field. We have to prove that thereis an integer (-*Õ, such

thatfor infinitely many �Q�
	"������� thereexistsanisogeny of degree( between�
	 and ��� . A direct

approachfor this is thefollowing. Considera CM point �Q�
	������"� suchthat �
	 and ��� have the

sameCM field, say S , andanisogeny from �
	 to ��� of minimal degree,say ( . Onecangetan

upperboundfor ( in termsof thediscriminantsof the i6jlk2�Q��¡�� . By Remark3.7,onecanassume

that i6jlk2���
	��O]Öi6jlkÎ�Q�����R]-T7UZY [ andgetanupperboundfor ( from Minkowski’s theoremon

idealsof small norm representingelementsof the classgroup; the boundis a constanttimes« k mo»�z¼ �/T7UgY [��'« 	8×³� . Thenoneconsidersthe intersectionof � with %.&��/()� . The degreesof both

projectionsfrom %�&'�/(
� to � areequalto Ø²�/(
� , whereØ²�/(
��]@(qÙ�Ú'Û Ül�Ò,�`#,'x�;.� . ThePicardgroup

of < 	 �Ý< 	 (over a field, say � ) is isomorphicto �b�+� , theisomorphismsendinganeffective

divisor to the degreesof its two projectionsto < 	 . The intersectionform is the following:�8Þ��3ß���à
�/á��3�}��]âÞ �e`�ß"á . Hencethe intersectionnumberof the Zariski closuresin < 	 ��< 	
of � and %.&'��()� is Ø²�/(
���/�l	�`¸���"� . Sinceboth curves we intersectare definedover � , the

intersectioncontainsall Galoisconjugatesof ���
	�������� , of which thereare «�y moz �8T7UZY [!��« . So if«�y m~z �/T7UgY [!�'« exceedsØ²�/(
���8�M	�`¸���"� , the proof is finished,sincethen the intersectionis not

proper. Unfortunately, equation(3.6)doesnot imply suchaninequality.

Nevertheless,the idea of intersecting� with somethingis a good one. Natural “some-

things” to take are imagesof � itself underHecke correspondences.Again, we considera

CM point ���
	3������� on � suchthat the CM fields of �
	 and ��� coincide. Let S , ��	 and ��� be

definedby: i6jlk2����¡��ã]äT7UgY [8© . Let � be the leastcommonmultiple of ��	 and ��� . The field

generatedby �AUgY [±å and �¦UZY [³æ is containedin �AUZY [ , andoneeasilychecksthat �AUZY [ hasde-

greeat most threeover it. Hencethe orbit of ���
	������� underthe action of pJU hasat least«�sPuwv8�8�AUZY [�xwS+��«�xw® elements.Recallfrom � 2 thatwecanidentify squ?v³�/�¦UZY [�x?S+� with y m~z �/T7UgY [!� .
For µ in sPuwv8�8�AUZY [�xwS+� correspondingto the class ��ç�� of an invertible ideal ç of T7UZY [ , there

areisogeniesfrom �
	 to µ��Q�
	�� andfrom ��� to µ��Q����� whosekernelsareisomorphic,as T7UgY [ -
modules,to T7UZY [�x�ç . Henceif we take ç suchthat T7UZY [�x?ç is a cyclic groupof someorder ( ,

then µ�����¡/� is in Ç Ü ����¡Q� for £ equals1 and2, whereÇ Ü is thecorrespondenceon � thatsendsan

elliptic curve to thesum(asdivisors)of its quotientsby its cyclic subgroupsof order ( . (Let us

notethatthis Ç Ü is not thesameasthecorrespondenceon � thatis usuallycalled Ç Ü if ( is not

squarefree,sincetheusualoneinvolvesa sumover all subgroupsof order ( .) Let Ç Ü �ÝÇ Ü be

thecorrespondenceon �W�+� that is theproductof Ç Ü on eachfactor: it sendsa pair �8�4	"�3�����
of elliptic curvesto the sumof the �/�7	�xwpD	"�3���"xwpP�"� , where p7¡ is a cyclic subgroupof order( in ��¡ . Then �Q�
	������"� is in the intersectionof � and ��Ç Ü �ÝÇ Ü �� , because��¡ is in Ç Ü �/µ6����¡/��
and ��µ����
	��"��µ��Q������� is in � . Sinceboth � and �QÇ Ü ��Ç Ü �Ò� aredefinedover � , their intersection

containsall Galoisconjugatesof ���
	������� . Hencetheintersectionhasat least « y moz �/T7UZY [!�'«�xw® el-

ements.Let usnow calculatethedegreesof theprojectionsof ��Ç Ü �EÇ Ü �Ò� to � . By definition,��Ç Ü �\Ç Ü �� consistsof the ���Î��èM� suchthatthereexist é and ê in � with �/éÎ��ê¯� in � , andcyclic
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isogeniesof degree( from é to � andfrom ê to è . Let � bein � . Thenthereare Ø²�/(
�2é ’swith��ÐÓÇ Ü �/éa� . For eachsucha é thereare �M	Oê ’s with ��éÎ��ê¯� on � . For eachsucha ê thereareØ²�/()�2è ’s in Ç Ü �/ê¯� . This shows thatthedegreeof thefirst projectionof �QÇ Ü �EÇ Ü �� is Ø²�/(
� � �M	 .
Of course,for thesecondprojectiononehastheanalogousresult.So,for theintersectionnum-

berof � and �QÇ Ü �ÝÇ Ü �� we find {w�M	Ò����Ø4��()� � . We concludethat if «�y m~z �/T7UgY [!�'« is biggerthanÑ¢�M	Ò����Ø²�/(
� � , then � is containedin �QÇ Ü �EÇ Ü �Ò� . Thenext thing to do is to seeif theredo exist

idealsç with therequiredproperties.

Let �
	 , ��� , S and � beasabove. Let ; beaprimenumberthatsplitsin T7UZY [ , i.e.,suchthatT7UZY [Z� º Ú is isomorphicto
º Ú � º Ú . For ç wetakeoneof thetwo maximalidealscontaining; .

As explainedabove,wehave thefollowing implication:

�/½M|~,'� Ñw�l	±� ���Ã;h`b,'� �=ë «�y moz �8T7UZY [���« implies �¸VX��Ç Ú �\Ç Ú ��P|
Equation(3.6) tells us that « y m~z �/T7UZY [��'«ì]í« k m~»�z�¼ �8T7UZY [���« 	8×³�±îMï�ð¿	8ñ . So we want ; to be at most

somethingas « k mo»z�¼ �8T7UZY [!��« 	8×Bò . More precisely:

4.2Proposition. Supposethat thereexists ó�ôXÄ suchthat,when S rangesthroughall imag-

inary quadraticfields and � throughall positive integers,the numberof primes ; lessthan« k mo»�z¼ �/T7UgY [��'« 	8×Bò � õ thataresplit in T7UZY [ tendsto infinity as « k m~»�z�¼ �8T7UZY [���« tendsto infinity. Then

thereareinfinitely many primes; suchthat � is containedin ��Ç Ú �\Ç Ú �Ò� .

Proof. Becausewe have infinitely many CM points ���
	3������� on � , we know that thediscrim-

inants « k mo»�z¼ �/T7UZY [��'« associatedto them asabove tend to infinity. The implication (4.1) and

equation(3.6)giveustheinfinitely many requiredprimes. :
5 Existenceof small split primes.

The aim of this sectionis to prove the hypothesisin Proposition4.2. It turnsout that this is

no problemat all if oneassumesGRH for imaginaryquadraticfields andusesthe resulting

effectiveChebotarev theoremof Lagarias,MontgomeryandOdlyzko asstatedin [9].

For S an imaginaryquadraticfield, � a positive integer and �c* { a real number, letö UZY [ ���a� be the numberof primes ;�°÷� thataresplit in T7UZY [ , let � U´1r]ø« k mo»z�¼ �8T7UR��« andlet� UZY [q1^]´« k mo»z�¼ �/T7UZY [��'« . Notethat � UZY [¨]�� � � U . As usual,let
L)m �Q�a�R1r]�ùZú� �¢ûxgvoÌ¢Íl��û� . Theorem4

of [9] andthesecondremarkfollowing it saythat,for � sufficiently big andfor all S asabove

for whichGRH holds,onehas:

�BË}|~,'� üüüü ö UZY�	�Q�a�g¶ ,{ L)m �Q�a� üüüü ° ,Ñ � 	8×³� �/v~Ì¢Í��8� U��)`�{gvoÌ¢Íl���a��ý|
Sincethenumberof primesdividing � is at most voÌ¢Í � �B�
� , equation(5.1) implies:�BË}|r{¢�ö UZY [����a�R* �{gvoÌ¢Íl���a� þ L)m ���a� voÌ¢Í.�Q�a�� ¶ voÌ¢Í��Q�a�®�� 	8×³� �/v~Ì¢Í��/�}U��)`�{gvoÌwÍ����a��Z¶ {6v~Ì¢Í��Q�a�MvoÌ¢Í��B�
��=voÌ¢Í��8{¢� ÿ |
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If � tendsto infinity,
L)m �Q�a�MvoÌ¢Í����a��x'� tendsto 1 and v~Ì¢Í����a� � x�� 	8×³� tendsto 0. One checks

easily that for � sufficiently big (i.e., bigger than someabsoluteconstant),and bigger thanvoÌwÍ��8� UZY [�� � �/voÌwÍ��/v~Ì¢Í��8� UZY [��� � , onehas v~Ì¢Í����a�Mv~Ì¢Í��/�}U���xw®�� 	8×³� ë á ë , , with á independentof S
and � . Underthe sameconditions, v~Ì¢Í����a�Mv~Ì¢Í��8�
��x�� tendsto zero if � tendsto infinity. This

meansthatwehaveprovedthefollowing proposition.

5.3Proposition. Let � be as before(i.e., as in the beginning of � 3). AssumeGRH for all

imaginaryquadraticfields. Thenthereexist infinitely many primes; suchthat � is contained

in ��Ç Ú �EÇ Ú �� . :
5.4Remark. Of course,thequestionremainswhetheronecanprove thehypothesisof Propo-

sition 4.2 without assumingGRH. EtienneFouvry tells me the following. He shows that for
� ôÓÄ andall ( , thesetof �}UZY [ suchthatthenumberof primes; ë � � UZY [ thataresplit in T7UZY [ is

at most ( , hasdensityzero(i.e., thenumberof such �}UZY [ ë � is Ì��Q�a� for ��5 > ). Moreover,

hesaysthat theexponent ,�x?½ is critical, in thesensethatonecanprove that for all ó¥ôÖÄ , the

numberof primes; ë � 	8×BòÒî õUZY [ thataresplit in T7UgY [ tendsto infinity as � UZY [ tendsto infinity. To

provethis,heusesaresultof Linnik andVinogradov in [6], seealso[4]. Thecentralpoint in [6]

is anupperboundfor shortcharactersumsby Burgess,in which theexponent,'x?½�`�ó appears.

This ,'x?½ hasnotmovedin thelast30years. :
6 Sometopologicalarguments.

In this sectionwe finish theproof of Theorem1.1 by combiningProposition5.3 with the fol-

lowing theorem,which givesyet anothercharacterizationof modularcurves.

6.1Theorem. Let � in � � bean irreduciblealgebraiccurve. Let �M	 and ��� bethedegreesof

its two projectionsto � . Supposethat �M	 and ��� areboth non-zero,and that we have � V��Ç Ü �+Ç Ü �� for somesquarefree integer (Óô÷, that is composedof primes;�*��ãu����?Ë¯�3�M	3 .
Then � is theimageof %.&'����� in � � for some� *-, .
Let usfirst show thatthis theoremandProposition5.3 imply Theorem1.1. Solet ��� and � be

asin thebeginningof � 3. Recallthat � is theunionof thefinitely many Galoisconjugatesof

theirreduciblecomponent��� of it. We know that thereareinfinitely many primes; suchthat� is containedin �QÇ Ú �FÇ Ú �� . For sucha prime ; , let Ç��MY Ú denotethe correspondenceon �
inducedby Ç Ú �JÇ Ú . By thiswemeanthefollowing. ThecorrespondenceÇ Ú �JÇ Ú on � � is given

by themapfrom %�&��Ã;.���E%.&'�Æ;.� to � � ��� � thatsendsapoint �B0Î��ØR� to �	� �B0a���
� �/Ø����û�B0ý�"��û�/Ø���� ,
where � and û standfor sourceandtarget, respectively. Take the inverseimageof � �I� in%�&'�Ã;.�D��%.&'�Æ;.� , and deleteits zero-dimensionalpart; that, togetherwith its two mapsto � ,

is Ç��MY Ú . We have to show thata suitableproduct Ç��MY Ú å.à�à�àÒÇ��MY Ú
� with � * , andthe ;l¡ distinct

inducesanon-trivial correspondencefrom ��� to itself, becausethenwecanapplyTheorem6.1

to ��� with (\]�;ý	aà�à�à�; � . Let d bethefinite setof irreduciblecomponentsof � . TheneachÇ��MY Ú
inducesacorrespondenceÇ��Y Ú on d thatis surjective in thesensethatbothmapsfrom Ç�'Y Ú to d
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aresurjective. Moreover, theGaloisgroup p�� actstransitivelyon d , andall Ç�'Y Ú arecompatible

with this action. Let ��& in d correspondto ��� . If thereis someÇ�'Y Ú suchthat ��& is in Ç��Y Ú ��& ,
wecantake (E]�; . Sosupposethatfor all Ç�'Y Ú we have ��&#ÏÐ\Ç��Y Ú ��& . Thenwehave for all Ç�'Y Ú
andall � that ��ÏÐEÇ��Y Ú � . Onenow easilyseesthatthereare;ý	��!|!|�|��B; � distinctwith ,J° � °t«�d²«
and ��&¨ÐEÇ�'Y Ú å.à�à�àÇ�'Y Ú � ��& .
Proof. (Of Theorem6.1.) We take an integer ( asin the theoremwe areproving. Let Ç��lY Ü
be the correspondenceon � inducedby Ç Ü �FÇ Ü , in the senseexplainedabove. (In fact, for

everythingthatfollows we couldalsoreplaceÇ��lY Ü by oneof its irreduciblecomponents,but it

is usefulto seehow to exploit all of it.) We view Ç��MY Ü asasubsetof �t�Ý� . Theimageof Ç��lY Ü
underthemap � Ål¼ 	 � Ål¼ 	 � from �´�F� to �Ö�F� is the image Ç Ü of %.&'��()� in �X�$� . Consider

thecommutativediagram:

�8Ñ¯|r{¢� � 5 �
� �

Ç��MY Ü 5 Ç Ü
in which theverticalmapsareinducedby theprojectionsfrom �À��� and �Ö�F� on thefirst

factor.

6.3Lemma. Themapfrom Ç��MY Ü to thefibredproduct �t�6�7Ç Ü inducedby (6.2) is surjective.

Proof. By construction,all four mapsin (6.2) arefinite asmorphismsof (possiblyreducible)

algebraiccurves.Therefore,themapfrom Ç��MY Ü to ���6�)Ç Ü is alsoafinite morphismof algebraic

curves. Henceto show that it is surjective, it sufficesto show that �÷���DÇ Ü is irreducible,or,

equivalently, that thetensorproductof thefunctionfieldsof � and %.&��/()� over �=� � � is a field.

For this, it is enoughto prove that the tensorproductwith %�&'�/(
� replacedby %���()� is a field

( %ã�/(
� is the modularcurve parametrizingelliptic curveswith a symplecticbasisof their ( -

torsion).Thefunctionfield of %¥�/(
� is Galoisover �¨� � � with Galoisgroup
KML �'����x?(ý����x}���#,w .

The group
KML �'�/��x�(ý��� is isomorphicto the productof the

K¯L �'� º Ú ©�� , ,Ý° £D° � ; onechecks

easilythatit hasnonon-trivial subgroupof index atmost �l	 . Thismeansthatthefunctionfields

of � and %ã�/()� arelinearly disjoint. :
For reasonsto becomeclearsoon,wenow first prove thefollowing lemma.

6.4Lemma. Theorbitsin � of Ç��MY Ü arenotdiscretefor thestrongtopology.

Proof. Themorphism
Ål¼ 	 from � to � is proper, hencethe imageof a closedsubsetof � is

closedin � . In particular, theimageof theclosureof any subsetof � is theclosureof its image.

Henceit is enoughto seethat theimagesin � of theorbitsof Ç��lY Ü arenot closed.Let � bein� , andlet è beits imagein � . Lemma6.3 impliesthat
Ål¼ 	 Ç��lY Ü �\]@Ç Ü è , hencewe just have to

show thattheorbitsin � of Ç Ü arenotclosed.For thisweview � asthequotientof thecomplex

upperhalf planeH by thegroup
K¯L ���/��� via themap ö 1��ã�5 � �8��xl�/��`E������ . Let � bein � , and
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choose� in ö � 	 � . Thenfor all Þ and ß in � , ö ���²`FÞ}� and ö ��(������ arein theorbit of � underÇ Ü .
By composingtheseoperations,we seethat ö �/(��	�A`ÁÞ¯� and ö ���#`�(Î���±Þ}� arein theorbit of � .

Taking Þ non-zeroand ß big shows thattheorbit is not closed.(In fact,it is easyto show, using

�ã�5 ¶�� � 	 , thatall orbitsin � of Ç Ü aredense.) :
Weview ���Ý� asthequotientof H´�EH by thegroup �F1^] KML ���/����� KML �'����� , via themap:�8Ñ¯|rË¢� ö 1�H÷�\HX5 ���Ý�R� ���'	�����"���5 � � �/��xl�/��`����'	±���� � �8��xl����`������������|
Let G be an irreduciblecomponentof the analytic subvariety ö � 	 � of HÕ��H . The groupp 1r] KML ����N��¥� KML ����N�� acts transitively on Hâ��H . We will study its subgroupp � , the

stabilizerof G . What we have to prove is that p�� is the graphof an inner automorphismofKML ����NO� ; this automorphismthentells usfor which � our curve � is theimageof %�&'�/��� . The

decisive stepin theproof of this is to seethat p � is not discrete(if � is anarbitrarycurve in� � , then p�� is typically discrete).

6.6Lemma. Thegroup p � is ananalyticsubgroupof p .

Proof. Theactionof p on H·�AH is algebraic(it is givenby fractionallineartransformations).

Thesubgroupp�� consistsof exactly thoseelements� in p thatsatisfy, for all � in G , thetwo

conditions� �EÐ�G and ��� 	 ��Ð\G . All theseconditionsareanalytic. :
6.7Lemma. Thekernelsof thetwo projectionsfrom p�� to

KML �'��N�� arediscrete.

Proof. This kernel S , sayfor thesecondprojection,is thesameasthestabilizerof G in the

subgroup
K¯L ���QN��¦��� ,w of p . For all � in H , it stabilizesG"!+1^] G$#·�QH �·�%�ý ?� , which is

discretesince� ��ôÓÄ ; hencetheconnectedcomponentS'& of S stabilizeseveryelementof G(! .
We concludethat S & actstrivially on G . Now thestabilizerin

K¯L ����N�� of theelement£ of H
is
K*) �'��N�� . Because�M	hôªÄ , S & is containedin all conjugatesof

K*) ����N�� , the intersectionof

which is ���#,w . :
6.8Lemma. The imagein

KML ���/��� of ��� , the stabilizerof G in � , underthe £ th projection,

hasindex at most �¢¡ .
Proof. Wedo theproof for £ì]�{ . We factorthemap ö 1�Hª�EHX5 ���Ý� asfollows:�8Ñ¯|,+M|¿,'� H÷�EHX5 ���EHX5 ���Ý��|
Let % bethe imageof G in �Ö�ÝH . Then % is an irreduciblecomponentof theinverseimage-

of � in �b�¥H . Let d bethesetof á in � suchthatevery � in ö � 	 á is containedin morethan

oneirreduciblecomponentof ö � 	 � . Then d is containedin the finite subsetof � consisting

of singularpointsandpointsof which at leastoneof the coordinatesis in ��ÄM�!,%.¢{/+¯ . Let ��0
be �W¶�d , andlet G 0 and % 0 bethe inverseimages,in G and % , respectively, of � 0 . Themap

from G 0 to � 0 is thequotientfor theactionof ��� , hencethemapfrom % 0 to � 0 is thequotient

for theactionof
Ål¼ � ��� . It follows that

Ål¼ � ��� is thestabilizerin
KML �'�/��� of % in

-
, so thesetKML ���/����x Ål¼ � �1� is thesetof irreduciblecomponentsof

-
. But

-
is alsothefibredproductofÅl¼ � 13�-5 � and HX5 � , which impliesthat

-
hasatmost ��� irreduciblecomponents. :
9



Lemmas6.6,6.7and6.8arein factvalid for any curve � in � � for which �M	 and ��� arenon-zero.

Thenext onecruciallyexploits that �tVÖ��Ç Ü �EÇ Ü �Ò� .

6.9Lemma. Thetopologicalgroup p�� is notdiscrete.

Proof. The subgroupp � of p is analytic, henceclosed. It contains ��� . The inclusion� V �QÇ Ü �bÇ Ü �� implies that it containssomeless trivial elementsas well. The corre-

spondenceÇ Ü on � canbe describedas follows. Take 2 in � ; take its inverseimagein H ;

apply the map �Ö�5 (��X] � Ü & & 	 �3� to it and take its imagein � ; that is Ç Ü 2 . Another way

to saythis is: take representatives û ¡ in s L �'���4� (thereare Ø4��()� of them)for the quotientsetKML ���/����� Ü & & 	 � KML �'�/����x KML ���/��� ; thenfor 2 in � and � in H mappingto it, Ç Ü 2 is theimageof the

sumof the û ¡4� . It follows thatfor each �/£� � � suchthat �Qû ¡ ��û65��±G is containedin ö � 	 � we getan

element��¡oY 5 in p�� of theform

�?¡oY 5�]87 ¡oY 5ÒY�	2à þ ( � 	8×³� þ ( Ä Ä ,lÿ ��( � 	8×³� þ ( Ä Ä ,lÿ4ÿ à97 ¡oY 5ÒY ��
with 7 ¡oY 5±Y�	 and 7 ¡oY 5ÒY � in � . For á in � and � in G mappingto á , Ç��MY Ü á is theimageof thesumof

the ��¡oY 5�� . Let � bethesubgroupof p�� generatedby ��� andtheseelements�?¡~Y 5 . Wewill prove

that � is notdiscrete.Let � betheclosureof � . Wetakeanelement� in G . Themapfrom p
to H÷�EH sending� to � � is proper, becausethestabilizersof elementsof HÀ�EH arecompact.

Hence��� is alsotheclosureof �\� . Thesubset�\� of G is discreteif andonly if its imagein� is discrete,since � contains��� andthemap G 5 � is thequotientfor theactionof ��� .

By construction,the imageof �\� in � is theorbit of � for Ç��MY Ü , which, by Lemma6.4, is not

discrete.Thisprovesthat p�� is notdiscrete. :
Wecannow quickly finish theproofof Theorem6.1.ConsidertheLie algebra

L)mon �8p���� , which

by Lemma6.9 is non-zero.Lemma6.7 tells us that the two projections
Ål¼ ¡ LÎm~n �/p �R� arenon-

zero.But
Ål¼ ¡ L)mon �/p �R� is normalizedby

Ål¼ ¡ �1� , whichis Zariskidensein
KML ����N�� by Lemma6.8.

Since
L)mon � KML �'�QNR�� is simple,it followsthat

ÅM¼ ¡ L)m~n �/p ��� is equalto
L)mon � KML �'�QNR�� for both £ . So,

since
KML �'�QNR� is connected,p�� projectssurjectively on both factors

KML ����N�� of p . Now we

apply what is calledGoursat’s lemma: let � be a subgroupof a product p#	4�IpP� , suchthat

the projections;ý	 and ;l� from � to p#	 and pP� aresurjective, then : n¼ �Ã;a	� and : n�¼ �Æ;���� are

normalsubgroupsof pq� and p#	 , respectively, and � is the inverseimageof the graphof an

isomorphismbetweenpD	x;: n�¼ �Ã;��"� and pq��x;: n¼ �Æ;ý	� . The kernelof
ÅM¼ � 13p�� 5 KML ���QNO� is a

normalsubgroupof
K¯L ����N�� , viewedas

KML �'��N��)�e� ,w . Sinceit is discreteandcontains� ,¢�!¶q,w ,
it is � ,¢��¶J,w . The sameholds for the otherprojection,and p�� is the inverseimagein p of

thegraphof ananalyticautomorphism,µ say, of
KML �'��N��x}���A,? . Every suchautomorphismis

inner. Sincethe
Ål¼ ¡ �1� have finite index in

KML ���/��� , it follows that µ is inducedfrom an inner

automorphismof the algebraicgroup
KML ��Y � . The algebraicgroupof automorphismsof

KML ��Y �
is yOs L ��Y � . Sincethe map s L ���/�=�e5 y�s L �����²� is surjective (for exampleby Hilbert 90), µ
is givenby conjugationby someelement� in s L ���/�²� . So p�� is the set �¯�	<
�
�4�*<M��� 	 �ì«=<�ÐKML ����NO�3 . Let � beanelementof G , andwrite it as �+]À���M�
<>��� with � in H and < in

KML ����N�� .
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Sincep ��� is in G , which is of dimensiontwo, thestabilizerof � in p�� hasdimensionat least

one. Let � be the stabilizerof � in the connectedcomponentof identity p &� , for the action

of p?&� on thefirst factor H ; thenthestabilizerof <*� for theactionon thesecondfactoris the

conjugate� � 	 <��@< � 	 � of � . Since � is of dimensiononeandconnected(it is isomorphictoK*) ����NO� ) we musthave � ] ��� 	 <��@<a� 	 � , i.e., ��� 	 < normalizes� . Sincethe normalizerofK*) ����NO� in
KML ���QNR� is just

K*) ����N�� itself, this meansthat ��� 	 < is in � , or, equivalently, that

<>�ã]b�A� . Thismeansthat G ]Ö�¯���l���A���ì«B�¥ÐEHq . Wemayreplace� by multiples Þ¢� of it, withÞ a non-zerorationalnumber. Sowe cananddo supposethat �¯� � is containedin � � andthat� � x��}� � is cyclic, sayof order � . It is now clearthat � is %.&'����� . :
7 Someremarks.

7.1Remark. Our proof of Theorem1.1 shows in fact that, assumingGRH, for eachpair�8�M	"��� �3� of positive integersthereexistsaneffectively computablenumberC��8�M	��3���3� , suchthat

on every irreduciblecurve � in � � of bi-degree �/�M	"�3���3� that is definedover � andnot a mod-

ular curve thereareat most C¥�8�M	"�3���"� CM points. (Note that underGRH, the statementthat«�y m~z �/T7UR�'«�x.«�y m~z �/T7UR����{��Ò«?5 > is effective.) :
7.2Remark. It is not truethatall irreduciblecurves � in � � with � V÷��Ç Ü ��Ç Ü �Ò� for some(FôW, aretheimageof some%�&'�/��� . Herewe constructsomeexamples.Let (FôW, . Let D Ü be

theAtkin-Lehnerinvolution of %�&'�/(
� : it sendsan isogeny to its dual. ThecorrespondenceÇ Ü
on � hasthefollowing description.For 2 in � , take its inverseimagein %�&'�/(
� , take theimage

of thatunder D Ü andthentheimagein � . It follows thatfor anirreduciblecurve � in � � such

thatat leastoneof the irreduciblecomponentsof its inverseimagein %.&'��()�²��%.&��/()� is stable

undertheinvolution �6D Ü �ED Ü � wehave �tVÖ��Ç Ü �7Ç Ü �� . Let
-

bethequotientof %.&���()�.�J%�&'�/(
�
by that involution. Bertini’s theorem,seefor example[5, Theorem6.3], givestheexistenceof

whole familiesof curvesin
-

with irreducibleinverseimagein %�&��/(
�=��%.&'��()� . Take � to be

theimagein � � of suchaninverseimage. :
7.3Remark. Theconditionthat ( besquarefreein Theorem6.1shouldnotbenecessary;it is

dueto thelazinessof theauthor. :
7.4Remark. It is very temptingto try to generalizethemethodsof this article to thegeneral

caseof Oort’sconjecture. :
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