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Parallel to these four lectures, there were four lectures by Joseph Oesterlé giving an introduc-

tion on abelian varieties and the statement of the Birch and Swinnerton-Dyer conjecture.

1 Modular parametrisations I (1 hour)

At this conference/Summer school, modular parametrisations (whatever they are) are used to

study the arithmetic of elliptic curves, and, more generally, of abelian varieties ofGL2-type,

overQ. In particular, one does not ask too muchwherethese modular parametrisations come

from. Let me nevertheless say a few words about this.

elliptic curves overQ E/Q

Galois representations lim←−
n

E(Q)[ln]

L-functions L(E, s) =
∑

n≥1 ann
−s (<(s) > 3/2)

modular forms fE =
∑

n≥1 anq
n (Wiles et al.)

elliptic curves Z⊗T J0(NE) ∼ E (Eichler-Shimura-Faltings)

With all this, the morphism:

X0(NE) // J0(NE) // // Z⊗T J0(NE) // // E

P
� // [P ]− [∞]

is a modular parametrisation ofE, unique up to sign if we ask the kernel ofZ⊗T J0(NE)→ E

to be cyclic. The morphism fromX0(NE) toZ⊗T J0(NE) is called astrongmodular parametri-

sation.

In this lecture, I want to explain the construction of the strong modular parametrisation, first

overC, then overQ.
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ForN ≥ 1, we letΓ0(N) be the subgroupSL2(Z) consisting of the elements( a bc d ) with c ≡ 0

moduloN . We recall thatGL2(C) acts onP1(C), henceGL2(R) on P1(C) − P1(R), which is

the same asC − R and hence the union of the upper and lower half planes. HenceGL2(R)+

acts on the upper half planeH, hence its subgroupSL2(Z) too. We letY0(N)(C) be the quotient

Γ0(N)\H, as a complex analytic curve (which isnot compact). We letX0(N)(C) be the union

of Y0(N)(C) with the (finite) setΓ0(N)\P1(Z) of cusps. ThenX0(N)(C) is a compact non-

singular complex analytic curve, and we letX0(N)C be the corresponding complex algebraic

projective curve (by GAGA).

As an example we mention thej-map fromH toC, sendingτ to 1/q+ 744 + 196884q+ · · ·
(with q = exp(2πiτ)) which identifiesC with Y0(1)(C). It induces an isomorphism

X0(N)C → P
1
C
. The ramification ofX0(N)C → X0(1)C is not hard to compute, and leads

to a formula for the genus ofX0(N)C.

The next item in our list of things to explain is the jacobianJ0(N)(C) associated

toX0(N)(C). We have:

J0(N)(C) := H0(X0(N)C,Ω
1)∨/H1(X0(N)(C),Z),

whereγ in H1(X0(N)(C),Z) is sent to the mapω 7→
∫
γ
ω. This quotient is a complex torus, and

even an abelian variety. The corresponding complex algebraic variety is denotedJ0(N)C.

We will refer toH0(X0(N)C,Ω
1) as thespace of complex cusp forms of weight 2 onΓ0(N),

and denote it byS(Γ0(N), 2)C (in order to relate this with forms of other weights one needs the

Kodaira-Spencer morphism). One can viewS(Γ0(N), 2)C as a space of certain functions
∑
anq

n

onH: pullback via the morphismH→ X0(N)(C) gives a map

ω 7→

(∑
n≥1

an(ω)qn

)
dq

q
,

which is called theq-expansion map at the standard cusp∞.

This cusp∞ is also used to define the following map:

X0(N)(C) −→ J0(N)(C), P 7→
[
ω 7→

∫ P

∞
ω

]
.

Now the Hecke algebra. It comes from the action ofGL2(Q)+ onH. For Γ1 andΓ2 of finite

index inSL2(Z), andg in GL2(Q)+, one has (withΓ3 := Γ1 ∩ g−1Γ2g):

H

Γ1

��
Γ3

,,
∼
g· //

�� $$IIIIIIIII H

Γ2

��

��
Γ1\H Γ2\H

Γ3\H

~~}}}}}}}
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Γ1\H Γ2\H

X(Γ3)C
sg
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tg ##GGGGGGGG

X(Γ1)C X(Γ2)C
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The last of these three diagrams is refered to as theHecke correspondenceTg. It induces maps,

calledHecke operators:

T ∗g : H0(X(Γ2)C,Ω
1) −→ H0(X(Γ1)C,Ω

1), sg∗ ◦ t∗g
Tg,∗ : J(Γ1)C −→ J(Γ2)C, tg∗ ◦ s∗g

A study of Γ0(N)\GL2(Q)+/Γ0(N) leads to Hecke operatorsTn : J0(N)C → J0(N)C, for all

n ≥ 1. To describe these, it is convenient to use the moduli interpretation ofY0(N)(C): it is the

set of isomorphism classes of pairs(E/C, G), with E a complex elliptic curve andG ⊂ E(C) a

cyclic subgroup of orderN . To be precise, a pointτ of H is sent to the pair(C/(Zτ + Z), µN).

With this description, the correspondenceTn (say on the level of divisors) is given by:

Tn : [(E,G)] 7→
∑
H

[(E/H,G)],

whereH runs through the set of subgroups of ordern of E(C) (not necessarily cyclic) such that

H ∩ G = {0}, andG denotes the image ofG underE 7→ E/H. These correspondencesTn
commute with each other, and satisfy the relations (as correspondences; no equivalence relation

is necessary) encoded in the following equality of formal Dirichlet series:∑
n≥1

Tnn
−s =

∏
p|N

(1− Tpp−s)−1
∏
p-N

(1− Tpp−s + p1−2s)−1.

In terms ofq-expansion at∞ one has the identities:

an(Tm(ω)) =
∑
d|(n,m)

(d,N)=1

d anm/d2(ω).

We letTN be the subring ofEnd(J0(N)C) generated by theTn. This ringTN is called theHecke

algebraof levelN ; it is a commutative ring, free asZ-module of rankg(X0(N)C). In fact, if we

define:

S(Γ0(N), 2)Z := {ω ∈ S(Γ0(N), 2)C | an(ω) ∈ Z for all n},

then:

Tn × S(Γ0(N), 2)Z −→ Z, (t, ω) 7→ a1(tω)

is a perfect pairing ofZ-modules, in the usual sense that each side is identified with the dual of

the other.

Eigenforms.Suppose thatω in §(Γ0(N), 2)C is a common eigenform for theTn:

Tnω = λnω
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for all n, with suitableλn in C. Then one has:

an(ω) = λn a1(ω)

for all n; hence an eigenform is determined by the eigenvalues and its first Fourier coefficient. An

eigenform formω is callednormalizedif a1(ω) = 1. We also note that the non-zero qcommon

eigenspaces forTN acting onS(Γ0(N), 2)C are one-dimensional (and generated by the normal-

ized form that they contain). We note that for a normalized eigenformω the subringZ[{an(ω)}]
of C is an order in a number field, as it is the image ofTN under a morphism of ringsTN → C.

We remark thatS(Γ0(N), 2)C can be seen as theC-vector spaceHom(TN ,C) of Z-module mor-

phisms fromTTN toC, and that the eigenforms correspond exactly to the morphisms of rings.

A normalized eigenformω in S(Γ0(N), 2)C is called anewformif its system of eigenvalues

ap(ω) for p - N does not occur in anyS(Γ0(M), 2)C with M a proper divisor ofN .

Let nowω be a newform of levelN , and letOω be the subringZ[{an(ω)}] of C. Then we

define:

Aω := Oω ⊗TN J0(N)C = J0(N)C/IωJ0(N)C,

whereIω is the kernel of the morphism of ringsTN → C corresponding toω. (By definition,

IωJ0(N)C is the smallest abelian subvariety ofJ0(N)C containing the images of all elements

of Iω.) The quotientJ0(N)C → Aω is called theoptimal quotientassociated toω (or more

precisely, to the Galois orbit ofω, as it depends only onIω). The reason to call it optimal is that its

kernel is connected, which is equivalent to the condition that the dual morphism:A∨ω → JJ0(N)C

be injective. Yet another way equivalent condition for a quotient of complex abelian varieties

A→ B to be optimal is that the induced mapH1(A,Z)→ H1(B,Z) be surjective.

Of course,Aω is an elliptic curve if and only ifOω = Z. More generally, the dimension

of Aω is that of theZ-moduleOω. We remark that the theory of newforms by Atkin-Lehner

gives a description ofJ0(N)C up to isogeny as product ofAω’s whereω runs through the set of

newforms of level dividingN .

We note the following analytic description ofAω:

Aω =
S(Γ0(N), 2)∨

C
/IωS(Γ0(N), 2)∨

C

H1(X0(N)(C),Z)/IωH1(X0(N)(C),Z)
=
S(Γ0(N), 2)C[Iω]∨

H1(X0(N)(C),Z)
,

andS(Γ0(N), 2)C[Iω] has asC-basis the set of Galois conjugates ofω.

Now overQ. Up to now, everything has been done overC. We want to have everything

overQ. For that, we use the moduli interpretation. The complex curveX0(N)C has a natural

modelX0(N)Q overQ, (i.e., aQ-scheme that givesX0(N)C after base change fromQ to C),

namely, the compactified coarse moduli scheme associated to the (contravariant) functor:

Γ0(N) : Sch/Q −→ Sets, S 7→ {(E/S,G)}/ ∼=,
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whereE/S is an elliptic curve over aQ-scheme, and whereG is a closed finite subgroup scheme

of E locally free of rankN , such that for every geometric pointx of S the groupG(x) is

cyclic. This means: in the category of contravariant functorsSch/Q → Sets, the morphism

Γ0(N) → Y0(N)Q is universal for morphisms to representable functors. Classically, one also

demands the mapΓ0(N)(Q) → Y0(N)Q(Q) to be bijective, but this is automatically true. We

remark that for the congruence subgroupsΓ1(N) with N ≥ 5 the situation is much simpler: the

corresponding functor (pairs(E/S, i) with i : µN,S ↪→ E) is representable, say byX1(N)Q.

It follows that we have a model overQ for J0(N)C:

J0(N)Q := Pic0
X0(N)Q/Q

, Aω,Q := Oω ⊗TN J0(N)Q.

Galois representations.Vω,l := Q⊗ lim←−
n

Aω(Q)[ln] is free of rank 2 overQl⊗Oω, hence this

gives:

ρω,l : GQ −→ GL2(Ql ⊗Oω).

For everyσ : Oω → C we get anL-function:

Lσ(ρω,l) :=
∏
p

det
(
1− p−s Frobp |(Vω,l)Ip

)−1
,

where one chooses for each factor a prime numberl 6= p (the subscriptIp stands for “co-

invariants for the inertia atp”). It is not so hard to show that:

Lσ(ρω,l) =
∑
n≥1

σ(an(ω))n−s,

because at the places whereρω is much ramified, the Euler factor is trivial. In particular, one has:

L(Aω,Q, s) =
∏

σ : Oω→C

∑
n≥1

σ(an(ω))n−s.

It is a difficult theorem by Eichler-Shimura-Langlands-Deligne-Carayol (simplified by Nyssen)

that ρω,l|Dp corresponds by a suitable normalized local Langlands correspondence toπω,p, the

Euler factor atp of the automorphic representation associated toω (πω,p is a smooth irreducible

representation ofGL2(Qp)). In particular, localε-factors match. A consequence of this is that

the conductor ofρω isN .
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2 Modular parametrisations II (1 hour)

2.1 Strong parametrisations; Stevens’s conjecture

Let E/Q be an elliptic curve,N its conductor. AsE is modular, there exists aunique

E ′ ↪→ J0(N)Q with E ′ isogeneous toE. Equivalently, we have:

X0(N)Q −→ J0(N)Q −→
optimal−→ E ′ −→ E,

where the last isogeny can be chosen such that its kernel is cyclic (and then it is unique up to

sign).

Question:how to characteriseE ′ in the isogeny class ofE?

Answer:I don’t know.

Example. There are three elliptic curves of conductor11: 11A = X1(11)Q, covering

11B = X0(11)Q (quotient for the action of(Z/11Z)∗/{1,−1}), covering11C (quotient by

the cuspidal group). Among these three,11A has the smallest Faltings height. Also note that the

isogenies are of degree 5 and that their kernels are constant group schemes overQ, so that they

extend to etale morphisms between Néron models overZ.

The main point of this section is to say that Glenn Stevens, in his article in Invent.

math. 98 (1989) has formulated a better question. Instead of parametrising with the modular

curvesX0(N), one should seriously consider parametrisations by arbitrary modular curves, i.e.,

corresponding to arbitrary congruence subgroups. Stevens has shown that “stabilisation takes

place atΓ1(N)”, so that it makes better sense to replaceX0(N)Q by X1(N)Q. We recall that

in these lecturesX1(N)Q classifies elliptic curves with embeddings ofµN (i.e., not ofZ/NZ);

this is necessary for example for the cusp∞ to beQ-rational. In view of what follows, one is

tempted to say that considering parametrisations byX0(N)Q is somehow an historical error.

Better question (Stevens):what is the uniqueE ′′ insideJ1(N)Q isogeneous toE?

Conjectural answer (Stevens):E ′′ is the one with the smallest Faltings height in the isogeny

class ofE.

2.1.1 Theorem. (Stevens)Each isogeny class of elliptic curves over Q contains a unique curve
of smallest Faltings height, and that one admits étale isogenies to all others (one Néron models
over Z).

Some explanation is in order here. LetA/Q be an abelian variety, andAZ its Néron model

overZ. One puts:

ωAZ/Z :=

dim(A)∧
0∗Ω1

AZ/Z
;
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it is a freeZ-module of rank1. Integration overA(C) equipsωAZ/Z with a hermitian metric, and

one defines the Faltings height ofA to be the Arakelov degree:

h(A) := degAr(ωAZ/Z) = −1

2
log

((
i

2

)d ∫
A(C)

ω1ω1 · · ·ωdωd

)
,

where(ω1, . . . , ωd) is aZ-basis of0∗Ω1
AZ/Z

. In words: the Faltings height ofA is minus one half

of the logarithm of the covolume of the period lattice ofA(C) with respect to a basis of Ńeron

differentials.

ForE/Q an elliptic curve, one has0∗Ω1
EZ/Z

= Z·ωE, with ωE unique up to sign; these are

called the Ńeron differentials ofE. If y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 is a globally

minimal Weierstrass equation forE, then:

ωE = ± dx

2y + a1x
.

An isogenyφ : E → E ′ of elliptic curves overQ is étale ifφ∗ωE′ = ±ωE.

2.1.2 Theorem. (Vatsal, preprint Febr. 2002)If E is semistable, then Stevens’s conjecture is
true up to an isogeny of degree a power of 2.

Let us mention the ingredients of his proof: geometric class field theory, a theorem of Ihara (that

we recall in a moment), Heegner points of conductorpn with n → ∞, work of Rubin and Hida

involving special values ofL-functions.

Ihara’s result alluded to is the following. ForN ≥ 1, we let ΣN be the kernel of

J0(NQ) → J1(N)Q; it is called theShimura subgroupof J0(N)Q. Equivalently, the Cartier

dualΣD
N is the Galois group of the largest unramified cover ofX1(N)Q in X1(N)Q → X0(N)Q

(which is Galois with group(Z/NZ)∗/1,−1). Then Ihara shows that the sequence (obtained by

reducing modulo a primep that does not divideN ):

Z[X0(N)(Fp2)s.s.]0 −→ Pic(X0(N)Fp2 ) −→ ΣD
N −→ 0

is exact. The superscript “s.s.” stands for “supersingular”, and the subscript zero for the kernel

of the sum map toZ.

In the same preprint, Vatsal proves the following theorem, generalising work of Mazur forN

prime (using very different methods).

2.1.3 Theorem. (Vatsal)For N square free, 2∞ΣN is the largest µ-type subgroup of J0(N)Q.

The recent results mentioned in this talk show perhaps that the use ofL-functions (and especially

p-adic ones) looks very promising.
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2.2 Manin constants

Let φ : X0(N)Q → E be astrongmodular parametrisation,fE dq/q the normalized newform

onX0(N)Q corresponding toE, andωE a Néron differential onE. Thenφ∗ωE = cE·fE dq/q
with ce in Q∗ (use multiplicity one). The numbercE, defined up to sign, is called theManin

constantof E. It is of interest for the Birch and Swinnerton-Dyer conjecture, becauseωE plays

a rôle in it, but in practice one has to work withfE, so that it is important to know the relation

between the two. (This is especially so for optimal quotients of higher dimension.)

2.2.1 Conjecture. (Manin) cE = ±1.

Question.What does this conjecture mean? Geometrically, say.

Answer. I don’t know. The parametrisationφ being strong means that from the point of

view of etale cohomology one has takenφ to be optimal (sujective onH1, even with torsion

coefficients). Then one would ask: isφ optimal for de Rham cohomology (overZ)? But, first

of all, it is not that easy to make sense out of this, because of bad reduction, and, secondly, the

conjecture asks ifφ∗ωE is a generator ofΩ1
X0(N)/Z at a given point, namely the cusp∞. So

even if one knows quite a lot about this conjecture, and that there seems little doubt that it is

true, I claim not to understand what the conjecture really means. Anyway, the Stevens version of

Manin’s conjecture (same article as mentioned above) that we will state in a moment is a cleaner

one, but suffers from the same problem.

2.2.2 Conjecture. (Stevens)Every elliptic curve E/Q admits a parametrisation
φ : X1(NE)Q → E such that φ∗ωE = ±fE dq/q.

Let us mention theresultsabout these conjectures obtained so far (in a non-chronological order).

1. For all parametrisationsφ (of elliptic curves overQ), by anyX1(N)Q or X0(N)Q, the

corresponding Manin constant is inZ. The proof of this just uses that the completion of the

modular curvesX0(N)Z andX1(N)Z overZ (defined by extending the moduli problems

to arbitrary schemes) along the cusp∞ correspond toZ[[q]], via the Tate curve, and thatφ

extends to a neighborhood of∞ because to the Ńeron property ofEZ. Proofs of this can

be found Stevens’s article and in an article by Edixhoven in the 1989 Texel proceedings.

A nice consequence of this result is as follows. Letf be a newform inS(Γ0(N), 2)Q. Then

one has the elliptic curveC moduly the period lattice off dq/q. The standard Weierstrass

equation of this elliptic curve (associated to the differentialdz and the period lattice inC)

gives coefficientsc4 andc6 that are inZ. They correspond to thec4 andc6 of a minimal

Weierstrass equation if and only if Manin’s conjecture is true for the strong curve isoge-

neous toE. The same type of result is true for newforms inS(Γ1(N), 2)Q. In particular,
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this makes it possible first to compute the elliptic curveZ⊗TX0(N), and secondly to ver-

ify the conjecture about the Manin constant for that curve. All curves in Cremona’s tables

satisfy Manin’s conjecture. Stevens also verified his version in some cases.

Now that we know that Manin constants are integers, the question becomes: what primes

can divide them?

2. The two conjectures are related:

J1(NE)Q E ′oooo

J0(NE)Q

OO

E

OO

oooo

ΣNE

OO

OO

E ∩ ΣNE

OO

OO

oooo

Now (E ∩ ΣNE)D is a constant group scheme overQ, in E, and hence, by Mazur’s work,

of the formZ/2Z × Z/2nZ with 1 ≤ n ≤ 4, or Z/nZ with 1 ≤ n ≤ 10 or n = 12.

We conclude that the two conjectures on Manin constants are equivalent as far as primes

numbersp > 7 are concerned.

3. Now consider a strong parametrisationφ : X0(NE)Q → E. Then we have the following

results.

(a) p - NE implies thatp - cE (Mazur forp > 2, Abbes-Ullmo plus Raynaud forp = 2).

(b) p2
- NE together withp > 2 imply thatp - cE (Mazur).

(c) 22
- NE implies that22

- cE (Raynaud, see Abbes-Ullmo).

(d) p > 7 implies thatp - cE (Edixhoven (1992), detailsstill not yet published (shame on

me!)).

The tools used for these results: geometry overZp, plus everything else if necessary. The

last result also uses that Stevens has shown that if his conjecture holds forE, then it also

holds for twists ofE over quadratic extensions ofQ that are unramified at allp whose

square divideNE.

For example, let us prove, after Mazur, thatp2
- NE together withp > 2 imply thatp - cE. Then

J0(NE)Q has semistable reduction atp. We have an exact sequence:

0 −→ A −→ J0(NE)Q −→ E −→ 0,
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which induces a complex of Ńeron models:

0 −→ AZp −→ J0(NE)Zp −→ EZp −→ 0.

This complex is exact at all terms except possiblyEZp . The induced complex on cotangent

spaces:

0←− Cot0(AFp)←− Cot0(J0(NE)Fp)←− Cot0(EFp)←− 0

is exact (this uses thatp > 2 because of the usual condition “e < p−1”). It follows thatφ∗ωE|EFp
is not zero, etc.. . .

Other toolsthat are used.

1. More complicated geometry (pass to finite extensions ofQp over which one has stable

reduction).

2. Analytic tools:deg(φ) Vol(E(C), ω) = ‖fE‖2c2
E, and:

‖fE‖2 = C[SL2(Z) : Γ0(NE)]Res2

∑
n≥1

|an(fE)|2n−s

from an article by Zagier on degrees of modular paramatrisations, and:

L(Sym2E, 2)

πiΩ
=

deg(φ)

Nc2
E

∏
p2|N

Up(2)

by Shimura (1976) (used by Flach, see recent work by Mark Watkins from Penn State for

computational issues). The factorUp reflects the difference between the two symmetric

squareL-functions that one may define: the usual one from the symmetric square of the

l-adic representation, the other one (more naively) purely in terms of the local factors

of L(E, s).

It is interesting to note that the Euler factors atp ofL(Sym2E, 2) gets a geometrical interpretation

using reduction modp: the factorsp are powers of Frobenius, etc.

3 Non-triviality of Heegner points I; Andr é-Oort conjecture

(1 hour)

LetE/C be an elliptic curve. ThenEnd(E) = Z or End(E) ∼= OK,c = Z + cOK (c ≥ 1) with

Q → K an imaginary quadratic extension. In the second case we say thatE has nocomplex

multiplications (CM), by the orderOK,c of conductorc. Just to show that there are many (but

only countably) elliptic curves with CM: forτ inH,C/Zτ +Z has CM if and only ifQ→ Q(τ)

is a quadratic extension.
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3.1 Galois action

CM elliptic curves are defined overQ, for the simple reason that ifE/C has CM, then for every

automorphismσ of C, the conjugateEσ has CM, and we have just seen that there are only

countably many.

LetK ⊂ Q quadratic imaginary, andc ≥ 1. Then we define a set:

SK,c := {(E/Q, α) | α : OK,c
∼→ End(E) inducingK → Q via Lie(E)}

The groupGK = Gal(Q/K) acts onSK,c. But also the groupPic(OK,c):

(L,E) 7→ L⊗OK,c E,

where L ⊗OK,c E is the representable functor onK-schemes that sends aK-schemeS

to L ⊗OK,c E(S). Indeed, one can realiseL as the kernel of an idempotentp in M2(OK,c)

(choose two generators ofL, and a splitting ofO2
K,c → L), which shows thatL ⊗OK,c E is the

same asker(p : E2 → E2). ForE = C/Λ andα : OK,c
∼→ End(E), one sees thatΛ is an invert-

ibleOK,c-module (use thatOK,c is of the formZ[x]/(g), hence is Gorenstein). This implies the

following important fact:

SK,c is aPic(OK,c)-torsor.

The actions ofPic(OK,c) andGK commute, which means thatGK acts onSK,c asPic(OK,c)-

torsor. But, asPic(OK,c) is commutative, the automorphism group of aPic(OK,c)-torsor is

just Pic(OK,c) itself (it acts by right-translations, after one identifiesSK,c with Pic(OK,c)). It

follows thatGK acts onSK,c via a morphismGK → Pic(OK,c). The main result of complex

multiplication theory for elliptic curves says:

GK acts onSK,c via a morphismGK → Pic(OK,c); this morphism is unramified

outsidec; for m ⊂ OK a maximal ideal not containingm, the morphism sends

Frobm to the class[m]−1 of Pic(OK,c).

In order to formulate the conjecture of André-Oort in the context of elliptic curves, we need to

define (or rather make explicit) the notion of special subvariety of products of modular curves.

3.2 Definition. Let n ≥ 0, andΓi (1 ≤ i ≤ n) be congruence subgroups ofSL2(Z). Let

Xi := Γi\H be the (affine) complex modular curve associated toΓi, andX :=
∏

iXi. Let

Z ⊂ X be a closed irreducible subvariety ofX. ThenZ is calledspecialif there exists a partition

of {1, . . . , n} into subsetsS1, . . . , Sr such thatZ =
∏

1≤j≤r Zj with eachZj ⊂
∏

i∈Sj Xi of one

of the forms:
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1. |Sj| = 1 andZi is a CM-point;

2. the image ofH→
∏

i∈Sj Xi underτ 7→ (i 7→ [gi·τ ]) for certaingi in GL2(Q)+.

3.3 Conjecture. (Special case of Andŕe-Oort) Let Σ be a set of CM-points in X (notation as
above). Then all irreducible components of the Zariski closure of Σ are special.

3.4 Theorem. The conjecture is true, if one accepts the generalised Riemann hypothesis for
imaginary quadratic fields (Edixhoven, 1999, not yet published). For n = 2 is has been proved
unconditionally by Yves André (Crelle), and conditionally by Edixhoven (published! (Compo-
sitio)).

We remark that Florian Breuer has proven analogous statements for rank two Drinfel’d modules

(see his thesis). For the next lecture we want to give a relatively simple proof of the following

weaker version.

3.5 Theorem. Let K be imaginary quadratic, and c ≥ 1. Let Σ ⊂ X be a set of CM-points such
that for every x in Σ, and for every i, one has End(Exi) = Z + cx,iOK with cx,i|c∞. Then all
irreducible components of ΣZar are special.

This case follows from a much more general result by Ben Moonen (Compositio, 1998), but

in this simpler case we can give a much simpler proof. Actually, my intention was to adapt

Moonen’s proof for this lecture, but it still stays quite technical in this situation (and one has to

consider base changes from thep-adic numbers to the complex numbers, for instance, with all

kinds of different notions of convergence).

Proof. Let Z be an irreducible component ofΣZar. We replaceΣ by Σ ∩ Z. Consider the

projectionspri : X → Xi. If priZ is a point, then it is a CM-point, and we can replaceX by the

product of theXj with j 6= i. So we may (and do) assume that allpri are dominant. Suppose

now thati 6= j andpri,j : Z → Xi ×Xj is not dominant. Then, admitting the theorem forn = 2

for the moment, the closure ofpri,jZ is the graph of a Hecke correspondence inXi × Xj, call

it T , itself of the formΓ\H for someΓ. So we can replace the factorXi ×Xj by T . So we may

(and do) assume that allpri,j (with i 6= j) are dominant, and we have to prove thatZ = X.

Now consider the mapX → C
n, where we viewC asSL2(Z)\H. We must show that the

image ofZ isCn, so we replaceΣ by its image inCn, and must show thatZ = Cn.

We use induction onn: we may suppose that allprI : Cn → C
n−1 are dominant. AsΣ

consists ofQ-points,Z is defined overQ, hence over a finite extensionF of Q. Takel a prime

number such thatl ≥ 13, l ≥ deg(prI) for all I, l split inOK,c and inF .

12



3.5.1 Lemma. TlZ ⊂ Z.

Proof. For allx in Σ, and for allσ in GF , we haveσ(x) ∈ Z. Now takeσ = Frobm, with m a

maximal ideal ofOF containingl. Then we see:σ(x) ∈ Tlx, henceσ(x) ∈ TlZ, hencex ∈ TlZ.

�

3.5.2 Lemma. TlZ is absolutely irreducible if n ≥ 3.

Proof. We work overC. Let Γl be the kernel of the (surjective) morphism of groups

SL2(Z) → SL2(Fl), and let X denote Γl\H. Then X → C is Galois, with group

SL2(Fl)/{1,−1}. We consider the following diagram:

Xn

Gn

��

πn

��
�

π−1
n Z

Gn

		
oooo

��
C
n Zoooo

As TlZ is an image ofπ−1
n Z, it suffices to show thatπ−1

n Z is irreducible. LetV be an irreducible

component ofπ−1
n Z, andH its stabilizer inGn. All that we have to show is thatH = Gn. Now

consider:

V

H

��
// // π−1

n Z

Gn

		

��

// // Xn

Gn

�� prI //

��

Xn−1

Gn−1

��

��
Z // //

C
n

prI //
C
n−1

PI

Gn−1

��
//

�
��

Xn−1

Gn−1

��

��
Z //

C
n−1

Because of the hypothesesl ≥ deg(prI) and l ≥ 13 the fibered productPI is irreducible. It

follows that the projectionV → PI is dominant, hence thatprIH = Gn−1. The next wel known

lemma (proof left as exercise) finishes the proof of the lemma. �

3.5.3 Lemma. (Kolchin?) Let G be a non-commutative simple group, n ≥ 2, H ⊂ Gn a sub-
group such that prIH = G2 for all I ⊂ {1, . . . , n} with |I| = 2. Then H = Gn.

So we have:

Z = TlZ.

But all Tl-orbits in Cn are dense (even for the archimedian topology): the subgroup of

GL2(Z[1/l]) generated bySL2(Z) and( l 0
0 1 ) containsSL2(Z[1/l]), and this last group is dense

in SL2(R) (asSL2 is generated by additive groups).

It only remains to prove the theorem forn = 2. The reader is refered to my article in

Compositio Math. 114 (1998) for that. �
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4 Non-triviality of Heegner points II (1 hour)

Reference: C. Cornut, “Non-trivialit́e des points de Heegner”, CRAS, 2002.

Let E/Q be an elliptic curve,N its conductor,π : X0(N)Q → E a modular parametrisa-

tion, Q → K a quadratic extension such thatOK/NOK is isomorphic to(Z/NZ)2 (as rings),

N ⊂ OK an ideal such thatOK/N = Z/NZ. We note that there are2r choices forN if N is

composed ofr distinct primes. Forc ≥ 1 we put:

Nc := N ∩OK,c, xc := [C/OK → C/Nc] ∈ X0(N)(C).

The pointxc is called aHeegner point of conductorc. In fact, xc is in X0(N)(K[c]), where

K → K[c] is the abelian extension unramfied outsidec that corresponds by class field theory to

the quotientPic(OK,c) of (K ⊗ Ẑ)∗. AsK is fixed in this talk, we drop it from the notation from

now on. We are going to take a somewhat closer look at this groupPic(Oc).

The first thing we note is how to understandOc “geometrically”:

O // //

�

O/cO

Oc
// //

OO

OO

Z/cZ
OO

OO
.

This means thatXc := Spec(Oc) is obtained fromX := Spec(O) by “pinching” the closed

subschemeO/cO into Z/cZ. Let f denote the morphismX → Xc. Then we have a short exact

sequence:

0 −→ O∗Xc −→ f∗O∗X −→ Qc −→ 0,

with Qc a skyscraper sheaf supported onZ/cZ. The long exact cohomology sequence reads:

0 −→ O∗c −→ O∗ −→ (O/cO)∗

(Z/cZ)∗
−→ Pic(Oc) −→ Pic(O) −→ 0.

Now we fix a prime numberp that does not divideN , and we defineK[p∞] := ∪n≥0K[pn], and

xn will denote the previously definedxpn. We letG := Gal(Kp∞/K), and we have:

0 −→ Z
∗ −→ O∗ −→ (Zp ⊗O)∗

Z
∗
p

−→ G −→ Pic(O) −→ 0.

Using this, one sees thatHom(G,Zp) is isomorphic toZp. It follows that there is a unique
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Zp-extension:

K[p∞]

H∞

G0=Gtors

ccGGGGGGGGG

K

G

OO

∼=Zp

::vvvvvvvvv

with G0 a finite group.

4.1 Theorem. (Cornut) For almost all n ≥ 0 the Heegner point traceG0(π(xn)) in E(H∞) is of
infinite order.

Before giving the proof, we want to mention that a previous proof was given, first in the case

whereQ→ K is ramified at only one prime by Vatsal, and in the general case by Cornut, using a

theorem in ergodic theory by Marina Ratner. That tool has been replaced in this proof (following

Cornut) by the special case of the conjecture of André and Oort of the previous talk. In any

case, the proof uses some miraculous properties of the extensionK → K[p∞]: it has certain

finite residue fields, the Galois groupG has certain elements of order2. These properties follow

immediately from the description as inverse limit of thePic(Opn) that we have given above.

4.2 Lemma. E(H∞)tors is finite.

Proof. For q prime, different fromp and inert inK, K → K[p
∞] is completely decomposed

at q: Frobq in Gal(K[pn]/K) = Pic(Opn) corresponds to the class of the idealqOpn, hence is

trivial. So we have morphismsOp∞ → Fq2 for all suchq. As prime-to-q torsion specializes

injectively, and the image is in the finite groupE(Fq2), it suffices to take two differentq’s. �

To prove the thereom, it is enough to prove that the fibres of the following mapf are finite:

X0(N)G0
π

// E

∑
// E

n � // (σ 7→ σ(xn)) � // traceG0(π(xn))

N

f
// E(H∞)

Now the idea is to distinguish inG0 the “geometric part” and the “chaotic part”. Letq1, . . . , qg

be the primes that are ramified inK, other thanp, and letQ1, . . . , Qg be the maximal ideal ofOK

over theqi. ThenFrobQi has order2 in G, because its image in eachPic(OK,pn) corresponds to
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the class ofQi, and we haveQ2
i = qiOK,pn. We letG1 be the subgroup ofG0 that is generated

by theFrobQi. We have:

G ⊃ G1 = ⊕iF2·FrobQi .

This subgroupG1 accounts for the “geometric part” of the action ofG0. We define:

N ′ := Nq1 · · · qg, N ′ := NQ1 · · ·Qg, x′n := [C/Opn → C/N ′pn ] ∈ X0(N ′)(K[pn]).

We note thatN ′ is square free and prime top.

For 1 ≤ i ≤ g, we have the Atkin-Lehner involutionWqi of X0(N ′); it sends(F,G,H)

(with F an elliptic curve,G a subgroup of orderqi andH a cyclic subgroup of orderN ′/qi) to

(F/G, F [qi]/G,H). This gives2g degeneracy maps fromX0(N ′) to X0(N), indexed byG1.

We let δ denote their product:δ : X0(N ′) → X0(N)G1. We define a new parametrisation

π′ : X0(N ′)→ E by:

π′ : X0(N ′)
δ
// X0(N)G1

π
// EG1

∑
// E

x′n
� // (σ 7→ σ(xn)) � // traceG1(π(xn))

We note thatπ′ is dominant because its derivative at∞ is non-zero (all degeneracy maps making

up δ are ramified at∞ except one)1.

Let nowR be a set of representatives forG1 ⊂ G0, and consider:

X0(N ′)R
π′ // ER σ // E

n � // H(n) := (σ 7→ σ(x′n)) � // traceG0(π(xn))

4.3 Proposition. For I ⊂ N infinite, H(I) is Zariski dense in X0(N ′)R.

Of course, this proves thatf has finite fibers, hence proves the theorem.

Proof. Because of the theorem of the previous lecture, if suffices to prve:

Supposeσ1, σ2 are inG0,M ≥ 1, such that(j(σ1(x′n)), j(σ2(x′n))) is inX0(M) for

infinitely manyn, thenσ−1
1 σ2 is inG1.

1I thank Florian Breuer for pointing out to me that one has to verify thatπ′ is not constant; the answer that I gave

to his question during the lecture was nonsense
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4.4 Lemma. Let E1 and E2 have CM by K: End(Ei) = Oci . Let f : E1 → E2 be a cyclic
isogeny, d := deg(f). Then f factors as follows:

E1

f
//

f1

��

E2

Oc′ ⊗Oc1 E1

f ′
// Oc′ ⊗Oc2 E2

f∨2

OO c′ =
c1

deg(f1)
=

c2

deg(f2)
, (c′, deg(f ′)) = 1.

Proof. The problem can be analyzed prime by prime, as it is a question aboutZ-lattices inK.

For every primel, think of the tree of lattices up toQ∗l in Vl(E) ∼= Ql ⊗ K, with E chosen

such thatEnd(E) = O. To each lattice one associates the exponent ofl in the conductor of the

endomorphism ring. Then one gets the following pictures.

l inert There is one point with label0, and the labels at all points are the distance to this one

point.

l split The is a unique path, infinite in two directions, and the labels are the distance to this path.

l ramified There are two neighboring points such that the labels are the distance to these two

points.

This shows that cyclic isogenies behave with respect to conductors of endomorphism rings as the

lemma claims. �

Now we finish the proof of the proposition. Suppose thatσ1, σ2 andM are as in that proposition.

Then we have infinitely manyfn : En → σ−1
1 σ2En of degreeM , with End(En) = Opn. The

last lemma gives us infinitely manyf ′n : E ′n → σ−1
1 σ2E

′
n of fixed degreeM ′ prime top, with

End(E ′n) = Opn−a (a fixed), and idealsmn ⊂ O of indexM ′, such that:

E ′n //

can

((QQQQQQQQQQQQQQQ σ−1
1 σ2E

′
n

(mn ∩Opn−a)
−1 ⊗On−ap

E ′n

There are only finitely many possibilities formn, so we may assume thatmn = m, independent

of n. Then inG = lim←−
n

Pic(Opn) we have:

[m] = σ1σ
−2
2 ∈ G0 = Gtors.

This means that for somee ≥ 1 the intersectionm∩Opn is principal for alln ≥ 0. Some thinking

gives thatm is then of the formQe1
1 · · ·Q

eg
g , hence thatσ1σ

−1
2 is inG1, as we had to prove. �
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