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1 Intr oduction.

In orderto statethe conjecturementionedn thetitle, we needto recall someterminologyand
resultson Shimuravarieties;as a generalreferencefor these,we use[19, Sectionsl-2]. So
letS := Resc/r Gm,c bethe algebraicgroupover R obtainedby restrictionof scalarsfrom C
to R of the multiplicative group. For V' an R-vector spacei|t is thenequvalentto give an R-
Hodgestructureor anactionby S onit. A Shimuradatumis a pair (G, X ), with G a connected
reductive affine algebraiogroupoverQ, and X a G(R)-conjugay classin the setof morphisms
of algebraiogroupsHom(S, Gg), satisfyingthe threeconditionsof [19, Def. 1.4] (i.e., theusual
conditions(2.1.1-3)of [13]). Theseconditionsimply that X hasa naturalcomple structure(in
fact,theconnectedomponentarehermitiansymmetricdomains) suchthateveryrepresentation
of G on a Q-vector spacedefinesa polarizablevariationof Hodgestructureon X. For (G, X)
a Shimuradatum,and K a compactopensubgroupof G(A¢), we let Shyx (G, X)(C) denote
the complex analytic variety G(Q)\ (X x G(As)/K), which hasa naturalstructureof quasi-
projective complex algebraicvariety, denotedSh i (G, X)¢; the projectve limit Sh(G, X)¢ over
all K of the Shx (G, X)c is a schemeon which G(A¢) actscontinuously (The actionbeing
continuousmeanghatthe schemehasa cover by openaffinesU; = Spec(A;) suchthateachU;
is stabilizedby someopensubgroupk; of G(As) andeachf in A; hasopenstabilizerin K;.) A

*A preprintversionof thisarticletogethemwith anappendixhatcouldbe consideredstheauthorsscratchpaper
while working on this subjectcanbe downloadedrom the authors homepage. This appendixcontainsdetailsthat

theauthordoesnot find interestingenoughto publish,but thatmay be helpful for readersvho gotlost.
tpartially supportedy the Institut Universitairede France andby the EuropeariTMR Network ContractERB

FMRX 960006"arithmeticalgebraiogeometry”.



morphismof Shimuradatafrom (G, X;) to (G, X») isamorphismf: G; — G, thatmapsX;
to X,; for K; and K, compactopensubgroup®f G (A¢) andG,y(As) with f(K;) containedn
K5, suchan f inducesamorphismSh(f) from Shg, (G1, X1)c t0 Shg, (Ge, Xo)c.

1.1Definition. Let (G, X) beaShimuradatum,K anopencompacisubgroupof G(A¢), andZ

anirreducibleclosedsubvarietyof Shx (G, X)c. ThenZ is a subvarietyof Hodgetypeif thereis

a Shimuradatum(G’, X'), amorphismof Shimuradataf: (G', X') — (G, X), andanelement
g of G(A¢) suchthat Z is anirreduciblecomponenbf theimageof the map:

Sh(G", X")e 2% Sh(G, X)e % Sh(G, X)ec — Shx (G, X)e.

This definitionis equialentto [19, 6.2], which usesonly closedimmersionsf: G' — G. In [20,
Prop.2.8]it is explainedthatthe subvarietiesof Hodgetype arepreciselythe loci wherecertain
givenclassesn certainvariationsof Hodgestructureqobtainedfrom representationsf GG) are
Hodgeclasseshencetheterminology

1.2 Definition. Let (G, X) beaShimuradatum.For 4 in X welet MT (k) bethe Mumford-Tate
groupof A, i.e.,thesmallestalgebraicsubgroupH of G suchthath factorsthroughHy. A point
hin X is calledspeciaff MT(h) is commutatve (in which caseit is atorus). For K acompact
opensubgroupof G(As), apointin Shy (G, X)¢ is specialif its preimagesn Sh(G, X )¢ areof
theform (h, g) with h in X special.Equivalently, the specialpointsin Sh (G, X )¢ arethezero
dimensionabkubvarietiesof Hodgetype.

1.3Conjecture. (André-Oort) Let (G, X) be a Shimuradatum. Let K be a compactopen
subgroupf G(A¢) andlet S bea setof specialpointsin Shy (G, X )(C). Theneveryirreducible
componenbf the Zariski closureof S in Shi (G, X )¢ is a subvarietyof Hodgetype.

Someremarksarein orderat this point. André statedthis conjectureasa problemfor curves
containinginfinitely mary specialpointsin generalShimuravarietiesin [2, X.4]. Independently
Oort raisedthe questionfor generalsubvarietiesof the moduli spacef principally polarized
abelianvarietiesin [25]. In [2, X.4] André mentionsthe similarity with the Manin-Mumford
conjectureg(proved by Raynaudsee[1]), and[4] containsa versiongeneralizingooth the con-
jectureabove andthe Manin-Mumfordconjectureseealso[19, 6.7.2].

Let usnow discusgheresultsonthe conjectureabove thathave beenobtaineduntil now. All
of themdealwith moduli space®f abelianvarieties.Moonenprovedin his thesis(seg[21, §5],
in particularthe equivalencebetweenConjecture.1and5.3,and[18, IV]) thatthe conjecture
is true for setsS for which thereexists a prime numberp atwhich all s in S have anordinary
reductionof whichthey arethecanonicalift. Needless$o say hismethodsusereductionrmodulo
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aprimenumberp. This givesa quite generakesult,but it hasthe disadantagehatoneneglects
mostof the Galoisactionon the specialpoints, andthat one hasto work with one Frobenius
elementimultaneouslyor all s in S.

In [14], the conjecturewvasprovedfor the moduli spaceof pairsof elliptic curves,assuming
the generalizedRiemannhypothesi{GRH) for imaginaryquadraticfields. In a few words,the
proof exploits the Galoisactionon CM-pointsandconsidersntersection®f the subvarietiesin
guestionwith imagesof themundersuitableHecke operators.In this approachwe work with
a differentFrobeniuselementfor eachs in .S; GRH comesin via the existenceof small primes
with suitableproperties The samecaseof Conjecturel.3wasprovedunconditionallyby André
in [5]. He usesthe Galoisactionon the CM-points,anda Diophantineapproximatiornresultof
Masseronthe j-function.

Morerecently Yafaer hasgeneralizedheresultin [14] to thecaseof productof two Shimura
curvesthat are associatedo quaternionalgebrasover Q, see[31], andB. Belhaj Dahman,a
studentof André, is working on the familiesof jacobiansof the curves

y"=z(z —1)(x — N).

The questionaboutthesefamilies of jacobiansis whetheror not the variousisogely factors
coming from the decompositiorfor the action of 1, (C) are simultaneouslyof CM type for
infinitely mary complex numbersh.

Recently ClozelandUIlImo have proved([10]), for G amongGSp,,, andGL,, thatsetsof the
form Tz, with z in G(Q)\G(A)/K andT, certainHecke operatorsvith p tendingto infinity, are
equidistrituted. Theideabehindthisis thatonewould lik e to imitate andapply the equidistriku-
tion resultsfor Galoisorbits of strict sequencesf pointsof small heightin abelianvarietiesas
in [1]. A sequencef closedpointsof analgebraicvarietyis calledstrictif every properclosed
subsetcontainsonly finitely mary elementsof the sequence Phrasedn this terminology the
André-Oortconjecturesaysthata sequenc®f specialpointsis strict if no propersubvariety of
Hodgetype containsaninfinite subsequenceOf course to prove the André-Oortconjecturen
this way, onehasto replacel,z by the Galoisorbit of z, which seemdo bea hardproblem,and
morewer, onehasto dealwith the factthatthe heightsof CM pointstendto infinity andnotto
zero.

In thisarticle,we provetheConjecturel.3,assumingsRH, for Hilbert modularsurfaces.The
methodof proofis basicallythe sameasin [14], but now we do usemoreadvancedechniques.
Thetwo mainresultsof thearticlearedescribedn Section2. Thereasorfor which we stateand
prove Theorem2.2 is thatit hasaninterestingapplicationto transcendencef specialvaluesof
certainhypegeometricfunctionsvia work of Wolfart, Cohenand Wuistholz,see[11], without
having to assumesRH.



Let usbriefly describethe contentsof this article. Section2 introduceshe Hilbert modular
surfacesthat we work with in termsof a Shimuradatum, givestheir interpretationas moduli
space®f abeliansurfaceswith multiplicationsby thering of integersof arealquadratidield K,
andstategshe mainresults.

Section3, which is not so essentialdiscusseshe differencebetweenworking with abelian
surfaceswith or without a given polarization.In grouptheoreticalterms,the choiceis between
working with GLy(K) or its subgroupGL,(K)" consistingof the elementsof GLy(K) whose
determinanis in Q*. Thereasonfor consideringboth casess thatwith a polarization(anda
suitablelevel structure) the variationof Hodgestructureprovided by the latticesof the abelian
surfacescomesfrom arepresentationf the groupin the Shimuradatum,whichis nottrue with-
out givenpolarizations We needvariationsof Hodgestructurein Section4. On the otherhand,
the sizeof Galoisorbits of specialpoints,studiedin Section6, is simplerto understandn terms
of classgroupswhenworking without polarizations. We could have chosento work through-
outthearticlewith GLo(K)’, but we think thatit is instructive to seethe consequencesf such
a choicein the relatively easycaseof Hilbert modularsurfaces,beforetrying to treatgeneral
Shimuravarietiescompletelyin grouptheoreticaterms.

In Sectiord we recallanimportantresultof André, relatingthegenericMumford-Tategroup
of avariationof Hodgestructureto its algebraicmonodromygroup(i.e., the Zariski closureof
theimageof monodromy).We useit to prove thatfor a curve in a Hilbert modularsurfacethat
is not of Hodgetype andthatdoescontaina specialpoint, the connectedalgebraicmonodromy
groupis maximal,i.e., SLs k.

Section5 introducesthe Hecke correspondencé), associatedo a prime numberp. We
usea very powerful resultof Nori in orderto prove thatfor C' a curve with maximalalgebraic
monodromygroup,T,,C is irreducibleif C' is largeenough.

Themainresultof Section6 saysthatthesizeof the Galoisorbit of aspecialpointz grows at
leastasa positive power of thediscriminantdiscr(R,,) of thering of endomorphismécommuting
with therealmultiplications)of thecorrespondingbelianvariety. This sectionis quitelong,and
containssomemessycomputationsgependingnthestructureof the Galoisgroupof thenormal
closureof the CM field in question.The problemis thatonehasto give a lower boundfor the
imageunderthereflex typenormof oneclassgroupin another

Section? givesanupperboundfor thenumberof pointsin intersectionsf theform 72,17, Z,,
with Z; and Z, fixed subvarietiesof a generalShimuravariety, andwith T, a varying Hecke
correspondence.

Finally, Section8 combinesall thesepreliminary resultsasfollows. One supposeshat C'
is a curve in a Hilbert modularsurfaceS, containinginfinitely mary specialpoints,andnot of
Hodgetype. If p is large enough(dependingonly on C), thenT,C is irreducibleby Section5.
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SincetheTp-orbitsin S aredensepnecannothave C' = T,,C. Hencetheintersectiong' N 7T,C

arefinite, andhenceboundedabore (Section7) by a constantimesp?. Let now x be a special
pointon C. If p is aprimethatis splitin R, thenC N T,,C containgthe Galoisorbit of =, hence
|C N T,C| grows at leastasa positive power of |discr(R,)|. But this lower boundfor primes
thataresplitin R, contradictghe conditionaleffective Chebotare theorem(this is whereGRH

comesn). Hence assumingsRH, onehasprovedthatif C' doescontaininfinitely mary special
points,thenC' is of Hodgetype. Thereasorthatonecanprove Thm. 2.2 unconditionallyis that
in thatcasethe CM field Q ® R, is independenbf =, andhenceChebotare's theoremitself is

sufficient.

In April 1999, we have proved Conjecturel.3, assumingGRH, for arbitrary productsof
modularcurves,extendingthemethod<f [14]. A detailedproof, whichis quite elementarywill
bewritten up in the nearfuture. Onecanhopethatcombiningthe techniquesusedfor theselast
two resultswill makeit possibleo treatmoregenerahigherdimensionatase®f Conjecturel.3.
Of course eventuallyeverythingshouldbe expressedn termsof “ (G, X)-language”.In fact,in
this articlewe couldalreadyhave workedwithout mentioningabelianvarieties.

Beforewe really start, let us first mentiontwo obvious generalprinciples. Thefirst is that
level structuresdon’'t matterin Conjecturel.3: for (G, X) a Shimuradatum, K and K’ open
compacin G(A¢) with K C K’, anirreduciblesubvariety Z of Shx (G, X)c is of Hodgetypeif
andonly if its imagein Shg/ (G, X)¢ is. The secondorinciple saysthattheirreduciblecompo-
nentsof intersectionof subvarietiesof Hodgetype areagainof Hodgetype (this is clearfrom
theinterpretatiorof subvarietiesof Hodgetype givenright after Definition 1.1).

2 The main results.

Let K be areal quadraticextensionof Q, let Ox beits ring of integers,andlet G be the Z-
groupschemeReso, ;z(GLy,0, ). After numberingthe two embeddingf K in R, we have
R ® K = R?, andhenceG(R) = GLy(R)?. Wewill studythe Shimuravariety:

S(C) :== G(Q\(X x G(A)/G(Z)),

where X = (H*)?, andwhereH* is the usualGL,(R)-conjugay classof morphismsfrom S
to GLy R, i.€., theclassof a + bi — (‘g Zb)- ThesurfaceSc, calleda Hilbert modularsurface,
is the coarsemoduli spacefor pairs (A, a) with A anabeliansurfaceand « a morphismfrom
Ok to End(A) (see[30, Ch. X], andthe end of Section3 for the moduli interpretationfor a
closelyrelatedShimuradatum). This implies that the reflex field of (G, X)) is Q andthatthe

canonicalmodel Sy (see[19, Section2] for this notion)is simply the coarsemoduli spacefor



pairs(A/S/Q, «) with S aQ-scheme,A/S anabelianschemeof relative dimensiontwo, and
a amorphismfrom Ok to Endg(A). The setof geometricallyconnecteccomponentf Sg
is K*\A% /(R ® K)*TOx = Pic(Ok)™, the groupof isomorphismclassef invertible O -
moduleswith orientationsat the two infinite places,and hastrivial actionby Gal(Q/Q) ([30,
Ch.1, Cor. 7.3]). Themainobjectve of this articleis to prove thefollowing two theorems.

2.1Theorem. AssumeGRH. LetC C Sc¢ be anirreducibleclosedcurve containinginfinitely
mary CM points. ThenC' is of Hodgetype.

2.2Theorem. LetC C Sc beanirreducibleclosedcurve containinginfinitely mary CM points
correspondingo abelianvarietiesthatlie in oneisogery class(the isogeniesarenot requiredto
be compatiblewith the multiplicationsby O ). ThenC' is of Hodgetype.

Letusnoteimmediatelythatthesetheoremsapplyin factto all Hilbert modularsurfacesbecause
the André-Oortconjecturds insensitive to level structure Beforeproving thetheoremsve need
to discusssomeof thetoolswe will usein it.

3 Choosinga suitable Shimura variety.

For avariationof Hodgestructureonacomple variety, onehasthenotionsof genericMumford-
Tategroupandthatof monodromy A relationbetweerthesetwo notionswill bevery usefulfor
us. In orderto get a suitablevariation of Hodgestructureon S(C) asabove, thereis a little
complication,and at leasttwo optionsto get aroundit. The problemis that the tautological
representationf G on the Q-vector spacek doesnotinducea variationof Hodgestructure
on Shy (Gg, X)(C), evenif H is anarbitrarysmall opensubgroupof G(Ay); just considerthe
actionof O3 in G(Q) on X x G(A¢)/H (se€[20, Section2.3] for ageneralktatement).
Thefirst possibleway out is to usean otherrepresentationand have the monodromytake
placein the imageof G underthis representationFor example,one cantake the representa-
tion Sym?(py) ® det(pg) ™", with py the tautologicalrepresentatioon O%. This representation
inducesa faithful representation of the quotientG® = Reso, /z2PGL2o,.. The morphism
G — G* inducesanisomorphismfrom X to a conjugay class X! in Homg(S, G&1), and
givesa morphismof Shimuradatafrom (G, X) to (G4, X2). Let S4(C) bethe Shimurava-
riety Shgaagzy (G*, X*?)(C). Thenaturalmorphismfrom Se to S is finite andsurjective (this
follows directly from the definition); one can show thatit is the quotientfor a faithful action
of Pic(Og), but thatwill notbeused.Conjecturel.3is thentruefor Sc if andonly if it is true
for 524, andp inducesa variationof Hodgestructureon Sh (G4, X24)(C) for suitableH. The
disadantageof working with 524 is thatit doesnot seemto have aninterpretationrasa moduli

6



spaceof abelianvarieties;thisis notarealproblem,but we preferto work with Shimuravarieties
thatareassimpleaspossible.

Anotherway outis to replacehegroupG by its subgroup’ givenby thefollowing Cartesian
diagram:

G = G
4 O Jdet
Guz — Resow/zGmox

Loosely speaking,G’ is the subgroupof G consistingof thoseelementsvhosedeterminanis
in Q. As the morphismdet in the diagramabove is smooth,G’ is smoothover G, 7, hence
overZ. It followsthatG’ is the scheme-theoreticlosurein G of its genericfibre. We notethat
G'(R) is the subgroupof (z,y) in GLy(R)? with det(z) = det(y). All hin X factorthrough
G, but X consistsof two G'(R)-conjugay classes.The conjugay classX’ we work with is
thedisjointunionof (H*)? and(H™)?. This givesamorphismof Shimuradatafrom (G’, X’) to
(G, X), andamorphismof ShimuravarietiesSz — Sc with S¢ = Shg,(5) (G, X')c. Onecan
prove thatthe Shimuravariety S¢. is connectedandthatthe morphismto its imagein S¢ is the
quotientby a faithful actionof thefinite groupO}’*/O}f, i.e., by the groupof totally positive
global units modulo squaref globalunits. We will only usethatthe morphismS; — Sc is
finite andthatits imageis openandclosed;thesetwo factsfollow directly from the definitions.
It follows that Conjecturel.3is true for S¢ if andonly if it is for Sg, andsimilarly for the two
theoremsabove that we wantto prove. Moreover, the tautologicalrepresentatioof G’ does
induceavariationof Hodgestructureon Shy (G’, X')(C) for H sufiiciently small.

The option we chooseis the last. The variety S¢ is the (coarse)moduli spacefor triplets
(A, a, A) where:

A isacomple abeliansurface,
(3.1) a: Og — End(A) amorphismof rings,
and\: A — A* aprincipal Ok-polarization,

anotionthatwe will now explain. First of all, A* is thedualof A in the cateyory of abelianva-
rietieswith Ox-action: A* := Ext' (A, Ok ® G, ). OneverifiesthatA* = § ®,. A?, wheres is
thedifferentof theextensionZ — Oy, andwhereA? = Ext'(A, Gy, ), thedualof A in theusual
sense.Theinclusiond C Og inducesa morphismA* — A!, whichis anisogery. A principal
O k-polarizationis thenanisomorphism\: A — A* suchthattheinducedmorphismfrom A to
At is a polarization.Interpretedn Hodge-theoreticalerms,atriplet (4, a, \) asin (3.1) corre-
spondgo atriplet (V, h, ¢) with V' alocally free Ox-moduleof ranktwo, h: S — (GLz(V))x
aHodgestructureof type (—1,0), (0, —1), andy: V x V — Ok aperfectantisymmetriaD -
bilinearform suchthattro+: V x V' — Z is apolarization.Notethatfor suchatriplet (V, h, 1),
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the pair (V, ) is isomorphicto the standardpair (Ox @ Ok, (% §)). In orderto prove that
the setof isomorphisnclasse®f (A, a, A) asin (3.1)is S’(C) oneusesthefollowing two facts:
1: G'(A;) /G'(Z) is thesetof Ok-latticesin K2 onwhicht) = ( 9 }) inducesaperfectpairingof
Ox-modulesppto afactorin Q*; and2: X' isthesetof Hodgestructure®f type(—1, 0), (0, —1)
onthe K-vectorspaceKk? suchthat,up to sign, tr o ¢ is a polarization.The moduli spaceover
Q of triplets (A/S, o, A) with S a@Q-scheme: Ox — Endg(A) amorphismof rings,and A
a principal Og-polarization,is thenthe canonicaimodel S, of S¢. (seealso[27, 1.27]and[12,
4.11)).

Forn > 1, let H, bethekernelof themorphismG’(Z) — G'(Z/nZ), andlet Sg. denotethe
Shimuravariety Shy, (G, X')q. ThenSg,,, is the moduli spacefor 4tuples(A/S, a, A, ¢), with
S aQ-scheme(A/S, a, \) anabelianschemeover S with multiplicationsby O x andaprincipal
Oxk-polarization,andwith ¢ anisomorphisnmof S-groupschemesvith O x-action:

¢: (Ok/nOk)s — Aln],

suchthatthereexists a (necessarilyunique)isomorphismg: (Z/nZ)s — u,,s makingthe dia-
gram:

(Ox/nOK)E)? % Aln)?

1 ¥n B lexn

Ok ® (Z/nZ)s 2% Ok ® pns
commutatve. In this diagram,i,, is the pairinggivenby ( %, §), ande, ,, is the perfectpairing
on Aln] inducedby \. Forn > 3 theobjects((A/S, «, \)) have no non-trivial automorphisms
(see[22, IV, Thm. §]), and Sy, is afine moduli space.(Representabilitypy analgebraicspace
canbefoundin [27, §1.23]. Quasi-projectienesdollows from [7].) In particulay for n > 3 we
dohaveapolarizedvariationof Z-Hodgestructureon S!, (C), givenby thefirst homologygroups
of thefibersof theuniversalfamily.

4 Monodromy and genericMumford-Tate groups.

We recallsomeresultsthatcanbefoundin [20, Sectionsl.1-1.3],with referenceso [9] and[3].
The Mumford-Tategroup MT (V') of a Q-Hodge structureV, givenby h: S — GL(V)g,
is definedto be the smallestalgebraicsubgroupH of GL(V')q suchthath factorsthrough Hg.
Equivalently MT(V) is the intersectionin GL(V') of all stabilizersof all lines generatedy
Hodgeclassegi.e.,of sometype(p, p)) in all Q-Hodgestructureof theform &, V" @ (V*)®™i,
For S asmoothcomplex algebraicvarietywith a polarizablevariationof Q-Hodgestructure
V' on the associatedanalytic variety S(C), thereis a countableunion X of properalgebraic
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subvarietiessuchthats — MT(V5) is locally constanbutsideX: (this makessensebecausé’ is
alocally constantsheafon S(C)). The smallestsuch¥. is calledthe Hodgeexceptionallocus,
andits complementhe Hodgegenericlocus. For s in S(C) andnotin X, MT (V;) C GL(V;) is
calledthegenericMumford-Tategroup(at s).

Assumenow that S is connectedandthatwe have anelements of S(C). Thenthelocally
constantsheafl” correspondgo a representatiom: m; (S(C),s) — GL(Vj), calledthe mon-
odromyrepresentationThe algebraicnonodromygroupis definedto be the smallestalgebraic
subgroupH of GL(V;) suchthatp factorsthroughH, i.e., it is the Zariski closureof theimage
of p; its connecteccomponendf identity is calledthe connectedalgebraicmonodromygroup,
anddenotedAM (V). With thesehypothesesye have the following theorem.

4.1 Theorem. (Andr &) AssumemoreaverthatV admitsaZ-structurethats in S(C) is Hodge
generic,andthatthereis a pointt in S(C) suchthatMT(V;) is abelian(i.e.,t is special). Then
AM(V;) is the derived subgroupMT (V)% of MT(V;), i.e., the algebraicsubgroupgenerated
by commutators.

Let us now considerwhat this theoremimplies for the variation of Hodge structurethat we
have on S/ (C) (n > 3), and, moreimportantly for its restrictionsto subvarietiesof S, (C).

The Hodgeexceptionallocus of S/ (C) is by constructionthe union of all lower dimensional
subvarietiesof Hodgetype. ThegenericMumford-Tategroupon S/, (C) is G' (usethatit contains
asubgroupof finite index of G'(Z), andthatfor all b = (hy, ho): C* — GL2(R)? in X’ onehas
det(hy(2)) = 2z = det(hs(2)) for all 2).

4.2Proposition. Letn > 3. LetC beanirreduciblecurve in S, (i.e., anirreducibleclosed
subvariety of dimensionone);let C™°" denoteits normalizationandC*™ its smoothlocus. Then
C' is of Hodgetype if andonly if the genericMumford-Tate group on C*™ is strictly smaller
thanGy,. If C is not of Hodgetype andcontainsa specialpoint, thenthe connectedalgebraic
monodromygroupon C™* equalsG's" = Res K/QOLo k-

Proof. SupposehatC is of Hodgetype. Thensomeelemenin sometensorconstructiorof the
variationof Hodgestructureon S¢,, is a Hodgeclasson C, but noton Sg,,. Theinterpretation
of the Mumford-Tate group as stabilizer of lines generatedby Hodge classesshows that the
genericMumford-Tategroupon C** is strictly smallerthanGg,. Now supposehatthe generic
Mumford-Tate groupon C* is strictly smallerthan G,. ThenC doescarry an extra Hodge
class. The locuswherethis classis a Hodgeclassis necessarilyof dimensionone, hence,C,
beinganirreduciblecomponenbf it, is of Hodgetype. The secondstatemenfollows now from
André’stheoremabove. O



5 Irr educibility of imagesunder Hecke correspondences.

For (G, X') aShimuradatum,K; and K, opensubgroup®f G(A¢), andg in G(A¢), onehasthe
so-calledHecke correspondencg;, thatis definedasfollows. Considerthediagram:

Shi, (G, X)c <~ Sh(G, X)c -% Sh(G, X)c = Sh, (G, X)c,

wherer; andr, arethequotientmapsfor theactionsby K; andK,, respectrely. Themorphism
7y o -g is the quotientfor the actionof gK,¢~!, hencer; andm, o -g both factorthroughthe
quotientby K := K; N gK,g ', andT, is the correspondence:

Shi, (G, X)e €= Shg(G, X)e 2 Shg, (G, X)c.

Of course,T, exists alreadyover the reflex field £ of (G, X). In particular for Z a closed
subvarietyof Sh, (G, X)g, itsimageT, Z is aclosedsubvarietyof Sh, (G, X) .
We now specializeto our situation,i.e., to the Shimuradatum (G’, X') asabove. For p

a prime number we let 7;, be the Hecke correspondencen Sg, given by the elementg(p) in

G'(A¢) with g(p), = (4 9) andg(p), = 1 for [ differentfrom p. Notethatg(p)~* givesthesame
correspondencasg(p) doesbecause(p) = (5 g )(98)g(p)~1(9}). Themodularinterpretation
of T, is thefollowing. Let [(A, )] in S’(C) denotetheisomorphisnclassof acomplex abelian
surface A with multiplicationsby Ok andwith a principal Ok -polarization\. Then,asacycle,

theimageof [(A, A\)] is givenby:
T[(AN] =) _[(A/H,pN)],

where H rangesthroughthe Ok /pOk-submodulef A[p|(C) that are free of rank one, and
wherep) is the principal Ok -polarizationinducedby pA on A/ H. In orderto seethis, oneuses,
asin Section3, thatG'(A¢)/G'(Z) is the setof O-latticesin K2 onwhichy = (% }) induces
a perfectpairingof Ox-modulesupto afactorin Q*, andthatthe correspondencenit induced
by ¢(p)~! sendssucha lattice to the setof latticescontainingit with quotientfree of rank one
over Ok /pOk-.

5.1Proposition. LetC beanirreduciblecurvein S¢.. SupposéhatC' is not of Hodgetypeand
thatit containsa specialpoint. Then,for all primesp largeenoughT,C is irreducible.

Proof. Letn > 3 besomeinteger, andlet C,, beanirreduciblecomponentf theinverseimage
of C'in Sg,,. Irreducibility of 7,,C, impliesthatof 7,C. Let V' denotethe polarizedvariation
of Z-Hodgestructureon S/ (C) thatwe consideredefore let s bein C,,(C). We chooseaniso-
morphismof Ox-modulesfrom O% to V;. Let p: 71 (C,(C), s) — SLa(Ox) bethemonodromy
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representationPropositiord.2 impliesthatthe Zariski closurein G’ of p(m, (C:°"(C), s)) is the
subgroupReso, /zSLz 0, - FOr p prime,the correspondencé, on S¢,, is givenby adiagram:

! 1 ! 2 !
S(C,n S(C,n,p } S(C,n :

For T,,C,, = mm, 'C,, to beirreducible,it suficesthatC, , beirreducible with C,, , thecovering
of C°r obtainedrom ;. But this coveringcorrespondso the; (C2°"(C), s)-setP! (O /pOxk)
of Ok /pOx-submodulesf (Ox /pOx)? thatarefreeof rankone.Nori'sTheoren{24, Thm.5.1]
(Theorem5.2 below) implies that for p large enough,the reductionmap from 7, (C2o"(C), s)
to SLy(Og/pOg) is surjective. SinceSLy(Og/pOf) actstransitvely on P (Og /pOk), irre-
ducibility follows. O

5.2Theorem.(Nori) Letr be a finitely generatedsubgroupof GL,,(Z), let H be the Zariski
closureof r, andfor p prime,let 7 (p) betheimageof = in GL,(F,). Then,for almostall p, 7 (p)
containsthe subgroupof H (F, ) thatis generatedy the elementf orderp.

6 Galoisaction.

The aim of this sectionis to shav that the Galois orbits of specialpointsin S'(Q) are big,
in a suitablesense. For A and B abeliansurfaces(over somefield) with Og-action, we let
Homyg, (A, B) bethe Ox-moduleof morphismsrom A to B thatarecompatiblewith the O k-
actions.

6.1Lemma. Letz in S'(Q) be a specialpoint, correspondingdo a triplet (A, a, \) with A an
abeliansurfaceoverQ, a:: Ox — End(A) and) aprincipal O k -polarization.ThenEndo,, (A)
is anordey containingO g, of a totally imaginaryquadraticextensionof K .

Proof. Let R bethe endomorphisnalgebraQ @ End(A) of A. ThenR is a semi-simpleQ-
algebracontaininga commutatve semi-simplesubalgebraof dimension4. Supposehat A is
simple. ThenR is adivision algebra.Since R actsfaithfully on H; (A(C), Q), it hasdimension
dividing 4, henceR is a quadraticextensionof K. SinceR ® R hasa comple structurecom-
mutingwith the R-action, R is atotally imaginary Supposeiow that A is notsimple.ThenA is
isogeneous$o the productof two elliptic curves, B; and B,, say Theseelliptic curvesarein fact
iIsogeneou$o eachother becausetherwisek doesnotadmitamorphismto theendomorphism
algebraof B; x B,. So A isisogeneouso B2, with B someelliptic curve. SinceA is of CM-
type,Q ® End(B) is animaginaryquadraticfield £, and R = My(E). In this caseEnd, (A)
is anorderin thetotally imaginaryextensionkK ® E of K. O
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6.2 Theorem. Thereexist realnumbers: > 0 andc > 0 suchthatfor (A, «, \) corresponding

to aspecialpointz in S'(Q) onehas:
|Gal(Q/Q)-z| > c|discr(R,)|%,
whereR, = Endg, (A).

6.3Remark. The proofwill shav thatonecantake ¢ to be any numberlessthan1/4. (To get
this, onealsohasto optimize Theoren6.4, notingthatwe only apply Starks resultto fields L of
degreeatleast4.) Assumingthe generalizedRiemannhypothesist this point doesnotimprove
this exponent(this is causedy the casewhereQ ® R, is Galoisover Q with group(Z/27Z)?).

Proof. Let f: S — So bethemorphisminducedby the closedimmersionof the Shimuradata
(Gg, X') = (Go, X). Sincef is finite, andsincethe Hecke correspondences Sy permutethe
irreduciblecomponentgransitvely, the statementve wantto prove is equialentto its analog

for Sg. Sowe will shov in factthattherearepositive ¢ andc suchthatfor = specialin S(Q)
correspondingo (A4, ), we have:

|Gal(Q/Q)-z| > c|discr(R,)|°

For z specialin S(Q), let L, beQ ® R,, andlet M, betheGaloisclosurein Q of L. SinceM,,
is of degreeat most8 over Q, the statementve wantto prove is equivalentto the existenceof

positivee andc suchthatfor all specialz in S(Q):
|Gal(Q/M,)-z| > c|discr(R,)|c.

Soletnow z bespecialin S(Q), correspondingo some(A,, ). To studythe Gal(Q/M,)-orbit
of z, we constructa zero-dimensionasubvariety of Hodgetype over M,,, containingz, andwe
usethe theory of Shimura-Rniyamaon complex multiplication, rephrasedn the languageof
Shimuravarieties(see[19, Section2.2]). Let H, be H;(A(C),Z); it is an R,-modulethatis
locally free of ranktwo asOx-module.Let f: K? — Q ® H, beanisomorphisnof K-vector
spaces.The Hodgestructureon H, givenby A, givesanelementh, of X. Thelattice f~'H,

in K2 correspond$o anelementy, of G(A¢)/G(Z). By constructiong is theimageof (hy, g,).

Let T, := Resr,/oGm,z,. Then f givesa closedimmersionT, — Gg. SinceQ ® H, is a
one-dimensional,-vector space,T; is its own centralizerin G. It follows that h,, factors
throughT, z. Hencewe have a closedimmersionof Shimuradata: (7;, {h,}) = (Gq, X). The
reflex field of (77, {h,}) is containedn M,, hencewe have a canonicaimodelSh(7, {h;}) s,

over M,. WeputU, := T, (A¢) N gggG(Z) g, - Thenoneeasilyverifiesthatwe have aninjective
morphismof ShimuravarietiesShy, (7%, {h+})rm, — Su,, Which, on C-valuedpoints,is given
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by — (he,tg,). By constructionl/, is thestabilizerin T, (A¢) of thelattice f~* H,; it follows
thatU, = R,"*, hence:

Shu, (T, {ha})ar. (Q) = Ly\(Ar ® Ls)*/Ry™ = Pic(Ry).

Ournext objectiveis to describen sufficientdetailtheactionof Gal(Q/M,) onPic(R,) induced
by the above bijections. Classfield theory gives a continuoussurjectionfrom M;\Aj, . to
Gal(Q/M,)?, characterizethy thefollowing property In arepresentationf Gal(Q/M,)? that
is unramifiedat afinite placev of M,, thearithmeticFrobeniuslemenis theimageof theclass
of anidele thatis trivial at all placesotherthanv, andthe inverseof a uniformizerat v. Let
p: Gme — Sc¢ bethecocharacteobtainedoy composingC* — C* x C*, z — (z, 1) with the
inverseof theisomorphisnS(C) = (C®r C)* - C* x C*, 2 @ y — (xy,zy). Thenh, o uis
definedover M,,, andonedefines:

ro: Ty = Resu, joGm,m, — T

to be the morphismRes,, /g (k. © 1) composedvith the normmapfrom Resyy, /o711, 10 Ty
With thesedefinitions,the quotientGal(Q/M,)?® of T!(A¢) actson Pic(R,) via the morphism
., Wherewe view Pic(R,) asT,(Q)\T; (A¢)/R.*. It followsthat:

|Gal(Q/M,)-z| = |imageof r,(T7(As)) in Pic(Ry,)]|.

We will needa moreexplicit descriptionof r,,, in termsof the CM type associatedo A,.
The morphismh,: C* — (R ® L,)* extendsto a morphismof R-algebrash: C - R ® L,.
Extendingscalardrom R to C givesa morphismof C-agebrasid @ h: CQr C - C® L,. Via
theisomorphisms:

CerC—-CxC, zy+— (zy,z7),

and
C® L, » CPmE=0 " 2@y (¢ z¢(y)),

theidempoten(1, 0) of C x C givesanidempotentn Clom(L=:0) j e  apartitionof Hom(L,, C)
into two sets®, and.®,, where. is the complex conjugationon C. Theset®,, is the CM type
correspondingdo h,. SinceM,, is the Galoisclosureof L, in C, Hom(L,, M,) = Hom(L,, C).
With thesenotationswe have, for ary Q-algebraR:
re: (R® My)* — H (R® L), ur— H Normy(u),
PED, PED,

whereNormy is the norm mapof the extension¢: R ® L, — R ® M,. Finally, let ¢, bein
Hom(L,, M), anddefineX, 4, := {g € Gal(M,/Q) | g € ®,}. Thenwe have:

poory: Ty —Tp =T, uws H g ',
gezm,¢0
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for all Q-algebrask andall u in (R ® M,)*. Thisis thedescriptionof r, thatwe work with.

Since M,, is generatedver K by the extensionZ, andits conjugate,M, hasdegree4 or
8 over Q, andits GaloisgroupGal(M,,/Q) is isomorphicto Z/4Z, Z./27 x Z]2Z, or Dy, the
dihedralgroupof order8. We defineT” to be Resk /oG, x ; notethatT' is asubtorusof 7, equal
to the centerof Gg. We will seebelow thatr, o ¢o: T, — T, inducesan endomorphisnof
T, /T whoseimage,after passingto A¢-valuedpoints,in Pic(R,)/Pic(Ok) is big enoughfor
our purposes.

SupposédirstthatGal( M, /Q) isisomorphicto Z/4Z, saywith generator. ThenM, = L,
o? is the complex conjugationand K = L) After changingg,, if necessaryone hasthat
Y. = {1,0}. Theformulaabore for ¢ o r, shavs thatr, is simply given by the element
1+ 07! of Z[Gal(M,/Q)]. Sinces? actsas—1 onT,/T,wehaver,o (1 —oc~!)=20nT,/T.
It followsthat:

|Gal(Q/M,)-z| > |imageof -2: Pic(R,)/Pic(Ok) — Pic(R,)/Pic(Ok)|-

Theorem6.4 below finishesthe proofin this case.

Supposenow that Gal(M,/Q) is isomorphicto Z /27 x Z/2Z. After changinge,, if nec-
essaryonehasy, ,;, = {1,0}, with ¢ of ordertwo and K, := LY # K. Let R, bethe
order Og, N R, of K,. Sincer, is givenby 1 + o, theinducedmap 7 (A¢) — Pic(R,)
factorsthroughPic(R!,) — Pic(R,) inducedby the inclusion R, — R,. The factthato
actsas1 on 7, := Resg,,qGm,x, andas—1 on T, /T, implies that the kernel of the map
Pic(R!) — Pic(R,) is killed by multiplicationby 2. Sincel + ¢ actsasmultiplicationby 2 on
T), weget:

|Gal(Q/M,)-z| > |imageof -4: Pic(R.) — Pic(R.)|.

SincetheorderOx ® R., of L, is containedn R,, andhasdiscriminantdiscr(R’,)3discr(Ox)?,
we have:
|discr(R.)| > |discr(Og)| ! |discr(R,)| 2.

Theproofin this cases finishedby Theorem6.4.

Supposeéhat Gal(M,,/Q) is isomorphicto D,. Letr ando be generatorof Gal(M,/Q),
with M{” = L,, andwith o of order4. Theno? is the comple conjugationandro—! = or.
After changingg,, if necessarywe have £, 4, = {1,7,0,07}. It followsthat¢, o r, is given
by theelement: := 1 + 7 + ¢® + o7 of Z[Gal(M,/Q)]. UsingthatNormg, = 1 + 7, asimple
computatiorgives:

¢ 0 15 0 g 0 Normgy, = 2(1 4 7) + oNormyy, k-
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It followsthatr, o ¢, actsas2 onT,/T. We concludethat:
|Gal(Q/M,)-z| > |imageof -2: Pic(R,)/Pic(Ok) — Pic(R,)/Pic(Ok)|-
Theorem6.4finishesthe proofin this lastcase. d

6.4Theorem. Let K bea totally realnumberfield. Thereexistsc > 0 suchthatfor all orders
R, containingO, in totally complex quadraticextensiond. of K, onehas:

limageof -4 onPic(R)/Pic(Ox)| > c¢|discr(R)[*/8.

If oneassumeshe generalizedRiemannhypothesisthenone canreplacethe exponentl /8 by
ary numberiessthanl/2.

Proof. We will usethefollowing lowerboundfor classnumbers:

let K be a totally real numberfield; thereexistsc > 0 suchthat for all totally
complex quadraticextensionsl. of K, onehas:

Pic(0y)| > ¢ |diser(Oy)| /5.

In orderto prove this, onedistinguishegwo cases:K = Q and K # Q, andonenotesthatthe
regulatorReg(Oy,) is atmostReg(Ok). In thecaseK # Q oneuseshefollowing consequence
of Stark's Theoren in [29]:

for K atotally realnumberfield, thereexistsc > 0 suchthatfor all totally complex
quadraticextensionsl of K, onehas:

Pic(O)] > ¢ |diser(Oy) |2 IEQ

In thecaseK = Q oneappliesthe BrauerSiggel theorem(seefor example[17, Ch. XVI]):

for N > 0 ande > 0, thereexistsc > 0 suchthatfor all Galoisextensionsl. of Q
of degreeatmostN onehas:

[Pic(Oy)|-Reg(Oy) > c¢|discr(Oy) [}/,

Combiningthesetwo results,andusingthat[L : Q] > 3 if K # Q givestheinequalitywe want.
We couldreplacethe exponentl /6 by 1/4 if wewouldjustusethat[L : Q] > 4if K # Q.
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Let now K, R and L be asin thetheorem.Then R is the inverseimageof a subringR of
somefinite quotientO,, of O,,. We have anexactsequence:

0— R* — 0} — O, /R — Pic(R) — Pic(0OL) — 0.

Thetorsionof O; is boundedn termsof thedegreeof K, andby Dirichlet’stheoremonunitsthe
quotientO3; /O% is finite. Thelong exactcohomologysequencebtainedby taking Gal(L/K)-
invariantsof the shortexactsequence:

0 — tors(0O;) — O; — O7 /tors(O7) — 0

givesaninjection from (O3 /tors(03))/ (0% /tors(O%)) into H' (Gal(L/K), tors(03})), shav-
ing that (O3 /tors(03))/ (O3 /tors(O%)) is of orderat mosttwo. We concludethatthereexists
¢ > 0, dependingonly onthedegreeof K, suchthat:

. o1 .
[Pic(R)| > ¢ ||RL*“ IPic(Oy)|.

Ontheotherhand,we have:

discr(R) = (%) 2 diser(Oy).

We claimthatfor everye > 0 thereexistsc > 0, dependingonly onthedegreeof K, suchthat:

0] 20(@)15
® AR

To prove this claim, onenotesthat:

R| L |OL] k|
— = —-  and = )
R 11 Ll O 11 L

k resfield of R | L k resfield of O,

A simplecomputatiorthenshows:

Ak 1 [L:Q] 1 [L:Q]
Gl (=) e (k)
R p 5log(n)

wheren = |Op|/|R| is assumedo be atleast2. We concludethatthereexistsc > 0, depending
only on K, suchthat:

|Pic(R)| > c|discr(R)|Y/.
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In orderto finish the proof of the theorem.,it sufficesto prove thatfor everye > 0 thereexists
¢ > 0, dependingonly on K, suchthat |Pic(R)[2]| < c|discr(R)|°. To do this, we proceedn
the sameway aswe did in [14, Lemma3.4]. As Pic(R) is a finite commutatve group,the two
F,y-vectorspace®ic(R)[2] andF, ® Pic(R) have the samedimension.The cover of Spec(R)
by thedisjointunionof Spec(Z; ® R) andSpec(R[1/2]) givesanexactsequence:

(@ ® L)* — Pic(R) — Pic(R[1/2]) — 0.

It followsthatdimg, F, ®Pic(R) is boundedy dimp, Fs ®Pic(R[1/2]) plusanumberdepending
only onthedegreeof K. We put .S := Spec(R[1/2]) andT := Spec(Og[1/2]). Thelong exact
sequencassociatetb themultiplicationby two onthesheafG,, ontheetalesite S,; of S shovs
thatdimy, F, ® Pic(S) is at mostdimy, H!' (Se;, F2). Let7: S — T bethe morphisminduced
by theinclusionof Ok in R. ThenH! (S, ) is thesameasH* (T, 7. F, ), andwe have ashort
exactsequence:

0 —Fys, — M Fop — 5Fy — 0,

wherej: U — T is the maximal openimmersionover which = is etale. Leti: Z — T be
closedimmersiongiving the complemenof U, with Z reduced.Thenthelong exactsequences
of cohomologygroupsassociatedb the exactsequencabove andto the exactsequence:

0— j!F2,Uet — IF‘Q,Set — i*F2,Zet — 0
shaw thatthereexistsanintegerc, dependingpnly on K, suchthat:
dimp, Fy ® Pic(R) < ¢+ [K : Q] |{p primedividing discr(R)}|.

As 2P} = po() for n — oo, we have proved the first statemenbf the theorem. If one
assume$RH, thenthe BrauerSiegel theoremasstatedabove is true without the conditionthat
theextensionQ) — L be Galois,see[17, XIlI, §4]. O

7 Intersection numbers.

The aim of this sectionis to give a boundon intersectionf subvarietiesof Shimuravarieties,
providedthatthey arefinite. In particular we needto studytheintersectiorof a subvarietywith
its imagesunderHecke correspondence#s our agumentswvork for generalShimuravarieties,
we give sucharesultin the generalcase.The maintool usedin proving theresultis the Baily-
Borel compactificationfogetherwith its givenampleline bundles. We startby recallingsome
propertief thesdine bundles thatfollow immediatelyfrom theresultsin [7] (seealso[6]).
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7.1Theorem. Let (G, X) be a Shimuradatum. For K C G(A¢) a compactopensubgroup,
let Sy = Shk(G, X)c the correspondingcomplex Shimuravariety and Sy its Baily-Borel
compactification.For every suchK, andfor every sufficiently divisible positive integern, the
nth power of the line bundle of holomorphicforms of maximaldegreeof X descendso Sk,

andextendsuniquelyto a very ampleline bundle Lk, on Sk, suchthat, at the genericpoints
of the boundarycomponent®f codimensiorone, it is given by nth powers of forms with log-

arithmic poles. Let K, and K, be compactopensubgroupof G(A¢), andg in G(As) such
that K, C gK,g '. Thenthe morphismfrom S, to Sk, inducedby g extendsto a morphism
f: Sk, — Sk, . If n is positive andsufficiently divisible sothat Lk, ,, exists,thenLy, ,, exists,
andis canonicallyisomorphicto f*Lg, .

Proof. Let us briefly recall how the compactificationS is defined. Let X+ be a connected
componenbf X. Theneachconnected&componendf Sk (C) is of theform I';\ X *, with T'; an
arithmeticsubgroupf G24(Q) (G beingthe quotientof G by its center).Thecompactification
Sk (C) isthendefinedasthedisjointunionof theT;\ X+, whereX * is theunionof X+ with its
so-calledrationalboundarycomponentsendaved with the Satale topology It follows thatwe
canwrite Sk (C) asG(Q)\(X x G(A¢)/K), with X thedisjointunionof the X +.

Let X2 bethe G*(R)-conjugay classof morphismsfrom S to G&! containingthe image
of X. Eachconnectedomponenbf X mapsisomorphicallyto oneof X?¢ (see[19, 1.6.7]). We
first prove the Theoremabove for the Shimuradatum (G4, X24). The groupG® is a product
of simplealgebraicgroupsG, over Q, and X2 decomposeasa productof X;’s. For compact
opensubgroupsk, K; and K, that are productsof compactopensubgroupsof the G;(A¢),
the correspondingshimuravarietiesdecomposesa product,so thatit sufficesto treatthe G
separatelyIf (G;, X;) givescompactShimuravarieties,Kodairas theorem([15, Section1.4])
implies whatwe want, for compactopensubgroupsk; thataresufficiently small; for arbitrary
K; onetakesquotientsby finite groups.Supposeiow that(G;, X;) doesgive Shimuravarieties
thatare not compact. If G; is of dimension3, thenit is isomorphicto PGL, o, andwe arein
the caseof modularcurves,wherethe Theoremwe areproving is well known (thecanonicaline
bundlewith log polesatthe cuspsonthe modularcurve X (n), n > 3, hasdegree> 0). Suppose
now thatG; hasdimension> 3. Thenthe boundarycomponentsreof codimensior> 1, and
theresultswe wantaregivenin [7, Thm.10.11].

The caseof arbitraryopencompactsubgroupof G24(A;) follows by consideringguotients
by finite groups.Thetheoremfor (G, X) itself follows from the factthatthe connectedcompo-
nentsof the Sk (C) areof thel’\ X+, with I anarithmeticsubgroupof G2¢(Q). O

7.2Theorem. Let (G, X) bea Shimuradatum,let K, and K, be compactopensubgroupsf
G(Ay¢), andlet Z, andZ, be closedsubvarietiesof the ShimuravarietiesS; := Shy, (G, X)¢
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andS, := Shg, (G, X)¢, respectiely. SupposehatZ, or Z, is of dimensionat mostone. Then
thereexistsanintegerc suchthatfor all g in G(A¢) for whichT,Z, N Z is finite, onehas:

T,2: N Zs| < ¢ deg(mT: Sy — S1),

whereS, = Shg, (G, X)c with Ky = K N gK,g ', andwith T, andm asin the beginning of
Section5.

Proof. We startwith two reductions. First of all, writing Z; and Z, asthe unionsof their
irreduciblecomponentspneseeghatwe maysupposehat 7Z; and~7, areirreducible.Secondly
for g in G(Ay), letp; , andp, , bethemorphismsrom S, to S; and.S,, respectrely. Thenone
has:

TyZ1 N Zy = pag (pi;ZI ﬂp;_},Z2) ;

which shavs thatT, Z, N Z, is finite if andonly if p;, 1Z1 N Py, 1Z2 is, andthat|7,Z; N Z,| is

at most|p Z1 Ny, 1Z2| This alsoshows thatwe mayreplaceK; and K, by smallercompact
opensubgroupsHence\Ne may supposeby the previoustheoremthatwe have very ampleline

bundles.; and£, ontheBaily-Borel compactificationss; andS, suchthat,for eachg, pr,*L;

andps,* L, areisomorphicto the sameline bundle L, on S,,.

We let Z; and Z, be the closuresof Z; and Z, in S; and S,, respectiely. Let m denote
the degreeof Z, with respectto £,. Let g bein G(A¢), suchthatT,Z, N Z, is finite. If the
intersections empty thereis nothingto prove, sowe supposehattheintersections notempty
Thenthe codimensiorof 7, is at leastthe dimensiond of Z;, andwe canchoosefi, ... , f; in
HY(S,, £5™) suchthat Z, is containedn Vs, (f1, ... , fa), andT,Z; N Vs, (f1, - . , fa) is finite
(becausef our assumptioron the dimensionf Z; andZ,, Z; N Z, is finite). It thenfollows
that|p Z1 Np,, Z2| is atmostm? tlmesthedegreeofp Z1 with respecto £,. Butthisdegree
is deg(pl,g) tlmesthe degreeof Z; with respecto L, hencewe have:

Ty Z1 N Zo| < deg(p1g)m? deg,, (Z1).

8 Proof of the main results.

We will now prove Theorems2.1 and2.2. We first dealwith Thm. 2.1. As we have already
noticed,we may aswell replaceSc by Sg, solet C' be anirreducibleclosedcurve in S;. that
containgnfinitely mary CM points. We have to shav thatC' is of Hodgetype.
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SinceC' hasinfinitely mary pointsin S’(Q), it is, asa reducedclosedsubschem®f Sg,
definedover Q. To be precisethereis a uniqueclosedsubschemé€’ of S{Q thatgivesC after
basechangefrom Q to C. But thenCg hasonly finitely mary conjugatesinderGal(Q/Q); we
let Cq be the reducedclosedsubschemef Sg, that, after basechangeto Q, givesthe union of
theseconjugates.In otherwords,we simply let Cy be theimageof C' underthe morphismof
schemesz — Sg.

Let z in C(Q) bea CM point, correspondingo a pair (A, A) with A anabelianvariety over
Q with multiplicationsby Ox andwith ) a principal Og-polarization. As before,we let R,
denoteEndy, (A4), L, := Q® R, andM, theGaloisclosureof L, in C. LetT betheimageof x
in S(Q). In theproofof Theoremb.2we have seerthatthequotientGal(Q/M, )" of (A; ® M,)*

actsonthesubsetGal(Q/M,)-z of L\ (A; ® L,)*/R>* viathemorphism

re: (A @ M) — (A ® L))", ur—s H Normyg(u),
$E€D,

wherethe subset?, of Hom(L,, M,) is the CM type of z. Since®, is a setof representaties
for the actionof Gal(L,/K) on Hom(L,, M,), it follows thatthis mapr, factorsthroughthe
subgroupof elementof (A ® L,)* whosenormto (As @ K)* isin Aj. Hence,in the notation
of the proof of Theorem6.2,the morphismr, factorsthroughtheintersectiorof the subtorusr,

of G andGy,. It follows thatthe actionof Gal(Q/M,) on Gal(Q/M,)-z is givenby thesame
morphismr,, takingvaluesin G'(Ay).

8.1Lemma. Supposehatp is aprimethatis splitin R, i.e., suchthatF, ® R, is isomorphic
to a productof copiesof F,. ThenGal(Q/Q)z is containedn Cq(Q) N (T,Co)(Q).

Proof. ThelocalizationZ,) ® R, of R, isthesameasthatof Ox. Hence,f welet H, denote
H,(A(C),Z), thenZ,) ® H, is free of rankoneover Z, ® R,. It follows thatwe canchoose
theisomorphismf: K? — Q ® H, to presere the integral structureson both sidesat p, i.e.,
suchthatit inducesanisomorphisnfrom (Z,y ® R,)? to Z, ® H,. We notethatp is splitin M,
(i.e.,IF, ® Oy, is aproductof copiesof F, ), becausél/, is the Galoisclosureof L,. Consider
now anelement: of (As ® M,)* thatis equalto p atoneplaceabore p andequalto 1 atall other
finite placesof M,. Thenr,(u), viewed asanelementof (A; ® L,)*, is equalto p at exactly
two placesof L, above p thatarenotin the sameGal(L,/K)-orbit, andequalto 1 atall other
finite placesof L,. It followsthatr,(u) is conjugatedn G’(A¢), by someelementn G'(Z), to
the elementy(p) thatinducesT, (usethat G'(Z,) actstransitively on the setof free rank one
Z, ® Ox-submodulesf Z, ® O%). We concludethatr,(u)z isin T,z. Butsincez isin Cy(Q),
r,(v)z is alsoin Co(Q). It followsthatGal(Q/Q)z is containedn Cy(Q) N (T,Co)(Q). O
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Theorem6.2 givesa lower boundfor |Gal(Q/Q)z|, whereasTheorem?.2 givesanupperbound
for |Co(Q) N (T,Co)(Q)|, assuminghatthe intersectionis finite. Whatwe want, of coursejis
to shav thatwe canchooser andthenp suchthatthe lower boundexceedsthe upperbound,
and concludethat Cy and7,Cq do not intersectproperly We note thatif « variesover the
infinite setof CM points of C(Q), then |discr(R,)| tendsto infinity becausehere are only
finitely mary ordersof degree2 over Ok with a given discriminant,and for eachsuchorder
there are only finitely mary z in S(Q) with R, isomorphicto that order Since our lower
boundfor |Gal(Q/Q)z| is a positive constanttimes a positive power of |discr(R,)|, and our
upperboundfor |Co(Q) N (7,Cq)(Q)| is somefixed power of p, we getwhat we wantif we
cantake, for |discr(R;)| big, p of sizesomethingpolynomialin log |discr(R,)|. We notethat
|discr(Oyy, )| < |discr(R;)|* becauséVl, is the compositeof theextensionZ, of K andits con-
jugate.We alsonotethatthe numberof primesdividing discr(R,,) is atmostlog, (|discr(R,)|).
At this point we invoke the effective Chebotare theoremof Lagarias,Montgomeryand
Odlyzko, assumingGRH, asstatedin [28, Thm. 4] andthe secondremarkfollowing thattheo-

rem. A simplecomputatiorshows thatthis theoremmpliesthefollowing result.

8.2Proposition. For M afinite Galoisextensionof Q, letn,,; denoteits degree,d,, its absolute
discriminant|/discr(O,)|, andfor z in R, let w1 (x) bethe numberof primesp < x thatare
unramifiedin M and suchthat the Frobeniusconjugag classkrob, containsjust the identity
elementof Gal(M/Q). Thenfor M a finite Galois extensionof Q andzx sufficiently big (i.e.,
biggerthansomeabsoluteconstant)andbiggerthan2(log(dxs)*(log(log(das)))?, onehas:
T
T (2) 2 3narlog(z)’

Thisresultshavsthatthereexist infinitely mary primesp suchthatCq andZ,Cq donotintersect
properly SinceCy is irreducible,it followsthat,for suchprimesp, Cq is containedn 7,,Cy.

Assumenow thatC' is not of Hodgetype. ThenPropositions.1tells usthatfor all primesp
large enough,7,,C is irreducible. Sincethe correspondencg, is definedover Q, i.e., is given
by a correspondencen Sy, it follows thatT,,Cq is irreduciblefor p large enough.But thenwe
seethatthereexist infinitely mary prime numbersp suchthatCy is equalto 7,Cq. But thisis
absurd sinceby Lemmas.3 belaw, for eachz in S'(C), the Hecke orbit U,,»7}'z is densein
S'(C) if pisunramifiedin K. Thisfinishesthe proof of Theorem?2.1.

8.3Lemma. Letz bein S'(C) andletp be a primenumberthatis notramifiedin K. Thenthe
Hecke orbitU,,>, T,z is densen S'(C) for the archimedearopology

Proof. By Lemma8.4 below, g, := (?9) andG'(Z,) generate?'(Q,) (herewe usethatp is
not ramifiedin K). Let now z bein S’(C), andlet (y, g) be a preimageof it in X x G'(A¢)
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underthe quotientmapfor the actionby G(Q) x G(Z). Thefactthat7), is thengivenby right
multiplication on G'(A¢) by the elementy, at the placep shows that the T,-orbit of z is the
imagein S’(C) of the G'(Q,)-orbit of (y, g). Let now I' be the subgroupof G'(Q) consisting
of v suchthatyg is in ¢gG'(Z)G'(Q,). Thenthe T,-orbit of z is theimagein S'(C) of the
subsefl'y of X x {g}. Now onenotesthatI" containsa congruencesubgroupof G'(Z[1/p]). It
follows that the intersectionof T with SLy(Ok[1/p]) = G*(Z[1/p]) is densen G (R) (for
thearchimedeatopology)becaus& " is generatedby additive subgroupsSinceG4® (R) acts

transitvely on X+ = (H")?, thelemmais proved. O

8.4Lemma. Letp bea primethatis not ramifiedin K. Theng, := (% 9) andG'(Z,) gener
ateG'(Q,).

Proof. In orderto minimize notation,let Ok, denoteZ, ® Ok, let K, denoteQ, ® Ok, and
let H denotethe subgroupof G'(Q,) generatedy go := (49) andG'(Z,). LetY bethe set
of Ok ,-latticesin Kg on which the K,-bilinear form ) givenby (%, §) is a perfectpairing of
Ok p-modules,up to afactorin Q. ThemapG'(Q,) — Y, g = gO%(,p inducesa bijection
from G'(Q,)/G'(Z,) to Y. Hence,in orderto prove our claim, it sufiicesto shav that H acts
transitvelyonY. Solet L bein Y. We notethatOg , is eithera productof two copiesof Z,, or
thering of integersZ,. in theunramifiedquadraticextensionQ,: of Q,; in bothcasesQx , is a
productof discretevaluationringswith uniformizerp. Thetheoryof finitely generateanodules
over a discretevaluationring saysthatthereexists in Z andd; andd, in Ok, suchthatp”L
is containedn O}p andhasan O ,-basisof the form (d; ey, dses), with (e;, e2) the standard
basisof O% ,. We notethatconjugatingg, by suitableelementf G'(Z,) shovsthat(; ;) and
(4 ,) arein H, andthat,in thesplitcase((§5), (29)) isin H. Sincetheelementd; d; of O,
is thefactorby which v differsfrom a perfectpairingonp”L, it is actuallyin Z,. It followsthat
(4 o) isin H. Thisfinishesthe proofthat H is G'(Q,). O

Let usnow prove Theorem?.2. We keepthe notationsof the proof Theorem?2.1,andwe assume
againthatC' is not of Hodgetype. Sonow we may supposenoreo/er thatC' containsinfinitely
mary CM pointsthathavethesameCM type. In particular we have infinitely mary CM pointsz
suchthatL, and®, areconstantsayL and®. Of coursetheordersR, aresuchthat|discr(R,)|
tendsto infinity. The classicalChebotare theorem(seefor example[17, Ch. VIII, §4]) asserts
that the setof primesp thataresplit in A hasnaturaldensity1/[M : Q] (actually Dirichlet
densityis goodenoughhere). Also, recall thatthe numberof primesdividing somediscr(R;)
is at mostlog,(|discr(R,)|). Hencetheredo exist 2 andp suchthatp is splitin M, splitin R,,
sufficiently large so that 7,,C is irreducible,and suchthat the lower boundfor |Gal(Q/Q)x|

of Theorem6.2 exceedshe upperboundfor theintersectionCy(Q) N (7,Cq)(Q), if it is finite.
Thenwe have Cqy = T,,C, hencea contradictionbecaus®f Lemmas.3.
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A Abelian surfaceswith real multiplication.
As above, K is arealquadratidield, andOg is its ring of integers.Let usdescribea bijection
S(C) = GQ\((H*)* x G(A)/G(Z)) = {(A, )}/ =,

where A is anabeliansurfaceanda: O — End(A) a morphismof rings. By the way things
have beensetup, (H*)? is the setof Hodgestructuresf type {(—1, 0), (0, —1) } onthe K -vector
spacek?, i.e.,Hodgestructuredor which K actsby endomorphisms.

The setG(A¢)/G(Z) is the setof Ok-latticesin K2. (By an Ok-latticein K2 we meana
sub-Ox-module M of finite type thatgenerates<? asa K -vectorspace).To seewhy the two
setsareequal,we needanadelicdescriptionof the lattices.By an O%-latticesin Aﬁgf we mean
a subOx-moduleof A% ; thatis free of ranktwo (andhencegive the full A% ; aftertensoring
with Q). (It is equivalentto considersub-O%-modulesof Aﬁ(,f thatare of finite type andthat
generateAfK,f as K(-vectorspace(or, equivalently, asAg (-module).) Now let G(A¢) actonthe
setof O-latticesin A% . Thisactionis transitive (usethateachsuchalatticeis freeof ranktwo),
andthe stabilizerof the standardattice (O} )? is preciselyG(Z). This meanshatG(A¢)/G(Z)
is the setof O%-latticesin A ;.

Let us now seewhy the setof Ok-latticesin K is the setof O%-latticesin A% ;. Thisis
alwaysthe samestory, but let mejustwrite it downin this case(the“classicalcase’asfarasl’'m
concerneds for Z). Let M beanOg-latticein K2. To it, we associate¢he O}}-IatticeZ M
in As ® M = A% ;. In theotherdirection,let N be a Ox-latticein A ;. To N, we simply
associateV N K?2. Thesetwo mapsareinversesof eachother

We cannow show that S(C) is the setof (A, «) up to isomorphism.Let (A4, «) be given.
Chooseanisomorphismof K -vectorspacesdetweenk? andH, (A, Q). Thenwe geta Hodge
structureon K2 andanOk-latticein K2, henceanelemenif (H+)? x G(A¢)/G(Z), definedup
to thechoiceof isomorphismi.e.,upto G(Q). Conversely anelemenif (H*)? x G(A;)/G(Z)
givesa pair (A, a), of which the isomorphisnclassdependonly on the G(Q)-orbit. So, after
all, onejust hasto view complex abelianvarietiesasgivenby a Q-Hodgestructureanda lattice,
andusethe usualstuff regardinglattices.

One can of coursedo somethingfang/ now with the cateyory of abelianvarietiesup to
isogery, andinterpret (H+)? x G(A;) asthe setof isomorphismclassef (4, «, 3, ), with
A anabeliansurfaceup to isogery, o an K-actionon it, 5 anisomorphismof Ag (-modules
from A% ; to Hy(A, A¢), andy anisomorphisnof K-vectorspacesrom K to H; (4, Q).
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B Polarizations.

Why do we never have to discusspolarizability of our HodgestructuresWell, that's because
they arein a senseonly of dimensiontwo, just asin the caseof elliptic curves. Sowhatis in
facttrueis thatevery complex torusof dimensiontwo, with anactionby Oy, is automatically
anabelianvariety. Of coursethisis very standardput | justwrite it down for myself, sothat|
understandk, andsothatl have theagumentavailableelectronically

Considerthe standardsymplecticform onthe K -vectorspaceKk %:

0 1
Yo K2x K2 — K, (z,y)—2'Jy, J= ( . 0) :
Thenwe composehis 1, with anarbitrarynon-zeraQ-linearmapl from K to Q in orderto get
aQ-bilinear anti-symmetridorm:

b K2x K2 2% k-5 Q.

In particular onecantake for [ thetracemap;in thatcase we will denotey; simply by .

For all g in GLy(K) andall z andy in K2, onehasyy(gz, gy) = det(g)vo(z,y). Henceif
moreover det(g) is in Q, onehas: ¢, (gz, gy) = det(g)iy(z,y). This meanghatsucha is a
Hodgeclassof weighttwo (oris it —2?) for all : Sg — G thatarein (H* )2, sincethey factor
throughthe subgroupof G of elementshathave determinantn Gy, .

Let us now checkthat is a polarizationon (H*)?. Sothe only conditionleft to checkis
thatz — +(x, h(i)z) shouldbepositive definiteon R ® K2. (Onechecksindeedthatthis makes
sensejn the sensehat (z,y) — ¥ (x, h(z)y) is symmetric.) ThefactthatR @ K = R?> means
thatit sufiicesto checkthatx — z'h(i)z is positive definite on R? for every h in H*. But
now notethatfor all » in H* andall non-zeroz in R?, x andh(i)x areR-linearly independent
(interpreth asgiving a structureof complex vectorspaceon R?). Henceeitherz — zth(i)z is
positive definite,or negative definite,for all 4 in Ht simultaneouslySolet uscheckjustwhatit
is for the standardh, theonethatsendsz + bi to (¢ .*). In thatcasepnehash(i) = —J, hence
z'Jh(i)x = x'z, whichis the standardnnerproduct.

OnH~, z!Jh(i)z is negative definite,sincethe standardh therehash(i) = J. Sowe have
seenthatv is a polarizationon (H*)?, and— oneon (H)2. Onthe othertwo component®f
(H+)? onegetspolarizationsby varyingthe map!, for exampleby taking the compositionof
with multiplication by a suitableelementof K, i.e., anelementwith the right signsat the two
infinite places.
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C Somestuff on group (schemes).

Let G denotethe groupschemeGL, (over Z, thatis). Let V' denoteits standardepresentation.
| usein thetext thatthekernelof G actingon Sym?(V') ® det ! is preciselythe scalarsubgroup
G of G. Thiscanbechecledasfollows. Firstof all, thepairingV x V' — det(V), (z,y) — zv,
is perfect.Henceit givesusanisomorphismbetween) @ det™! andV*, thedualof V. Hence
we may aswell considerEnd(V) = V* ® V asV ® V ® det™'. Underthisisomorphismthe
quotientSym, (V) ® det™ of V ® V ® det™" correspondso the quotientof End(V) by the
submoduleof scalamatrices.Sowe testthe questionthere.Onecomputes:

o) los) (o) (2= )
S ) O I VA

The conditionthatthesetwo matricesarescalargive thata = d andb = ¢ = 0.

D The Shimura datum for G249,

For 7: G — G asabove, we claim that 7 inducesan isomorphism(of real algebraicvari-

eties)from (H*)? in Homg(S, Gr) to a conjugagy class(thatwe will alsodenoteby (H*)?) in

Homg (S, G&Y). Let usdenotethekernelof 7 by Z (it is thecenterof G). Let hy be our standard
elemenin (H*)2. Letg bein G(R), andsupposéhatroint,ohy = 7o hg. We haveto shaw that
int, o hg = hy. Hereis how thatgoes.Definea map(i.e., morphismof realalgebraicvarieties)
z:S — Zr by: z(s) = gho(s)g 1-ho(s) L. Then,becausét goesto the center z is actuallya
morphismof groups.All we have to shaw is thatit is trivial. Well, it is trivial onthe Gy, g in S,

sincethatoneis mappedcentrallyin Ggx. Now the agumentis finishedby notingthat Zy is a
split torus,andS /G, r is notsplit.

E Comparing various groups.

It is notyetclearto mewith whichgroupl actuallywantto work. Thepossibilitiesare: GLy (K),
PGLy(K) andG’ = {g € GLy(K) | det(g) € Q}. Justto getsomeideaof whatactually
happensvith thesegroups,andwith themorphismsof Shimuradatabetweerthem,l thinkit is a
goodideato make somethingsexplicit, suchasthe setsof connectedomponentsandthefinite
mapsbetweernthe variousShimuravarieties.
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Solet usfirst think abit abouttheny’s. Let'sfirst consideiG asabove. Thenclearlywe have:

But this setis the setof isomorphismclassesf locally free rank 2 Ox-modulesM with an
orientationon det(M) = A% M at the two infinite places. Now eachlocally free rank two
moduleover Oy is isomorphicto oneof theform Oy & L (shaw first thatit is decomposable
by choosinga onedimensionalK -sub-\ectorspacen Q ® M ; thenshawv that M hasanowhere
vanishingelement). Of course,L is determinedby M sinceonehasdet(M) = L. It follows
that:

70(S(C)) = Pic(Ok)™, thestrict classgroupof K.

Let usnow considerry(524(C)). We have:
(5% (C)) = PGLy(K) " \PGLy(Ag ¢)/PGLy(OY).

This we recognizeasthe setof isomorphisnclassesf Pl-bundleson S := Spec(Ox), locally

trivial in the Zariski topology with an orientationat the two infinite places(it doesnot seem
a completetautology the correspondencwith the Zariski P'-bundles,namely it saysmore
directly somethingas:trivial over K, andover every completion).Anyway, let usshow thateach
P!-bundle X on S comesfrom alocally free ranktwo bundleon S. Justnotethateachelement
of X (K) extendsto onein X (S). An elementin X (S) givesaninvertible Ox-module, that
hasdegreeoneon eachfibre, hencewith p, £ aranktwo bundleon S. Thenonecheckgshat X is

isomorphic,over S, to P(p, L) (it is easyto seethat X is the Grassmanniaof locally freerank
one quotientsof p,£). This hasan interpretationin the long exact sequence&omingfrom the
shortexactsequencef Zariskisheaeson S:

1 — Gm,g — GLQ,S — PGLQ,S — 1.

Whatis quitenicein thissituationis thatS is of dimensiorone,hencehatH?(S, G,,) = 0, which

explainsthe obsenationabove. Now thatwe know thateachelementf 7, (524(C)) comesfrom

alocally freeranktwo Og-module,we wantto know whentwo suchmodulesgive isomorphic
P!-bundles.Well, the Grassmanniaimterpretationsaysthat that happensf andonly if thetwo

modulesareisomorphicup to twist by aninvertible O ,-module.Hence:

F, ® Pic(Ox) = {P'-bundleson Spec(Ox)} .

Let us now considerorientations.Note that Auto, (Ox & L) mapssurjectively, underdet, to
Auto, (L) = O}, andthatdoublesin Pic(O) have acanonicabrientation.lt follows that:

70(524(C)) = Pic(Ok)T/2Pic(Ok),
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andthat:
#F, ® Pic(Og)  if N(Oy) ={1,-1},

#m0(5%4(C)) = {2#]14‘2 ® Pic(Ok) if N(Og) = {1}.

Let us now say somethingaboutthe map S(C) — S#!(C). This makesit necessaryo know
things aboutthe morphismof group scheme<:L,,, — PGL2o,. We would like to know
that this morphismis surjectve for the Zariski topology For this, it sufficesto shawv thaton a
schemeS, an S-automorphismof P4 is induced,locally on S, by anelementof GLy(S). Now
usethatfor ary schemeT’, to give anelementof P*(T) is to give aninvertible Oz-modulewith
two sectionsthatgeneratét. Let g be an S-automorphisnof P. Theng*O(1) is of the form
p*L ® O(1) for someinvertible Os-moduleL. SinceL is locally trivial, we getwhatwe want.

Hence:the morphismGL,(O7%) — PGLy(O%) is surjectve (usethat O% is the productof
the completionsat all finite placesandthat one hasthe surjectvity for eachsuchcompletion).
And: GLy(Ag r) — PGLy(Ag ¢) is surjective (just usewhatelementsof Ag ¢ look like, or use
thatto give a point of a schemewith valuesin Ay is to give, for eachp, a point with valuesin
Q,, suchthatfor almostall p the pointcomesfrom a pointwith valuesin Z,). The moredifficult
thing thatremainsnow is the questionof surjectvity of themorphismGLy(Ox) — PGLy(Ok).

It follows that S(C) — S24(C) is surjectie. The stabilizerof (H")? x {1} in GLy(K) and
PGLy(K) areGLy(Ok)* andPGL2(Ok)™, respectiely. Solet usfind outwhatthe cokernelof
GLy(Og)t — PGLy(Ok) T is.

An automorphisnof P := P% is given by aninvertible Op-moduleof degreeonetogether
with two generatingsections.Sucha moduleis of the form p*£ ® O(1). But thenwe have the
conditionthatp,p*L ® O(1) = L & L is generatedy two global sections.This canbe doneif
andonlyif L& L = O @ O, i.e.,if andonly if £82 = 0. This explainsthatwe have anexact
sequence:

1 — O} — GLy(Og) — PGLy(Og) — Pic(Ok)[2] — 0

Likewise,onegets:

We concludethatS(C)° — S24(C)° is thequotientfor afaithful actionby thegroupPic(Ox)[2],
where S(C)? and 53¢(C)° arethe standardrreduciblecomponentof S(C) and S24(C). One
computedirectly thatthemapS(C) — S24(C) is the quotientfor afaithful actionby the group
K*\A% JOR,i.e.,by Pic(Ok).

Let us now do somecomparingbetweenS and S’, with S’ coming from the Shimurada-
tum with the groupG’. We first remarkthat G'(R) is the setof (g1, go) in GLy(R)? suchthat
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det(g1) = det(g2). Thismeanghatthe G’(R) conjugag classof morphismdrom S to Gj that
we dealwith is:
X' = ) )2 = (H)*.
Hencewe have:
S'(C) = G'(Q\(X' x G'(Ar)/G'(2)), m(S'(C) = G'(QF\G'(A)/G'(2).

This last setis the setof isomorphismclassef triplets (M, ¢, «) with M alocally free Ok-
moduleof ranktwo, ¢: Ok — det(M) anisomorphismanda anorientationon R ®z det (M)
thatinducesplusor minusthe standardrientationonR ® Ox = R x R via ¢. Sinceevery such
triplet is isomorphicto (0%, id, (+, +)), we see:

S'(C) is connected.

Whataboutthe map $’'(C) — S(C)? It sufficesto look at whathappenn (H?)* x {1}. The
stabilizerof thisin G’'(Q) is simply SLy(Of ), andthe stabilizerin G(Q) is GLy(Ogk)*. Hence
the map S'(C) — S(C)* is the quotientfor the faithful action by the group 0% /032, i.e.,
totally positive globalunitsmodulosquare®f globalunits.

F Somestuff on bilinear forms and field extensions.

Let £ — K beafinite field extension,sayof degreed. Let V' be afinite dimensionalK -vector
spacesayof dimensiomn. Let X denotethe k-vectorspaceof k-bilinearformsb: V x V — k
suchthatb(ax,y) = b(z,ay) for all z andy in V andall ¢ in K. (l.e.,themapsz — ax are
requiredto be self-adjoint.)We wantto relate X to thesetY of K-bilinearformsonV’.

Let/: K — k beasurjectve k-linearmap(for example ,onecantake thetracemapif £ — K
is separable)Thenwe have amap:

LY — X, belob.

Indeedfor b in Y we have: (1 o b)(az,y) = l(b(z, ay)) = (I 0 b)(z, ay). ThemapL is injective,
since,for b a K-bilinearform, theimageof b is either0 or K.

Let usnow assuméhatk — K is separableThenonecomputeghatboth X andY areof
dimensionn?d over k (of coursefor Y thisis clearly true without the separabilityassumption;
for X, oneusesthis assumptiorin orderto reduceto the caseK = k¢ via basechangefrom k
to somealgebraicclosurefor example). Hencewe concludethatthe map L above is bijective.
(I did not botherto checkif thisis still true without the separability) Sowe have the following
result.
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F.1 Proposition. Let k be a field, and K a finite separable:-algebra. Letl: K — k bea
surjectie k-linear map (for examplethe tracemap). Let V' be a finitely generategrojective
K-module.Thenfor everyk-bilinearformb: V x V. — k suchthatb(ax,y) = b(x, ay) for all x
andy inV andall a in K thereexistsa uniquekK -bilineart/: V x V' — K suchthatb = [ o b'.
With this notation,b is symmetric(antisymmetric)f andonly if b’ is so.

Proof. It only remainsto prove thatb is symmetric(antisymmetric)f andonly if ¥’ is so. For
b asabove, let ' denoteits adjoint, i.e., b*(x,y) = b(y, z); we will usethe samenotationfor
elementof Y. Thenonehas(b')' = (b')". Now b is symmetricif andonly if b* = b, andb is
antisymmetridf andonly if b = —b. Hencetheresult. O

Thenext resultgivesa constructiorof theinverseof L, if onetakes/ to bethetracemap.

F.2 Proposition. Letk beafield, andK afinite separablé-algebra.LetV bea finitely gener

atedprojective K -module,andb: V x V' — k ak-bilinearmapsuchthatb(ax,y) = b(x, ay) for

all x andy in V andall a« in K. Becausef the separabilitywe have a naturalisomorphismof

K-algebrasK @, K = K x K', whereweview K ®,, K asaK -algebravia thefirst factor This
decompositiorgivesa decompositiorof K-modules’ K @,V = K @, K Qx V =V & V' with

V'=K'®k V. Letbx denotethe K -bilinearformon K ®, V obtainedby extensionof scalars.
Thenthedecompositiorof K ®, V inV andV"' is orthogonalfor by, andb' is therestrictionto

V of Bgk. In particular onehash = tro b'.

Letusnow notethespecialcasewvhereV is of dimensiortwo. In thatcasethe K -vectorspacet’
of antisymmetrick -bilinearformsis of dimensionone,henceonegetsthe following corollary;
whichis of interestfor Hilbert modularvarieties.

F.3Corollary. Letk beafield, andk — K a finite separablé:-algebra.LetV bea free K -
moduleof ranktwo. Letiy: V x V. — K be a non-dgeneratealternatingK -bilinear form.
Thenfor every alternatingc-bilinearform+: V- x V — k suchthatiy(azx,y) = 1(z, ay) for all
xz andy inV andall o in K, thereexistsa uniqueb in K suchthatiy(x,y) = tr(byo(x,y)) for
allz andy inV.

G Moduli interpretation for the symplecticgroup.

For details,see[12, Sectionsl, 4]. Justin this section,let G denotethe group of symplectic
similitudesof rank 2n. More preciselylet n > 0 be aninteger, andlet G denotethe group of
automorphismsf theZ-moduleZ?" thatpresere, upto scalamultiple, the standardsymplectic
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form, i.e., the form givenby the matrix ( %, §). Let X := HE thesetof h: S — Gk thatare
Hodgestructuresof weight —1 suchthat ) is a polarizationup to a sign. Thenthis X is one
G(R)-conjugay classandit is calledthe Siegel doublespace Let usconsider:

A4(0) = GQ\(X x G(Ar)/G(2)).

Whatwe wantto shaw is that A,,(C) is the setof isomorphismslasse®f pairs(A, ) of prin-
cipally polarizedabelianvarietiesof dimensionn. We alreadyknow whatthe interpretationof
X is: it is the setof Hodgestructuresof weight —1 suchthat ) is a polarizationup to a sign.
Let usnow interpretG (A¢)/G(Z). Considettheactionof G/(A;) onthesetof latticesin AZ. The
stabilizerof thestandardattice Z? is G(Z). HenceG(A¢)/G(Z) is thesetof latticesof theform
£7?2, with z in G(A¢). We claim thatthis is the setof lattices L on which a suitablemultiple of
¥ inducesa perfectpairing. For z in G(Ay) we have: ¥ (zu, zv) = p(z)v(u,v), which proves
that u(z) !¢ is a perfectpairingon zZ2. Onthe otherhand,let L be a lattice anda in Af be
suchthatay is a perfectpairingon L. Thentake a Z-basisls, . . . , l», of L suchthatay is in
standardorm, i.e., givenby the matrix ( % §). Thenthe elementz of GLy, (A¢) with ze; = I,
is in G(Ay). Thisfinishesthe proof of thefactthatG/(A;)/G(Z) is the setof latticeson which a
multiple of ¢ is perfect.

Let usnow describethe constructionghatgive A4, (C) theinterpretatiorasthe setof isomor
phismclasse®f abelianvarietiesof dimensionn, with a principalpolarization.

Supposg(A, A) is given. Thenchoosean isomorphismf: Q** — H;(A, Q) suchthat
correspondso a multiple of A\ (suchan f is uniqueup to an elementof G(Q)). Let z bethe
elementof X thatis given by the Hodge structureon Q** inducedfrom A via f. Let L in
G(A¢)/G(Z) bethelatticecorrespondingo Z2" via f. Theclassof (z, L) moduloG(Q) depends
only ontheisomorphisntlassof (A, \).

Supposeow thatwe have (z, L) in X x G(A¢)/G(Z). Thenlet A be (R ® L)/L with the
comple structuregiven by the Hodgestructurecorrespondingo z. Let a be the elementof
@ suchthata is perfecton L (this fixesa up to sign)andis a polarization\ on A (this fixes
the sign). For g in G(Q), multiplication by g givesanisomorphismfrom (A, \) to the (A", \)
obtainedrom (gz, gL).

Let usendwith aremarkwhichis justareminderto myself.

G.1Remark. Let V' be a free finitely generatedZ-module,with 4: S — GL(V)r a Hodge
structureof type (—1,0), (0,—1). Let A :== (R® V)/V betheassociatedomple torus. Then
the dualcomple toruscorrespondso the Hodgestructuret — (h(t)¥) "' N(¢) = h(7)¥ on V'V,
In otherwords,thedualof A is (R® V") /V"Y, with thecomples structureonR VY = (RQV )Vr
suchthat z in C actsasz". In orderto prove this, one notesthat the tangentspaceof A! is
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H!(A, O4), whichis naturallyC-anti-linearly isomorphicto H°( A, Q}), whichis the dualof the
tangentspaceof A atzero.

H Moduli interpretation of S'(C).

Let usrecall:
S'(C) = G'(Q\(X' x G'(A)/G'(Z,)).

H.1 Proposition. The Shimuravariety Sy, is the moduli spaceof triplets (A, o, \)with A an
abeliansurface,o.: Ox — End(A) aring morphism,and\: A — A* aprincipal O k-polariza-
tion.

First of all, we have to explain what A* is, andwhatwe call a principal O k-polarization. Let
usbegin with A*: it is thedual of A in the catayory of abelianvarietieswith Og-action. More
precisely sincefor A anabelianvarietythedualis definedto be A := Ext' (A, Gy, ), we put:

A* = Ext})K (A, 0k ® Gy) = 6 ®o,. Ext'(A,Gy) =6 ®p, A,
with
§ = HOII]OK (HomZ(OK,Z), OK)

the differentof the extensionZ — Og. In orderto prove the above equalities,it is usefulto
notethatfor A — B amorphismof rings,for M a B-moduleand N and A-module,onehasthe
adjunction:

Hompg(M,Homy (B, N)) = Hom4(4M, N),

where 4 M denoteshe A-modulegivenby M. Thenoneusesthatfor B locally free of finite
rankas A-moduleonehasHom4(B, N) = BY4 @4 N, with B¥4 = Hom (B, A) the A-dual
of B. And thenoneuseshatfor P afinitely generatedocally free B-moduleonehas:

HOIIIB(M,P®A N) = P®B HOIIIB(M,B®A N)

This establishes:
Homp(M, B®4 N) = 6 ® Hom4(M, N),

with 6 = (BY4)VE. Deriving with respecto N thengives:
Exty (M, B®4 N) = § ®@p Ext’, (M, N).

This explainsthe reasornthat A* occursin this contet. In our context, A = Z and B = Ok,
sothatd is anideal in Ok, sincethe tracemaptr: Ox — Z givesan injective morphism
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Ok — (Ok)Vz (in fact,thetracemapfrom B to A alwaysgivesamorphismé — B, butit might
bezero). This givesanisogely:

A" =50, A" — A,

We definean O -polarizationto be an Ox-morphismA: A — A* suchthatthe inducedmor-
phismfrom A to A® is apolarization;) is calledprincipalif it is anisomorphism(notethatthis
meanghattheinducedmorphismA — A! is notanisomorphismsinceOgx is ramifiedover Z
(we do supposehat K is afield, afterall).

Let us now turn to the proof of the propositionabove that givesthe moduli interpretation
of Sp. Sowe wantto shav that S'(C) is the setof isomorphismclassesof triplets (A, o, A)
over C. In Hodgetheoreticalterms,suchtripletsaregivenby triplets (V, h, ¢)) with V' alocally
free Ox-moduleof ranktwo, h: S — (GLz(V))r a Hodgestructureof type (—1,0), (0, —1),
andy: V x V — Oy aperfectantisymmetricO i-bilinearform suchthattroy: VxV — Zis
apolarization.Notethatfor suchatriplet (V, h, ¢), thepair (V, v) is isomorphicto thestandard
pair (Ox @ Ok, (2% §)). The proof of the propositioncan now be easily described. As in
the last section,one shaws that G’ (A¢) /G'(Z) is the O-latticesin K2 onwhich = (% })
inducesa perfectpairing of Ox-modulesupto afactorin Q*. ThespaceX' is thesetof Hodge
structuresAs in thelastsection oneshavsthatG’ (A¢) /G’ (7Z) is the Ok -latticesin K2 onwhich
¥ = (% §) inducesa perfectpairing of Ox-modulesupto afactorin A¥. ThespaceX' is the
setof Hodgestructuref type (-1, 0), (0, —1) onthe K-vectorspaceKk? suchthat,upto sign,
tr o 1) is apolarization.f type (-1, 0), (0, —1) onthe K-vectorspaceK? suchthat, up to sign,
tr o 1) is a polarization. After theseremarksonesimply follows the lines of the proof above of
the modularinterpretationfor the symplecticgroup. Anyway, for details,onecanconsult[12,
4.11].

Let usendby statingthatthe multiplier charactey: G' — Gy, is the determinantview G’
asasubgroupf Reso, /zGL2,0,, andG,, asasubgroupof Reso,. ;zGm,0, .- More precisely for
all g in G’(Q) andall z andy in K2 we have (tr o ¢)(gz, gy) = det(g)(tr o ¢)(z, y).

| A remark on Mumford-Tate groups.

What| wantto sayis thatto anisomorphisnclassof Q-Hodge structuresonecanassociatets
Mumford-Tate group. Namely if V andV’ areisomorphicQ-Hodge structuresandif f and
f! areisomorphismdrom V' to V', then f' = fg with ¢ an automorphisnof V. But theng
centralizeghe Mumford-Tategroupin GL(V'). Hencef and f’ inducethe sameisomorphism
from MT(V) to MT(V'). For example thefunctorV — Aut(V') doesnot have this property
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The sameargumentshows thata point P on a Shimuravariety Shx (G, X )(C) definesan
algebraiagroupMT(P), with agivenG(Q)-conjugay classof embeddingsn G.

J On computing the genericMumford-Tate group on S’(C).

Firstnotethatfor all A = (hy, hy): C* — GL2(R)? in X' onehasdet(h(z)) = det(hy(2)) for
all z. This shavsthatMT is containedn Gg,. Thelocally constansheafl” becomesonstant
on X’. HenceM Ty containsall A(C*) C GLy(R)? for theh in X'. In particular it containsall
conjugatesinderG’(R) of thoseimages.but thenit containsall (z, z), all (yzy *, z), henceall
(zyxz~'y~', 1), etc. It followsthatMT = Gy,

K  Other remarks on Mumford-Tate groups.

We have definedthe Mumford-Tategroup MT (V') of a Q-Hodge structurel’ givenby a mor-
phismh: S — GL(V )k to bethe smallestalgebraicsubgroupH of GL(V') suchthath factors
throughHy. Thisis nottheusualdefinition,perhapsTheusualdefinitionis to take MT'(V), the
smallestsubgroupH of GL(V) x G, suchthath’: S — GL(V)gr x Gy, g factorsthroughHg,
whereS — G,, g correspond$o Q(1). Thedifferencebetweerthetwo choicesis thatMT' (V)
keepsrackof weights,whereaM T (V') doesnt. The Tannakiarinterpretatiorof MT (V) is that
it is the automorphisnfunctor of the fibre functor “forget Hodgestructure”on the tensorcate-
gory generatedby V. For MT'(V), oneconsiderghetensorcateyory generatedy V andQ(1).
Yet another(of courserelated)characterizationis that MT'(V) seemsto be the biggestsub-
groupof GL(V) x Gy, thatfixesall elementf type (0, 0) in Q-Hodge structuresof the form
ver g (V)™ @ Q(p). For this, seeDeligne-Milne-Ogus-Shihln the sameway, MT(V) is
characterizedby the factthatit stabilizesall lines generatedy Hodgeclasseqi.e., classef
sometype (p, p)) in Q-Hodgestructuref theform @, V& @ (V*)®™i,

Sincel did notfind this explicitly written (but | haven't lookedvery much,| shouldsay),let
mewrite aproof. Solet H betheintersectiorof thestabilizersof suchlines. Let usfirst provethat
MT(V) C H. Solettin someTl’ = @;V®" @ (V*)®™ beof sometype (p, p). ThenRt C Tk is
fixedby S, henceby MT (V). ThisprovesthatMT (V') C H. Let'snow provethatH C MT(V).
Now we useChevalley’sresult: every subgroupf GL(V') is thestabilizerof aline in somefinite
dimensionatepresentationf GL(V), plusthefactthateachfinite dimensionatepresentationf
GL(V) is containedn arepresentationf theform &,V ®" @ (V*)®™ (I will evengive proofs
for thesetwo factsbelow, sincel do notlikethe proofgivenin DMOS). Anyway, lett in someT’
besuchthatMT (V) is thestabilizerof Q¢t. ThenR¢ is fixedby S, hencet is of sometype (p, p).
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(Usefor examplethatthenormS — G, x generate$lom(S, Gy r).)
As | said,l donotliketheproofof parts(a) and(b) of Proposition3.1in Chaptel of DMOS.
Sol giveone.

K.1 Theorem. Let G be an affine algebraicgroupover afield k > Q. Let H be analgebraic
subgroupof G, andV" afinite dimensionafaithful representatioof G. Thenthereexistsa line
L in somerepresentatioof G of theform &;V®" @ (V*)®™i, suchthatH is thestabilizerof L.

Proof. Firstof all, we mayanddo supposehatG = GL(V'). Theideais now thefollowing: let
G actonitself by right translationithenG actson £[G|, and H is the stabilizerof theideal I;
thenusethat Iy is finitely generatedandthatk|G] is locally finite. Let usfirst write down what
k[G] is, asaG-modulevia right translationon G. Well,

k[G] = k[End(V)][1/ det] = Sym, (End(V)*)[1/ det] = Sym, (V¢)[1/ det],

wherethelastequalitycomedrom thefactthatEnd(1)*, asG-modulegivenby right translation
on End(V), is simply V¢, whered is of coursethe dimensionof V' (notethatthe G-actionon
End(V)* extendsto anEnd(V)-action). Also, notethatdet is in Sym®(End(V)*), andthatwe
have ¢g- det = det(g) det. ThescalarsubgroupG,, of G inducesa Z-gradingon k[G]. We have:

kGl = U k[End(V)]iygdet ™,

and:
k[End(V)]; = Sym!(End(V)*) = Sym’(V%) c (V4)® = (V&)
k-det = AV c V®4,
k-det™ = (AYV)* C (V)%
This describes[G] asG-module. Let f1,... , f, be afinite setof generatorof the ideal Iy

of k[G]. Let W C k[G] be a finite dimensionalsubG-modulecontainingthe f;. ThenH is
the stabilizerof the subspacdy N W of W, henceof theline A™(Igy N W) C A™(W), with
n = dim(/y N W). Now notethat W is a subrepresentatioaf a representatiomf the form
@, Ve @ (V*)om, O

K.2 Remark. If weallow subquotient®f thes,;V®" @ (V*)®™, thenwe candropthehypoth-
esisthatk is of characteristizero.

K.3 Remark. If H containsthescalarsn G = GL(V), thenonecantake L to bein somerep-
resentatiorof theform (V®")™. To prove this, considerthe Zariski closureH of H in End(V),
andusethatit is acone.
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Justfor fun, let uslook at someexamplesin G := GL,. The Borel subgroupB := {(§ %)} is
the stabilizerof theline generatedy (1,0) in V := k2. Thesubgroup{(} )} is the stabilizer
of £(1,(1,0)) in k & V. Thesubgroup{(§ i)} is thestabilizerof (1, (0,1)*) in k & V*. The
subgroup{({ 9)} is thestabilizerof £((1, 0), (0,1)) in V & V. Thesubgroup{(; ?)} is thesta-
bilizer of thetwo-dimensionasubspacef the ((z, 0), (0, y)) in V & V; notethattheproofabore
givesthesameresult.Finally, thetrivial subgroup{(} ¢)} is thestabilizerof (1, (1, 0), (0,1)) in
keVaV.

L Modular interpretation of 7,,.

Let A beacomple abeliansurfacewith multiplicationby O, andwith aprincipal O x-polariza-
tion \: A — A*. Let H bean Og-submoduleof A[p](C) thatis free of rank one. Thenwe
claim that pA inducesa principal Og-polarizationon A/H. So how doesthis work? Write
pA = momy, With 7 : A — B thequotientby H. Then(A/H)* is thequotientof A by ker (7).
Sowe have to seethatker(m;) = ker(m). Sinceboth have the samenumberof elements;t
sufficesto seethat oneis containedin the other Sinceker(;) is maximalisotropicfor the
pairinge, , that\ induceson Alp], it sufficesto seethatker(73) andker () areorthogonalfor
thatpairing. Thatresultsfrom standardhingsaboutsuchpairingscomingfrom expressiongik e
A* = Ext' (A, Og ® Gy,).

Thegeneraktatemenis this: let f: A — B andg: B — C beisogenief abelianvarieties
with multiplicationsby Og. Let h := ¢ f. Thenwe have a shortexactsequence:

0 — ker(f) — ker(h) — ker(g) — 0.

Applying Hom(-, Ok ® G,) givesanisomorphisnof shortexactsequences:

0 — ker(¢*) —— ker(h*) —— ker(f*) —— 0

l l | | l

0 —— ker(g)* —— ker(h)* —— ker(f)* —— 0.

Thefactthatthe mapfrom ker(g*) to ker(f)* is zeromeanghatker(f) andker(g*) areorthog-
onalfor theparinginducedby h betweerker(h) andker(h*).

M  Somestuff on orders in finite separableQ-algebras.

| needowerbounddor ordersof Picardgroupsof certainordersin certainCM fields. Therefore,
somegenerakheoryshouldbe quite useful.
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Let Q@ — K beafinite separabléQ-algebra. Then K is a finite productof numberfields,
sayK = K; x --- x K,,, andtheintegral closureof Z in K is thenthe productof the maximal
ordersof the K;. Let R C K beanorderin K, i.e., asubringof K with Q ® R = K and
which is finitely generatedsa Z-module. Then R is containedn Og sincethe elementof R
areintegral overZ, andOx /R is afinite additive group,since R andOy arefree Z-modulesof
the samefinite rank. Consideridealsof R thatarealsoOx-ideals. Clearly a lot of suchideals
do exist: for every n in Z thatannihilatesOx /R, we have the examplenOg. The sumof a
family of suchidealsis againonesuch,hencethereexists a uniquemaximalsuchideal, called
theconductorof R (relatveto Og). | don't think thatwe will usethis conductorsomuch,since
we wantestimatesn termsof the discriminantof R.

Let I C R beanon-zerodealthatis alsoanOg-ideal. ThenR is theinverseimagein O
of thesubringR/I of thequotientOx /I of Ok). Actually, thediagram:

R —— RJ/I

! !

is bothCartesiarandco-CartesianFor us,themostimportantis thateveryorderof K is obtained
asfollows: take theinverseimagein Oy of asubringof afinite quotientof O.

M.1 Discriminants.

Recallthatdiscr(Of) is the discriminantof the traceform on Ok. To be precise:for M afree
Z-moduleof finite rankandb abilinearform on M, letdiscr(M, b) betheintegerdefinedby: let
m beabasisof M, thendiscr(M, b) is thedeterminanbf the matrix of b relative to m. In more
intrinsic terms,onecanusethatb inducesa bilinearform on the maximalexterior power of M,
andusethe integer comingfrom there. The whole thing doesnot dependon the basisbecause
changinghebasischangedt by thesquareof aunit. Over moregenerakings,andfor projective
modules,oneobtainsanideal,locally principal, with someextra structuredueto the square®f
unitsthatintervene.In fact,oneseedhatif thelocalgeneratoref theidealarenonzerodivisors,
thentheidealis, asinvertible module,the squareof AM. In our casewe usethe bilinearform
(x,y) — tr(xzy). Theseparabilityof Q — K shavsthatdiscr(Og) # 0. Choosinga basisof
Ok adaptedo R shavsthat:

discr(R) = discr(Og) |Ok/R|?.

M.2 Theorem. Let(r denotethezetafunctionof theorderR, i.e., the zetafunctionof Spec(R)
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in theusualsense.Then:
271 (27)"2|Pic(R)| Reg(R)
[tors(R*)| |discr(R)[Y/2
withR® K =2 R x C andReg(R) the regulatorof R (seein the proof for the definition).
(RecallthatK is the productof m numberfields.)

Res; (Cr) = ll_r)r{(s — 1)™(r(s) =

Proof. For Og, seefor exampleLang’s “Algebraicnumbertheory”, 2nd edition, VIII, §2. In
fact,LanggivestheproofwhenK is afield, but for Ok in aproductof numberfieldseverything
decomposemto products. Let us digressa little bit on the regulator | find that the regulator
Reg'(R) shouldbedefinedasfollows: oneconsiders

O — (R® Og)" ZH Rrii72,

andputs:
Reg/(R) := Vol(R™ *>"=° /imageof O3%),

with the volume measuredwith respectto the volume form coming from the standardinner
producton R ">, andwherelog || || is takinglog of absolutevalueat every factorof R ® O,
with ||z|| beingthe factorby which the Haarmeasureshange(|z| for a real place, |z|? for a
complex one).But this doesnot give the usualdefinition,asgivenin Lang. Thereoneomitsary
one of theinfinite placesin orderto geta squarematrix of which onetakesabsolutevalue of
the determinantOneeasilyprovesthatReg'(R) = 27"2(ry + 2r5)(r1 + r2)~/?Reg(R), which
actuallymakesmy definitionabit ugly.

Anyway, let’s proceed.Sincewe know thetheoremfor Oy, all we have to dois to compare
our Rto Ok. Let X := Spec(Ok), Y := Spec(R), andN: X — Y themorphisminducedby
theinclusionof R in Og. Thenwe have ashortexactsequencef sheaeson X':

0 — Oy — N.Oy — Q@ —0,

with Q a skyscrapersheafgivenby O /R’ in caseR is given by the subringR of the finite
quotientOx of Ok. This givesalong exactsequence:

0 — R* — O} — Ok /R — Pic(R) — Pic(Og) — 0.

Let A bethecokernelof R* — Oy}, and B thekernelof Pic(R) — Pic(Ok). Thenonegets:

. . U — [tors(O}) \ O /tors
Pic(R) = Bl PicOx)l, [Ox" /7| = 4] |B|, |4] = Lom 2 Cicren
0% /tors . O )
Reg(R) = \ﬁ Reg(Ox),  [discr(R)[/? = %\dmcr(omw?
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Puttingthis all togethershavs thatthe right handsideof the equalitywe wantto prove changes
by thefactor|Ox | |R*| ! |R| |Ox|~* whengoingfrom O to R. Soall thatwe have to do now
is to shav thattheleft handsidechangedy the samefactor But thennote:

R _ |k 1
|E*\ o H |k*\ _H 1— \k|*1’

k resfield of R k

whichis clearlythe contributionto Res; ((g) of thoseresiduefields. O

M.3 Theorem. Let N > 0. Thenthereexistsarealnumberc > 0 suchthatfor every orderR in
aseparabl&)-algebraK of degreeatmostN, onehas:

[Pic(R)| Reg(R) > c|discr(R)[Y7.

M.4 Remark. Astheproofwill shav, we canactuallyget1/6 — ¢ asexponent,nsteadof 1/7,
with a ¢ dependingne, for everye > 0. If oneassumeshe generalizedRiemannhypothesis,
thenonecanget1/2 — ¢ asexponentfor everye > 0, with againc dependingne. In thatcase,
oneusesSigyel'stheorenthatonefindsin [17, Ch. XIII, §4].

Proof. Wewill first prove thisfor maximalordersin numberfieldsof boundeddegree thenfor
maximalordersin finite separablé-agebrasof boundeddegree,andthenfor arbitraryorders
of boundeddegree.

In the caseof a maximal order of a numberfield of boundeddegree, we just apply two
theoremsThefirst oneis the BrauerSiegel theorem(seefor example[17, Ch. XVI]), thatstates
that:

for N > 0 ands > 0, thereexistsc > 0 suchthat:
[Pic(Ok)| Reg(Ox) > c|discr(Og)| /2~
for all Galoisextensionsk of Q of degreeat mostN .
Thesecondheoremis oneof Stark([29, Thm. 1]):

let N > 0. Thereexistsc > 0 suchthatfor all numberfields K of degreeat mostN
overQ, onehas:|Pic(Ok)| Reg(Ox) > c|discr(Og)|*/?~ /KA

Togetherthesetwo resultsshow:

let N > 0. Thereexistsc > 0 suchthatfor every numbeffield K of degreeat most
N overQ onehas:|Pic(Ox)| Reg(Ox) > ¢ |discr(Ok)|"/S.
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This settlesthe casewherethe Q-algebraK is afield. The casefor a maximalorderin afinite
separableQ-algebraof degreeat most N thenfollows, becausesverythingdecomposemto a
productof atmostN factorsfor which onehastheresultalready

Solet now K beafinite separablé-algebraof degreeat most NV, andlet R be anorderin
it, givenby the subringR of somefinite quotientOx of O . We have alreadyseerthat:
Ok |

R

|tors(R*)|
[tors(O%)|’

|Pic(R)| Reg(R) = |Pic(Ok)| Reg(Ok)

— i\ 2
@)
|discr(R)| = (@) |discr(Ok)|.
R
We notethatthequotient/tors(R*)| |tors(O% )|~ andits inverseareboundedn termsof N only.
Hencethetheoremfollows from thefollowing claim:

for N > 0 ands > 0 thereexistsc > 0 suchthatfor R anorderin afinite separable
Q-algebraK of degreeatmostN, onehas:

O (_@)15,
® R

whereR is theinverseimageof the subringR of thefinite quotientO . of O

We now prove this claim. Let n denote/ O/ R|. We mayanddo assumehatn > 1. Localizing
atthemaximalidealsof R, followedby a simplecomputationshaws that:

% N N
0 (B
R p 5log(n)

pln

Sincelog(n) = n°WY, this shavs our claim, andhencefinishesthe proof of thetheorem. O

N On effective Chebotarev.

As usual,let Li(z) := [ dt/log(t). If oneassumes$SRH, thenthe effective Chebotare the-
oremof Lagarias,Montgomeryand Odlyzko, statedasin [28, Thm. 4] andthe secondremark
following thattheorem says:

for M a finite Galois extensionof Q, let n,; denoteits degree,d,,; its absolute
discriminantdiscr(Oy)|, andfor z inR, letw 1 (x) bethenumberof primesp < z
thatareunramifiedin M andsuchthatthe Frobeniusconjugag classkrob, contains
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justtheidentity elemenif Gal(M /Q). Thenonehas,for all sufficiently largex and
all finite GaloisextensionsM of Q:

1
< —gl/? (log(dar) + npslog(x)) .
3nM

7TM,1(33) — EL](:E)

This resultshows thatfor all z sufficiently large, andall finite GaloisextensionsM of Q, one

has:
e

L SeTH log(z) log(z) o e loe(a
o (1@ (og(d) + s log(a) ).

nar log x 3z1/2

T (x) >

If z tendsto infinity, Li(x) log(z)/z tendsto 1 andlog(z)?/z'/? tendsto 0. Somecomputa-
tion (thatwe will do below) shaws thatif x is sufficiently big (i.e., biggerthan someabsolute
constant) andbiggerthan2(log(das)?(log(log(das)))?, thenlog(z) log(da) /322 < 1/2, and
hence:

T

T (w) 2 3narlog(z)’

Hereis thecomputatiorthatl promised.Puta := log(d,)/3. We wantto find alower boundfor
r thatimpliesthatalog(z)/\/z < 1/2. We putz := y? (with y > 0, of course).Thenwhatwe
wantis alower boundfor y suchthatblog(y) < y, with b = 4a. we puty = zb. Thenwhatwe
wantis alower boundfor z suchthatz — log(z) > ¢, with ¢ = log(b). Now write z = (1 + u)ec.
Thenwhatwe wantis: uc — log(1 + u) — log(c) > 0. Sincelog(1l + u) < w, it sufficesthat
uc —u — log(c) > 0, i.e.,thatu > log(c)/(c — 1) (by theway, sincewe arewilling to let = be
sufficiently large, we maytake careof smalld,, by that,andsupposéhatc is sufficiently large).
For ¢ sufficiently large, for ary ¢ > 0, u > ¢ is good enough. Translatingthis backto = and

log(dyr), onegetsthatz > (1 + ¢)?(4alog(4a))? is good. Thenoneuseshat2 > 16/9.

O Realapproximation.

It is known thatfor G an affine algebraicgroupover Q onehasG(Q) densein G(R). Thisis
what Deligne calls real approximation.To prove it, onereducego the caseof tori. But even
thatcaseis not sotrivial to me. Of course tori areunirational(they areimagesof tori thatare
productsof multiplicative groupsof numberfields), but thatis not enough:thatonly givesthat
therationalpointsof G aredensen theconnectedomponentsf G(R) thatdo containarational
point. Anyway, for a detailedproof| would referto thebook[26] of Platonw andRapinchuk.
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