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Parallel to these four lectures, there were four lectures by Joseph @egpt@rh an introduc-
tion on abelian varieties and the statement of the Birch and Swinnerton-Dyer conjecture.

1 Modular parametrisations | (1 hour)

At this conference/Summer school, modular parametrisations (whatever they are) are used to
study the arithmetic of elliptic curves, and, more generally, of abelian varieti€d.eftype,

over Q. In particular, one does not ask too mueherethese modular parametrisations come
from. Let me nevertheless say a few words about this.

elliptic curves overQ E/Q

Galois representations lim £(Q)[1"]

n

L-functions L(E,s) =3, a.n"° (R(s) > 3/2)
modular forms fe =205 anq" (Wiles et al.)
elliptic curves Z &t Jo(Ng) ~ E (Eichler-Shimura-Faltings

With all this, the morphism:

Xo(Ng) — Jo(Ng) —=Z @1 Jo(Ng) —= E

Pr——[P] =[]

is a modular parametrisation éf, unique up to sign if we ask the kernel Bfxr Jo(Ng) — E
to be cyclic. The morphism fromX((Ng) to Z @1 Jo(Ng) is called astrongmodular parametri-
sation.

In this lecture, | want to explain the construction of the strong modular parametrisation, first
overC, then overQ.



ForN > 1, we letl'y(V) be the subgroufiL,(Z) consisting of the elements %) withc = 0
moduloN. We recall thatGL,(C) acts onP'(C), henceGLy(R) on P!(C) — P!(R), which is
the same a€ — R and hence the union of the upper and lower half planes. Héflc¢R)*
acts on the upper half plari®, hence its subgroupl,(Z) too. We letYy(N)(C) be the quotient
Fo(N)\H, as a complex analytic curve (whichnst compact). We letX,(/V)(C) be the union
of Y5(V)(C) with the (finite) setl'o(V)\P*(Z) of cusps. ThenX,(N)(C) is a compact non-
singular complex analytic curve, and we IEt(V)c be the corresponding complex algebraic
projective curve (by GAGA).

As an example we mention themap fromH to C, sendingr to 1/q + 744 4 196884¢q + - - -
(with ¢ = exp(2mi7)) which identifiesC with Y,(1)(C). It induces an isomorphism
Xo(N)c — P¢. The ramification ofXo(N)ec — Xo(1)c is not hard to compute, and leads
to a formula for the genus of(N)c.

The next item in our list of things to explain is the jacobidp(N)(C) associated
to Xo(N)(C). We have:

Jo(N)(C) = H*(Xo(N)c, Q") /Hi(Xo(N)(C), Z),

wherey in H, (X, (V) (C), Z) is sent to the map — f7 w. This quotient is a complex torus, and
even an abelian variety. The corresponding complex algebraic variety is delobét.

We will refer toH?(Xy(N)c, Q') as thespace of complex cusp forms of weight 2IgaN ),
and denote it bys(I'g(N), 2)¢ (in order to relate this with forms of other weights one needs the
Kodaira-Spencer morphism). One can vie{'((V), 2)¢ as a space of certain functiopsa,,¢"
onH: pullback via the morphisil — X,(/N)(C) gives a map

e (S

n>1
which is called thej-expansion map at the standard cusp
This cuspeo is also used to define the following map:

Xo(N)(C) — Jo(N)(C), P {MH/Pw} .

Now the Hecke algebra. It comes from the actionGdf,(Q)* on H. ForT'; andT', of finite
index inSLy(Z), andg in GLy(Q)™, one has (withH'; := T'; N g~ 'Ty9):

FSG}? g {}? [3\H X(I's)c
NG RN VAN
I \H [y\H I \H I\ H X(T)c X(Ta)c



The last of these three diagrams is refered to asieke correspondendg,. It induces maps,
calledHecke operators

Ty HY(X(Ty)c, Q) — HY(X(T1)c,QY),  sgeot)
Tg7*1 J(Fl)(c — J(Fg)(c, tg* 058’

g

A study of I'o(NV)\GLy(Q)* /Ty (N) leads to Hecke operatofs,: Jo(N)c — Jo(N)c, for all
n > 1. To describe these, it is convenient to use the moduli interpretatidi(of) (C): it is the
set of isomorphism classes of paiis/C, G), with E a complex elliptic curve and@ C E(C) a
cyclic subgroup of ordeN. To be precise, a point of H is sent to the paifC/(Z7 + Z), un).
With this description, the corresponderiGe(say on the level of divisors) is given by:

T.: [(E,G) — ) _[(E/H,G)],

whereH runs through the set of subgroups of ordesf £(C) (not necessarily cyclic) such that

H NG = {0}, andG denotes the image d@f underE — E/H. These correspondenceés
commute with each other, and satisfy the relations (as correspondences; no equivalence relation
is necessary) encoded in the following equality of formal Dirichlet series:

Z T,n °= H(l —Tp~*)7! H(l —Tp~° +p'>)7L.
n>1 p|N ptN
In terms ofg-expansion ato one has the identities:
an(T(w)) = Y danm/e(w).

d|(n,m)
(d,N)=1

We letT v be the subring oEnd(Jo(N)c) generated by th&,. This ringTy is called theHecke
algebraof level V; it is a commutative ring, free @&-module of ranky(Xo(N)c). In fact, if we
define:

S(To(N),2)z :={w € S(I'o(N),2)c | an(w) € Z for all n},

then:
T, x S(To(N),2)z — Z, (t,w)— ai(tw)

is a perfect pairing oZ-modules, in the usual sense that each side is identified with the dual of
the other.
Eigenforms Suppose that in §(T'o(/N), 2)c is a common eigenform for tHE, :

T,w = \w

3



for all n, with suitable),, in C. Then one has:
an(w) = Ay ar(w)

for all n; hence an eigenform is determined by the eigenvalues and its first Fourier coefficient. An
eigenform formw is callednormalizedif a,(w) = 1. We also note that the non-zero gcommon
eigenspaces fdf ; acting onS(I'g(N), 2)c are one-dimensional (and generated by the normal-
ized form that they contain). We note that for a normalized eigentothe subrindZ[{a, (w)}]

of C is an order in a number field, as it is the imagélaf under a morphism of ringgy — C.

We remark that5(I'y(V), 2)¢ can be seen as tligvector spacélom(T y, C) of Z-module mor-
phisms fromI'Ty to C, and that the eigenforms correspond exactly to the morphisms of rings.
A normalized eigenformu in S(I'y(V), 2)¢ is called anewformif its system of eigenvalues

a,(w) for p t N does not occur in anyg(I'y(M), 2)c with M a proper divisor ofV.
Let noww be a newform of levelV, and letO,, be the subringZ[{a,,(w)}] of C. Then we
define:
A, =0, ®1, Jo(N)c = Jo(N)c/1uJo(N)c,

wherel, is the kernel of the morphism of ringsy — C corresponding to,. (By definition,
I,Jo(N)c is the smallest abelian subvariety @f(N)c containing the images of all elements

of I,.) The quotient/y(N)c — A, is called theoptimal quotientassociated tas (or more
precisely, to the Galois orbit of, as it depends only oh,). The reason to call it optimal is that its
kernel is connected, which is equivalent to the condition that the dual morpHism: J.Jo(N )¢

be injective. Yet another way equivalent condition for a quotient of complex abelian varieties
A — B to be optimal is that the induced mép(A, Z) — H; (B, Z) be surjective.

Of course,A,, is an elliptic curve if and only ifO, = Z. More generally, the dimension
of A, is that of theZ-moduleO,,. We remark that the theory of newforms by Atkin-Lehner
gives a description of,( V)¢ up to isogeny as product of,,'s wherew runs through the set of
newforms of level dividingV.

We note the following analytic description df,:

g~ OW(N),2)¢/L.S(To(N), 2)¢ _ S(Lo(N), 2)c[L]”
Y Hi(Xo(N)(C),2)/LHi(Xo(N)(C),Z)  Hi(Xo(N)(C),Z)’
andS(I'y(N), 2)c[1,] has asC-basis the set of Galois conjugates.of
Now overQ. Up to now, everything has been done o¢&r We want to have everything
overQ. For that, we use the moduli interpretation. The complex cufy&V )¢ has a natural
model X, (N)g overQ, (i.e., aQ-scheme that giveXy(/N)c after base change frof@ to C),

namely, the compactified coarse moduli scheme associated to the (contravariant) functor:

[o(N): Sch/Q — Sets, S+ {(E/S,G)}/ =,
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whereFE/S is an elliptic curve over &-scheme, and whel@ is a closed finite subgroup scheme
of F locally free of rankN, such that for every geometric poimtof S the groupG(z) is
cyclic. This means: in the category of contravariant functiis/Q — Sets, the morphism
I'o(N) — Yu(N)g is universal for morphisms to representable functors. Classically, one also
demands the maP,(N)(Q) — Yu(N)o(Q) to be bijective, but this is automatically true. We
remark that for the congruence subgrolip§N) with N > 5 the situation is much simpler: the
corresponding functor (paifg'/S, i) with i: uy s — E) is representable, say by; (N )q.

It follows that we have a model ové) for Jy(NV)c:

Jo(N)Q = Picgfo(N)@/Q’ AW,@ = Ow ®11‘N Jo(N)Q

Galois representationd,; := Q ® lim A,(Q)[i"] is free of rank 2 ove), ® O, hence this

n

gives:
pui: Gog — GL2(Q ® O,).

For everys: O,, — C we get anL-function:

1

Lo(puy) := Hdet (1 —p®Frob, |(Voo)r,) .
p

where one chooses for each factor a prime nuniber p (the subscript/, stands for “co-
invariants for the inertia at”). It is not so hard to show that:

Lo(pas) = 3 olan(w)n ",

n>1

because at the places whergeis much ramified, the Euler factor is trivial. In particular, one has:

LAvg,s) = [] D olan(w)n™.
o: Op,—C n>1
It is a difficult theorem by Eichler-Shimura-Langlands-Deligne-Carayol (simplified by Nyssen)
that p.,;|p, corresponds by a suitable normalized local Langlands correspondengg,tthe
Euler factor ap of the automorphic representation associated (@, , is a smooth irreducible
representation oL, (Q,)). In particular, locak-factors match. A consequence of this is that
the conductor op,, is N.



2 Modular parametrisations Il (1 hour)

2.1 Strong parametrisations; Stevens’s conjecture

Let £/Q be an elliptic curve,N its conductor. AsE is modular, there exists anique
E" — Jy(N)g with E’ isogeneous td. Equivalently, we have:

optimal

Xo(N)g — Jo(N)g — — E' — E,

where the last isogeny can be chosen such that its kernel is cyclic (and then it is unique up to
sign).

Question:how to characteris&’ in the isogeny class ot ?

Answer:l don’t know.

Example. There are three elliptic curves of condudtor 114 = X;(11)g, covering
11B = Xy(11)g (quotient for the action ofZ/11Z)* /{1, —1}), covering11C' (quotient by
the cuspidal group). Among these thréeA has the smallest Faltings height. Also note that the
isogenies are of degree 5 and that their kernels are constant group scheni@ssavénat they
extend to etale morphisms betweearbn models over.

The main point of this section is to say that Glenn Stevens, in his article in Invent.
math. 98 (1989) has formulated a better question. Instead of parametrising with the modular
curvesX,(NV), one should seriously consider parametrisations by arbitrary modular curves, i.e.,
corresponding to arbitrary congruence subgroups. Stevens has shown that “stabilisation takes
place atl’; ()", so that it makes better sense to repldtg N)g by X1(N)g. We recall that
in these lectures(; (IV)q classifies elliptic curves with embeddingsof (i.e., not of Z/NZ);
this is necessary for example for the cuspto beQ-rational. In view of what follows, one is
tempted to say that considering parametrisation&py/V)o is somehow an historical error.

Better question (Stevensyhat is the uniqué”” inside .J; (V) isogeneous t@'?

Conjectural answer (Stevensl.” is the one with the smallest Faltings height in the isogeny
class ofE.

2.1.1 Theorem. (StevensEach isogeny class of elliptic curves over (Q contains a unique curve
of smallest Faltings height, and that one admits étale isogenies to all others (one Néron models

over 7).

Some explanation is in order here. L&fQ be an abelian variety, andz its Néron model

overZ. One puts:
dim(A)

WAz T /\ O*Qixz/z;



itis a freeZ-module of rankl. Integration overd(C) equipsw 4, , With a hermitian metric, and
one defines the Faltings height afto be the Arakelov degree:

1 i\*
h(A) = degAr@AZ/z) -5 log <(§> /A(C) Wiy - 'wdw_d> )

where(wy, .. .,wy) is aZ-basis ofO*QzZ/Z. In words: the Faltings height of is minus one half
of the logarithm of the covolume of the period lattice 4fC) with respect to a basis ofédon
differentials.

For E/Q an elliptic curve, one has*Q%EZ/Z = Z-wg, With wg unique up to sign; these are
called the Neron differentials ofF. If y? + a1y + asy = 23 + ay2® + asx + ag is a globally
minimal Weierstrass equation fér, then:

dx

wp=t+t—0.
b 2y +aq

Anisogeny¢: E — E' of elliptic curves ovefQ is étale if¢o*wr = twg.

2.1.2 Theorem. (Vatsal, preprint Febr. 2002)If E is semistable, then Stevens’s conjecture is
true up to an isogeny of degree a power of 2.

Let us mention the ingredients of his proof: geometric class field theory, a theorem of lhara (that
we recall in a moment), Heegner points of condugtbwith n — oo, work of Rubin and Hida
involving special values of-functions.

Ihara’s result alluded to is the following. Fa¥ > 1, we let X5 be the kernel of
Jo(Ng) — J1(N)g; it is called theShimura subgroupf Jy(N)g. Equivalently, the Cartier
dual X% is the Galois group of the largest unramified coveXqf N)g in X;(N)g — Xo(N)g
(which is Galois with grougZ/N7Z)*/1, —1). Then Ihara shows that the sequence (obtained by
reducing modulo a primg that does not dividéV):

ZIXo(N)(Fye)**]o — Pic(Xo(N)z,,) — By — 0

is exact. The superscript..” stands for “supersingular”, and the subscript zero for the kernel
of the sum map t&.

In the same preprint, Vatsal proves the following theorem, generalising work of Maziyr for
prime (using very different methods).

2.1.3 Theorem. (Vatsal) For N square free, 2°°Xy is the largest pi-type subgroup of Jo(N )q.

The recent results mentioned in this talk show perhaps that the ds&ottions (and especially
p-adic ones) looks very promising.



2.2 Manin constants

Let ¢: Xo(N)g — E be astrongmodular parametrisatiory,s dg/q the normalized newform
on Xy(N)g corresponding t&, andwg a Néron differential onE. Then¢*wg = cg-frdq/q
with ¢, in Q* (use multiplicity one). The numbetz, defined up to sign, is called thdanin
constantof £. Itis of interest for the Birch and Swinnerton-Dyer conjecture, becauysglays
a role in it, but in practice one has to work witfy, so that it is important to know the relation
between the two. (This is especially so for optimal quotients of higher dimension.)

2.2.1 Conjecture. (Manin) ¢z = +1.

Question.What does this conjecture mean? Geometrically, say.

Answer. | don’t know. The parametrisation being strong means that from the point of
view of etale cohomology one has takerto be optimal (sujective ofil;, even with torsion
coefficients). Then one would ask: gsoptimal for de Rham cohomology (ov&)? But, first
of all, it is not that easy to make sense out of this, because of bad reduction, and, secondly, the
conjecture asks ib*wg is a generator oa‘2§<()(]v)/Z at a given point, namely the cusp. So
even if one knows quite a lot about this conjecture, and that there seems little doubt that it is
true, | claim not to understand what the conjecture really means. Anyway, the Stevens version of
Manin’s conjecture (same article as mentioned above) that we will state in a moment is a cleaner
one, but suffers from the same problem.

2.2.2 Conjecture. (StevenskEvery elliptic curve FE/Q admits a parametrisation
¢: X1(Ng)g — FE such that ¢o*wg = £ fg dq/q.

Let us mention theesultsabout these conjectures obtained so far (in a non-chronological order).

1. For all parametrisationg (of elliptic curves overQ), by any X;(N)g or Xy(NV)g, the
corresponding Manin constant isZin The proof of this just uses that the completion of the
modular curvesXy(N)z and X, (N )z overZ (defined by extending the moduli problems
to arbitrary schemes) along the cuspcorrespond t&|[[¢|], via the Tate curve, and that
extends to a neighborhood ef because to the &on property oft;. Proofs of this can
be found Stevens’s article and in an article by Edixhoven in the 1989 Texel proceedings.

A nice consequence of this result is as follows. féte a newform inS(I'y(N), 2)q. Then

one has the elliptic curv& moduly the period lattice of dq/q. The standard Weierstrass
equation of this elliptic curve (associated to the differentiabind the period lattice iff)

gives coefficients, andcg that are inZ. They correspond to the andcg of a minimal
Weierstrass equation if and only if Manin’s conjecture is true for the strong curve isoge-
neous toE. The same type of result is true for newformsSfi'; (INV), 2)g. In particular,
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this makes it possible first to compute the elliptic cud/er Xo(N), and secondly to ver-
ify the conjecture about the Manin constant for that curve. All curves in Cremona’s tables
satisfy Manin’s conjecture. Stevens also verified his version in some cases.

Now that we know that Manin constants are integers, the question becomes: what primes
can divide them?

2. The two conjectures are related:

S(Np)og~—F

| |

Jo(Np)og~—E

|

SNy <~ szNE

Now (E N Xy, )" is a constant group scheme o@yin £, and hence, by Mazur's work,

of the formZ/27Z x Z/2nZ with 1 < n < 4, 0orZ/nZ with 1 < n < 10 orn = 12,

We conclude that the two conjectures on Manin constants are equivalent as far as primes
numbersp > 7 are concerned.

3. Now consider a strong parametrisation X,(Ng)g — E. Then we have the following
results.
(@) pt Ng implies thatp 1 ¢z (Mazur forp > 2, Abbes-Ulimo plus Raynaud for= 2).
(b) p* 1 Ng together withp > 2 imply thatp t cx (Mazur).
(c) 22t Ny implies that2? 1 ¢ (Raynaud, see Abbes-Ulimo).
(d) p > 7implies thatp 1 ¢ (Edixhoven (1992), detailstill not yet published (shame on

me!)).

The tools used for these results: geometry avgrplus everything else if necessary. The
last result also uses that Stevens has shown that if his conjecture hokdsthan it also

holds for twists of £ over quadratic extensions @ that are unramified at a}l whose
square divideVg.

For example, let us prove, after Mazur, that Ny together withp > 2 imply thatp { cg. Then
Jo(Ng)g has semistable reductionatWe have an exact sequence:
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which induces a complex of &on models:
0— Azp — JO(NE)ZI, — EZp — 0.

This complex is exact at all terms except possibly . The induced complex on cotangent
spaces:
0«— COto(A[Fp) — COto(Jo(NE)Fp) — COtO(E]Fp) «— 0

is exact (this uses that> 2 because of the usual condition < p—17). It follows thatgb*wE|EFp

is not zero, etc....
Other toolsthat are used.

1. More complicated geometry (pass to finite extension@pbver which one has stable
reduction).

2. Analytic tools:deg(¢) Vol(E(C),w) = || fr||*c%, and:
Ifel* = CISLa(Z) : To(Ne)Res D lan(fe)*n

n>1

from an article by Zagier on degrees of modular paramatrisations, and:

L(Sym?E, ?2) d
(Sym eg(¢ HU

i) NCE

2N
by Shimura (1976) (used by Flach, see recent work by Mark Watkins from Penn State for
computational issues). The facto], reflects the difference between the two symmetric
squareL-functions that one may define: the usual one from the symmetric square of the
[-adic representation, the other one (more naively) purely in terms of the local factors
of L(E, s).

Itis interesting to note that the Euler factorgaif L(Sym?E, 2) gets a geometrical interpretation
using reduction mog: the factorgp are powers of Frobenius, etc.

3 Non-triviality of Heegner points |; Andr e-Oort conjecture
(1 hour)

Let £/C be an elliptic curve. TheRnd(E) = Z or End(E) = Ok, = Z + cOk (c > 1) with

Q — K an imaginary quadratic extension. In the second case we say 'thas nocomplex
multiplications (CM), by the orde@x . of conductore. Just to show that there are many (but
only countably) elliptic curves with CM: for in H, C/Zt + Z has CM if and only ifQ — Q(7)

is a quadratic extension.
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3.1 Galois action

CM elliptic curves are defined ové), for the simple reason that i /C has CM, then for every
automorphisnv of C, the conjugateE® has CM, and we have just seen that there are only
countably many.

Let K ¢ Q quadratic imaginary, and> 1. Then we define a set:

Ske:={(E/Q,a) | a: Ok, End(E) inducing K — Q via Lie(E)}
The groupG'y; = Gal(Q/K) acts onSk .. But also the groufic(Ox . ):
(L,E)+— L Roy. F,

where L ®o, . E is the representable functor oR-schemes that sends &-schemesS

to L ®o,, £(S). Indeed, one can realisk as the kernel of an idempoteptin M(Ox)
(choose two generators &f and a splitting oD%QC — L), which shows thal. ®¢,. . £ is the
same aker(p: E* — E?). ForE = C/A anda: Ok, — End(FE), one sees that is an invert-
ible Ok .-module (use tha® . is of the formZ[z]/(g), hence is Gorenstein). This implies the
following important fact:

Sk is aPic(Ok,.)-torsor.

The actions ofPic(Ok ) and Gx commute, which means théix acts onSk . asPic(Ok,.)-
torsor. But, asPic(Ok.) is commutative, the automorphism group oP&(Ox .)-torsor is
just Pic(Og ) itself (it acts by right-translations, after one identifigg . with Pic(Og.)). It
follows thatG acts onSk . via a morphismG'x — Pic(Ok,.). The main result of complex
multiplication theory for elliptic curves says:

Gk acts onSk . via a morphismGx — Pic(Og,.); this morphism is unramified
outsidec; for m C Ok a maximal ideal not containing:, the morphism sends
Frob,, to the clas$m] ™! of Pic(Ok,.).

In order to formulate the conjecture of ArdOort in the context of elliptic curves, we need to
define (or rather make explicit) the notion of special subvariety of products of modular curves.

3.2 Definition. Let n > 0, andI'; (1 < i < n) be congruence subgroups ®F.(Z). Let
X; := I';\H be the (affine) complex modular curve associated'toand X := [], X;. Let
Z C X be aclosed irreducible subvariety 8t ThenZ is calledspecialif there exists a partition
of {1,...,n} into subsets,, ..., S, suchthatZ = [],_,, Z; with eachZ; C J[,.4, X; of one
of the forms:
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1. |S;| = 1 andZ; is a CM-point;

2. theimage ofl — [],_ X; underr — (i — [g;-7]) for certaing; in GLy(Q)™.

i€S;
3.3 Conjecture. (Special case of Andr-Oort) Let X be a set of CM-points in X (notation as
above). Then all irreducible components of the Zariski closure of 3. are special.

3.4 Theorem. The conjecture is true, if one accepts the generalised Riemann hypothesis for
imaginary quadratic fields (Edixhoven, 1999, not yet published). For n = 2 is has been proved
unconditionally by Yves André (Crelle), and conditionally by Edixhoven (published! (Compo-
Sitio)).

We remark that Florian Breuer has proven analogous statements for rank two Drinfel’d modules
(see his thesis). For the next lecture we want to give a relatively simple proof of the following
weaker version.

3.5 Theorem. Let K be imaginary quadratic, and ¢ > 1. Let ¥ C X be a set of CM-points such
that for every x in X, and for every i, one has End(E,,) = Z + ¢,;Ox with ¢, ;|c>. Then all

irreducible components of ¥%* are special.

This case follows from a much more general result by Ben Moonen (Compositio, 1998), but
in this simpler case we can give a much simpler proof. Actually, my intention was to adapt
Moonen’s proof for this lecture, but it still stays quite technical in this situation (and one has to
consider base changes from fhvadic numbers to the complex numbers, for instance, with all
kinds of different notions of convergence).

Proof. Let Z be an irreducible component &f“*". We replaceX by ¥ N Z. Consider the
projectionspr;: X — X,. If pr,Z is a point, then it is a CM-point, and we can replacdy the
product of theX; with j # i. So we may (and do) assume thatjal] are dominant. Suppose
now that: # j andpr, ;: Z — X; x Xj is not dominant. Then, admitting the theorem o« 2
for the moment, the closure of, ;7 is the graph of a Hecke correspondenceXinx X, call
it 7', itself of the formI["\ H for somel'. So we can replace the factdr, x X; by 7. So we may
(and do) assume that ait, ; (with i # j) are dominant, and we have to prove that- X.

Now consider the maX’ — C", where we viewC asSL,(Z)\H. We must show that the
image ofZ is C", so we replac& by its image inC", and must show that = C".

We use induction om: we may suppose that atlr;: C* — C"! are dominant. AS:
consists ofQ-points, 7 is defined ovefQ, hence over a finite extensidn of Q. Takel a prime
number such thdt> 13,1 > deg(pr;) for all I, I splitin Ok . and inF.
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35.1Lemma.1;Z C Z.

Proof. Forallz in X, and for allo in G, we haves(z) € Z. Now takeo = Frob,,, with m a
maximal ideal ofOr containingl. Then we seev(x) € T;z, hences(x) € T, Z, hencer € T, Z.
U

3.5.2Lemma. 1,7 is absolutely irreducible if n > 3.

Proof. We work overC. Let I'; be the kernel of the (surjective) morphism of groups
SLy(Z) — SLo(F;), and let X denoteI',\H. Then X — C is Galois, with group
SLy(F;)/{1,—1}. We consider the following diagram:

G" G"

Yy Y

X <~——1, 17
- o |
Cr<=——
AsT,Z is animage ofr 1 Z, it suffices to show that ' 7 is irreducible. Let” be an irreducible

component ofr, ! Z, andH its stabilizer inG™. All that we have to show is thdf = G™. Now
consider:

H an ar Gr-1 ar-t a1

y Y Y (O )

Ve e X Y Py — X7
L
% (Cn pry (Cn_l Z - Cn_l

Because of the hypothesés> deg(pr;) and! > 13 the fibered product; is irreducible. It
follows that the projectio’ — P; is dominant, hence that; H = G™"~. The next wel known
lemma (proof left as exercise) finishes the proof of the lemma. O

3.5.3 Lemma. (Kolchin?) Let G be a non-commutative simple group, n > 2, H C G™ a sub-
group such that pr;H = G* forall I C {1,...,n} with|I| = 2. Then H = G".

So we have:
7 =TZ.

But all T;-orbits in C* are dense (even for the archimedian topology): the subgroup of
GLy(Z[1/1]) generated byL,(Z) and(}9) containsSLy(Z[1/1]), and this last group is dense
in SLy(R) (asSL, is generated by additive groups).

It only remains to prove the theorem far = 2. The reader is refered to my article in
Compositio Math. 114 (1998) for that. O
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4 Non-triviality of Heegner points Il (1 hour)

ReferenceC. Cornut, “Non-trivialieé des points de Heegner”, CRAS, 2002.

Let £/Q be an elliptic curve N its conductor,r: Xy(N)g — £ a modular parametrisa-
tion, Q — K a quadratic extension such th@k /N Oy is isomorphic to(Z/NZ)? (as rings),
N C Ok an ideal such thabx /N = Z/NZ. We note that there aZ choices for\ if N is
composed of distinct primes. For > 1 we put:

N, =N NOk., z.:=][C/Ox — C/N.] € Xo(N)(C).

The pointz, is called aHeegner point of conductat. In fact, z. is in Xo(N)(K][c|), where
K — K]|c] is the abelian extension unramfied outsidbat corresponds by class field theory to
the quotienPic(Ox ) of (K ® Z)*. As K is fixed in this talk, we drop it from the notation from
now on. We are going to take a somewhat closer look at this groe(d)..).

The first thing we note is how to understafid“geometrically”

O—=0/cO.

l .
. —>> 1./l

This means thaf. := Spec(O,) is obtained fromX := Spec(O) by “pinching” the closed
subschem®/cO into Z/cZ. Let f denote the morphis?X — X.. Then we have a short exact
sequence:

0— O}, — £.0%x — Q. — 0,

with Q. a skyscraper sheaf supported®frZ. The long exact cohomology sequence reads:

. ., 0/cO) . :
0 O; O @] Ty Pic(O.) Pic(O) 0.
Now we fix a prime numbep that does not dividéV, and we define{[p>°| := U, K [p"], and
x,, Will denote the previously defined,.. We letG := Gal(Kp>/K), and we have:

(Zy ® 0)"
Z*

p

0— 7" — OF —

— G — Pic(O) — 0.

Using this, one sees thétom(G, Z,) is isomorphic toZ,. It follows that there is a unique
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Z,-extension:

K[p>]
KGtors
G H,,
=7,
K

with G a finite group.

4.1 Theorem. (Cornut) For almost all n > 0 the Heegner point traceg, (7 (z,,)) in E(Hy,) is of
infinite order.

Before giving the proof, we want to mention that a previous proof was given, first in the case
whereQQ — K is ramified at only one prime by Vatsal, and in the general case by Cornut, using a
theorem in ergodic theory by Marina Ratner. That tool has been replaced in this proof (following
Cornut) by the special case of the conjecture of &ndnd Oort of the previous talk. In any
case, the proof uses some miraculous properties of the exteRsien K[p*]: it has certain

finite residue fields, the Galois grodphas certain elements of ord&rThese properties follow
immediately from the description as inverse limit of the (O, ) that we have given above.

4.2 Lemma. E(Hu)tors is finite.

Proof. For ¢ prime, different fromp and inert inkK, K — Kp>] is completely decomposed
atq: Frob, in Gal(K[p"]/K) = Pic(O,n) corresponds to the class of the ideél,., hence is
trivial. So we have morphism@,.. — F,. for all suchq. As prime-tog torsion specializes
injectively, and the image is in the finite grodfiF 2 ), it suffices to take two differents. O

To prove the thereom, it is enough to prove that the fibres of the following fraap finite:

m
Xo(N)Go E—~X -p

n——s (o — o(x,)) ———— traceg, (7(z,))

N d E(Hy)

Now the idea is to distinguish i6'; the “geometric part” and the “chaotic part”. Let,...,q,
be the primes that are ramified i, other tharp, and let®, . . ., ), be the maximal ideal aD x
over theg;. ThenFrobg, has ordee in G, because its image in eaétic(Ok ,») corresponds to
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the class ofY;, and we have)? = ¢;Ox ,». We letG; be the subgroup of, that is generated
by theFrobg,. We have:
G D Gy = P;Fy- FI‘ObQi .

This subgroup; accounts for the “geometric part” of the action@f. We define:

n -

N':=Ngi---q5, N':=NQi---Qq, @, :=[C/Op — C/N ] € Xo(N)(K[p")).

We note thatV’ is square free and prime {o

For1 < ¢ < g, we have the Atkin-Lehner involutioi/,, of X,(N’); it sends(F, G, H)
(with F" an elliptic curve,G a subgroup of ordef; and H a cyclic subgroup of ordeN’/¢;) to
(F/G, F|¢]/G, H). This gives2? degeneracy maps from,(N') to Xo(N), indexed byG,.
We let ¢ denote their products: X,(N') — Xo(N)%. We define a new parametrisation
7' Xo(N') — E by:

o v
75 Xo(N') — = Xo(N)G [ p——
z—— (0 — o(x,))! traceg, (7(z,))

We note thatr’ is dominant because its derivativesatis non-zero (all degeneracy maps making
up § are ramified ato except oné)
Let now R be a set of representatives Gy C G,, and consider:

!

Xo(N)E—F ER z E

n——s H(n) := (0 — o(x])) ———— traceg, (7(z,))
4.3 Proposition. For I C N infinite, H(I) is Zariski dense in Xo(N")%.
Of course, this proves thdthas finite fibers, hence proves the theorem.
Proof. Because of the theorem of the previous lecture, if suffices to prve:

Supposer, 02 are inGy, M > 1, such thatj(o1(x,)), j(o2(2)))) is in Xo (M) for
infinitely manyn, theno; o, is in G,.

1] thank Florian Breuer for pointing out to me that one has to verify #a not constant; the answer that | gave
to his question during the lecture was nonsense
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4.4 Lemma. Let £, and FE5 have CM by K: End(E;) = O,,. Let f: F1 — FE, be a cyclic
isogeny, d := deg(f). Then f factors as follows:
f C1 C

b % O Tea(h) " den(ry (BN =1
fll , T f2\/

Oc’ ®OC1 El —— Oc’ ®OC2 E2

Proof. The problem can be analyzed prime by prime, as it is a question @blattices ink'.
For every prime/, think of the tree of lattices up tQ; in Vi(F) = Q, ® K, with E chosen
such thattnd(E) = O. To each lattice one associates the exponehirmthe conductor of the
endomorphism ring. Then one gets the following pictures.

linert There is one point with labél, and the labels at all points are the distance to this one
point.

[ split The is a unique path, infinite in two directions, and the labels are the distance to this path.

[ ramified There are two neighboring points such that the labels are the distance to these two
points.

This shows that cyclic isogenies behave with respect to conductors of endomorphism rings as the
lemma claims. U

Now we finish the proof of the proposition. Suppose thatr, andM are as in that proposition.
Then we have infinitely many,,: £, — al‘IUQEn of degreeM, with End(E,,) = O,». The
last lemma gives us infinitely mang/,: £/ — o, ‘o, E’, of fixed degreeM’ prime top, with
End(E)) = O,n-a (a fixed), and idealsn,, C O of indexM’, such that:

i -1 1
E;, o, o2 E),

\\

/
(mp, N Opn—a) ®O;H1 E!

There are only finitely many possibilities fof,,, so we may assume that, = m, independent
of n. Then inG = lim Pic(O,») we have:

n

[m] - 0-10-2_2 € GO = Gtors-

This means that for some> 1 the intersectiom:N O, is principal for alln > 0. Some thinking
gives thatm is then of the fornQ$" - - - Q5?, hence thato; * is in G, as we had to prove. [
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