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Preface

From April 12 to April 16, 1992, the instructional conference for Ph.D-students "Dio
phantine approximation and abelian varieties" was held in Soesterberg, The Nether
lands. The intention of the conference was to give Ph.D-students in number theory
and algebraic geometry (but anyone else interested was welcome) some acquaintance
with each other's fields. In this conference a proof was presented of Theorem I of
G. Faltings's paper "Diophantine approximation on abelian varieties", Ann. Math. 133
(1991),549-576, together with some background from diophantine approximation and
algebraic geometry. These lecture notes consist of modified versions of the lectures
given at the conference.

We would like to thank F. Oort and R. Tijdeman for organizing the conference,
the speakers for enabling us to publish these notes, C. Faber and W. van der Kallen
for help with the typesetting and last but not least the participants for making the
conference a successful event.
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Introduction

Although diophantine approximation and algebraic geometry have different roots,
today there is a close interaction between these fields. Originally, diophantine ap
proximation was the branch in number theory in which one deals with problems such
as approximation of irrational numbers by rational numbers, transcendence problems
such as the transcendence of e or 7r, etc. There are some very powerful theorems in
diophantine approximation with many applications, among others to certain classes
of diophantine equations. It turned out that several results from diophantine approxi
mation could be improved or generalized by techniques from algebraic geometry. The
results from diophantine approximation which we discuss in detail in these lecture
notes are Roth's theorem, which states that for every algebraic number a and for
every 6 > 0 there are only finitely many p,q E Z with la - pjql < Iql-2-e5, and a
powerful higher dimensional generalization of this, the so-called Subspace theorem
of W.M. Schmidt. Here, we would like to mention the following consequence of the
Subspace theorem, conjectured by S. Lang and proved by M. Laurent: let r be the
algebraic group (Q*)n, endowed with coordinatewise multiplication, V a subvariety of
r, not containing a translate of a positive dimensional algebraic subgroup of r, and
G a finitely generated subgroup of r; then V n r is finite.

We give a brief overview of the proof of Roth's theorem. Suppose that the equation
10' - pjql < q-2-S has infinitely many solutions p, q E Z with q > o. First one shows
that for sufficiently large m there is a polynomial P(X1 , • •• , X m ) in Z[Xt, ... , X m ]

with "small" coefficients and vanishing with high order at (a, ... ,a). Then one shows
that P cannot vanish with high order at a given rational point x = (Pljql, ... ,Pnjqn)
satisfying certain conditions. This non-vanishing result, called Roth's Lemma, is the
most difficult part of the proof. From the fact that la - piql < q-2-e5 has infinitely
many solutions it follows that one can choose x such that 10' - Pn/qnl < q;2-6 for n in
{I, ... , m}. Then for some small order partial derivative Pi of P we have Pi(x) =1= o.
But Pi(x) is a rational number with denominator dividing a := qt1

••• q~m, where
dj = degxj(Pi). Hence IPi(x)1 ~ l/a. On the other hand, Pi is divisible by a high
power of )(j - a and Ipj/qj - al is small for all j in {I, ... ,m}. Hence Pi(x) must be
small. One shows that in fact IPi(x)1 < l/a and thus one arrives at a contradiction.

Algebraic geometry enables one to study the geometry of the set of solutions (e.g.,
over an algebraically closed field) of a set of algebraic equations. The geometry often
predicts the structure of the set of arithmetic solutions (e.g., over a number field)
of these algebraic equations. As an example one can mention Mordell's conjecture,
which was proved by G. Faltings in 1983 [21]. Several results of this type have been
proved by combining techniques from algebraic geometry with techniques similar to
those used in the proof of Roth's theorem. Typical examples are the Siegel-Mahler
finiteness theorem for integral points on algebraic curves and P. Vojta's recent proof
of Mordell's conjecture.

In these lecture notes, we study the proof of the following theorem of G. Faltings
([22], Thro. I), which is the analogue for abelian varieties of the result for (Q*)n
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mentioned above, and which was conjectured by S. Lang and by A. Wei!:

Let A be an abelian variety over a number field k and let X be a subvariety
of A which, over some algebraic closure of k, does not contain any positive
dimensional abelian variety. Then the set of rational points of X is finite.

(Note that this theorem is a generalization of Mordell's conjecture.) The proof of
Faltings is a higher dimensional generalization of Vojta's proof of Mordell's conjecture
and has some similarities with the proof of Roth's theorem. Basically it goes as follows.
Assume that X (k) is infinite. First of all one fixes a very ample symmetric line bundle
£, on A, and norms on £, at the archimedian places of k. Let m be a sufficiently large
integer. There exists x = (Xl, ... , xm ) in X m (k) satisfying certain conditions (e.g., the
angles between the Xi with respect to the Neron-Tate height associated to £ should be
small, the quotient of the height of Xi+l by the height of Xi should be big for 1 ~ i < m
and the height of Xl should be big). Instead of a polynomial one then constructs a
global section f of a certain line bundle £(U-c, SI, ••• , Sm)d on a certain model of X m

over the ring of integers R of k. This line bundle is a tensor product of pullbacks of {,
along maps Am ~ A depending on (j-c, the Si and on d; in particular, it comes with
norms at the archimedian places. By construction, f has small order of vanishing at x
and has suitably bounded norms at the archimedian places of k. Then one considers
the Arakelov degree of the metrized line bundle x*£'(O'-e, 81,'." Sm)d on Spec(R);
the conditions satisfied by the Xi give an upper bound, whereas the bound on the
norm of f at the archimedian places gives a lower bound. It turns out that one can
choose the parameters e, (1, the Si and d in such a way that the upper bound is smaller
than the lower bound.

We mention that the construction of f is quite involved. Intersection theory is
used to show that under suitable hypotheses, the line bundles £(-f" 81, ... , 8m )d are
ample on X m

• A new, basic tool here is the so-called Product theorem, a strong
generalization by Faltings of Roth's Lemma.

On the other hand, Faltings's proof of Thm. I above is quite elementary when
compared to his original proof of Mordell's conjecture. For example, no moduli spaces
and no l-adic representations are needed. Also, the proof of Thro. I does not use
Arakelov intersection theory. Faltings's proof of Thro. I in [22] seems to use some of
it, but that is easily avoided. The Arakelov intersection theory in [22] plays an essential
role in the proof of Thm. II of [22], where one needs the notion of height not only for
points but for subvarieties; we do not give details of that proof. The only intersection
theory that vie need concerns intersection numbers obtained by intersecting closed
subvarieties of projective varieties with Cartier divisors, so one does not need the
construction of Chow rings. The deepest result in intersection theory needed in these
notes is Kleiman's theorem stating that the ample cone is the interior of the pseudo
ample cone. Unfortunately, we will have to use the existence and quasi-projectivity
of the Neron model over Spec(R) of A in the proof of Lemma 3.1 of Chapter XI; a
proof of that lemma avoiding the use of Neron models would significantly simplify
the proof of Thm. I. We believe that for someone with a basic knowledge of algebraic
geometry, say Chapters II and III of [27], everything in these notes except for the
use of Neron models is not hard to understand. In the case where X is a curve, i.e.,
Mordell's conjecture, the proof of Thro. I can be considerably simplified; this was
done by E. Bombieri in [9].
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Let us now describe the contents of the various chapters. Chapter I gives an
overview of several results and conjectures in diophantine approximation and arith
metic geometry. After that, the lecture notes can be divided in three parts.

The first of these parts consists of Chapters II-IV; some of the most important re
sults from diophantine approximation are discussed and proofs are sketched of Roth's
theorem and of the Subspace theorem.

The second part, which consists of Chapters V-XI, deals with the proof of Thro. I
above. Chapters V and VII provide the results needed of the theory of height functions
and of intersection theory, respectively. Chapter VIII contains a proof of the Product
theorem. This theorem is then used in Chapter IX in order to prove the ampleness
of certain£(-c, 81, •.. , 8m )d. Chapter X gives a proof of Faltings's version of Siegel's
Lemma. Chapter XI finally completes the proof of Thm. I. Chapter VI gives some
historical background on how D. Mumford's result on the "widely spacedness" of
rational points of a curve of genus at least two over a number field lead to Vojta's
proof of Mordell's conjecture.

The third part consists of Chapters XII and XIII. Chapter XII gives an application
of Thm. I to the study of points of degree d on curves over number fields. Chapter XIII
discusses a generalization by Faltings of Thm. I, which was also conjectured by Lang.



Terminology and Prerequisites

In these notes it will be assumed that the reader is familiar with the basic objects of
elementary algebraic number theory, such as the ring of integers of a number field, its
localizations and completions at its maximal ideals, and the various embeddings in
the field of complex numbers. The same goes more or less for algebraic geometry. To
understand the proof of Faltings's Thm. I the reader should be familiar with schemes,
morphisms between schemes and cohomology of quasi-coherent sheaves of modules
on schemes. In order to encourage the reader, we want to mention that Hartshorne's
book [27], especially Chapters II, §§1-8 and III, §§1-5 and §§8-10, contains almost
all we need. The two most important exceptions are Kleiman's theorem on the ample
and the pseudo-ample cones (see Chapter VII), for which one is referred to [28], and
the existence and quasi-projectivity of Neron models of abelian varieties (used in
Chapter XI), for which [11] is an excellent reference. At a few places the "GAGA
principle" (see [27], Appendix B) and some algebraic topology of complex analytic
varieties are used. A less important exception is the theorem of Mordell-Weil, a proof
of which can for example be found in Manin's [52], Appendix II, or in [70]; Chapter V
of these notes contains the required results on heights on abelian varieties. Almost
no knowledge concerning abelian varieties will be assumed. By definition an abelian
variety over a field k will be a commutative projective connected algebraic group over
k. We will use that the associated complex analytic variety of an abelian variety over
C is a complex torus.

Since these notes are written by various authors, the terminologies used in the
various chapters are not completely the same. For example, Chapter I uses a normal
ization of the absolute values on a number field which is different from the normaliza
tion used by the other contributors; the reason for this normalization in Chapter I is
clear, since one no longer has to divide by the degree of the number field in question
to define the absolute height, but it has the disadvantage that the absolute value no
longer just depends on the completion of the number field with respect to the absolute
value. Another example is the notion of variety. If k is a field, then by a (algebraic)
variety (defined) over k one can mean an integral, separated k-scheme of finite type;
but one can also mean the following: an (absolutely irreducible) ailine variety (de
fined) over k is an irreducible Zariski closed subset in some affine spaceKn (K a fixed
algebraically closed field containing k) defined by polynomials with coefficients in k,
and a (absolutely irreducible) variety (defined) over k is an object obtained by glueing
affine varieties over k with respect to glueing data given again by polynomials with
coefficients in k. As these two notions are (supposed to be) equivalent, no (serious)
confusion should arise.



Chapter I

Diophantine Equations and
Approximation

by Frits Beukers

1 Heights

Let F be an algebraic number field. The set of valuations on F is denoted by MF. Let
1.lv, or v in shorthand, be a valuation of F. Denote by Fv the completion of F with
respect to v. If Fv is lR or C we assume that v coincides with the usual absolute value
on these fields. When v is a finite valuation we assume it normalised by Iplv = 1/P
where p is the unique rational prime such that Iplv < 1. The normalised valuation
11.llv is defined by

with the convention that p = 00 when v is archimedean and Qoo ==:IR. For any
non-zero x E F we have the product formula

(1.1) II Ilxllv= 1.
v

Let L be any finite extension of F. Then any valuation w of L restricted to F is a
valuation v of F. We have for any x E F and v EMF,

(1.2) Ilxllv =II Ilxllw
wlv

where the product is over all valuations w E ML whose restriction to F is v. The
absolute multiplicative height of x is defined by

H(x) = IImax(l, Ilxllv)'
v

It is a consequence of (1.2) that H(x) is independent of the field F which contains x.
The absolute logarithmic height is defined by

h(x) = logH(x).

Let pn be the n-dimensional projective space and let P E pn(F) be an F-rational point
with homogeneous coordinates (xo, Xl, ..• , X n ). We define the projective (absolute)
height by

h(P) = L logmax(llxollv,Ilxlllv,".' IIxnllv)'
v
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Again, h(P) is independent of the field F containing P. Therefore the projective
height can be considered as a function on pn(F). Notice that the height h(x) of a
number coincides with the projective height of the point (1 : x) E pl. The projective
height has the fundamental property that, given ho, there are only finitely many
P E JPn(F) such that h(P) < hOe

Let V be a non-singular projective variety defined over F. Let </> : V C-....+ pN
be a projective embedding also defined over F. On V(F), the F-rational points of
V, we take the restriction of the projective height as a height function and denote
it by hq,. In general the construction of heights on V runs as follows. First, let D
be a very ample divisor. That is, letting fo, 11, ... ,In be a basis of the space of all
rational functions f defined over F with (/) ~ -D, the map ¢ : V --+ pn given
by P 1-+ (!O(P),!I(P), ... ,fn(P)) is a projective embedding. The height hD is then
simply defined as h¢. If D1 , D2 are two linearly equivalent very ample divisors, then
hD1 - hD2 is known to be a bounded function on VCF).

Now let D be any divisor. On a non-singular projective variety one can always
find two very ample divisors X, Y such that D + Y = X. Define hD = hx - hy .
Again, up to a bounded fuction, hD is independent of the choice of X and Y.

We summarize this height construction as follows.

1.3 Theorem. There exists a unique homomorphism

linear divisor classes --+ real valued functions on V(F)

modulo bounded functions

denoted by c 't---+ he + O(1) such that: if c contains a very ample divisor, then he is
equivalent to the height associated with a projective embedding obtained from the
linear system of that divisor.

We also recall the following theorem.

1.4 Theorem. Let c be a linear divisor class which contains a positive divisor Z.
Then

he(P) 2 0(1)

for all P E V(:F), P ¢ supp(Z).

For the proof of the two above theorems we refer to Lang's book [36], Chapter 4.
Finally, following Lang, we introduce the notion of pseudo ample divisor, not to

be confused with the pseudo ample cone. A divisor D on a variety V is said to be
pseudo ample if some multiple of D generates an embedding from some non-empty
Zariski open part of V into a locally closed part of projective space. One easily sees
that there exists a proper closed subvariety W of V such that, given ho, the inequality
hD(P) < ho has only finitely many solutions in V(F) - W.

2 The Subspace Theorem

For the sake of later comparisons we shall first state the so-called Liouville inequality.
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2.1 Theorem (Liouville). Let F be an algebraic number field and L a finite exten
sion. Let S be a finite set of valuations and extend each v E S to L. Then, for every
a E L, a i= 0 we have

1
II IIallv ~ H( )[L:F)·
veS a

Proof. Let us assume that I'al' v < 1 for every v E S. If not, we simply reduce the
set S. Let SL be the finite set of valuations on L which are chosen as extension of v
on F. Using the product formula we find that

II Ilall~l
W~SL

II max(l, JJaJJw)-t
W~SL

IT max(l,lIo:llw)-t = H(l ).
wEML a

The proof is finished by noticing that

o

Liouville applied more primitive forms of this inequality to obtain lower bounds for the
approximation of fixed algebraic numbers by rationals. In our more general setting,
let a be a fixed algebraic number of degree dover F. Then it is a direct consequence
of the previous theorem that

(2.2)
c(a)II(11x - allv ) > H(x)d

for every x E F with x # o. Here c(Q) is a constant which can be taken to be
(2H(a))-d. Using such an inequality Liouville was the first to prove the existence
of transcendental numbers by con~tructing numbers which could be approximated by
rationals much faster than algebraic numbers. In 1909 A. Thue provided the first non
trivial improvement over (2.2) which was subsequently improved by C.L. Siegel (1921),
F. Dyson (1948) and which finally culminated in Roth's theorem, proved around 1955.
The theorem we state here is a version by S. Lang which includes non-archimedean
valuations, first observed by Ridout, and a product over different valuations.

2.3 Theorem (Roth). Let F be an algebraic number field and S a finite set of
valuations of F. Let € > o. Let Q E Q and extend each v to F(a). Then

1
IT(llx - allv ) < H(x)2+<
vES

has only finitely many solutions x E F.

A proof of Roth's original theorem can be found in Chapter III of these notes. Around
1970 W.M. Schmidt extended Roth's techniques in a profound way to obtain a simul
taneous approximation result. Again the version we state here is a later version which
follows from work of H.P. Schlickewei.
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2.4 Theorem (Schmidt's Subspace theorem). Let F be an algebraic number
field and S a finite set of valuations of F. Let HI, H2 , • •• , Hm be m hyperplanes
ofpn in general position. For each i let Hi be given by Li(xo, . .. ,xn ) = 0 where Li is
a linear form with coefficients in Q. Extend each v E S to the field generated by the
coefficients of the Li • Let € > o. Then the points P = (xo, . .. , xn ) E pn(F) which
satisfy

IT IT mjn II Li(XO,;: ., x
n
) II < H(p~n+l+'

vESi=1 J v

lie in a finite union of proper hyperplanes of pn.

For a rough sketch of the proof of Schmidt's original theorem we refer to Chapter IV.
Let us rewrite these theorems, starting with Roth's theorem. Take logarithms.

Then we find that
E log Ilx - allv < -(2 + f)h(x)
veS

has finitely many solutions. The function on the left can be considered as a distance
function, measuring the S-adic distance between x and a. Minus this function can be
considered as a proximity function which becomes larger as x gets closer to o. Roth's
theorem can now be reformulated as follows. For all but finitely many x E F we have

- E log Ilx - allv < (2 + €)h(x).
vES

We can reformulate the Subspace theorem similarly. There is a finite union Z of
hyperplanes in pn such that for all P E pn(F), P ~ Z, we have

EIOgm~xllfiL.( Xj )11 < (n+l+€)h(P).
vES J i=l' Xo,···, Xn v

The left hand side of this inequality can be considered as a proximity function mea
suring the S-adic closeness of the point P to the union of hyperplanes U~lHi.

For comparison, under the same assumptions a trivial application of the Liouville
inequality would give that for all P E pn(F), P ¢ Hi (i = 1, ... , m),

~ logmrx lIit Li(XO'~~. ,x
n

) IIv 5 [L : F)mh(P) +0(1)

where L is the field generated over F by the coefficients of the Li .

As a comment we would like to add that the Subspace theorem, in the way we
have formulated it here, has two crucially distinct ranges of applicability. The first
which we call the arithmetic one is when m :5 n + 1. The Subspace theorem gives a
non-trivial result as long as [L : F]m > n + 1. However if we allow points P in some
finite extension of F it may happen that [L : F] decreases and the statement of the
theorem becomes trivial. The second range is when m ~ n +2, which we like to call
the geometric realm. Here it does not matter if we extend the field F, the theorem
remains non-trivial.
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3 Weil Functions

5

On general varieties we can also define proximity functions. In that case they are
known as Weil functions. The general definition is too cumbersome to state here,
and we refer to [36], Chapter 10. Instead we give a short recipe for the construction
of Weil functions on projective varieties. First construct sets of positive divisors
Xi, (i = 1, ... , n) and lj, (j = 1, ... , m) such that D +Xi "V }j for every i,j and
such that the Xi have no point in common and the }j have no point in common. Let
lij E F(V) be such that (lij) = lj - Xi - D for each pair i,j. Extend the valuation
to all of F. For each P E V(F) we define

AD,v(P) = m~xmjnlog Ilfij(P)llv.
J I

Of course AD,v depends upon the choice of the lij, but it is known that two Weil
functions associated to the same divisor D differ only by a bounded function on
V(F). For more details on Weil functions we refer to Lang's book [36], Chapter 10.

Consider for example the elliptic curve in ]p2 with affine equation

A,BEF.

j = O, .•. ,n.

Let D be three times the point at infinity. Choose fll = X, 112 = y and f13 = 1.
Notice that (x) = {oo,(O,±JB)} - D and (y) = {2-torsion =F co} - D. Notice that
when B :f 0 the zero divisors of x and yare disjoint. The corresponding Weil function
is

AD,v = logmax(l, I'xllv , IIyllv).

As another example take for D the union of hyperplanes U~lHi in pn from the
Subspace theorem. Let L be the product of all L i • For the functions fij we choose

Xf!l-
Ilj = j

L(xo, ... , xn )

The pole divisor of each fli is precisely D and the zero divisor is m times the hyper
plane Xj = O. Our v-adic proximity function (Wei! function) reads

AD,v{P) = 10gm~xIIL( xf' )11.
~ xo,···, X n v

The Subspace theorem can again be reformulated. There is a finite union of hyper
planes Z in pn such that for all P E pn(F), P ¢ Z we have

E AD,v(P) < (n +1 + €)h(P).
vES

4 Vojta's Conjecture

In the beginning of the 1980's P. Vojta [80] discovered an uncanny similarity be
tween concepts from diophantine approximation and from value distribution theory
for complex analytic functions. Theorems in the latter area, translated via Vojta's
dictionary to diophantine approximation, yielded statements which can be considered
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as very striking conjectures. Although we are far from being able to prove these con
jectures, they look like a fascinating guide line in further development of diophantine
approximation and diophantine equations. Here we state only Vojta's "Main Con
jecture" without going into the analogy with value distribution theory. A normal
crossing divisor D of a non-singular variety V is a divisor which has a local equation
of the form ZtZ2 .• • Zm = 0 near every point of D for suitably chosen local coordinates
Zl, Z2, • •• , Zdim(V) on V.

4.1 Conjecture (Vojta). Let V be a non-singular projective variety defined over
the algebraic number field F and let A be a pseudo ample divisor. Let D be a normal
crossing divisor defined over a finite extension of F. Let K be the canonical divisor of
V. Let S be a finite set of valuations on F and for each v E S let AD,v be a proximity
function for D. Let € > o. Then there exists a Zariski closed subvariety Z of V such
that for all P E V(F), P ¢ Z we have,

L AD,v(P) +hK{P) < €hA{P) +0(1).
vES

The subvariety Z will be referred to as an exceptional subvariety. Actually, an ex
ceptional subvariety is nothing but a Zariski closed subvariety, but it sounds more
suggestive for this occasion. One could argue whether or not the condition "non
singular" is really necessary. The "normal crossings" condition is vital however. In
the example of the Subspace theorem this condition comes down to the condition that
the hyperplanes lie in general position.

As an example consider V =pn. To determine the canonical divisor consider the
differential form n = dXtdx2··· dXn in the affine coordinates (1 : Xl : X2 : ••• : xn ) on
Uo = {X E pnlxo I- OJ. There are no zeros or poles on Uo. But if we rewrite n with
respect to (xo : ... : 1 : ... xn ) on Ui = {x E pnlXi # O} we find

n = - X;+l dxo · . · dXi . · ·dxn .

Hence n has a pole of order n + 1 along Xo = 0 and K = -(n + l)H where H is
the hyperplane at infinity. So by linearity of heights we find that hK = - (n + l)h
where h is the ordinary projective height. Thus Vojta's conjecture for V = pn reads
as follows. For all P E P(F), P ¢ Z we have

L AD,v(P) < (n +1 +€)h(P) +0(1).
veS

So in particular, when D is a union of hyperplanes in general position we recover the
Subspace theorem again, except that Z is now known to be a union of hyperplanes.
If we take for D any hypersurface and, to fix ideas, F = Q, we obtain the following
interesting consequence.

4.2 Conjecture. Let D be a hypersurface in pn defined over Q of degree d ~ n + 2
with at most normally crossing singularities. Suppose it is given by the homoge
neous equation Q(xo, ... , xn ) = 0 where Q has coefficients in Z. Let S be a fi
nite set (possibly empty) of rational primes. Then the set of points (xo, ... ,xn ) E
zn+l, gcd(xo, ... , xn ) = 1 such that Q(xo, .. . ,xn ) only contains primes from S lies in
a Zariski closed subset ofpn.
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Proof. We apply Vojta's conjecture with the proximity functions

AD,v=logm~xIIQ( xt )11
t Xo, ••• , X n v

7

and the set of valuations S U 00. The conjecture implies that for any e > 0 the set of
projective n + I-tuples (xo, ... , xn ) E zn+l with gcd(xo, ... , xn ) = 1 which satisfy

E 10gm~xIIQ( xt )11 >(n+l+e)h(xo, ... ,xn )
vesuoo t Xo, .•• , Xn v

lies in an exceptional subvariety. The inequality can be restated as

E 10gIIQ(xo, ... ,xn )llv<-(n+l+e)h(xo, ... ,xn )+ E logm~x(llxtllv)
vESUoo vESUoo t

The sum on the right is precisely dh( Xo, ... ,xn ) since the sum includes the infinite
valuation and the maXi is 1 for all finite v. So the set of solutions to

E log IIQ(xo, . .. ,xn)IIv < (d - n - 1 - e)h(xo, . .. , xn)
veSuoo

lies in an exceptional subvariety. Suppose Q(Xo, ... ,xn ) is composed of primes only
from S. Then by the product formula the left hand side of the latter inequality is zero
and we have a solution of the inequality because d ~ n +1. This proves our corollary.
o

Application of this corollary to the case n = 1 yields the Thue-Mahler equation
F(x, y) = p~l ... p~. where F is a binary form of degree at least 3 and distinct zeros.
Application of the corollary to Q= XOXI ••• xn(xo + Xl + ... +xn ) gives us the S-unit
equation in n +2 variables.

Application of the corollary in the case n = 2 already poses us with problems that
no one knows how to solve. We obtain a so-called ternary form equation

(4.3)

where Q is a ternary form of degree d and PI, ... ,Pr are given primes. A number
which is composed of only the primes PI, ... ,pr will be called an S-unit. We assume
that the curve Q(x, y, z) = 0 has at most simple singularities. Let us distinguish three
cases, the case d = 1 being considered trivial.

d = 2 Here it is very easy to construct examples having a Zariski dense set of solutions.
Suppose that Q is indefinite and that there are integers xo, Yo, Zo such that
Q(Xo, Yo, zo) = 1. We indicate how this implies the existence of a Zariski dense
(in p2) set of solutions to Q(x, y, z) = 1, x, y, z E Z. Take any triple of integers
Xl, Yl, Zl E Z and consider the binary form Q(AXo + J.lXI, Ayo + P,Yl, AZo + J.lz})
which has the shape A2 + AAJL + Bp,2. Because Q is indefinite we can choose
Xl, Yl, Zl in infinitely many ways such that A2

- 4B is positive and not a square.
By writing down an infinite set of solutions A, JL of the Pellian equation A2 +
AAJL +B p,2 = 1 for each such Xl, Yl, Zl we arrive at our dense set of solutions.
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d = 3 This case seems to be very interesting. When Q = 0 has a singular point it
is often possible to construct a dense set of solutions to (4.3) by considering
straight lines through the singularity in a way similar to the previous case.
When Q = 0 is a non-singular curve, things seem to be more difficult, but we
can still give examples of dense solution sets. The equation x 3 +y3 +z3 = 1, for
example, has a Zariski dense set of solutions x, y, z E Z. This can be inferred
from a construction by D.H. Lehmer [42]._

d 2: 4 The above corollary implies that the solutions are contained in an exceptional
subset of p2.

Of course the arguments given in cases d = 2, 3 are very ad hoc. It would be very
interesting to have a more systematic treatment which the author !s presently trying
to work out.

For the proof of the following Corollary we refer to [80], Chapter 4.4.

4.4 Conjecture (Hall). For any f > 0 there exists c(e) > 0 such that

Ix3
- y21> c(€)X~-f

for any x,y E Z with y2 -:f x3.

It is known that 1/2 is the best possible exponent.
The totally new and very remarkable ingredient in Vojta's conjecture is the occur

rence of the term hK{P). It makes the following kind of statement possible.

4.5 Conjecture (Bombieri). Let V be a projective variety over F and suppose that
it is of general type. Then V(F) is contained in a Zariski closed subset of V.

Proof. Apply Vojta's conjecture to the case D = 0, A = K and f = 1/2. Because
V is of general type, K is pseudo ample. We find that for any P E V(F) outside a
certain exceptional subvariety Z the height hK{P) is bounded. Because K is pseudo
ample we conclude that V(F) - Z is finite. 0

Thus we see that in case D = 0 Vojta's conjecture still makes highly non-trivial
predictions thanks to the occurrence of hK(P). Roughly speaking the case D = 0 can
be seen as an example of diophantine approximation without actually approximating
anything!

More particularly, when V is an algebraic curve of genus ~ 2 defined over F, the
number of F-rational points should be finite (Mordell's conjecture). This was proved
by Faltings [21] in 1983, and later by Vojta in 1989 following an admirable adaptation
of Siegel's diophantine approximation method. So it was Vojta himself who vindicated
his insight that one can do diophantine approximation without approximants.

Finally there are some consequences of Vojta's conjecture which have recently
been proved by Faltings as Theorems 5.5 and 5.6. We shall discuss them in the next
section.
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5 Results

9

In order to be able to appreciate the results we first establish a trivial result which is
the analogue of Liouville's inequality. With the same notations as in Vojta's conjecture
it reads as follows.

5.1 Theorem (Liouville). Suppose that the divisor D is ample and defined over a
finite extension L of F. Then we have for all P E V(F), P ¢ D,

E AD,v(P) < [L : F]hD(P) + 0(1).
v

Proof. Choose m such that mD is very ample. Let fO'!I"'. ,iN be an L-basis of
the linear system corresponding to mD. A good proximity function is given by

Since the Av,mD are functions bounded from below for all v and bounded from below
by 0 for almost all v we find that

EAv,mV(P)::; Elogm~xllfi(P)llv+O(l)
veS v I

where for each v we have chosen an extension to L. The term on the right can now
be bounded by [L : F]hmD(P) +0(1). Division by m on both sides yields our desired
result. 0

In the previous section we have already considered the Subspace theorem and its
relation with Vojta's conjecture. In 1929 e.L. Siegel applied his theorem on the ap
proximation of algebraic numbers by algebraic numbers from a fixed number field to
the situation of algebraic curves. His result, as extended by Mahler, can be reinter
preted as follows.

5.2 Theorem (Siegel-Mahler). Let C be a non-singular projective curve of genus
~ 1 and defined over an algebraic number field F. Let S be a finite set of valua.tions
on F. Let h be a height function on C(F) and let D be a positive divisor on C defined
over F. Then, for any € > 0, we have

E AD,v(P) < €h(P)
vES

for almost all P E C(F) (i.e. finitely many exceptions).

Proof. (sketch) First we embed C into its Jacobian variety J and let it be a height
on J. It is known that if we prove the theorem for it restricted to C we have proved
it for all h. Although Siegel had to work with a weaker result we can nowadays profit
from Roth's theorem. It is a fairly direct consequence of Roth's theorem that

E ).D,v(P) < 3ph(p)
vES
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for almost all P E C(F), and where jJ is the maximum multiplicity of the components
of D. Actually we can have 2 +e instead of the factor 3, but the latter will do. Let
E: > 0 and suppose that there exists an infinite subset E C C(F) such that

(5.3) E AD,v(P) > eh(P)
vES

for all PEE. Choose mEN such that m 2f > 4p,. It is known via the weak Mordell
Weil theorem that J(F)/mJ(F) is finite. Let at, ... , an be a set of representatives
of J(F)/mJ(F). There exists a representative, at say, such that mQ +at E E for
infinitely many Q E J(F). We denote this set of Q by E'. The covering w : J --+ J
given by wu = mu + at provides an unramified cover of C by an algebraic curve U.
It follows from (5.3) that

(5.4) E AD,v(mQ +at) > fh(mQ + at)
vES

= m2eh(Q) +0(1)

> 4jJh(Q) +0(1)

for all Q E E'. Notice that AD,v(mQ +at) is a proximity function for Q E U(F) with
respect to the divisor w*D on U. Because w is unramified the maximum multiplicity
of the components of w· D is also Jl. Direct application of Roth's theorem to the curve
U shows that

E AD,v(mQ + al) > 3p,h(Q)
vES

has only finitely many solutions Q E U(F). This is in contradiction with (5.5). Hence
(5.3) has only finitely many solutions, as asserted. 0

It is well known that from Siegel's theorem we can derive the finiteness of the set
of integral points on affine plane curves. This is done by taking for D the divisor at
infinity. Consider for example the elliptic curve

y2 = x3 + Ax + B, A, B E F

considered previously. In the section on Weil functions we saw that the function
log max(l, IIxllv , Ilyllv) is a good proximity function to the point R at infinity, counted
with multiplicity 3. Suppose we are only interested in points (x, y) on E with x, y in
OF, the ring of integers of F. Take for S the set of infinite valuations. Then Siegel's
theorem implies that

E log max(1, Ilxllv~ I/yllv) > f h(1 : x : y)
vloo

has finitely many solutions for any f. If x, y E OF we see that the left hand side of the
inequality equals h(1 : x : y). Hence, if we take f = 1/2 say, we have a solution of the
inequality. Siegel's theorem tells us that there are only finitely many such solutions.

In 1989 Vojta proved the Main Conjecture for the case of algebraic curves. The
method used is an adaptation of a method of Siegel to the geometric case. Originally
Vojta used some highly advanced results from the theory of arithmetic threefolds.
However, Bombieri gave in 1990 a version which uses only fairly elementary notions
of algebraic geometry. It seems that Vojta's ideas had broken a dam because Faltings
very soon, in 1990 and 1991, produced two papers where the following two fascinating
theorems are proved.
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5.5 Theorem (Faltings). Let A be an abelian variety over F and E a subvariety,
also defined over F. Let h be a height on A and v a valuation on F. Let e > O. Then
we have

AE,v(P) < eh(P)

for almost every point P E A(F) - E.

This theorem settles a conjecture of S. Lang about integral points (with respect to E)
on abelian varieties. In [80], Chapter 4.2 it is shown that Vojta's conjecture implies
this theorem.

5.6 Theorem (Faltings). Let A be an abelian variety defined over a number field
F. Let X be a subvariety of A, also defined over F. Then the set X(F) is contained
in a finite union of translated abelian subvarieties of X.

We observe that Theorem 5.6 is again a consequence of Vojta's conjecture. For this we
remark that a subvariety of an abelian variety is either of general type or a translated
abelian subvariety. Then we apply the following argument. If X is of general type,
the exceptional subvariety is a lower dimensional subvariety. If a prime component
X' of this exceptional subvariety is again of general type we repeat our argument for
X'. When we have finally reached dimension zero, we are left with an exceptional
subvariety which is a finite union of translated subtori. The only technical detail we
have to be aware of is that X and other components of exceptional varieties may
be singular. In that case we must resolve singularities to be able to apply Vojta's
conjecture.

It is nice to notice that Theorem 5.6 partly solves two conjectures proposed by
S. Lang. The first one is that an algebraic variety which is (Kobayashi) hyperbolic
has only finite many F-rational points for a given number field F. In 1978 it was
proved by M. Green that a subvariety X of an abelian variety which does not contain
any translate of a positive dimensional abelian subvariety is indeed hyperbolic. Thus
Theorem 5.6 settles Lang's conjecture for this particular type of hyperbolic variety.
Theorem 5.6 is also interesting in another respect. Notice that X(F) = A(F) n X.
We know that A(F) is a finitely generated group. Thus the question of the nature
of X(F) can be considered as an example of problems where we intersect finitely
generated subgroups of algebraic groups with their subvarieties. This is precisely the
subject of Lang's second conjecture we alluded to. The conjecture, which has recently
turned out to be a theorem, reads as follows.

5.7 Theorem. Let G be either an abelian variety over C or a power of the multi
plicative group C*. Let r be a subgroup of G of finite Q-rank. Let V be a subvariety
of G. Then V n r is contained in a finite union of translates of algebraic subgroups
ofG.

In the case when G is a power of the multiplicative group this was proved in 1984 by
M. Laurent [41], using the Subspace theorem and a fair amount of Kummer theory.
As for the case when G is an abelian variety defined over a number field it was shown
in 1988 by M. Hindry [29] that the truth of the above theorem for the special case
of finitely generated r implies the truth of the full theorem. The proof of this result
is heavily based on work of M. Raynaud. Once that is done we only need to invoke
Theorem 5.6 to prove the above theorem in case G is defined over a number field.
The general case follows by a specialisation argument.



Chapter II

Diophantine Approximation and
its Applications

by Rob Tijdeman

1 Upper Bounds for Approximations

Litt. [85], [58], [26] and [65].

As with many other areas, it is difficult to say when the development of the theory
of diophantine approximation started. Diophantine equations have been solved long
before Diophantos of Alexandria (perhaps A.D. 250) wrote his books on Arithmetics.
Diophantos devised elegant methods for constructing one solution to an explicitly
given equation, but he does not use inequalities. Archimedes's inequalities 3~ <
7r < 3~ and Tsu Ch'ung-Chih's (A.D. 430-501) estimate ~~; = 3.1415929 ... for 1r =
3.1415926 ... are without any doubt early diophantine approximation results, but the
theory of continued fractions does not have its roots in the construction methods for
finding good rational approximations to 11", but rather in the algorithm developed by
Brahmagupta (A.D. 628) and others for finding iteratively the solutions of the Pell
equation x2

- dy2 = 1. Euler proved in 1737 that the continued fraction expansion
of any quadratic irrational number is periodic. The converse was proved by Lagrange
in 1770. Lagrange deduced various inequalities on the convergents of irrational real
numbers. In particular, he showed that every irrational real a admits infinitely many
rationals p/q such that

(1.1) 10: - E.I < -.!...q q2

Alternative proofs of this inequality are based on Farey sequences and on the Box
principle. In 1842 Dirichlet used the latter principle to derive the following generali
sation:

Suppose that 0ij (1 ~ i ~ n, 1 ~ j ~ m) are nm real numbers and that
Q > 1 is an integer. Then there exist integers qI, ... , qm, PI, ... ,Pn with

and
(l~i~n).
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(By taking m = n = 1 we find 1 :5 q < Q, whence 10 - pjql < l/q2.) A further gen
eralisation resulted from the development of the geometry of numbers. Minkowski's
Linear Forms Theorem (1896) reads as follows.

Suppose that (Pij), 1 :5 i :5 n, 1 :5 j :5 n, is a real matrix with determinant
±1. Let At, . .. , An be positive reals with At A 2 • •• An = 1. Then there
exists an integer point x = (Xl, ... ,Xn ) :f:. 0 such that

(l$i:5 n -l)

and

(Dirichlet's Theorem corresponds with n + m inequalities in n + m variables.) The
proof of Minkowski's Linear Forms Theorem is based on his Convex Body Theorem
which says:

any convex compact set !( in lRn
, symmetric about the origin, with the

origin as interior point and with volume V(K) 2:: 2n , contains a point in
zn\{o}.

For j = 1,2, ... , n, let Aj = Aj(K) be the infimum of all A ~ 0 such that AK
contains j linearly independent integer points. The numbers At, A2, . .. ,An are called
the successive minima of K and satisfy 0 < Al :5 A2 :5 ... :5 An < 00. Minkowski's
Convex Body Theorem implies that AfV(K) ::; 2n . In 1907 Minkowski published the
following refinement (Minkowski's Second Convex Body Theorem):

Both bounds can be attained.
The continued fraction algorithm provides a quick way to actually find ratio

nal approximations, but the theorems of Dirichlet and Minkowski don't. In [43] a
polynomial-time basis reduction algorithm is introduced which is practical and the
oretically still rather strong. It implies, as an effective version of Dirichlet's cited
theorem:

There exists a polynomial-time algorithm that, given rational numbers Oij

(1 ::; i ::; n, 1 :5 j :5 m) and Q satisfying Q > 1, finds integers Ql, · .. , qm,
PI, ... ,Pn for which

and
(1 ::; i :5 n).

The basis reduction algorithm has been used in the theory of factorisation of polyno
mials into irreducible factors, in optimisation theory and in several other areas. See
[31]. In Section 3 some applications to diophantine equations will be mentioned.
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2 Lower Bounds for Approximations

Litt. [8] and [65].
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In 1844, Liouville proved that some number is transcendental. He derived this result
from the following approximation theorem.

Suppose Q is a real algebraic number of degree d. Then there is a constant
c(a) > 0 such that

/0 - ;1 > c(o)q-d

for every rational number p/q distinct from Q.

(We tacitly assume q > 0). Liouville deduced that numbers like L~l 2-v ! are tran
scendental. Liouville's Theorem implies that the inequality

(2.1)

has only finitely many rational solutions pIq if J.L > d. Thue showed in 1909 that
(2.1) has only finitely many solutions if p. > d/2 + 1. Then Siegel (1921) in his thesis
showed that this is already true if p. > 2Jd. A slight improvement to p. > V2d was
made by Dyson in 1947. Finally Roth proved in 1955 that (2.1) has only finitely many
solutions if J.L > 2. If d ~ 2, then comparison with (1.1) shows that the number 2
is the best possible. If d = 2, then Liouville's Theorem is stronger than Roth's one.
Chapter III of these notes contains a proof of Roth's Theorem.

In a series of papers published between 1965 and 1972, W.M. Schmidt proceeded
an important step forward. One of his results is the following extension of Roth's
Theorem.

Suppose Q is a real algebraic number. Let k ~ 1 and 6 > o. Then there
are only finitely many algebraic numbers 13 of degree ~ k with

10: - 131 < H(f3)-(k+l+S)

where H(f3) denotes the classical absolute height.

This result follows from the so-called Subspace Theorem which, in its simplest form,
reads as follows.

Suppose L1(x), ... , Ln(x) are linearly independent linear forms in x =
(Xl, ... ,xn ) with algebraic coefficients. Given 6 > 0, there are finitely
many proper linear subspaces T1, ••. , Tw of Rn such that every integer
point x =F 0 with

lies in one of these subspaces.

(Ixl denotes the Euclidean length of x.) In Chapter III it will be shown that Roth's
Theorem is equivalent to the case n = 2 of the above stated Subspace Theorem.
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Apart from Liouville's Theorem, all theorems stated in this section up to now are
ineffective, that is, the method of proof does not enable us to determine the finitely
many exceptions. However, the method makes it possible to derive upper bounds for
the number of exceptions. I shall mention two results giving upper bounds for w in
the Subspace Theorem.

The first result is due to Schmidt [66].

Let £1' ... ' Ln be linearly independent linear forms with coefficients in
some algebraic number field of degree d. Consider the inequality

The set of solutions of (2.2) with

xE zn,

is contained in the union of at most. [(2d)226n
0-

2
] proper linear subspaces

oflRn.

The second result is due to Vojta [82]. Essentially it says that, apart from finitely
many exceptions, which may depend on h, the solutions of (2.2) are in the union of
finitely many, at least in principle effectively computable, proper linear subspaces of
lin which are independent of 6.

~1ahler derived in 1933 a p-adic version of the Thue-Siegel Theorem. Ridout and
Schneider did so for Roth's Theorem. The p-adic versions of Schmidt's theorems
have been proved by Schlickewei. We shall see that they have important applications.
Vojta proved the p-adic assertion of the above mentioned result himself. For more
information on the Subspace Theorem see Chapter IV of these notes.

Liouville's Theorem is also the starting point of a development of effective approxi
mation methods. Hermite, in 1873, and Lindemann, in 1882, established the transcen
dence of the numbers e and 11'", respectively. The Theorem of Lindemann-Weierstrass
(1885) says that /3leOtl +... + /3neCtn # 0 for any distinct algebraic numbers aI, ... ,an
and any nonzero algebraic numbers PI, ... , f3n.

A new development started in 1929 when Gelfond showed the transcendence of
2V2. In 1934 Gelfond and Schneider, independently of each other, proved the tran
scendence of a 13 for a, {3 algebraic, a ¥= 0,1 and (3 irrational. Alternatively, this result
says that for any nonzero algebraic numbers aI, 02, PI, f32 with log ai, log a2 linearly
independent over the rationals, we have

In 1966 Baker proved the transcendence of ef30 af1
••• a~n for any algebraic num

bers al, ... , an, other than 0 or 1, and 131' ... ' fin, provided that either 130 # 0 or
1, 131, ... ,(3n are linearly independent over the rationals. This follows from the theo
rem that

if aI, ,an are nonzero algebraic numbers such that their logarithms
log a1 , , log an are linearly independent over the field ofall rational num-
bers, then 1, log at, ... , log an are linearly independent over the field of all
algebraic numbers.
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The above mentioned results have p-adic analogues and also analogues in the theory
of elliptic functions. For example, Masser [46] showed that if a Weierstrass elliptic
function p(z) with algebraic invariants 92 and 93 and fundamental pair of periods
Wt,W2 has complex multiplication, then any numbers Ut, ••• , Un for which P(Ui) is
algebraic for i = 1, ... , n are either linearly dependent over Q(Wl/W2) or linearly
independent over the field of algebraic numbers.

The effective character of the results can be expressed in the form of transcendence
measures. In 1972-77 Baker [7] derived the following important estimate.

Let a1, ... , an be nonzero algebraic numbers with degrees at most d and
(classical absolute) heights at most At, ... , An (all ~ 2), respectively. Let
b1 , •• . , bn be rational integers of absolute values at most B (~ 2). Put
A = btlog at +... +bn log an' Then either A = 0 or

log IAI > -(16nd)2°On (lllOg Aj ) log (}j log Aj ) log B.

The constants have been improved later on and the log(n log) factor has been removed.
The best bounds known at present, both in the complex and in the p-adic case, are
due to Waldschmidt and his colleagues. They use a method going back to Schneider,
whereas Baker's proof can be considered as an extension of Gelfond's proof of the
transcendence of a/3. These linear form estimates have important applications to
diophantine equations. Similar, but weaker, estimates have been obtained for linear
forms in Ut, ••• , Un such that Ui is a pole of p(z) or p(Ui) is an algebraic number, for
i = 1, .. _,no

3 Applications to Diophantine Equations

Litt. [49], [72] and [67].

Results on diophantine approximations have been applied in various areas. I may
refer to applications in algebraic number theory (class number problem, factorisation
of polynomials), numerical mathematics (uniform distribution, numerical integration)
and optimisation theory (when applying basis reduction algorithms, geometry of num
bers). I shall deal here with applications to diophantine equations. This is very
appropriate, since the last decade has also shown striking applications of arithmetic
algebraic geometry to diophantine equations. It is quite likely that a merging of the
theories of arithmetic algebraic geometry and diophantine approximations, as strived
after in these Proceedings, would provide a new and solid basis for the theory of
diophantine equations. This is a challenge for the young generation.

An immediate consequence of Thue's approximation result is as follows.

The equation

where n ~ 3, and f(x,y) E Q[x,y] is irreducible, has only a finite number
of solutions (in rational integers x, y).



18 R. TIJDEMAN

The corresponding consequence of Roth's approximation result is that

the equation
(3.2) f(x,y) = P(x,y),

where f is as above and P(x,y) E Q[x,y] is any polynomial of degree
m < n - 2, has only finitely many solutions.

Schinzel used a suggestion of Davenport and Lewis to show that in the latter theorem
the condition m < n - 2 can be replaced by m < n. We note that, by a completely
different method, Runge obtained a general result in case f is reducible, but f - P is
irreducible. Runge showed in 1887 that under these conditions there are only finitely
many solutions provided that f is not a constant multiple of a power of an irreducible
polynomial. Schinzel's result incorporates Runge's theorem and a result from Siegel's
famous 1929-paper. It states that

if f - P is irreducible, f is homogeneous of degree nand P is any polyno
mial of degree < n such that (3.2) has infinitely many integer solutions,
then f is a constant multiple of a power of a linear form or an irreducible
quadratic form.

The p-adic analogues of approximation theorems led to important applications to S
unit equations. For simplicity I state results for rational integers, but corresponding
results hold for integers from some algebraic number field or even finitely generated
integral domains, see [20]. Let PI, ,Ps be given prime numbers and denote by So
all rational integers composed of PI, ,ps. In 1933 Mahler showed that

the equation

(3.3) x+y=z in x,y,z E So with gcd(x,y) = 1

has only a finite number of solutions.

He applied his p-adic version of the Thue-Siegel method. A general and in some
respect best possible result was proved by Evertse in 1984. He used Schlickewei's
p-adic version of Schmidt's Subspace Theorem to show that

for any reals c, d with c > 0, 0 ~ d < 1 and any positive integer n, there
are only finitely ma.ny (XI, • •• , x n ) E zn such that (i) Xl +... + X n = 0,
(ii) XiI + ... + Xi t '# 0 for ea.ch proper non-empty subset {it, ... , it} of
{I, ... , n}, (iii) gcd(x}, ... , xn ) = 1 and (iv)

(3.4)

For the many diverse applications of this and related results I refer the reader to the
survey paper [20].

The proofs of the above mentioned results are ineffective. So it is impossible to
derive upper bounds for the size of the solutions by following the proofs. However, it
is possible to give upper bounds for the numbers of solutions. A remarkable feature is
that these bounds depend on very few parameters. Lewis and Mahler derived in 1961
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an explicit upper bound for the number of solutions of (3.3) depending on PI, ... ,Pa.
In 1984, Evertse improved this upper bound to 3 x 72a+3 which depends only on s.
Schlickewei [63] gave an upper bound for the number of solutions of (3.4) with c = 1,
d = 0 in Evertse's theorem. This bound depends only on nand s.

Bombieri and Schmidt [10] proved that the number of primitive solutions of the
Thue equation (3.1) is bounded by Cln8+1 where Cl is an explicitly given absolute
constant and s denotes the number of distinct prime factors of k. Recently, Schmidt
derived good upper bounds for the number of integer points on elliptic curves.

Effective methods make it possible to compute upper bounds for the solutions
themselves. In 1960, Cassels obtained an effective result on certain special cases
of equation (3.3) by applying Gelfond's result on the transcendence of of3. Baker's
estimates in 1967 on linear forms of logarithms in algebraic numbers caused a break
through. Baker himself gave upper bounds for the solutions of the Thue equation
(3.1) and the super-elliptic equation

(3.5) ym =P(x)

where m ~ 2 is a fixed given positive integer and P(x) E Z[x] a polynomial with
at least three simple roots if m· =:= 2, and at least two simple roots if m ~ 3. (Later,
the conditions were weakened.) Baker and Coates derived an upper bound for the
number of integer points on some curve of genus 1. (This bound has been sharpened
by Schmidt.) Coates used the p-adic estimates to obtain bounds for the Thue-Mahler
equation (3.1) with m unknown and in 5, equation (3.3), and the equations y2 = x3+k
with k unknown and in S. There are many later generalisations and improvements of
the bounds.

Baker's sharpening made it possible to deal with diophantine equations which
cannot be treated by the mentioned ineffective method. E.g. Schinzel and Tijdeman
showed that equation (3.5) with m, x, y variables and P(x) E Z[x] a given polynomial
with at least two distinct roots implies that m is bounded. Tijdeman also showed that
the Catalan equation xm - yn = 1 in integers m, n, x, y all > 1 implies that xm is
bounded by some effectively computable number. The bounds obtained in equations
involving a power with both base and exponent variable are, however, so large that it
is not yet possible to solve such equations in practice.

The best bounds for linear forms known at present make it, however, possible to
solve Mahler's equation (3.3) and Thue and Thue-Mahler equations (3.1) completely.
Additional algorithms are needed to achieve this. To give a typical example, Tzanakis
and de Weger [77] considered the Weierstrass equation y2 = x3 - 4x +1. They reduced
it to some Thue equations, of which f( x, y) = x4 -12x2y2 - 8xy3 +4y4 = 1 is a typical
example. This leads to some equations

where £1, £2, £3 is a fixed fundamental set of units of Q(t9) and iJ is a zero of f(x, 1). A
suitable linear form estimate yields max(lall, la21, la31) < 1041

. Subsequently the basis
reduction algorithm of Lenstra, Lenstra and Lovasz is applied. The first time yields
an upper bound 72, the second time an upper bound 10. Checking the remaining
values yields four solutions, (0,1), (1,-1), (3,1) and (-1,3). They correspond to
the solutions (x, ±y) = (2,1), (10,31), (1274,45473), (114, 1217), respectively, of the
equation y2 = x3 - 4x + 1. In this way Tzanakis and de Weger determined the 22
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integral solutions of the equation. For an introduction to the available additional
techniques, I refer to [86].

The following results illustrate the power of the described method.

(a) [86] The Mahler equation x + y = z subject to gcd(x,y) = 1, x :::; y, xyz
composed of the primes 2, 3, 5, 7, 11 and 13, has exactly 545 solutions of which
all large ones are explicitly stated.

(b) [86] The equation x +y = z2 in integers x 2: y, Z > 0 such that both x and yare
composed of primes 2, 3, 5 and 7 and that gcd(x, y) is squarefree, has exactly
388 solutions. The largest one is (x, y, z) = (199290375, -686, 14117).

(c) [78] The Thue-Mahler equation

in integers x, y, Zt, Z2, Z3 and Z4 with x ~ 0 has exactly 72 solutions. The
largest is given by (x, y) = (48632, -3729).



Chapter III

Roth's Theorem

by Rob Tijdeman

This chapter is based on Schmidt [65] and as to the proof of Lemma 1.6 on Wirsing
[89].

1 The Proof

1.1 Theorem (Roth, [61]). Suppose a is real and algebraic of degree d ~ 2. Then
for each S > 0, the inequality

(1.2)

has only finitely many solutions in rationals p/q.

1.3 Remarks.

(1) By Dirichlet's Theorem the number 2 in (1.2) is best possible.

(2) If Q is of degree 2, then Liouville's Theorem implies the stronger inequality

(1.4) 10 - ~I > C(0)q-2 > 0

for all rationals p/q. For no single a of degree ~ 3 do we know whether (1.4) holds. It
is likely that (1.4) is false for every such a (that is, that every such Q has unbounded
partial quotients).

(3) Lang conjectured in 1965 that for Q of degree ~ 3

10 - ~I < q-2(log qtK

has only finitely many solutions if K > 1, or at least if K > Ko(0:). o

The first lemma is a straightforward application of the box principle. For a matrix
A = (ajk) with rational integer coefficients, put IAI =max lajkl. For an integer vector
Z = (Zt, ... , ZN), put Izi = max(lztl,···, IZNI).
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1.5 Lemma (Siegel). Let A be an M x N matrix with rational integer coefficients,
not all zero, and suppose that N > M. Then there is a Z E ZN with

Az=O, z =f:. 0,

Proof. Put Z = [(NIAI)M/(N-M)] and Lj(z) = 2:f=l ajkZk for j = 1, ... , m and
z = (zt, ... ,ZN)' For Z E ZN with 0 S Z/t: :5 Z (1 S k S N) there are at most
NIA/Z + 1 possible values for Lj(z). Hence Az takes at most (NIAIZ + l)M values.
Since (NIAIZ + I)M ~ (NIAI)M(Z + I)M < (Z + I)N, there are Z(l) ¥= Z(2} in the
considered set with AZ(l) = AZ(2). Then z := Z(l) - Z(2) satisfies the conditions of the
lemma. 0

The second lemma states that most of the values illdl +. ··+imldm with 0 ~ i h ~ dh

(h = 1, ... , m) are close to m/2.

1.6 Lemma (Combinatorial Lemma). Suppose dl , ••• , dm E Z~l and 0 < f < 1.
Then the number of tuples (i l , ... , im ) E zm with

O~ih~dh (h=l, ... ,m)

is at most (dt +1)··· (dm +1)/(4m€2).

and
1

m i mjE...!!.. - - 2:: fm
h=l dh 2

Proof. We may consider it, , im as independent stochastic variables such that ih is
uniformly distributed on {O, ,dh}. Define the stochastic variable X = Lh::l ih/dh.
Then X has expectation J.tX = m/2 and variance

We have
. d

h (ihI) 2 1 2dh +1 1 1
Var(~h/dh) = E - - - -- =--- - <-.

ih=O dh 2 dh + 1 6dh 4 - 4

Hence (j2 S m/4. By Kolmogorov's generalisation of Chebyshev's inequality, we have
Prob(IX - JlI2:: c) ~ (j2/c

2
• Thus

1
Prob(IX - m/21 ~ fm) ~ -42'

mf

o

For a polynomial P(X) = P(Xl , ... ,Xm ) E Z[Xl, ... , X m ] and i = (iI, ... , im ) E Z~O'

put

11 (X) =

It follows that l1(X) has integer coefficients. Let al, , am E C and dl , ... ,dm E
Z~l' The index i(P) of P with respect to Q. = (Ol, ,Om) and (dl , . .. ,dm ) is the
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least value (J' for which there is a tuple i = (it, ... , im ) with illdt +.. ·+ im / dm = (j

and Pj(g.) i= O. (If P = 0, then the index is defined to be 00.) Note that i(PQ) =
i(P) + i(Q) and i(P + Q) ~ min(i(P), i(Q)).

The third lemma provides the construction of a polynomial with high index at
some given point. For P E Z [Xl, ... ,Xm ] we denote the maximum of the absolute
values of the coefficients of P by IPI.

1.7 Lemma (Index Theorem). Suppose a is an algebraic integer of degree d ~ 2.
Let f > 0, and let m E Z with m ~ d/2t.2. Let d1, ... , dm E N. Then there is a
polynomial P in Z[X1, .•. ,Xm ], p =1= 0, such that

(i) P has degree :s; dh in Xh,
(ii) P has index> m(l- f)/2 with respect to (0, ... ,0) and (d1, ... ,dm ),

(iii) IPI ~ ct1 +...+dm
•

Proof. Write P{X1, ... ,Xm ) = 2:1:=0'·· L,1::=o Z(jl' ... ,jm)X{l ... X~m, where the
z(jt, ... ,jm) are integers which have to be determined such that (ii) holds, Le., Pj(g) =
ofor it/d1 + ... + im/dm ~ m(l - f)/2. By taking all these expressions together, we
obtain

Aoz + aAtz +... +ad1 +···+dm Adl+...+dmZ = 0

where the Ai are M x N integer matrices with IAil ~ 4d1 +···+dm , where N = (d1 +
1)··· (dm+1) and M is the number of tuples i with it/dl +...+im/dm ~ m(l- f)/2.
Using that a is an algebraic number of degree d, we get

Boz +aBtz +... + od-l Bd-tz = 0

where the Bi are integer M x N matrices with IBil ~ C;l+...+dm
• Since 1, a, . .. ,ad- 1

are Z-linearly independent, we have Boz = 0, Btz = 0,... , Bd-IZ = O. Hence Bz =0
where B is a dM x N integer matrix with IBI $ Cft+···+dm. By the Combinatorial
Lemma, we have

M < (d1 + 1) ... (dm +1) =~ < N.
- 4mf2 4mf2 - 2d

Now Siegel's lemma implies that there is a non-zero integer vector z such that

Bz=O,

Note that the constants 0 1 , C2 and C3 depend only on Q. o

The fourth lemma gives a sufficient condition for a polynomial to have a small index
with respect to the approximation vector (PI / ql, · .. ,Pm/ qm) and (d1, .. . , dm).

1.8 Lemma (Roth). Let m E Z, m ~ 1, and f > O. There exists a number C4 =
C4 ( m, f) > 1 with the following property: Let dt , ..• , dm be positive integers with
dh ~ C4dh+1 for h = 1, ... , m-1. Let (PI, ql)," ., (Pm, qm) be pairs of coprime integers
with
(1.9) q~h 2:: qt1 and qh 2:: 22mC4 for h = 1, ... ,m.

Let P(XI , ••• ,Xm ) E Z[Xt, ... ,Xm ] be a polynomial of degree :5 dh in X h for
h = 1, ... , m and with
(1.10) IPlc4 :s; qt1

, P i= O.

Then the index of P with respect to (Pl/ql"" ,Pm/qm) and (dt , ... ,dm) is S f.



24 R. TIJDEMAN

Proof. We use induction on m. The case m = 1. Write P(X) = (Ql X - Pl)lR(X)
where lid! is the index of P with respect to PIlqI and d1• The polynomial R(X) has
integer coefficients by Gauss's Lemma. Since q~ divides the leading coefficient of P,
we obtain q{ ~ IPI ~ qt1

/
C

• by (1.10). By choosing C4 (I, t) = f-1 we get lldl ~ t ..
The induction step. Let m ~ 2. Suppose Roth's Lemma is true for m - 1, but

not for m, and C4 ( m - 1,6) has been defined for 0 < 6 < 1. We shall apply the case
m - 1 of Roth's Lemma to some Wronskian which is constructed as follows. Consider
a decomposition

(1.11)
k

P(X1, ••. ,Xm ) = E </>j(X1 , • •• ,Xm - l )1Pj(Xm )

i=1

where <PI, .. . ,<Pk and 'lfJl,.' . ,'¢k are polynomials with rational coefficients and k is
minimal. Since the choice 1Pj = X~-1 (j = 1, ... ,dm + 1) is possible, we have

(1.12)

The minimality of k implies that both </>1, ... , </>k and '«PI, ••• ,'«Pk are linearly indepen
dent over the reals. We consider differential operators

ai1 +···+im
~=---:,.----

8X~1 .. ·ax~

and call i 1 +... +i m its order. A (generalised) Wronskian of </>1,' .. ,<Pk is any deter
minant of the form

(1 SiS k, 1 S j $ k)

where ~1" •• ,~k are operators as above, with ~i of order ~ i - 1 for i = 1, ... , k.
We shall choose the ~i in such a way that det(~i</>j) does not vanish. Such a choice
is possible in view of the following lemma.

1.13 Lemma. Suppose that </>1, ... , </>k are rational functions in Xl, •.. ,Xm with real
coefficients, and linearly independent over the reals. Then at least one Wronskian of
<PI, ... ,</>k is not identically zero.

Proof. We use induction on k. If k = 1, then det(ai</>j) = </>1 =1= O. Suppose now
that 4>1, ... , </>k are k ~ 2 rational functions satisfying the hypotheses of Lemma 1.13.
Then 1, 4>21 </>1 ,... ,4>k/</>1 are also linearly independent over the reals. It follows that

f) <P2 {) 4>k
aXj 4>1 ' .. · , aXj </>1

are linearly independent over the reals for some j with 1 :::; j $ m. By the induction
hypothesis there exists a Wronskian of these functions which is not identically zero.
This induces a Wronskian of 1, <P2/ </>1' •.. ,</>k/<PI which is not identically zero. It follows
from a simple induction argument that for any rational function </> a Wronskian of
4></>1, </><P2" .• , 4>¢>k can be written as a linear combination of Wronskians of 4>1, .•• , </>k
with coefficients which are rational functions involving only the partial derivatives of
</>. By taking </> = 1/¢Jl we can conclude that there exists a (generalised) Wronskian
of <PI, <1>2,. .. ,<Pk which is not identically zero. 0
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(1.15)

(1.14)

We can now define the Wronskian to which Roth's Lemma for m - 1 will be applied.
By Lemma 1.13 there exist operators

with orders i l +... + i m - l :5 i-I ~ k - 1 for i = 1, ... ,k, such that

By Lemma 1.13

since all the other generalised Wronskians of the prescribed type vanish. Put

(
1 ai -

t
)

W(X1 , • •• , Xm ) = det (. _ 1)' ---;=r~~P
J . aXm t~i~k, l~j~k

Then, by (1.11),

The entries in the determinant defining Ware of the type ~l ...im-li-t, whence these
entries have rational integer coefficients. Thus W is a polynomial with rational integer
coefficients.

The determinant W is a polynomial in P and its partial derivatives. Hence a
lower bound for the index {) of P with respect to (Pl/ql'.'. ,Pm/qm) and (dt , ... , dm)
implies a lower bound for the index e of W with respect to the same values. We shall
compute such a lower bound. On using the conditions of Lemma 1.8 we obtain, for
it +... +i m - 1 ~ k - 1 :5 dm , that

. it i 2 im - 1 j - 1
~(Pil···im-lj-l) ~ i) - -d - -d - ••. - -d- - -d-

1 2 m-t m-

.0 it + ... + im - 1 j - 1 .0 dm j - 1 >.0 a-I j - 1>v- --->·v------ 'V- ---
- dm - 1 dm - dm - 1 dm - 4 dm '

Note that this index is also non-negative. By expanding W we get using the formulas
for the index of the sum and of the product of functions,

k-l . [17k]·

e > E max(~ - Gil - 1,0) 2 -kGil +E(~ - ; )
i=O m i=O m

1J 12:: -kC- l + -([tJk] + 1) > -kC-1 + _{)2k
4 2 - 4 2 .

Next we shall use the induction hypothesis to show that e cannot be large. Let
o< 8 < 1) < 1. The factorisation W = UV induces the factorisation
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where U* and V* have rational integer coefficients. Note that

IPil ...im-li-ll :5 2d1 +···+dmIPI :5 2d1 +···+dmqtm/C4
,

R. TIJDEMAN

by (1.10). Since the number of summands in the determinant expansion of W does
not exceed k! ~ kk-l ~ kdm :5 2kdm , it follows that

IWI ~ 2kdm(2dl+...+dmqtllc.)k ~ (22mq:/C4 )d1k < q:dt k/C4

in view of (1.9). This yields the estimates

IV*I < q2d1k/C4 < q2dmk/C4
- 1 - m , by (1.9).

We will now apply the induction hypothesis to U*(XI , ••• , Xm - 1 ) with respect to
(PI/qI, ... ,Pm-l/qm-l) and (kd1 , ••• ,kdm- 1 ). If we choose C4 (m,f) in such a way
that C4(m,e) ~ 2C4 (m -1,6), then

We conclude therefore that the index of U* with respect to (PI / qI, ... ,Pm-l / qm-I) and
(d1k, ... ,dm-1k) is at most 6. Similarly we can conclude by applying the induction
hypothesis for m = 1 to V(Xm) that the index of V* with respect to Pm/qm and dmk
is at most 6. Since W = U*V*, the index of W with respect to (PI / qi , · .. , pm / qm)
and (d1k, ... ,dmk) is at most 26. Hence

(1.16) e :=; 26k,

where, as before, e is the index of W with respect to (Pl/Ql'.'. ,Pm/qm) and
(d1 , ... , dm ). A suitable choice of b yields a contradiction to our assumption iJ > e.
Namely, choose C4(m,f) so large that C4 (m,f) > 4e-2

• Then, by (1.14),

e ~ -kCil + e2 k/2 ~ €2k/4.

On the other hand, choosing 6 < e2 /8, we obtain from (1.16) that

e < f?k/4.

o

Suppose a is an algebraic 'number of degree d 2: 2 such that, for some b with
o< 6 < 1,

(1.17) 10: - ~I < q-2-6

has infinitely many rational solutions p/q. We shall use the Index Theorem to con
struct a polynomial P with very high index with respect to (a, ... ,a) and arbitrary
(d1 , .•• , dm ). We shall show below that this implies that for a suitable choice of solu
tions Pl/ql' .. ' ,Pm/qm of (1.17) the polynomial P has still high index with respect to
(Pl/ql' .. ' ,Pm/qm) and (d1 , ••• , dm). On the other hand, we shall choose d1 , ••• , dm
in such a way that P has to have low index with respect to (pl/ql' ... ,Pm/qm) and
(d1 , ••• , dm ) by Roth's Lemma. This contradiction will complete the proof.
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Proof. (of Roth's Theorem) Let 0: be an algebraic number with denominator ao
satisfying (1.2). Then

I(aoa) - a:pj < q:~6 < q2~6/2
for q ~ qo(O:). Hence we conclude that it suffices to prove Roth's Theorem for algebraic
integers a. We assume that a is an algebraic integer of degree d 2: 2 with lal < 1
and 6 some number with 0 < 6 < 1/2 such that (1.17) has infinitely many rational
solutions piq.

Let P be the polynomial constructed in the Index Theorem with respect to 0:,

e = 8/12, m > d/2€2 and arbitrary dt , ... ,dm • Then P has index> m(l- €)/2 with
respect to (a, ... , a) and (dt , ..• , dm). We first choose solutions Pt/ql' ... ,Pm/qm of
(1.17) and integers dt , . .. , dm as follows:

(a) choose (PI, qI) with
(1.18)

(b) choose solutions (P2' Q2), .. . , (Pm, qm) such that

(1.19) (1~h~m-1)

[This step makes the proof ineffective.]

(c) choose d1 so large that
(1.20)

(d) for h = 2, ... ,m, choose dh such that

(1.21)

(1.22)

(This is possible since q~dl 2: qm 2:: qh.)

The conditions of Roth's Lemma are satisfied, since (1.18) and (1.21) imply

dh dh log qh • logqh+t > _1_. (1 + e)C
4

= C
4

> 1
dh+t = dh+1 log qh+t log qh - 1 + € - ,

whence dt ~ d2 ~ ••• ~ dm, and further (1.21) and (1.18) imply

Hence the polynomial P has index ~ € with respect to (PI/ql' ... ,Pm/qm) and to
(dl , ... ,dm ).

We finally show, in order to obtain a contradiction, that P has index > € with
respect to (Pt/ql' ... ,Pm/qm) and (dl , ••. ,dm). So we have to prove that for i with

it im-+···+-<edt dm -

we have Pj(Pl/ql, ... ,Pm/qm) = o. Note that
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whence, using lal < 1,
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(1.23) IA(Q:)I :5 IPI m~x (~l) ... (~m) :5 (2C1)d1+···+dm :5 (2c1)md1

J II Zm

where the maximum extends over all j with jh ~ dh for h = 1, ... , m. Expand l1(X)
in a Taylor series around ~ = (Q, ... ,0),

According to the Index Theorem, ~(9) = 0, if jl/d1 +... +im/dm $ m(l - €)/2, so
certainly if (j1 - i1)/d1+·.. + (im - im)jdm :5 m(l- 3f)/2. Furthermore, by (1.23),

E f~ (g) I(~l) ... (~m) :5 (2C1)md1 E 2i1 +···+im :5 (6C1 )md1 •

j Zl ~m j

Hence, for
T(X) := Pj(X) = E T(j) (Xl - o)iI .. · (Xm - a)im

j

we have

and

T(j) = 0 if it im m( )- +... + - < - 1 - 3f
d1 dm - 2 '

E IT(j)1 ::; {6ct )md1
•

j

It follows that, on denoting by * the j with il/d1 + + jm/dm > m{l - 3f)/2,

IT(pl, ... , Pm)f :5 {6c1)md1 m~x IPI _ ali} Ipm _al im

ql qm J ql qm

:5 (6Cdmd1 m~ ( qt1 )it/dl •• • (q:,m )im/dmr2
-

O
(by (1.1 7))

J

< (6c1 )md1 m~x(qtl)(jl/dl+"'+im/dm)(-2-5) (by (1.21))
J

< q~mdl(qtl)-m(1-3~)(1+6/2) (by (1.18))

< (qt1 • • • q~m ){f-(t-3f)(1+5/2)}/(1+E) (by (1.21))

< (qtl ... q~m)-l (sincec5=12f<1/2.)

On the other hand, T{Pl/ql' ... ,Pm/qm) is a rationa.l number with denominator di
viding qt1

• • • q~m. Thus

if (1.22) holds.

o
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2 Variations and Generalisations

Roth's Theorem can be restated in the following symmetric form.
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2.1 Theorem. Let L 1(X, Y) = aX + (3Y and L 2 (X, Y) = ,X + <5Y be linearly
independent linear forms with algebraic coefficients. Then, for every <5 > 0, the
inequalities
(2.2) 0 < IL1(x, Y)L2(x, y)1 < max(lxl, Iyl)-s
have only finitely many solutions in integers x, y.

Proof. Theorem 2.1 implies Roth's Theorem, since la - x/YI < lyl-2- S implies

Iy(x - ay)1 < Iyl-S ~ (max(lxl, Iyl))-s.

On the other hand, Roth's Theorem implies Theorem 2.1 by the following argument.
Assume IL2(x,y)1 ~ IL1(x,y)l. We have IL1(x,Y)1 ~ IYI·lx/y +,8/al and

IL2(x,y)l::> I,L1(x,y) - aL2(x,y)1 = la6 - ,B/I·lyl» Iyl·

Hence

I
,B xl 1 1

-~ - y <t: 1Yj2IL1(x,y)L2(x,Y)1 < lyl2+6 ,

so there can be only finitely many solutions x/yo o
Ridout (1955) extended Roth's Theorem to p-adic numbers and LeVeque did so for
approximations by elements from some fixed number field. In 1960 Lang formulated
the following common generalisation.

2.3 Theorem. Let K be an algebraic number field, S a finite set of places of K
containing all infinite places. Let L be a finite extension of K. For each v E S choose
a fixed extension of Ilv (normalised valuation) to L. For v E S, let Q v E L. Then the
inequality

II min(l, Ie - aviv) < HK(e)-2-S
veS

has only finitely many solutions.

in ~ E K

See S. Lang, [36], p. 160. Of course, there is also a symmetric form of Theorem 2.3.
It says that for (ov : I3v) in pl(L) there are only finitely many (~ : TJ) in pl(K) such
that

II la"e + ,8"111,, < H (e· t 2- 6

vES max(lelv, 1"lv) K· "l .

This implies immediately that the S-unit equation

(2.4) x+v+z=O in x, y and z in Os
has only finitely many solutions. Indeed, for v E S choose (ov : f3v) = (1 : 0), (0 : 1)

or (-1 : -1) according as lxiv, Ivlv or Izlv is the smallest of lxiv, Iylv and Izlv. Then

IT la"x + ,8"YI IT Ixyzl" _ 1
"ES max(lxl", IYI,,) <t: "ES max(lxl", lyl,,)3 - HK(X,y)3'
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since x, y, z E Os, whence Ixlv= Iylv = Izlv = 1 for v rt S. Thus there are only
finitely many solutions (x : y : z) of (2.4).

It is essential that in Theorem 2.3 the unknown ebelongs to some fixed number
field K. The 2 in the exponent is the best possible, as we see from the following result.

2.5 Theorem. Let K be a real algebraic number field. Then tbere exists a. constant
CK such that for every real a not in K there are infinitely many eE K having

See Schmidt, [65], p. 253. If only the degree of eis fixed, the exponent will depend
on the degree.

2.6 Theorem. Suppose a is a real algebraic number. Let k ~ 1, () > o. Then there
are only finitely many algebraic numbers eof degree ~ k with

where H denotes the classical absolute height.

See Schmidt, [65], p. 278. The number k + 1 in the exponent is the best possible.
Theorem 2.6 is a consequence of the Subspace Theorem and it therefore belongs to
Chapter IV.

Acknowledgement. I am indebted to Dr. J.H. Evertse for making a draft for part
of this text and for making some critical remarks.



Chapter IV

The Subspace Theorem of
W.M. Schmidt

by Jan-Hendrik Evertse

1 Introduction

In Chapter III about Roth's theorem, the following equivalent formulation of this
theorem was proved:

1.1 Theorem. Let 11(X, Y) = aX+,BY, h(X, Y) = ,X+6Y be linearly independent
linear forms with (real or complex) algebraic coefficients. Then for everye > 0, the
number of solutions of

in (x, y) E Z2 with gcd(x, y) = 1

is finite.

A natural generalisation of (1.2) is the inequality

(1.3) in x E zn,

where Ixl = max(lxII, ... ,lxnl) for x = (Xt, ••• ,xn) in zn and where ll, ... ,ln are
linearly independent linear forms with algebraic coefficients. Inequalities of type (1.3)
might have infinitely many solutions (Xb ... , xn ) with gcd(xt, ... , x n ) = 1. Consider
for instance

in (Xl, X2, X3) E Z3, where 0 < f < 1. It is easy to check that every triple (Xl, X2, X3) E
Z3 with X3 = 0, Xl > 0, X2 < 0 and x~ - 2x~ = 1 satisfies (1.4). Hence (1.4) has
infinitely many solutions with gcd(Xl, X2, X3) = 1 in the subspace X3 = o. Similarly,
(1.4) has infinitely many such solutions in the subspaces Xl = 0 and X2 = o. It appears
that the set of solutions of (1.4) with XtX2X3 :I 0 is contained in finitely many proper
linear subspaces of Q3. Namely, one has

1.5 Theorem. (Subspace Theorem, W.M. Schmidt, 1972 [69]). For every f > 0 there
are a finite number of proper linear subspaces TI , • •• , Th of Qn such that the set of
solutions of (1.3) is contained in Tl U ... UTh •
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Theorem 1.5 can be reformulated in a more geometrical way as follows. The Subspace
topology (notion introduced by Schmidt) on Qn is the topology of which the closed
sets are the finite unions of linear subspaces of Qn. Then Theorem 1.5 states that
for every f > 0, the set of solutions of (1.3) is not dense in Qn w.r.t. the Subspace
topology.

The Subspace Theorem has a generalisation over number fields, involving non
archimedean absolute values. The theorem below is equivalent to a result proved by
Schlickewei [64]. The following notation is used:

K is an algebraic number field; {II . IIv : v E MK } is a maximal set
of pairwise inequivalent absolute values on K, normalised such that the
Product Formula nv!lxllv = 1 for x E K* holds (cf. [14], p. 151); each
I/·/lv has been extended in some way to Q; HK(X) = fiv IIxllv, where
IIxli v = max(llxlllv, ... ,llxnllv) for x E pn-l(K); S is a finite subset of
MK; {IIv,· •• , Inv } (V E S) are linearly independent sets of linear forms in
Q[X1,. · . , Xn ].

1.6 Theorem. For every t > 0 there are a finite number T1, ••• , Th of proper hyper
planes ofpn-l(K) such that the set of solutions of

(1.7) in x E pn-l(K)

is contained in T1 U ... U Th.

Note that (1.3) implies that ni:l (l11i(x)1100/llxlloo) < HQ(x)-n-f for x E zn, where
11·1100 is the usual absolute value. Hence Theorem 1.6 implies Theorem 1.5.

The following slight generalisation of Theorem 1.6, due to Vojta [80], is more
convenient for certain applications. A set of linear forms {II, ... ,1m } in Q[X1 , ••• , Xn ]

is said to be in general position if each subset of cardinality $ n of {lb ... ' 1m }

is linearly independent. For v E S, let {hv, .. " Im1Jtv} be a set of linear forms in
Q[Xt , ... ,Xn ] in general position.

1.8 Theorem. For every f > 0 there are a finite number T1 , • •• ,Th of proper hyper
planes of pn-l(K) such that the set of solutions of

(1.9) in x E pn-l(K)

is contained in T1 U ... U Th .

Proof. (Theorem 1.6 implies Theorem 1.8.) If m v < n then we may assume that
{llv, ... , lmll , Xmv+1 , ••• , Xn} is linearly independent. Put l~v = liv for i ~ mv, liv =Xi
for i > mv. Thus, 1I1~v(x)"1J ~ IJxllv for x E Kn, i > mv. Now suppose that
m v ~ n. Fix x E K1L. There is a permutation (jl, ... ,im v) of (1, ,mv ) such that
1I1j} (x)IIv $ 1/ 1i2(x)lIv $ ... :5 II lim 11 (x)lIv. Put l~v = liitv for i = 1, , n. For i > n,
the set {/il' ... , lin_I' iii} is linearly independent. Hence for i > n, k = 1, ... , n we
have X k = Ctikl1jl + ... + Ctik,n-l1jn_l +Qikn1ji for suitable coefficients Qikh. It follows
that for i > n,
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Hence every solution x of (1.9) satisfies one of a finite number of inequalities
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By applying Theorem 1.6 to each of these inequalities we obtain Theorem 1.8. 0

2 Applications

In 1842, Dirichlet proved the following result:

Let {a1' ... ' an} be a Q-linearly independent set of real numbers. Then
for some C > 0, the inequality

in x E zn
has infinitely many solutions.

In 1970, Schmidt ([68], see also [65], p. 152) proved that the exponent -n +1 cannot
be replaced by a smaller number if Q1, ••. ,an are algebraic.

2.1 Theorem. Let 01, ... , Q n be algebraic numbers. Then for every € > 0, the
inequality
(2.2) 0 < I01X1 +... + onxnl < 'xl-n+1-f in x E zn
has only finitely many solutions.

Proof. Induction on n. For n = 1, the assertion is trivial. Let n > 1. We may
assume that at f:. o. Then the set of linear forms {01X1 + .· .+onXn, X2, ... ,Xn } is
linearly independent. For every solution x of (2.2) we have

(2.3)

By Theorem 1.5, the set of solutions of (2.3), and hence (2.2), is contained in finitely
many proper linear subspaces of Qn. Let T be one of these subspaces. Without loss of
generality we may assume that QIX1 +...+onXn = f31X I +...+ f3n- 1X n- 1 identically
on T, where /31, ... , {3n-I are algebraic numbers. Hence for every solution x of (2.3)
with x E T we have

(2.4) 0 < I.sIXl + ... + ,Bn-IXn-1\ < Ixl-n+l
-

e < ma.x(lxI\, ... , IXn_1\)-n+2-f.

By the induction hypothesis, (2.4) has only finitely many solutions in (Xl, ... , Xn-1) E
zn-l. Hence (2.2) has only finitely many solutions with x E T. Since there are only
finitely many possibilities for T this completes the induction step. 0

From Theorem 2.1, one can derive the following generalisation of Roth's theorem.
Here, the height H(~) of eis the maximum of the absolute values of the coefficients
of the minimal polynomial of e.
2.5 Theorem. For every algebraic number 0 E C, integer d ~ 1, and € > 0, there
are only finitely many algebraic numbers ~ E C of degree d such that

(2.6)
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(2.7)

Proof. Let ebe an algebraic number of degree d satisfying (2.6). We may assume
that eis not a conjugate of o. Denote by f(X) = Xd+IXd +XdXd- 1 +··.+Xl E Z[X]
the minimal polynomial of e. Then B(e) = Ixl and 1(0) i= o. From, e.g., the mean
value theorem it follows that 1/(0)1/10: - el <01 H(e). Hence

o< IXI +X20: + ... +xd+ladl = 1/(0)1 <01 10: - elH(e) <
< H(e)-d-e = Ixl-d- f

•

By Theorem 2.1, there are only finitely many x E Zd+l satisfying (2.7). This implies
that there are only finitely many eof degree d with 10: - el < H(e)-d-I-f. 0

We consider the equation

(2.8) in Xl, .. . ,Xn E G,

where G is a finitely generated multiplicative subgroup of Q* and at, ... , an E ij*.
.~ solution (XI, ••• , xn ) of (2.8) is called non-degenerate if LiEI aiXi =f; 0 for each
non-empty subset I of {I, ... ,n}.

2.9 Theorem. (fIB), [59J). Equation (2.B) has only finitely many non-degenerate
solutions.

2.10 Lemma. There is a finite set U such that for every solution (either or not
non-degenerate) of (2.8) there is an i E {I, ... , n} with Xi E U.

Proof. Induction on n. For n = 1, the assertion is trivial. Let n > 1. There are an
algebraic number field K and a finite set of places S of K, containing all archimedean
places, such that G is contained in the group of S-units {x EK : IIxlIlI = 1 for v ~ S}.
Define the linear form Xo := atXt +.. ·+anXn • Then {Xo, Xl, ... , Xn } is in general
position. Let x = (Xl' ... ' x n ) be a solution of (2.8) and put Xo := 1. Then, from
the fact that Xo, •.• , Xn are S-units and from the Product Formula, it follows that
nvES II xQX t ..• xnll v = 1. Further, HK(X) =nvES IIx lIlI. Hence

n llx
". il~::lIv = HK(Xr

n-1
•lIeS x 1)

Now Theorem 1.8 implies that x E TI U·· ·UTh where Tt , . .. ,Th are proper hyperplanes
of pn-I(K) independent of x. Now let x be a solution of (2.8) lying in a proper
projective subspace T of pn-l(K) defined by an equation btXt +... + bnXn = o. By
combining this with (2.8) we obtain EiEJ CiXi = 1, where Ci (i E J) are elements of
K* depending only on al, ... ,an, T, and J is a proper subset of {I, ... , n}. Now the
induction hypothesis implies that Xi E UT for some i E J, where UT is a finite set
depending on al, ... , an and T. Then clearly, for every solution (Xl' ... ' xn ) of (2.8)
there is an i with Xi E U := UTI U··· U UTh. 0

Proof. (of Theorem 2.9.) Induction on n. For n = 1, the assertion is again trivial.
Let n > 1. In view of Lemma 2.10, it suffices to show that (2.8) has only finitely
many non-degenerate solutions with X n = c, where c E U is fixed. A solution with
X n = a~l is degenerate so we may assume that anc =1= 1. Then clearly, (Xl, ... , Xn-l)

is a non-degenerate solution of (1 - anc)-lalxl +... + (1 - anc)-lan_lXn_l = 1. By
the induction hypothesis, there are only finitely many possibilities for Xl, ••• , Xn-l.

o
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We now prove a generalisation of Theorem 2.9 which was part of a conjecture of
Lang (cf. [36], p. 220), and proved by Laurent [41]. The product of x = (Xl' ... ,Xn )

and Y = (Yl, ... , Yn) in (Q*)n is defined by x . Y = (XIYl' ... , xnYn). We may view
(Q*)n with this coordinatewise multiplication as an algebraic group (a so-called linear
torus). For every n-tuple i = (it, ... , in) in (Z>o)n we write Xi = X~l ... Xin • An

~ - n
algebraic subgroup of (Q )n is a set

H = {x E (Q*)n: fl(X) = 0, ... , ft(x) = O}

which is closed under coordinatewise multiplication and inversion. It is not difficult
to prove that every algebraic subgroup is of the form

for (i,j) E I},

where I is a finite set of pairs from (Z~o)n. We shall not need this fact.

2.11 Theorem. ([41]) Let V be an algebraic subvariety of (Q*)n and G a finitely
generated subgroup of (Q*)n. Then V n G is a finite union of "families" u· (H n G),
where H is an algebraic subgroup of (ij*)n and u EGis such that u . H c V.

2.12 Remark. Faltings [23] proved the other part of Lang's conjecture on p. 220 of
[36], which is the analogue of Theorem 2.11 for abelian varieties, see Chapter XIII. In
this analogue, one has to take instead of (Q*)n an abelian variety A over an algebraic
number field K and instead of G the group of K-rational points A(K) of K. 0

2.13 Remark. Laurent [41] proved in fact a more general result than Theorem 2.11,
in which V is a subvariety of (c*)n and G a subgroup of (c*)n of finite rank, i.e., G
has a finitely generated subgroup Go such that G/Go is a torsion group. 0

Proof. (of Theorem 2.11.) Theorem 2.11 can be derived from Theorem 2.9 by using
combinatorics. We have

v = {x E (Q*)n : fl(X) = 0, ... , ft(x) = OJ,

where
fk(X) = E a(i, k)Xi ,

ieCk

with Ck being a finite subset of (Z>o)n and a(i, k) in Q*, for k = 1, ... , t, i in Ck. Let
P denote the collection of subsets ~f cardinality 2 of Ct U· .. U Ct. To every x E V we
associate a subcollection £x of P, which consists of the sets {p, q} with the following
property:

there are k E {I, ... , t} and a subset C of Ck such that

p,qE C,

E a(i, k)xi = 0,
ieC

E a(i, k)xi # 0
ieC'

for each proper, non-empty subset C' of C.
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For each subcollection E of 'P, put

V(E) = {x E V : Ex = E}

and define the algebraic subgroup of ((T)n:

H(E) = {x E (Q*)n : xi = x-i for each {i,j} in £}.

2.14 Lemma. Let E ~ l' and U E V(£). Then u· H(e) ~ V.

J.H. EVERTSE

Proof. There are pairwise disjoint subsets E1 , ••• , E. of C1 such that C1 = E1 U
· .. U E. and such that for 1= 1, ... , s,

E a(i, 1)ui = 0,
ieE,

E a(i, l)ui :f 0
ieE'

for each nonempty E' ~ E1•

Since u E V (e) we have eu = e. Hence if i and j belong to the same set El, then
{i,j} E E which implies that xi = xj for every x E H(£). Therefore, for every
x E H(£) we have

E a(i, 1)(u· x)i = xi, E a(i, 1)ui = 0 for I = 1, ... , s,
ieE, leE,

where i, is a fixed tuple from E1• By taking the sum over alII we get 11(u . x) = 0
for all x E H(£). Similarly, 12(u . x) = ... = ft(u, x) = 0 for all x E H(E). Hence
u· H(£) ~ V. 0

2.15 Lemma. For each subcollection £ oip there is a finite subset W(£) ofV(£)nG
such that

V(E) n G ~ U u · (H(E) n G).
ueW(E)

Proof. Theorem 2.9 can be reformulated as follows: Let ao, ... ,an E (T and let Go
be a finitely generated subgroup of (T. Then there is a finite set U, such that Xi/Xj E
U for every non-degenerate solution (xo, . .. , xn) in GO+1 of aoxo +... +anXn = 0 and
for all i,j E {O, ... ,n}. Now let x E V(E) n G and take {p,q} E E. Choose a set
C with p, q E C and C ~ Ck for some k E {I, ... , t} as in the definition of Ex. By
applying the above reformulation of Theorem 2.9 to Liec a(i, k)xi = 0, we infer that
xPjxq E U, where U is some finite set, depending only on 11, ... , It,.G.

We can choose the same set U for each {p, q} E c. Thus,

for each {p, q} E E.

This implies that there is a finite subset W(£) of V(E) n G such that for every
x E V(E) n G there is an u E W(t') with xP/xq = uPjuq for each {p,q} E £, in
other words, (x/u)P = (x/u)q for each {p, q} E t' or x E u· (H(E) nG). This implies
Lemma 2.15. D

Lemma 2.15 implies that

v n G ~ U U u . (H(E) nG),
£ UEW(E)

where the union is taken over all subcollections £ of 'P. By Lemma 2.14, these two
sets are equal. This completes the proof of Theorem 2.11. 0
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3 About the Proof of the Subspace theorem
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We give an overview of the proof of Theorem 1.5. For certain details, we refer to [65],
Chaps. V, VI. We remark that it suffices to prove Theorem 1.5 for the case that the
linear forms in the inequality

(3.1) in x E zn
have real algebraic integer coefficients. Namely, if for instance some of the coeffi

cients of in are complex, then write In = Inl +Aln2 , where Int , In2 are linear forms
with real algebraic coefficients. Choose l~ from {/nt , In2} such that {It, ... , In-t, l~} is
linearly independent. Then Il~(x)1 $ 11n(x)1 for x E zn. Hence (3.1) remains valid
if we replace In by I~. Similarly, we can replace 11, ... ,In-l by linear forms with real
algebraic coefficients. Thus, we can reduce (3.1) to a similar inequality with linearly
independent linear forms l~, ... ,l~ with real algebraic coefficients. Choose a positive
rational integer a such that the linear forms l~' := al~ (i = 1, ... , n) have real algebraic
integer coefficients. Then for Ixt sufficiently large, we get 1/~(x)·· ·l~(x)1 < Ixt-!/2.

3.2 Reduction to a Statement about Parallelepipeds

In what follows, we assume that 11, .. " In are linearly independent linear forms in n
variables with real algebraic integer coefficients. For each tuple A = (AI, ... ,An) of
positive reals, we consider the parallelepiped

TI(A) = {x E ]Rn: 11i(x)1 :5 Ai for i = 1, ... ,n}.

Put
Q(A):= max(A1 , ••• ,An ,A11

, ••• ,A~t).

Theorem 1.5 follows from the following result about the parallelepipeds TI(A):

3.2.1 Theorem. For every e > 0, there are finitely many proper linear subspaces
Tt , . .. , Th of Qn such that for all tuples A = (At, . .. , An) of positive reals with

(3.2.2)

and Q(A) sufficiently large, the set TI(A) n zn is contained in one of the spaces
T1, ••• ,Th.

In the sequel, constants implied by the Vinogradov symbols ~ and ~ depend only
on It, ... , In, e. By a ~~ b we mean a < b and a ~ b.

Proof. (Theorem 3.2.1 implies Theorem 1.5) Let x be a solution of (3.1) with
ll(x)·· ·Zn(X) =1= o. Put

for i = 1, ... , n.

Then
x E II(A) n zn,
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We estimate Q(A) from above. Suppose that the number field K generated by the
coefficients of iI, . .. ,in has degree D. On the one hand, we have 11i(x)1 ~ Ixl. On
the other hand,

1J.(x)l- INK/Q(li(x» I ~ x-D

t - Il!2)(x)I" · Il!D) (x)I ~ I I ,

where 1~2)(x), . .. , Z!D)(x) are the conjugates of li(X) over Q. Hence for Ixi sufficiently
large we have Q(A) :5 IxI2D . Therefore,

Moreover,
(3.2.3) Ixl ~ max(lll(x)I, ... , 11n(xl) $ Q(A),

hence Q(A) is large if Ixl is large. Now Theorem 3.2.1 implies that x E II(A)n zn c
T1 U ... U Th for certain proper linear subspaces TI , ••• , Th of Qn independent of x.
o

3.2.4 Remark. If (3.2.2) holds and Q(A) is sufficiently large, then rank(II(A) n
zn) ~ n - 1, where rank(II(A) nzn) is the maximal number of linearly independent
vectors in Il(A) n zn. Namely, take Xl, ... ,Xn in II(A) n zn. Then

where the maximum is taken over all permutations (j of {1, ... , n}. Since Q(A) is
sufficiently large, this implies that Idet(xI' ,xn)1 < 1. But this number is a rational
integer, hence must be O. Therefore, {Xl' , x n } is linearly dependent. 0

..c\nalogous to Roth's theorem, we could try to prove Theorem 3.2.1 as follows. For
m sufficiently large, we can construct a polynomial P(XI , ... ,Xm) in m blocks of n
variables, with rational integral coefficients, which is divisible by high powers of li(Xh ),

for i = 1, ... ,n and h = 1, ,m. Suppose that Theorem 3.2.1 is not true. Then for
every m we can choose At, , Am such that the sets Il(Ah))nzn (h = 1, ... , m) are in
some kind of general position. Prove that 1.F\(xt, ... , xm)1 < 1 for all Xh E II(Ah)nzn
(h = 1, ... , m) and all partial derivatives Pi of P of small order. Then for these
Xl, ... ,Xm and partial derivatives we have Pi(Xt, . .. , x m ) = o. Suppose we were able
to prove that on the other hand, .I1(Xt, ... ,xm ) =I 0 for some Xh E II(Ah) n zn
(h = 1, ... ,m) and some small order partial derivative. Thus, we would arrive at a
contradiction.

Unfortunately, as yet such a non-vanishing result has been proved only for the
special case that rank(II(Ah) n zn) = n - 1 for h = 1, ... ,m. Therefore, we proceed
as follows. In Step 1 of the proof of Theorem 3.2.1 we show that it suffices to prove
Theorem 3.2.1 for parallelepipeds Il(A) with rank(II(A)nZn) = n-l, by constructing
from each II(A) with rank(II(A) n zn) < n - 1 a parallelepiped II'(B) in ZN with
rank(II'(B) n ZN) = N - 1, where in general N > n. For this, we need geometry
of numbers. Then, in Step 2 we prove Theorem 3.2.1 for parallelepipeds ll(A) with
rank(II(A) n zn) = n - 1 in the way described above.
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3.3 Step 1 of the Proof of Theorem 3.2.1

If rank(II(A) n zn) = r < n -1, then I1'(B) will be contained in the exterior product

I\n-k(1Rn) ~ R(~), for some k with r ::; k ::; n -1. We need to recall some facts about
exterior products.

Put N := (~). Let O"b ••• ,O"N denote the subsets of cardinality n - k of {I, ... ,n},
ordered lexicographically: thus, O"t = {I, ... , n - k}, (j2 = {I, ... , n - k - 1, n - k +
1}, , (1N -1 = {k, k + 2, ... ,n}, 0"N = {k + 1, k +2, ... , n}. Let {el = (1, 0, ... , 0),
e2, , en} be the standard basis of lRn and {E1, ... , EN} the standard basis of lRN.
The multilinear mapping from Rn x· .. x Rn (n- k times) to RN sending (XI, ... ,Xn-le)
to Xl 1\ .. . 1\ Xn-k is defined by

• eil 1\ · .. 1\ ein _ 1c = 0 if iI, ... , in-k are not all distinct;

• eil /\ ... /\ ein_k = ±Ei where {iI, ... , in-k} = O"i, the sign is + if the permutation
needed to rearrange it, ... ,in- Ie into increasing order is even, and the sign is 
if this permutation is odd.

It is easy to verify that if {al' , an} and {bt , .•• , bn } are two bases of lR.n related
by hi = 2:j=l(ijaj for i = I, ,n, then {Al, ... ,AN}, and {Bt, ... ,BN} with
Ai = 3i1 1\ . · . /\ 3in- 1e and Bi = h i1 1\ .•. 1\ bin_Ie where O"i = {i1 < .. · < in - k }, are two
bases of RN related by:

N

B i = E 3 ijA j for i = 1, ... , N, with 3ij = det((pq)PECTi,qEuj"
j=l

(We write O"i = {il < ... < in-Ie} if (J'i = {it, ... , in-Ie} and i 1 < ... < in- k .) \Ve need
the following fact:

3.3.1 Lemma. LetkE {l, ... ,n}. If{al, ... ,an} and{b1, ... ,bn } are two bases of
lRn, then {al, ... , ale} and {hI, ... , hie} generate the same vector space if and only if
{AI, ... , AN-I} and {B1, ... , BN -I} generate the same vector space.

Proof. Use that {al' ... , ale} and {bl , ... , hie} generate the same space {::::::} 3 iN = 0
for i = 1, ... ,N -1 {::::::} {Al , ... ,AN-l} and {Bt, ... ,BN-l} generate the same
space. 0

Lemma 3.3.1 implies that there is an injective map fie from the collection of k
dimensional subspaces of lRn to the collection of (N - I)-dimensional subspaces of
lRN such that if V has basis {at, ... , ak} and ak+t, ... ,an are any vectors such that
{at, ... ,an} is a basis of lRn

, then {AI, ... ,AN-I} is a basis of lle(V).
Now let 11, ... , In be linearly independent linear forms in n variables with real

coefficients (at this point, the coefficients need not be algebraic). Write li(X) = (Ci, X)
(usual scalar product in IRn), put Ci = Ci1 1\ ... /\ Cin _ k for i = 1, ... , N where
it < ... < in-Ie and {i I , ... , in-Ie} = ai, and define the linear forms on lRN :

(i=I, ... ,N).

Note that L1 , ••• , LN are linearly independent. For every N = (~)-tuple B
(Bl , ... , BN ) of positive reals, define

IIk(B) = {xElRN : ILi(x)I$Bi fori=l, ... ,N},

Q(B) = max{B}, ... , BN , BI I
, ... , BNl }.



40 J.H. EVERTSE

3.3.2 Proposition. For every f > 0 and for every tuple A = (AI, ... ,An) of positive
reals with Q(A) sufficiently large and

(3.3.3) Al ... An < Q(A)-e, 1 ~ rank(II(A) n zn) ~ n - 1

there are k with rank(II(A) n zn) $ k $ n - 1 and a tuple of positive reals B =
(BI , ... , BN ) with N := (~) such that

(i) BI ··· BN < Q(B)-f/2n3
;

(ii) rank(IIk(B) n ZN) = N - 1;
(iii) II(A) n zn is contained in a k-dimensionallinear subspace V of lin such that

!k(V) is the R-vector space generated by IIk(B) n ZN.

Now assume that Theorem 3.2.1 has been proved for tuples A with rank(II(A) n
zn) = n - 1. Apply this to IIk(B) where k and B are determined according to
Proposition 3.3.2. It follows that there are finitely many (N -1 )-dimensional subspaces
S~k), .•• , s1:> of R N such that for every B satisfying (i), (ii), the set nk(B) n ZN is

contained in one of the spaces Sjk) (j = 1, ... ,tk)' From (iii) and the fact that fk is
injective, ,ve infer that for every tuple A with (3.3.3), the set II(A) n zn is contained

in one of the spaces TJk) (k = 1, ... , n - 1, j = 1, ... , tk), where T}k) is the unique

k-dimensional subspace of jRn with !k(Tlk») = Sjk). This implies Theorem 3.2.1 in full
generality.

Proposition 3.3.2 can be proved by combining arguments from [65], Chap. IV, §§1,
3,6,7, Chap. VI, §§14, 15. Our approach is somewhat different. We need two lemmas.

3.3.4 Lemma. (Minkowski's Second Theorem). Let C be a convex body in Rn which
is symmetric about o. For A > 0, put AC := {Ax: x E C}. Define the n successive
minima .AI, ... ,.An of C by

Ai = inf{A > 0 : rank(,xC n zn) = i}.

Then
2n

'" ~ AI···An .vol(C) ~ 2
n

•n.
Proof. E.g. [11], Lecture IV. o

The next lemma is to replace Davenport's lemma and Mahler's results on com
pound convex bodies used by Schmidt ([65], Chap. IV, §§3, 7).

3.3.5 Lemma. Let W be an JR.-vector space with basis {bl , ... , bn }, and let h, ... , In
be linearly independent linear functions from W to lR . Suppose that

for i = 1, ... ,n, j = 1, ... ,n,
where JJl ::; ... ::; J.Ln. Then there are a permutation", of {I, ... ,n} and vectors

VI = bi

V2 = b2 + ~2lbl

V n = bn +enl b1 +... + en,n-l bn - l

with ~ij E Z for 1 $ j < i ::; n, such that

(3.3.6) 111t(i)(Vj) I $ 2i+i J.Lmin(i,i) for i = 1, ... , n, j = 1, ... , n.
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Proof. We proceed by induction on n. For n = 1, Lemma 3.3.5 is trivial. Suppose
that Lemma 3.3.5 holds true for n - 1 instead of n, where n ~ 2. Let W' denote the
space generated by hI, ... , bn - l . There are aI,'" ,an E R., not all zero, such that

for x E W'.

Choose ,,(n) E {1, ... ,n} such that taK(n) I = max(lall, ... ,lanl). Thus, with Pj =
-aj/alt(n) , we have

(3.3.7) Ilt(n)(x) = E {3jlj(x)
j;clt(n)

for x E W', where l{3jl ~ 1 for j =1= K(n).

By the induction hypothesis, there are a permutation K(l), ... , K(n - 1) of the set
{I, ... ,n}\{K{n)}, and vectors VI = b I , ... , Vn-l = bn-t+en-t,tbt+" ·+en-I,n-2bn-2
with eij E Z for 1 ~ j < i ~ n - 1, such that

11K(i)(Vj) I~ 2i+j
Pmin(i,j) for i = 1, ... , n - 1, j = 1, , n - 1.

By (3.3.7) we have IIK(n)(vj)1 ~ E~lIIK(i)(vi)1 :5 (2I +j + 22+j + + 2n- I+i )p,j <
2n+j p'j for j = 1, ... , n - 1. Hence

(3.3.8) for i = 1, ... , n, j = 1, ... , n - 1.

It suffices to show that there are eI, ... , en-l E Z such that v n := bn +elVI +... +
en-l Vn-l satisfies
(3.3.9) IIK(i)(vn)1 ~ 2i+n

Pi for i = 1, ... , n.

Define the vectors

aj = (llt(l)(vj), , lK(n)(vj)) (j = 1, ... , n - 1),

b = (lK(l)(bn), , IK(n) (bn ) ).

Since {II"'" in} is linearly independent and {Vb' .. ' Vn-l} is a basis of W', and by
(3.3.7), the set {aI,' .. ' an-I} is a basis of the space Xn = L'J~t f3K(j)Xj. Hence there
are t1 , ••• ,tn - l E lR such that

Choose el,.'" en-l E Z such that lej + tjl :5 ~ for j = 1, ... , n - 1. Put Vn .

bn + elVI +... + en-IVn-I. Thus,

(IK(l)(Vn )" .• , IK(n)(vn )) = Ctal + ... + cn-Ian-t + (0, ... ,0, a)

with 18i l ~ ! for j = 1, ... , n - 1. Put ai = 0 for i = 1, ... , n - 1 and an = a. For
i = 1, ... ,n we have, by assumption~ IIK(i)(bn)1 ~ Itn' Further, lJ'il::; 1 for i f= K{n).
Hence lal ~ np,n' Therefore, lail ~ i}li for i = 1, ... , n. Together with (3.3.8) this
implies for i = 1, ... , n,

11K(i)(vn)1 18t 1K(i)(vl) + ... +cn-1lK(i)(Vn-l) + ail
~ (11K(i)(Vl)1 +·.. + 11K(i)(Vn -l)I)/2 +lail
~ {(2i+1 +2i+2 + ... + 2i+n

-
1

) /2 + i} P,i ~ 2i+n /-Li·

Hence (3.3.9) is satisfied. This completes the proof of Lemma 3.3.5. o
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Proof. (of Proposition 3.3.2) Let A = (A}, ... ,An) be a tuple satisfying (3.3.3). The
parallelepiped IT(A) is convex and symmetric about o. Let At, ... , An be its successive
minima. The volume of I1(A) is Idet(lt, ... , In)l- t Al . · . An. Hence by Lemma 3.3.4,

(3.3.10)

Put r := rank(Il(A) n zn). Then Ar $ 1 < Ar+l' Further, by (3.3.10) and (3.3.3),

An ~ (At' .. An)l/n ~ (AI' .. An)-l/n > Q(A)t/n.

The integer k in Proposition 3.3.2 is chosen from {r, r +1, ... ,n - 1} such that the
quotient Ak/Ak+l is minimal. Thus,

~ < (~ . Ar+l ... .An-I) l/(n-r) < (.Ar ) l/(n-l) .

Ak+l - Ar+1 Ar+2 An - An

Hence

(3.3.11) ~~ Q(At</n(n-l).
Ak+l

Let gl, .. " gn be linearly independent vectors such that

for j = 1, ... ,n.

For j = 1, ... , N, put

Aj = Ail· .. Ain _ 1c , ~j = Ail' .. .Ain _1c' G j = gil 1\ .. . 1\ gin-Ie'

where O"j = {i1 < ... < in-k}. Let V be the vector space generated by 81, ... , gk. We
know that Ar ::; 1 < Ar +l' Hence the space generated by II(A) n zn is the same as
that generated by gl,'." gr. Further, r $ k. Hence II(A) n zn C V. Denote by W
the space generated by G 1, .•• , GN-I' Thus,

(3.3.12) II(A) n zn C V, W = fk(V).

Laplace's rule states that for any vectors al, ... , an-k, hI, ... ,bn - k ERn,

In particular,
Lp(Gq) = det(lr(gs)rEup,SEUq.

Let O"p = {it < ... < in- k }, O"q = {i1 < ... < in-k}. A typical summand of
this determinant is a(r) = ±lil(gT(j!l)···lin _1c(gr(jn_le»' where T is a permutation of
(it, ... ,jn-k). Note that

la(T ) I $; Ail AT(jl) . · · Ain _ 1c AT (J
n

_1c) = Ap~q.

Hence
ILp(Gq)1 :5 (n - k)L4p~q for p = 1, ... , N, q = 1, ... , N.

A I " 1
We apply Lemma 3.3.5 to the forms Al L1 , ••• , AN LN and the vectors G 1 , ..• , GN.
It follows that there are a permutation K of {I, ... , N} and a basis {VI"'.' VN-I}

of the space W generated by {GI , ... , GN-l}, with VI, ... , VN-l E ZN, such th~t

~-1 2N A

AK(p)ILK(p)(Vq)1 ::; 2 (n - k)!Amin(p,q) for p = 1, ... , N, q = 1, ... , N - 1.
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(3.3.13)

Choose B = (BI , ... , BN ) such that

BI((p) = 22N(n - k)!~pAI((p) (p = 1, ... , N - 1),
BI((N) = 22N (n - k)!~N-IAI(N).

Thus, ILp(Vq)\ ~ Bp for p = 1, N, q =1, ... , N - 1, i.e.,

(3.3.14) VI, ,VN-t E IIk(B) n ZN.

We show that B satisfies (ii), (iii) and (i).

Proof. (0£ (ii)) Let the succcessive minima of IIk(B) be lit, .• . ,liN. The volume of
IIk(B) is 1det(L t , ..• , LN )1-1B1 ••• BN. Together with Lemma 3.3.4 this implies that
Vt·· . liN ~ (Bt ·· ·BN)-t. Equation (3.3.14) implies that VN-l ~ 1. Hence

(3.3.15) liN ~ (B1 •• ·BN)-I.

Note that AI··· AN = (AI··· An )(n;;l), that ~1 ••• ~N = (At··· An )(n;l), and that
O'N-l = {k,k+2, ... ,n},O'N = {k+l,k+2, ,n}. Hence

~N-l Ak Ak+2 An Ak
~N = Ak+l Ak+2··· An = Ak+l·

Together with (3.3.13), (3.3.10) and (3.3.11), this gives

B1 ••· BN ~ ~I··· ~NAl···AN~N-l/~N=
(3.3.16) = (AI ... AnAl . .. An){n;,hk/ Ak+l «:: Q{At</n(n-l) .

Together with (3.3.15) this implies that liN > 1 if Q{A) is sufficiently large. Hence
rank(Ilk(B) n ZN) = N - 1. 0

Proof. (of (iii)) From (3.3.14), the fact that {VI, ... ,VN-l} is a basis of Wand
from rank(IIk(B) n ZN) = N - 1, it follows that the space generated by TIk(B) n ZN
is equal to W. Together with (3.3.12) this proves (iii). 0

Proof. (of (i)) We estimate Q{B) from above in terms of Q(A) and insert this into
(3.3.16). Note that gi E AlII(A) n zn and gl i= o. Hence

1 ~ Igil ~ max(11I(gt)I,···, 11n(gl)1) ~ AIQ(A).

Therefore, Al ~ Q(A)-I. Since each ~j is the product of n - k Ai'S, and each Ai is
bounded below by AI, this implies that

~j ~ Q(A)-(n-k) for j = 1, ... ,N.

On the other hand, by (3.3.10),

~j ~ (AI· .. An)A~k ~ (AI· · · An )-IQ(A)k ~ Q(A)n+k.

By combining this with (3.3.13), and using that each Aj is the product of n - k A/s
we get

,., ,., Al "'1 ,. A "} "1
Q(B) ~ max(Al' ... ' AN, Al , ... ,AN ) max(A1 , ••• , AN, At , ... , AN )

<: Q(A)(n+k)+(n-k) = Q(A)2n.

Together with (3.3.16) and Q(A) sufficiently large this implies that

B1 .• • BN < Q(B)-f/2n3
,

as required. o
o
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3.4 Step 2 of the Proof of Theorem 3.2.1

For this subsection we shall refer to [65], Chapters V, VI for details; It, ... , In will be
linearly independent linear forms in n variables with real algebraic integer coefficients,
and 0 < € < 1.

A generalisation of Roth '8 lemma.

Let n 2:: 2, m 2 2. For h = 1, ... , m, denote by Xh the block of n variables
(Xht, ... ,Xhn). For a tuple d = (dt, ... ,dm) of positive integers, denote by R(d)
the set of polynomials in mn variables P(X t , . .. ,Xm ) E Z[Xt , •.. ,Xm ] such that P
is homogeneous of degree dh in the block of variables X h • We shall consider polyno
mials P E R(d) as functions on the m-fold cartesian product (t x ... x (t. For a
tuple i = (i t1 , ••• , imn ) E (Z~o)mn, put

. 1 (a) ill (a) i
mn

Pi(X1 , •.• ,Xm ) = . f ••• • fax ... ax P.
ZIt· Zmn· 11 mn

Note that for P E 1(,(d), the coefficients of 11 are integers. The factorials have been
included to keep the coefficients of Pt small: if H(P) denotes the height (maximum
of absolute values of coefficients) of P, then

H(Pi) $ 2d1 +···+dm H(P).

For a tuple i as above, put

(i/d) = f ihl +... + i hn •

h=l dh

3.4.1 Definition. Let x = (Xl' ... ' Xm ) E (f x ... x (f (m times). The index of
x w.r.t. P, denoted by i(x, P), is the largest number u such that Pi(X) = 0 for all i
with (i/d) < u. Clearly,O' E Q. 0

Every linear subspace V of Qn of dimension n - 1 can be given by an equation
a1X1 + ... + anXn = 0 with at, ... ,an E Z, gcd(at, ... ,an) = 1 which is uniquely
determined up to sign. The height of V is defined by

H(V) := max(lall,···, lanD.
3.4.2 Proposition. (Generalisation of Roth's lemma). Let 0 < u < 1,0 < / :::; n-l,
m a positive integer, d1, ••• ,dm positive integers, VI, ... ,Vm (n -I)-dimensional linear
subspaces of Qn, and P a polynomial with

dh
~ C1 for h = 1, ... ,m - 1;

dh+t

H(Vh)dh 2:: H(Vi)d1"Y for h = 2, ... , m,

H(Vh ) ~
Ci-1 (n-I)2 for h = 1, ... , m,

P E R(d),

H{P) < H(ltl)C3"Y(n-l)-2d1 ,

where C1 , C2 and C3 are positive numbers depending only on m and u. Then there
is a point x E Vi x ... X Vm with i(x, P) < mu.
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Proof. ([65], pp. 191-194.) The idea is as follows. For n = 2, Proposition 3.4.2 is
a homogeneous version of Roth's lemma, except for the additional parameter "y. But
with this parameter, the proof of Roth's lemma does not essentially change, cf. [65],
pp. 137-148. The general case is reduced to n = 2 as follows. We may assume by
permuting the variables in each block Xh if necessary, that Vh is given by an equa
tion ah1X1 + ... + ahnXn = 0 with ahl, ... , ahn E Z, gcd(ah1, ... ,ahn) = 1, aht =
max(lahll,· .. , lahnl), and 9 := gcd(ahl' ah2) :5 a~~-2)!(n-l). Put P* = P(X!, ... ,X~),
where X h = (Xhl,Xh2,O, ... ,0) and lIh* = {ahlXl + ah2X2 = OJ. We have H(Vh*) =
ahl/g and therefore H(Vh)l!(n-l) :5 H(Vh*) $ H(Vh)' Now the conditions of Propo
sition 3.4.2 are satisfied with n = 2, and P*, It;*, ... , V~, ,* := "y/ (n - 1) replacing
P, l!i, ... ,Vm , I' Hence i(x*,P*) < mu, with x* = (xi,·.·,X~),Xh = (ah2,-ahl)
for h = 1, ... , m. This implies that i(x, P) < mO' for x = (XI, ... , xm ) with
Xh = (ah2,-ahl,O, .. . ,0) E Vh for h = 1, ... ,m. 0

Construction of the auxiliary polynomial.

Introduce new variables

(h = 1, ... ,m,j = 1, ... ,n).

Since the linear forms It, ... ,In are linearly independent, we can express every poly
nomial P E R(d) as

p = " dp (J·)U jll Uj12
••• Uimn

LJ 11 12 mn ,
j

where j = (ill,." ,imn) runs through all tuples of non-negative integers with jhl +
... + jhn = dh for h = 1, ... , m. Similarly, we can express .Pj as

Pi = Edp,i(j)U1~1 ... U~m;.
j

We need the following generalisation of Roth's Index theorem, which states that there
is aPE R(d) of small height such that if (i/d) is small then dp,i(j) = °unless
ili/dl +... + imi/dm ~ min for i = 1, ... , n.

3.4.3 Proposition. (Polynomial theorem). Let u > 0 and d = (dl, ... ,dm ) be any
tuple of positive integers with m > C4 (n, 11, ... , In' u). Then there is a polynomial
P E 'R,(d) with the following properties:

(i) H{P) :5 C;l+···+dm, and Idp,i(j)I :5 C:l+·..+dm for all pairs i, j, where Cs =
Cs(n, It, . .. , In' 0');

(ii) if (i/d) < 2mCT, then dp,i(j) = °unless IEh:l jhi/dh - mini ~ 3nma for
i = 1, ... ,no

for at least one i E {1, ... , n}

Proof. This is Theorem 7A of [65]~ p. 180. Its complete proof is on pp. 176-184 of
[65]. The idea is as follows. First one shows the existence of a polynomial P E R(d)
such that

H(P) < C6(n, 11," ., In' a)d1+· ..+dm

(3.4.4) dp(j) = 0 for all tuples j with
L:h::l jhi/dh < {lin - O')m
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o

(This is the Index Theorem on p. 176 of [65]). The proof is similar to that of
the Index Theorem of Roth: one counts the number of tuples j in (3.4.4) by using a
combinatorial argument (cf. [65], p. 122, Lemma 4C) and then applies Siegel's Lemma
to the equations dp(j} = O.

It is straightforward to show that P satisfies (i). Further, from the definition of
index it follows that if (i, d) < 2mq then dp,i(j) = 0 unless Eh:l jhildh 2:: {lin 
O")m - 2mO" = min - 3mO" for i = 1, ... ,n. But for such i, j we also have

~ jhi ~ ~ jhk " (~ jhk)L..J d = LJ L..J T - L..J LJ d ~ m - (n -1)(mln - 3mO") < min + 3nmq.
h=l h k=t h=t h k:¢:.i h=l h

This implies (ii).

Proof. (of Theorem 3.2.1) By C7 , Cs, ... , we denote positive numbers depending
only on n, /t, ... , In, f. For a given tuple A = (At, ... , An) with rank(II(A) n zn) =
n - 1, let VA denote the Q-vector space generated by ll(A) n zn. We must compare
Q(A) with H(VA).

3.4.5 Lemma. Let A = (AI, ... ,An) be a, tuple of positive rea,ls with

(3.4.6) AI··· An < Q(A)-e, rank(Il(A) n zn) = n - 1, H(VA) ~ C7 ,

where C7 is sufficiently large. Then Q(A)CS :5 H(VA) :5 Q(A)Cg.

Proof. This is essentially Lemma 11A of [65], p. 195. Schmidt used reciprocal
parallelepipeds to prove this; we give a more straightforward proof. Suppose that
Ii (X) = (Ci, X) (i = 1, ... , n), and that the coordinates of Ct, ... ,Cn are contained
in an algebraic number field of degree D. Let gt, ... , gn-l be linearly independent
points in II(A) nzn. For k = 1, ... , n, put

Using that I(Ci, gj)1 :5 Ai for i = 1, ... , n, we get

(3.4.7)

We have gl 1\ ... A gn-l = Aa, with AE Z and a being a vector with coprime integer
coordinates. Further, VA has equation (a,X) = O. Therefore, H(VA) = lal. Put
ck:= CI/\·· ·I\Ck-IAck+ll\· ··Acn • Thus, by Laplace's rule, dk = (ck,gll\·· ·I\gn-t).
Therefore,
(3.4.8) I~kl = 1;\1·I(ck,a)1 2:: l(ck,a)1 for k = 1, ... , n.

Since {ci, ... ,c~} is linearly independent we have by (3.4.8) and (3.4.7)

(3.4.9)
H(VA) = lal ~ max(ILltl,···, I~nl)

~ Q(A)-t:max(A11, ... ,A;;1)
~ Q(A)l-t:.

Let E = {i : 1 :5 i :5 n, Ai ~ Q(A)-e/2}. First suppose that ~ 'I: 0 and Llk 'I: 0 for
some k E E. For this k we have by (3.4.8) that (ck' a) =1= o. By an argument similar to



IV. THE SUBSPACE THEOREM OF W.M. SCHMIDT 47

that in the derivation of Theorem 1.5 from Theorem 3.2.1, we have I(ck,a)1 > lal-D .

Together with (3.4.8), (3.4.7) this implies that

This proves Lemma 3.4.5, provided that E =F 0, and ~k i= 0 for some k E E.
Assume that E = 0 or that ~k = 0 for all k E E. If E = 0 then choose ar

bitrary linearly independent hI, ... , hn-I from zn. If E =f:. 0 and ~k = 0 for all
k E E, then there are linearly independent integer vectors hI,.'.' hn - 1 such that
det((ci, hj))I~i5n, i¢k, 15j~n-1 = 0 for each k E E. We can choose hI, ... , h n - I from
a finite set independent of A, since there are only finitely many possibilities for E.
Now it follows from H(VA ) ~ C7 , that there is an x E II(A) n zn outside the space
generated by hI, ... , hn - l , that is, with Idet(x, hI, ... , hn-1)1 =1= O. Since this number
is a rational integer we have Idet(x, hI, ... , hn-I)I ~ 1. On the other hand, we have

n

det(x, hI, ... , hn - l ) (det(lt, ... , In))-l E ±ak1k(x)
k=l

= (det(lt, ... , In))-l E ±ak1k(x),
k~E

where ak := det«ci,hj))i¢k. Further, lakl ~ 1, 11k(x)1 $ Ak for k fI. E. Hence by
(3.4.9),

1 ::; Idet(x, hI, ... , hn-1)1 ~ E Ak ~ Q(A)-e/2 ~ H(vA )-e/2.
k~I;

But this contradicts that H(VA) ~ C7 • Therefore, E =1= 0 and ~k =f:. 0 for some k E E.
o

We need another simple non-vanishing result for polynomials.

3.4.10 Lemma. Let f(X l , ,Xr ) E C[X1 , ••. ,Xr ] be a non-zero polynomial of
degree::; Sh in Xh for h = 1, , r and let B I , .•. , B r be positive reals. Then there
are rational integers Xl, .•. , X r , it, ... ,ir with

Proof. This is a special case of Lemma 8A on p. 184 of [65], which is sufficient
for our purposes. For r = 1, Lemma 3.4.10 follows from the fact that f cannot be
divisible by the polynomial {X(X - l)(X + l)(X - 2)(X +2)··· (X - a)(X + a)}b,
where a = [BI ], b = [81/B1] + 1, since the latter polynomial is of degree> Sl- It is
straightforward to complete the proof of Lemma 3.4.10 by induction on T. 0

We assume that Theorem 3.2.1 is false. Then, by Proposition 3.3.2, there is an n ~ 2
such that if A runs through the tuples A = (At, .. _, An) of positive reals with
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then VA runs through infinitely many (n -I)-dimensional linear subspaces of Qn. In
view of Lemma 3.4.5, this implies that the set of numbers Q(A) for which A satisfies
(3.4.11) is unbounded.

Note that Ai = Q(A)CPi for i = 1, ... , n, where <PI, ... , <Pn are reals depending
on A with l<pil ~ 1 for i = 1, ... , n, and <PI + ... + <pn < -to The set of real
points ('PI, · . · , Cfln) satisfying these inequalities can be covered by finitely many cubes
{(CPI, ... ,<Pn): Ci - €/2n ~ <Pi ~ Ci for i = 1, ... ,n}, where

(3.4.12) for i = l, ... ,n, Cl +··.+en < -f/2.

Hence there is a tuple (Cl, .•• ,en) with (3.4.12), such that the set of numbers Q(A)
for tuples ~ with

rank(II(A) n zn) = n -1,

(3.4.13) Al···An < Q(A)-e,
Ai :5 Q(A)Ci for i = 1, ... , n,

H(VA) ~ C1

is unbounded.
We choose 0' sufficiently small, depending only on nand €, with 0 < (J < lIn. Let

m be the smallest integer exceeding the number C4 ( n, 11, ... , In, (J) in Proposition 3.4.3.
Choose AI, ... , Am with (3.4.13) such that for sufficiently large CIO , Cl1 ,

(3.4.14) for h = 2, ... , m.

Put Qh := Q(Ah ), lth := YAh for h = 1, ... , m. Similarly as in the end of the proof
of Roth's theorem, we choose a tuple d = (dl , ... , dm ) of positive integers such that

(3.4.15)

and
(3.4.16) d1log Ql ~ dh log Qh ~ (1 + (1)dllog Q1 for h = 2, ... ,m.

The latter is possible since O'd1log Ql ~ log Qh for h = 2, ... , m. Let P E R(d) be the
polynomial from Proposition 3.4.3. Put / := C8 /C9 , where C8 , C9 are the constants
from Lemma 3.4.5. Let C1 , C2 and C3 be the constants from Proposition 3.4.2 and
Cs the constant from Proposition 3.4.3. We verify that (1, m, 1, dt , ••• ,dm , It}, ... , Vm

and P satisfy the conditions of Proposition 3.4.2 for suitable C10 , Cll : namely, for
sufficiently large CIO and CII we have by (3.4.16), (3.4.14), H(lth) ~ C1 , Lemma 3.4.5
and the upper bound for H(P) in Proposition 3.4.3 that

dk dk log Qk • log Qk+! > (1 + 0')-1C11 > C1 for h = 1, ... , m - 1,
dh+1 dh+1 1og Qh+l log Qh -

H(Vh)dh ~ Qfsdh ~ Qfsd1 = Qf9dl""Y ~ H(lt})d1""Y for h = 1, ... , m - 1,

H(Vh ) ~ Qfs 2: Qfs ~ cf~ ~ Ci-1
(n-l)2 for h = 1, ... ,m

and
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Now Proposition 3.4.2 implies that there is a point x E Vi x· .. X Vm with i(x, P) < rna.
What we actually want is a point x = (Xl, ... , Xm ) with Xh E TI(Ah) n zn for

h = 1, ... ,m and small index w.r.t. P. There is such a point in a slightly larger set.
Namely, choose a tuple i with (i/d) < q such that 11 does not vanish everywhere on
Vi x ... X Vm . Choose linearly independent vectors ghl, ... , gh,n-l from n{Ah) n zn
for h = 1, ... , m and define the polynomial

!(Yil,.'.' Ym,n-l) = Pi (r: Yikglk, .. " EYmkgmk) .
k=1 k=l

Then! is not zero. By Lemma 3.4.10, there are integers YI1,"" Ym,n-l, and integers
ktt , · .. , km ,n-1 with

IYhd ~ na-t, 0 ~ khi ~ (Jdh/n for h = 1, , m, i = 1, ... ,n - 1,

r(y) := (8~Jkl1 ••• (8Y:,,_lrm

...-

1 !(Yu, ,Ym,,,-l) :f:. O.

Put Xh := Li~lYhighi (h = 1, ... ,m), x = (XI"'.'Xm ), AA:= (AAI, ... ,AAn ) for
A = (At, ... , An)' Note that j*(y) is a linear combination of terms Pi+j(X), where
j = (ill,' .. , imn) with 2:1:1 ihl = L:i;ll kh1 for h = 1, ... , m. Hence

xhEII{na-1Ah)nZn forh=1, ... rn,
(3.4.17) i(x P) < rna +"m_ khl+·..+ kh,n-l < 2mO'., L...Jh-1 dh -

Hence there is a tuple i with (i/d) < 2mD', Pj(x) =F o. Note that Pj(x) E Z. Below
we shall show that IPi(x)l < 1. Thus, our initial assumption that Theorem 3.2.1 is
false leads to a contradiction.

Put Uhi = li(xh) for h = 1, ... , m, i = 1, ... , n. By Proposition 3.4.3 we have

(3.4.18)

for h = 1, ... , m, i = 1, ... , n.

where the SUfi, maximum, respectively, are taken over all tuples j = (jll, ... ,jmn)
with ILh=l jhi/dh - mini ~ 3nmO" for i = 1, ... , n. Fix such a tuple j. By (3.4.17)
and (3.4.13) we have

I I < -lQCiUhi _ nO' h

Hence

(3.4.19) log IU{\l ... u1;; I :5 t f Ci (Jd'hi) dh log Qh + (dt +··· +dm ) log (;) .
1=1 h=l h

Further, by (3.4.16) and 0" < 1 we have
m m

L(jhi/dh)dh log Qh ::; d1log Ql . (1 + (j) . L(ihi/dh)
h=l h=l

< dllog Q1 . (1 +o-)(m/n +3nmO')

< mn-1d1log Q1 · (1 + 7n2O'),
m m

L(jhi/dh)dh log Qh > dtlogQlL(ihildh)
h=l h=l

2:: dtlog QI(mln - 3nmO') ~ mn-1d1log Q1 . (1 - 7n2O').
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By inserting this into (3.4.19), and using (3.4.12), we get

log IU{~l ... u!n~nl ~ (mn-Idtlog Ql) ·6+ (dl +... + dm) log(nu-1),

with
n n

6 =E Ci +7n2u E ICiI ~ -€/2 +7n3u < -f./3,
i=l i=l

if we choose u < €/42n 3
• Together with (3.4.18) this yields, for sufficiently large CIO,

IPi(x)1 ~ ct~+···+dmQ~mdlf/3n ~ (C13Q~f/3n)mdl < 1,

which is the contradiction we wanted. This completes the proof of Theorem 3.2.1. 0



Chapter V

Heights on Abelian Varieties

by Johan Huisman

1 Height on Projective Space

We \vill follow to a great extent Chapter 6 of [14].
If K is a number field and v a finite place of K, that is, v corresponds to a prime

ideal p of the ring of integers of ](, then we define a norm II . IIv on K by

(

1 ) ordp(x)

IIxll" = Nt' '

where Np is the absolute norm of p. If v is an infinite place, that is, v corresponds to
an embedding u of K in lR or v corresponds to a conjugate pair {(7, u} of embeddings
of !( in C, then we define a norm II . Ilv on K by

_ { 100(x )1, if v is real,
IIxll" - lu(xW, if v is complex.

Clearly, for any place v of K, the homothety y 1-+ xy transforms a Haar measure J.L

on the completion Kvof !( at v into IIxllv· J.L. Let MK be the set of places of K, Mf(
the set of infinite places and M[ the set of finite places. Then we have the product
formula

IT IIxll v IT lu(x)1 = IT IIxliv = 1,
vEM1c q:K-+C vEMK

for every x E K*. This can be easily seen as follows (cf. [87], Ch. IV, §4, Thm. 5).
Let A be the ring of adeles of K. The product formula will follow if we prove that
any Haar measure on A is invariant under the homothety Ax: y t--i- xy of A, for any
x E K*. Since AIK is a compact topological group and Ax induces an isomorphism
Ax of AIK, any Haar measure on AIK is invariant under Ax. Moreover, since K is
discrete and the restriction Ax of Ax to K is an isomorphism of 1< as a topological
group, any Haar measure on K is invariant under X;. Therefore, any Haar measure
on A is invariant under Ax.

If P = (xo:· .. : xn) is in pn(K) then we define the height of P relative to ]( by

HK{P) = IT max{lIxoll v , ••• , IIxn ll v }.

vEMK

Observe that, by the product formula, this is well defined.
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1.1 Example. If K = Q and P E pn(Q) then we may assume P = (xo:··· : xn ) with
Xi E Z and gcd(xo, ... , x n ) = 1. Then

HQ(P) = max{lxol,· .. , Ixnl}.

o

It is clear that HK(P) 2:: 1, for every P E pn(K). If L is a finite extension of K
and P E rn(K) then

HL(P) = HK(P)[L:K].

Hence, we can define the absolute height H on pn(K) by

where L is some number field containing the coordinates of P. It will be convenient
to define the (logarithmic) height h on lPn (K) by

(1.1.1) h(P) = log H(P).

1.2 Theorem (Northcott). Let n, d and C be integers. Then

{P E pn(K) I H(P) $ C and [K(P): K] $ d}

is a finite set.

For a proof the reader is referred to [14], Chapter 6 or [70], §2.4.

2 Heights on Projective Varieties

We will define height functions on a projective algebraic variety V over a number field
K, using morphisms from V into projective space. Suppose

f:v~pn

is a morphism of algebraic varieties over K. Then one defines the (logarithmic) height
on V relative to f by

hf:V(K) ~ R
P t-+ h(f(P)).

Let us call real-valued functions h and hi on the set V(K) equivalent, denoted by
h "-I hi, if Ih - h'l is bounded on V(K). It turns out that the height hf depends only,
up to equivalence, on the invertible sheaf [, = /*O,n(I).

2.1 Theorem. Let V be a projective algebraic variety over K. If f: V -+- pn and
g: V ~ pm are morphisms over K such that

j*Orn (l) ~ g*Opm(l)

then hJ and hg are equivalent.



v. HEIGHTS ON ABELIAN VARIETIES 53

and put

Proof. Recall that a morphism 4>: V ~ pk is uniquely determined by (the isomor
phism class of) the invertible sheaf £, = </>*O(1) and the global sections Si = </>*Xi E
r(V, £). Therefore, it suffices to prove the theorem in the case that m ~ n and
f = 1r 0 g, where 1r is the rational map

1T':pm ... ----+ pn

(xo:···: xm ) ~ (xo:···: xn ).

Clearly, hg - hi ~ o. To prove that hg - hi is bounded from above, observe that

g(V) nm(Xo, ..• ,Xn )

is empty. Since g(V) is closed, let I ~ K[Xo, ... , Xm ] be its defining homogeneous
ideal. Then

VI +(Xo, ... ,Xn ) = (Xo, ... ,Xm )

in K[Xo~ ... ,Xm ]. Therefore, there exist a positive integer q and Fij E K[Xo, . .. , X m ]

such that
n

X:+i - E FijXj E I, i = 0, ... , m - n.
j=O

We may assume fij to be homogeneous of degree q -1. Denote the coefficients of Pij
by aijk. If L ~ K is a finite extension of K and w is a place of L then we define

{

0 if w is finite,
Cw = 1 if w is real,

2 if w is complex

(
1

)

ew
e q- +m

Cw = (n + 1) 10 m . max \Iaijkllw.

Choose P E g(V)(L), say P = (xo:···: xm ) with Xi E L. It is easy to see that

for i = 0, ... , m - n. Put
1

c~ = max{1,~},

then

In particular,
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where d = [L: K]. Therefore

h(xo:· .. : xm ) $ h(xo:· .. : xn ) +C,

where c = [K~Q] LVEMK c~ which neither depends on P nor on L. Hence hg - hJ is
bounded from above. 0

As a consequence, we can define, up to equivalence, a height function h{, for every
invertible sheaf £ on V which is basepoint-free (i.e., generated by global sections).
For, choose a morphism f over K from V into pn such that

.c ~ j*Opn(1).

(Such a morphism exists since £ is basepoint-free.) Then, by Theorem 2.1,

h£, = hJ

depends only, up to equivalence, on £. More precisely, one defines h£, as the equiva
lence class of hJ. That is, if 1-l(V(K)) is the group of equivalence classes of real-valued
functions on V(K), we have h£, E 1i(V(K)). However, often we will treat hi:. as a
real-valued function, keeping in mind that hi:. is only defined up to equivalence. It is
easy to prove that, for any basepoint-free invertible sheaves £ and M on V,

(2.2)

As a consequence, for any invertible sheaf £ on V, we can define, up to equivalence,
a height function he by

h£, = hr.} - hr.2 ,

where £1 and £2 are basepoint-free invertible sheaves on V such that

.c ~ £1 @ .c;1 .
(Such sheaves always exist; see [27], p. 121.) By (2.2), this does not depend on £1,
£2. Hence the following result due to A. Weil.

2.3 Theorem. Let V be a projective algebraic variety over K. There exists a unique
homomorphism

h: PicV~ 1t(V(K))

such that
(i) if V = pn then hOpn (1) is the usual height h on projective space,

(ii) ifW is a projective algebraic variety over K and f: V ~ W is a morphism over
K then

for any £ E PicW.

It is then easy to prove, using Theorem 1.2, the following finiteness theorem.

2.4 Theorem. Let V be a projective algebraic variety over K. If.c is an ample
invertible sheaf on V then, for all real numbers C and d, the set

{P E V(K) Ih,(P) $ C and [K(P): K] $ d}

is a finite set.
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Observe that it makes sense to call an element of 1-l(V) bounded from below (or
above).

2.5 Theorem. Let V be a projective algebraic variety over K. If £ is an invertible
sheaf on V and s is a global section then ht, is bounded from below on the set

{P E V(l() Is(P) f OJ.

Proof. Choose basepoint-free invertible sheaves £1 and £2 on V such that

Let so, ... ,Sn be global sections of £'2 that generate £2. Choose global sections
Sn+l, . · . ,8m of (,1 such that

generate £1. Then, whenever P E V(K) with s{P) =I- 0,

hr,l (P) = h(s 0 so(P), ,s 0 sn(P), Sn+l (P), .. . , sm(P))
~ h(s0 so(P), ,s0 sn(P))
= h(so(P), ... , sn(P}}
= ht,2(P).

Therefore, ht, is bounded from below on the set of P E V(K) such that s(P) =f:. o. 0

3 Heights on Abelian Varieties

We will need the Theorem of the Cube.

3.1 Theorem (Theorem of the Cube). Let Xl, X 2 , X 3 be complete algebraic va

rieties over the field K and let Pi E Xi(K). Then, an invertible sheaf£, on Xl xX2 xX3

is trivial whenever its restrictions to {PI} xX2xX3, Xl X {P2} xX3 and Xl XX2X {P3 }

are trivial.

Proof. (After [52], Chapter II, §6.) Let us give a proof when char(K) = 0, since
this is the case we are interested in. Then it suffices to prove the theorem for K = C.
(Here one uses that the Xi, Pi and (, are defined over a subfield Ko of L which is
of finite type over Q and that for K ---+ L any field extension, X any quasi-compact
separated K -scheme and £, any invertible sheaf on X, £, is trivial if and only if its
pullback to XL is trivial.)

Before we continue the proof let us recall the following definition. A contravariant
functor F from the category of complete complex algebraic varieties with basepoints
into the category of abelian groups is called of order ~ n if for all complete complex
algebraic varieties Xo, .•. ,Xn with basepoints, the natural mapping

n n

F(II Xi) ---? II F(II Xi)
i=O j=O i'¢j
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is injective. As an example, the Theorem of the Cube states that the functor Pic is
of order::; 2.

To finish the proof we switch to an analytic point of view. Let OX,h denote the
sheaf of analytic functions on X. According to the GAGA-principle,

PicX ~ H1(X, 0X,h)'

for any complete complex algebraic variety X. The long exact sequence associated to

o ---+ Z ---+ OX,h~ 0X,h ---+ 0

implies the existence of an exact sequence

H 1(X,OX,h) ---+ H1(X, 0X,h) ---+ H2(X, Z).

Since both H1
(., OX,h) and H2

(., Z) are functors of order $; 2, the functor Hl(., 0X,h)
is of order $ 2. This proves the theorem. 0

3.2 Corollary. Let X be an abelian variety over the field K and let Pi: X 3 ~ X be
the projection on the ith factor. Let Pij =Pi +Pi and Pijk =Pi + Pi + Pk. Then, for
any invertible sheaf £, on X, the invertible sheaf

Pi23£ 0 pi2£,-1 ®pi3£-1 ®P;3£-1 0 pi£ 0 p;£ 0 pi£

on X 3 is trivial.

Proof. Taking restrictions of this sheaf to 0 x X x X, X x 0 x X and X x X x 0
yields a trivial sheaf. The conclusion follows from the Theorem of the Cube. 0

Since this corollary expresses a relation between sheaves on X 3
, we have immedi

ately, by Theorem 2.3, the following fact about heights on abelian varieties.

3.3 Theorem. If X is an abelian variety over a number field K then, for any invert
ible sheaf £ on X,

ht;(P +Q+R) - hc(P +Q) - ht;(P +R) - ht;(Q +R) +ht;(P) +hf;(Q) +hf;(R) ~ 0,

-3
as functions on X(K) .

Let us denote for an abelian variety X over K the multiplication-by-n mapping
from X into itself by [n], for any integer n. Recall that an invertible sheaf {, is called
symmetric (resp. antisymmetric) whenever [-1]*£ ~ .c (resp. [-1]*£ 9:' £-1). As a
consequence of Corollary 3.2, one can prove the following.

3.4 Corollary. If X is an abelian variety over the field K and £, is an invertible sheaf
on X then

[n]*£, ~ £,(n2
+n)/2 ~ [_1]*£,(n2

-n)/2,

for any integer n. In particular,

[n]*£ ~ {;:2,.' if £, is symmetric,
I.J if [, is antisymmetric.
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Again, this translates into properties of heights on abelian varieties.

3.5 Theorem. If X is an abelian variety over the number field K and [, is an in
vertible sheaf on X then

he, 0 [n] "J n2:n he, + n2;n he, 0 [-1],

for any integer n. In particular,

h [] ~ {n2ht" if £ is symmetric,
e,on h 'fr" .n e" 1 J.., 18 antlsymmetrlc.

The property of he, in Theorem 3.3 will imply the existence of a canonical height
function, the Neron- Tate height relative to £,

k,,: X(K) ---+ R,

as stated in the following theorem.

3.6 Theorem. If X is an abelian variety over the number field K and £, is an in
vertible sheaf on X then there exist a unique symmetric bilinear mapping b[,: X(K) x
X(K) ---7 R and a unique linear mapping I.e: X(K) ---7 lR, such that

hr,: X(K) ---+ JR.,

defined by
hr,(P) == !be,(P, P) + l£(P),

is equivalent to h.e. Moreover, if £, is symmetric then I.e = 0 and if £, is ample then
be, is positive definite on X( K) 0lR.

Proof. The existence and uniqueness of be, and lr, follow from the lemma below,
whose proof can be found in [52], Appendix II, §5.

If [, is symmetric then in virtue of Theorem 3.5

!n2be(P, P) +nlr,(P) == h£{nP) = n2he{P) = !n2b£(P, P) +n21c(P),

for any integer n. Hence Ie = O.
If £, is ample then [-1]*£ is ample too. Hence, M == £'@[-l]*£ is ample. Moreover

by uniqueness

be, == ~bc + !br-l]*.e = !bM .

Therefore it suffices to prove that b£ is positive definite on X(K)Q9lR for any symmetric
ample invertible sheaf £.

Since then he = ~bc, it follows from Theorem 2.4 that for any finitely generated
subgroup A of X(K) and for any C E lR the cardinality of the set

{P E A I be(P,P) ~ C}

is finite. It is not difficult to prove that this implies that be is positive definite on
X(K) Q9R. 0

3.7 Lemma. Let G be an abelian group and h: G ---7 R a function such that

h(P +Q +R) - h(P +Q) - h(P +R) - h(Q +R) + h(P) + h(Q) + h(R) "J 0,

as functions on G3. Then there exists a unique symmetric bilinear mapping b: G x G -+

lR and a unique homomorphism 1: G ---7 R such that h ~ h, where

h(P) = !b(P,P) + l(P).
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4 Metrized Line Bundles

The main interest of this section is to show that metrized line bundles on projective
R-schemes give, in a natural way, a height function (i.e., not just a class of functions
modulo bounded functions, but a specific element of such a class). For example, the
Neron-Tate height can be obtained really nicely in this way, see for example [50],
Chapter III.

For the moment let X be a complex analytic variety (i.e., a complex analytic space
as in [27], App. B, which is reduced and Hausdorff), £ a coherent Ox-module (e.g.,
a locally free Ox-module of finite rank). We denote by C~ the sheaf of continuous
complex valued functions on X. If U c X is an open subset and f E C~(U) then
1 denotes the complex conjugate of f (i.e., tof, where t: C -+ C is the complex
conjugation). We define a (continuous) hermitean form on £ to be a morphism of
sheaves (., .): £ Ef) £ -+ C~, such that:

(i) (.,.) is hi-additive,
(ii) (IS1,S2) = I(SI,S2) for all U C X, 1 E Ox(U), S1,S2 E E(U),
(iii) {S2' 09 1) = (S1, 092) for all U C X, 091,092 E £(U).

A hermitean form is called a hermitean metric if moreover it is positive definite:
(s, s)(x) > 0 for all U C X, s E £(U) and x E U such that s(x) :f; o. The norm
associated to a hermitean metric on £ is the morphism of sheaves II . II: £ -+ C~,

S 1-+ (09,8)1/2. Of course a hermitean metric is determined by its norm (use some
polarization identity).

If {, is an invertible Ox-module then the norms of hermitean metrics on it can be
easily characterized: they are the maps of sheaves II . 11:.c -+ C~ such that IlfslI =
IfI IIs ll and IIsll(x) > 0 if s(x) =1= o. In this case we will also call the norm associated
to a hermitean metric a hermitean metric.

One can define differentiable, Coo or real analytic hermitean forms on £ just by
replacing the sheaf C~ by the sheaf of that kind of functions.

Let £' := C~ 00x £; then £' is a coherent C~-module. For any C~-module £' we
define £' := C~ 0£,c~ £' and for any open U C X, s E £'(U) we let s:= 1009 E £'(U).
The maps S ~ S give an anti-linear isomorphism £' -+ £' (i.e., one has f s = 1 @ f s =
70s = ]·s). With these definitions, giving a hermitean form (-,.) on a coherent Ox
module £ is the same as giving a morphism of ~-modules ¢: £' 0c~ £' -+ C~, such

that </J(81 0 S2) = ¢(82 @ S1) . Using this description it is immediate that for Y -+ X a
morphism of complex analytic varieties one has the notion of pullback for hermitean
forms. In particular, for all x E X we get a hermitean form (.,.) (x) on the C-vector
space £(x) (the fibre of £ at x, not the stalk). These (.,.) (x) vary continuously in
the sense that if one expresses everything in coordinates then the coefficients of the
matrix obtained that way are continuous. Of course, to give a continuous (',.) is the
same as to give a continuous family of (., .) (x) 'so

4.1 Example. The formula (/,9) = /g defines a hermitean metric on Ox. 0

Suppose now that K is a number field and that f: X --+ Spec(K) is a variety
over K. Then for every 0': K -+ C we have the variety X q over C obtained from
f: X -+ Spec(I() by pullback via Spec(<1): Spec(C) -+ Spec(K). Taking Cvalued
points then gives for all <1 a complex analytic variety X q (C) = {P: Spec(C) -+
X IfoP = Spec(u)}. If we denote 7J = toO' then we have maps P 1-+ 15 := PoSpec(t):
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Xoo(C) --+ Xq(C); these maps are anti-holomorphic isomorphisms. For £ a coherent
Ox-module let £0- denote the coherent OxCT(c)-module induced on Xo-(C); for U C X
and 5 E feU) let Sq E £q(Uoo(C)) denote the section induced by 5.

4.2 Definition. A hermitean metric on £ is a set of hermitean metrics (., .)0- on the
£0-, l1:!( ~ C, such that for all open U C X, 5, t E feU), (1: K ~ C and P E Uoo(C)
one has

o

Another way to phrase the last condition is as follows: if we denote by £1 the
C~(c)-moduleon X(C) := {P: Spec(C) -4 X} = 110- Xq(C) induced by £, and by

Foo : X(C) -4 X(C) the map P ~ 15, then one has F~(s, t) = (s, t) for all U c X,
5, t E feU). For our purposes we do not need this condition, but we impose it anyway
in order to be compatible with the existing literature (e.g., [76]).

With our conventions concerning hermitean metrics on invertible sheaves we get
the following definition.

4.3 Definition. A hermitean metric on an invertible Ox-module [, is a set of her
mitean metrics II . 1100:.coo -+ C~CT(C)' (1: K --+ C, such that IIsullq(P) = flSo-lIq(P) for all
U C X, S E £(U), (1 and P E UO'(C). 0

4.4 Example. Let X := Pi<, £ := Ox(m) and denote by xo, Xl, •.. ,Xn the homoge
neous coordinates on X. By definition, a local section s of {, can be written as FIG,
where F and G in K[xo, Xl, ... , X n ] are homogeneous and deg(F) - deg(G) = m. The
following formula defines a hermitean metric on £:

where a: K -+ C and (ao, at, ... ,an) E ((;1'+1. This metric will be our standard metric
on Opn (m). It is characterized, up to scalar multiple, by the property that at every
a it is invariant under the natural action of the unitary group U(n+1)_ 0

As before, let R be the ring of integers in [(. Let X be an integral projective
R-scheme and let £ be an invertible Ox-module. By a hermitean metric on £, we will
mean a hermitean metric on the pullback £K of [, via XK := X XSpec(R)Spec(K) -+ x.
By a metrized line bundle on X we will mean an invertible Ox-module [, with a given
hermitean metric II . II·

In particular, these definitions apply to Spec(R) itself. Let (£, II-II) be a metrized
line bundle on Spec(R), let M := r(Spec(R),£) and let s E M be non-zero. Then
the degree of (£, II . II) is the real number:

(4.4.1) deg(£)=log#(MjRs)- E logllsqllq
oo:K-+C

(one easily checks that the right hand side is independent of s).
Let us now explain how a metrized line bundle (£, II·ID on an integral projective

R-scheme X gives a height function on the set X(K) of K-rational points of the
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variety XK over K. Let P E X(K). Then there is a finite extension K' of K such
that P is defined over K', Le., P comes from a unique point P E X(K'). Let R' be
the ring of integers of K'. Then P can be uniquely extended to an R'-valued point
(still denoted P) P: Spec(R') --? X by the valuative criterion of properness (see [27],
Thro. 4.7). By pullback via P we get a hermitean line bundle p*.c on Spec(R'). The
absolute height of P with respect to (£, II . II) is then:

(4.4.2) h(C,lI o ll)(P) := [K' : Q]-t deg(P*£)

(one easily verifies that this is independent of K'). The following theorem states that
h(C,II.m is in the class of height functions associated to £ by Thm. 2.3.

4.5 Theorem. If (£, II · II) is a metrized line bundle on X then h(.c,IHD and h.c are
equivalent as functions on X(K).

Proof. It suffices to prove the theorem for £, very ample, so we assume that X is
a closed subscheme of PRand that .c is the restriction of 0(1) to X. In virtue of
Lemma 4.6 below we may choose a convenient hermitean metric on £. Let us then
choose the metric given by the formula:

(compare with Example 4.4). We claim that for this metric h(.c,IHI) is just the standard
absolute height on pn(K) of 1.1.1. In order to verify this for P E X(K'), where K' is
a finite extension of K, we may base change to the ring of integers R' of K'. Hence
it is sufficient to check our claim for all K and all P E X (K).

We will compute deg P*O(l), where P is an R-rational point of X ~ PRo We may
assume that P*xo is a nonzero section of r(SpecR,P*O(l)). Then,

Hence,

#P*O(I)/Rp·xo = II ~axllxi(p)llv
v~MK .~n xo

= (II ~ax II X i(P)!IV). II II xo{P)lIv.
v~AI~ ,~n vEAlK

Therefore,

o
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4.6 Lemma. Let.c be a line bundle on X. If II - II and II -1/' are hermitean metrics
on .c then there exist real numbers Cl, C2 > 0 such that

for any local section s of (, and any P E X(C) where s is defined.

Proof. Since X is a projective R-scheme, X(C) is a compact analytic variety. There
fore the continuous functions II . 11'/ II . II and II . II / II . II' on it are bounded. 0



Chapter VI

D. Mumford's "A Remark on
Mordell'8 Conjecture"

by Jaap Top

Throughout this exposition !( will denote a number field and C/ K will be an abso
lutely irreducible (smooth and complete) curve of genus 9 2 1. In fact more generally
one can take for !( any field equipped with a product formula as defined in [70, p. 7].
We make the standing assumption that over K, a divisor class of degree 1 on C ex
ists (this can always be achieved after replacing K by a finite extension). Our main
reference is the paper [53] referred to in the title above plus the descriptions given in
[70], [9] of Mumford's result.

1 Definitions

Fix once and for all a divisor class a on C of degree 1. The jacobian J = J(C) of C
is an abelian variety of dimension 9 defined over K which represents divisor classes of
degree 0 on C (see [14, p. 168] for a formal definition). In particular, the class a gives
rise to an injective morphism

j = ja : C '---+ J : P t--. (P) - a

defined over ](. A. Wei! proved in 1928 (case K a number field) that J(K) is a
finitely generated abelian group. This raises the possibility to study the set C(K) of
K-rational points on C as a subset of J(K). The first successful attempt along this
line seems to be due to Chabauty (1941). He combined the idea of considering C(K)
as a subset of a finitely generated abelian group with Skolem-type p-adic analysis and
proved:

If 9 = genus (C) > rank (J(K)) then C(K) is finite.

(cf. [70, §5.1] for a sketch of the proof; Coleman's paper (1985) [13] for effective
bounds on the number of solutions in some cases.)

All other attempts starting from this basic setup seem to involve heights. Depend
ing on a one defines a divisor

e = j(C) + ... + j(C) c J
" y I

g-1
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with divisor class () E Pic(J). To it one associates a canonical height he on J (K) and
a bilinear form

(x, y) = he(x + y) - he (x) - he (y ).

Since () is ample (this follows from the fact that () defines a principal polarization
on J; cf. [14, p. 186, Thm. 6.6 and p. 117, Prop. 9.1]), (".) is positive definite on
J(K)ftorsion. To verify this, note that (x, x) = !he+[-l]*e(x); now () is ample, hence
0+ [-1]*0 is ample and symmetric. The rest of the argument is a trivial exercise (see
[70, §3.7]).

The existence of this non-degenerate bilinear form was discovered by Neron and
by Tate (mid-60's). Combined with Weil's result it gives J(K) ®lR the structure of a
euclidean space E. An easy consequence is

# {x E J(K); Ilxll S; T} = (pos. const.)· Trk + o(Trk).

2 Mumford'8 Inequality

The previous section raises the possibility to study rational points on C by means of
the sequence

C(K)~ J(K)jtorsion c E

in which the first map is finite to one (in fact, by Raynaud's proof of the Manin
Mumford conjecture [60] there is a bound on the number of points in the fibres in
dependent of the field K); and the second map gives J(K)/torsion as a lattice in
euclidean space E. Mumford's result on this which we want to discuss here can be
seen as a first step towards Vojta's proof (simplified by Bombieri) of Mordell's con
jecture (1989/90) and even to Faltings's theorem which is the topic of this book. The
result is

2.1 Theorem (Mumford, 1965). With the notations as above, there is a real num
ber c > 0 such that for all x =1= y E C(K) the inequality

IIxl12 + IIyll2 - 2g(x,y) ~ -c(l +Ilxll + Ilyll)

holds.

3 Interpretation, Consequences and an Example

Since for 9 < 2 the left hand side is non-negative, Mumford's inequality is at most
interesting for 9 ~ 2. In that case, for K a number field, if one considers points in
C(K) only then the result is trivially implied by the truth of Mordell's conjecture.
Needless to say, this will not be used here.

One way to interpret the inequality is as follows. Suppose 0 < r < n-=T. Then
for x E C{K) with "xll » 0, no y E C(K) is in B(gx, rllxlD := the ball with
center gx and radius rllxll. Indeed, were y E C(K) inside this ball, then of course
Ilvll ~ (r +g)llxli and

o > Ilv - gxl1 2 - r 2 11xl12 ~ -c - cllxll- cllyll + (g2 - 1 - r 2)llxl1 2

> -c - c(l +r +g)llxli + (92
- 1 - r2)llxl12
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which implies that IIxll is small.
Mumford's inequality implies

3.1 Corollary. There is a. real number C2 such that

#{x E C(K); Ilxll ~ T} ~ c210gT.

65

The same result (with of course a different C2) is true with II . II replaced by any
h = hs on C; with 8 a divisor of positive degree. Comparing the above result with the
"density" of rational points in J(K) one says that the set C{K) C J{K) is "widely
spaced~' (this notion is formally introduced by Silverman [75]; also Serre uses it [70,
p. 105], in fact already in the French version from 1980 (p. 2.7: "tres espaces")).

Proof. (of Cor 3.1). Take Ca = 5c+ 1/2, then for x,y E C(K) with 211xll ~ Ilyll2:
!lxll ~ Ca one has

IIxl12+ lIyl12 ~ callxll +c311yll ~ 5c(1 + Ilxll + IlylD,
hence

(x,y) < IIxl12+ IIyl12 +c(l +Ilxll + lIyll) < ~ (fixil +lliill) < ~.
Ilxll·llyli - 2911xll·llyll - 59 Ilyll Ilxll - 29

Now take T » o. The x E C(K) with Ilxll ~ T can be subdivided in the x's with
Ifxll :5 C3 and the ones with ca2i < IIxll :5 c32i+1 (for 0 ~ j ~ c4 1og T ). In one such
"interval" different points satisfy (1Ixll-Ix, Ilyil-Iy) ~ 3/(29). The maximal number
of unit vectors in E satisfying this angle constraint is easily seen to be bounded in
terms of dim E = rank J(K), say bounded by Cs. Then

# {x E C(K); Ilxll ~ T} ~ #torsion inJ(K)· (#{llxll ~ ca} + csc4 logT ) ~ c2 log T.

o
3.2 Example. Take C, D curves defined over Fq such that a non-constant morphism
D ---+ Cover lFq exists. Put K = Fq(D). A point x E C(/() corresponds to a
morphism 'Px: D ---+ C defined over Fq and for h(x) we can take h(x) = deg(e.px). Let
1r denote the Frobenius homomorphism on K. Clearly with x also 1rn

X E C(K), and
h(1rn x) = qnh(x). Hence in this example

# {x E C(K); h(x) ~ T} ~ (pos. const.) ·logT.

o

4 The Proof assuming some Properties of Divisor Classes

Let D be a (smooth, complete, irreducible) curve of genus 9 over an algebraically
closed field k. Write JD for its jacobian and use as above a divisor class a of degree 1
to define j and fJ. Denote by Pi the projection JD x JD ---+ JD onto the ith factor and
let s: JD x JD ---+ JD be summation (s(x,y) = x+y). Furthermore define a' E JD by
a' = (2g - 2)a - KD in which KD is the canonical class on D. Lastly, 76 : JD ---+ JD

will denote translation over b E JD. The following properties of divisor classes are
used in the proof of Mumford's result:
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2. j*fJl = gao

3. (j x j)*(s*6 - pifJ - pi6) = a x D + D x a - ~.

J. Top

Theorem 2.1 is obtained from this as follows. We return to the situation in §§1-2
and we will use the statements above in this context. Write ho(x) = ~(x,x) + lex);
here l is linear. Then ~(x, x) -lex) = ho(-x) = ho'(x) = hT:Q/o(x) = ho(x - a') =
~(x,x)-(x,a'}+l(a',a')+l(x-a') = l(x,x)+i(x)-(x,a') (here use that ho(O) = 0).
The conclusion is that

l(x) = ~(x, a').

Next, using heights on C x C, identifying x with j(x) (as we already did a couple
of times) and ignoring the (bounded) functions arising from the fact that we choose
actual heights depending on a divisor class:

ha(x,y) = ha,xc(x,y) + hcxa,(x,y) - h(jxj)*s*o(x,y) +h(jXi)*piO(x,y)

+h(jXj)*P20(X, y)
1 1= ha(x) + ha(y) - ho(x + y) +he(x) + ho(y) = -he/ex) + -holey) - (x, y)
9 9

= 2~ {llxW+llvW-2g{x,v)-{x,a')-{v,a')}.

Since Ll is effective, ht1 is bounded from below on {x =F y}, hence the result follows.

5 Proof of the Divisorial Properties

Proof. (of (1» The class fJ is by definition represented by the divisor

{

9-1 }
f) = [t'rPi - (g -l)a]j Pi E D

hence fJl by 0' = {reg -l)a - EPi ]}. Therefore it suffices to show that for general
E1~1 Pi a unique Ef~: Qi exists such that E Pi +L Qi is canonical. This follows from
Riemann-Roch: one has l(L Pi) - i(KD - E Pi) = O. Since i(l: Pi) =F 0 (constant
morphisms are in L(any effective divisor)), it follows that also the class of KD - E Pi
is represented by an effective divisor. A slightly more geometric argument runs as
follows. In case D is not hyperelliptic one may assume that D is canonically embedded;
then the canonical divisors are precisely the hyperplane sections, and 9 - 1 points
determine a hyperplane and therefore a canonical divisor. For hyperelliptic D, write
£ for the hyperelliptic involution. Then L: Qi =E £Pi is canonical. 0

Proof. (of (2» Take c E PicO(D) generic and write b = a-c. The embedding of
D into JD using b instead of a will be denoted jb. \"Ve will show j;f)' = ga - c which
by specialization implies the desired formula.

For xED to satisfy jb(X) E 8' is equivalent to x + 'Er~i Pi "" ga - c (with ""
denoting linear equivalence). Now ga - c is a generic divisor of degree g, hence by
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Riemann-Roch its divisor class can be written as EI=l Qi in a unique way (in fact, the
gth symmetric power of D is birational to JD). In other words, the possible choices
for {x, {2: Pi}} are just the partitions of {Qi} in two sets with 1 and 9 -1 elements,
respectively. Hence the divisor of these x's is E Qi rv ga - c. 0

Proof. (of (3)) Recall the seesaw principle [14, §5, p. 109-110] (which we only state
in the special case D x D):

If 6 E Pic(D x D) is trivial restricted to all vertical and one horizontal
fibre, then 8 = o.

Apply this to 6 = (j x j)*(s*O - pj(} - p;(}) +Ll- a x D - D x a. This is a symmetric
divisor class, hence it suffices to show 61xxD is trivial. Consider ep = epx : D--+
D x D : y ~ (x,y). Clearly <p*(Ll-a x D-D x a) rv x-O-a = x-a. Furthermore,
PIO(j X j)ocp = j, P2 o(j X j)ocp = constant and so(j x j)oep = Tx-aoj. Hence in Pic(D):

ep*8 = j*r;_a,O - j*O +x-a.

Now for any b E PicO(D) one has

j*r;9 = j*Tbr;,O' (use (1)) = j:b+KD-(2g-1)a.0' =
= ga - (2g - 2)a - b+ KD (from the proof of (2)) = !{D - b - (g - 2)a.

It follows that c.p*8 = (KD - x+a - (g - 2)a) - (KD- (9 - 2)a) +x - a = 0 as required.
o

6 Effectiveness and Generalizations

In what follows, K is a number field. One of Paul Vojta's ideas was to replace
the quadratic part IIxl12+ lIyl12 - 2g(x,y) in Mumford's result by more generally
'xllxll2 +J.llly112 - 2gv(x, y), with >.., p., II suitably chosen, depending on x, y. This leads
to considering an other divisor in C xC, namely

'x(a x C) +J.l(C X a) - v(j X j)*(s*O - pi(} - p;O) rv (A - v)a x C + (JL - v)C x a+vLl.

To obtain a lower bound for this, we need firstly that this divisor class is effective.
Secondly we want that a positive representative of this class does not contain (x, y). In
fact, this second condition can be weakened to "does not contain (x, y) with very high
multiplicity". Since one wants to choose ,x, J.l, v and hence the divisor class depending
on (x,y), this is a problem. Vojta, Faltings and Bombieri each showed us a different
way to cope with this difficulty, and the final result is

6.1 Fact. Thereexistsc' > 1 such thatforx,y E C(K) with Jlxll ~ c' and IIyll/llxll ~
c' one has

3
(x,y) ~ 41Ixll·llyll.

Note that this easily implies Mordell's conjecture.
It should be remarked that both c and c' can be chosen independent of the field

K. They only depend on the curve C, on the divisor a and on chosen embeddings
of C and of C x C into projective space, using fixed very ample divisors N a and
M 1(a x C) + M 2 (C x a), respectively. This information yields a radius p, an angle
0: > 0 and a number n, such that for any number field L 2 K the points in C(L)
can be described as follows: there are the ones within the ball B(O, p), plus each cone
with angle 0: contains outside this ball at most n other points.



Chapter VII

Ample Line Bundles and
Intersection Theory

by Johan de Jong

1 Introduction

This chapter gives an overview of the results from intersection theory we need for the
proof of Faltings's theorem. Meanwhile we will try to give a coherent account of (this
part of) intersection theory and we will try to show what a beautiful theory it is.
We would like to stress here, that it should be possible for anyone with some basic
knowledge of (algebraic) geometry to prove all the results mentioned in this chapter
after reading the first 40 pages of Hartshorne's Lecture Notes [28J.

2 Coherent Sheaves, etc.

X will always denote a projective variety over the algebraically closed field k. An
affine open subvariety of X is an open U C X such that U is isomorphic as a variety
to a closed subvariety Z C Af for some N.

2.1 Example. If X is a closed subvariety of some pn with homogeneous coordinates
To, . .. ,Tn then for any non-zero homogeneous polynomial P(To, . .. ,Tn) the set

{(to: ... : tn ) E X(k) IP(to, . .. , tn) # O}

is an affine open subvariety of X. o

The affine open subsets form a basis for the topology on X and hence a sheaf on X
is determined by the sets of sections over the affine open U eX. The structure sheaf
ox of X is determined by the rule

Ox(U) := r(u, Ox) = f(U, Ou) = k[Tt , . .. , TN]/ I

if U c X is isomorphic to the affine variety determined by the (prime) ideal I C
k[Tt, ... ,TN].

The other sheaves occurring in this chapter will always be sheaves of Ox-modules,
that is, they will be sheaves of abelian groups :F on X endowed with a multiplication
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Ox X F ~ F such that for each open U C X, F(U) becomes a module over Ox(U).
A sheaf of Ox-modules F is said to be generated by global sections if there exists a
family of sections (Si)iEI, Si E r(x, F) such that the map of sheaves

is surjective (i.e., any local section of F should be locally a finite linear combination
of the Si)'

A coherent sheaf of Ox-modules is a sheaf F such that

- for each open affine U C X, F(U) is a finitely generated Ox(U)-module,

- if U eVe X are open affine then F(U) = F(V) ®Ox(V) Ox(U)

The fundamental theorem on sheaves/coherent sheaves is

2.2 Theorem. For any sheaf F on X, Hi(X, F) = 0 for all i > dimX. If F is
coherent, then Hi(X, F) is a finite dimensional k-vector space for all i.

This theorem allows us to define the Euler-Poincare characteristic of F:
00

x(F) = E(-l)idiffikHi(X,F).
i=O

Using the long exact cohomology sequence, we see that for an exact sequence of
coherent sheaves 0 --+ F1 --+ F2 --+ F3 --+ 0 we have X(F2) = x(.ri) + X(F3 ).

2.3 Examples.

(a) Ideal sheaves. An ideal sheaf is a subsheaf I C (') such that for each U C X
open, I(U) is an ideal of Ox(U). It is coherent, since for each open affine U C X the
ring Ox(U) is a Noetherian ring.

An ideal sheaf I determines a closed subset Z of X

Z = {x E X Ifor all x E U C X and f E I(U): f(x) = O}

and it determines a sheaf of rings Oz = Ox/I. The pair (Z,Oz) is (what we will
call) a closed subscheme of X. It is usually denoted by Z.

A closed subvariety is a closed subscheme (Z, Oz) such that the sheaf of algebras
Oz is without zero divisors.

Example: X = Ai, f(X,Ox) = k[t]:) 1= (tn). In this case we get (Zn,OZn) with
Zn = {O} and r(X, OZn) = k[t]/{tn). Hence Zn =I Zn' unless n =n', and only Zl is a
closed subvariety.

If F is a coherent sheaf on X then we can construct an ideal sheaf I as follows:

I(U) = {f E Ox(U) Imultiplication by f: Flu ~ Flu is the zero map}

The closed subscheme Z associated to this is called the support of F: Z := supp(F).

Example: The support of Oz is (Z,Oz).

(b) Line bundles. A line bundle or invertible sheaf is a coherent sheaf £ on X such
that each point x E X has an affine neighborhood U C )( such that £(U) ~ Ox(U)
as Ox(U)-modules, i.e., £Iu ~ Oxlu.



VII. AMPLE LINE BUNDLES AND INTERSECTION THEORY 71

If we have two line bundles £1 and £2 then we can form the tensor product
£1 00x £2. It is again a line bundle. Using the tensor product for multiplication,
the set of line bundles up to isomorphism becomes an abelian group with identity
Ox and inverse £-1 = HomoX (£' OX). This group is denoted by Pic(X), it is the
Picard group of X. For morphisms f: X --+- Y there is a pullback f*: Pic(Y) --+- Pic(X)
defined as follows: if the line bundle [, on Y is trivial on the open sets Ui which
cover Y and if its transition functions are fi,j E r(Ui n Uj,Oy) then f* £ is the line
bundle on X which is trivial on the open sets I-lUi and has transition functions
fi,jO f E r(f-l (Ui nUj), Ox), The pullback is a homomorphism of abelian groups. 0

3 Ample and Very Ample Line Bundles

Recall that a line bundle [, on X is said to be very ample if it is generated by global
sections and for a basis so, ... , Sn of r(X, £) the map <Pso,..•,Sn: X --+- lP~ is a closed
immersion. The line bundle £ is said to be ample if there exist N E N such that
£fl;N := [, ® ... 0 £ (N factors £) is very ample. A cohomological criterion for being
ample is the following.

3.1 Theorem (Serre-Grothendieck). For aline bundle £ on X the following are
equivalent:

1. [, is ample,

2. for every coherent sheaf F on X we have Hi(X,F Q9 £~n) = 0 for all i > 0,
n~O,

3. for every coherent sheaf F on X, the sheaf F @ £,fi)n is generated by global
sections for n ~ o.

3.2 Corollary. Let f: X --t Y be a finite morphism of projective varieties and £, a
line bundle on Y. If £, is ample then f*£' is ample on X. If f is surjective and j*£
is ample then £ is ample.

The proof uses the theorem above and comparison of cohomology of sheaves on X
and on Y.

3.3 Corollary. For any line bundle £, on X there exist very ample line bundles £1
and {,2 such that £, ~ {,1 ® {,21.

Proof. Suppose M is very ample on X. For some n E N the line bundle £, 0 M®n

is generated by global sections. It is easy to see that [,1 = £, 0 M®n @ M and
£2 = M®(n+l) are very ample (and £ ~ £1 @ £"21). 0

4 Intersection Numbers

Let F be a coherent sheaf on X and let £1, ... ,£t be line bundles on X.

4.1 Proposition. The function (n1' . .. ,nt) H- X(£fn1 0· .. (g)£fnt @F) is a numerical
polynomial of total degree at most dim(supp(F)).
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Proof. We prove the proposition by induction on dim(suppF). If dim(suppF) = 0
then we have £fn1 ~ •••~£rnt@F ~ F since each £i is trivial in a neighborhood of the
support of :F. Further, Hi(X, F) =0 unless i =0 since F is supported in dimension
zero. Hence our function is constant and equal to x(F) = dimk HO(X, oF). For the
induction step, by Cor. 3.3 above, we may assume that each £i is very ample. Hence
we can choose a section s E f(X, £i) whose zero set is "transversal" to supp(F), i.e.,
such that dim«s = 0) n supp(F)) < dim(suppF). Thus we see that the kernel and
cokernel of multiplication by s:

are sheaves with lower dimensional support. Hence for all i we have that

X(.c?n10 · · · ® .c~(ni+1) ® . · . 0.c?nt 0 F) - X(.c?n1 0 · · · 0.c?nt ® F)

is a polynomial in n1,' .. , nt of total degree at most dim(suppF) - 1. From this the
result follows. 0

4.2 Definition. If (Z, Oz) is a closed subscheme of dimension d and £1,." ,£d are
line bundles then we define (£1 · .... .cd . Z), the intersection number of Z with
£1, ... ,.cd, to be the coefficient of n1 . · . nd in the polynomial X(.c?n1 0· . .®£~nd00z).
o

4.3 Remarks.

(a) The intersection number is an integer (any numerical polynomial f of degree
~ d in n1,' .. ,nd can be written uniquely as a Z-linear combination of the functions
(~~) ..... (~:) with ki ~ 0 for all i and Li ki $ d).

(b) It is additive:

eel 0.c~ ..... .cd .Z) = (£1 ... · . .cd . Z) + (£~ · .... [,d . Z)

and symmetric: the intersection number is independent of the order of [,1, ... , .cd.
(c) Suppose that the irreducible components Zi of Z with dim Zi = dim Z have generic
points Zl,"" Zk. Then the rings OZ,Zi (= localisation of Oz at Zi) are zero dimensional
and of finite length. The multiplicity of Zi in Z is defined as mzi,Z = length of OZ,Zi'
One can show that

k

(£1 ..... .cd . Z) =E mzi,Z . (£1 .. · .. L,d . Zi)
i=l

This one proves by showing that Oz has a filtration by coherent sheaves

Oz = :Fo :J :F1 :> · .. :) :Fi

with I = Lf=l mzi,Z, such that for all j with 0 ~ j < I there exists i in {I, ... ,k} and
morphisms

Fj / Fj+1 ---+ gj ~ Hj ----+ OZi

with kernel and cokernel supported in dimension smaller than d.



VII. AMPLE LINE BUNDLES AND INTERSECTION THEORY 73

(d) The proof of the proposition above also gives a method for computing (£1 .....
Ld . Z). Suppose the section s E r(X, .cd) is such that

is injective. In this case the quotient sheaf 0 Z / sOz is the structure sheaf of a closed
subscheme which we will denote by Z n Hd, where Hd = {x E X Is(x) = OJ, and we
get

(£1 ..... £d . Z) = (£1 ..... £d-l . (Hd n Z))

Remarks. (1) Hd is a divisor representing £d, i.e., such that L,d = O(Hd)

(2) If £ is very ample, then (*) is injective for general s.

Repeating this, we get that (£1 ..... .cd . Z) is equal to the number of points in the
intersection HI n ... n Hd n Z counted with multiplicities, if the divisors HI, . .. ,Hd

are chosen general enough:

(£I·····£d·Z)= E ep(H1 , ••• ,Hd;Z)
PeHln...nHdnZ

By the proof of the proposition above, the local multiplicity of HI n ... n Hd n Z at
Pis:

ep(H1 , ••• , Hd ; Z) = dimk Ox,p/ (Iz,p + flOx,p +... + fdOx,p)

here 11, ·.. ,fd are local equations defining HI, . · · , Hd.
(e) The number (£d. Z) := (£ ..... £. Z) (d factors £) can also be computed by the
rule:

X(£®n Q9 Oz) = (£d . Z)(d!)-l . nd+ lower order terms

If .c is ample we will call (£d. Z) the degree of Z with respect to £ and write deg.c Z
for it.

Suppose now that X = pn and Z C pn is an irreducible subvariety of dimension
d > O. By remark (d):

dego(1) Z = # «general n-d-plane) n Z) = deg Z,

the classical definition of the degree of Z. Using the fact that any hyperplane in
pn intersects Z non-trivially and induction on d we see that we always have that
deg Z > o. This more or less proves one direction of the following theorem.

4.3.1 Theorem (Nakai criterion). A line bundle .c on X is ample if and only if
for every closed subvariety Z C X we have (£d . Z) > o.

(f) The behavior of the degree under a finite morphism f: X ~ Y is the following:

degf*c Z = deg(f: Z ~ f(Z)) . degc feZ)

Here Z c X is a closed subvariety and £ is an ample line bundle on Y.
Sketch of proof and explanation of deg(f: Z ~ f(Z)). The image f(Z) of Z
under f is again a closed subvariety. The map f defines an inclusion f*: k(f(Z)) ~
k(Z) of function fields and this is a finite field extension. Put n := deg(f: Z ~

feZ)) := [k(Z) : k(f(Z))]. If this field extension is separable, then generically for p E
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f(Z) we have f-l(p) = {Ql,'" ,Qn} C Z. Hence, if Htn·· ·nHdnf(Z) = {PI, ... ,Pm}
then f* H t n ... n f* Hd n Z = {qll"'.' qln, ... ,qml, ... , qmn}. The result follows. 0

(g) Suppose that k = C and that X is smooth. Then X(C) also has the structure of
a complex manifold, which we will denote by X an • A line bundle £ on X gives rise to
a line bundle £,&n on X an which is determined by an element of HI (X&n, O:n). The
exponential sequence:

o-? 21t'iZ --+ Oan~ O:n --+ 0

gives us the first Chern class Ct(.C) E H2(Xan , Z). On the other hand, an irreducible
subvariety Z C X will give rise to an analytic subvariety zan C xan. After trian
gulizing it, we see that it gives rise to a class [Z] = [zan] E H2d(Xan , Z). For a general
closed subscheme Z we put

[Z]:= l:mzi,z' [Zi] E H2d(Xan,Z)
i

The connection between intersection numbers and cup product in cohomology is now:

where ( , ): H2d(xan, Z) x H2d(Xan,Z) -? Z is the canonical pairing.

5 Numerical Equivalence and Ample Line Bundles

o

We write F1 (X) = {L: niCi I Ci C X is a closed subvariety of dimension I} for the
free abelian group generated by the set of all curves in X. By abuse of language we
call an element of F1(X) a curve on X. A curve L: niCi is effective if ni 2:: 0 for all i.
Our intersection number gives us a bilinear pairing

Pic(X) x F1(X) -? Z

We say that two curves CI, C2 (resp. line bundles £1, £2) are numerically equivalent
if (£ . Ct ) = (£ . C2 ) for all {, E Pic(X) (resp. (£1 . C) = (£2 . C) for all C E F1(X)).
Notation: Ct == C2 (resp. £1 == £2).

5.1 Definition. A1(X) := (Pic(X)/=) ®z R and At(X) := (F1(X)/=) ®z R. (By
definition the intersection number gives a non-degenerate pairing between these two
R-vector spaces.) 0

5.2 Remark. If k = C and X is smooth then by Remark 4.3(g) we know that the
intersection products (£. C) only depend on the first Chern class c}(£) E H 2(Xan

, Z).
Hence we conclude that Al(X) is a suhquotient of H2(xan, lR) (it is actually a sub
space!). This proves the following general theorem in this special case. 0

5.3 Theorem. A 1(X) is finite dimensional.

In general one reduces to the case where X is a smooth surface and then the theorem
is a consequence of the Mordell-Wei! theorem for abelian varieties over function fields.
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5.4 Remark. If £1 == £~ then (£1'£2·" ··£d· Z ) = (£~ ·£2··· ··£d·Z) always. Hence,
by the Nakai criterion, whether or not £ is ample depends only on the numerical
equivalence class of £; i.e., it depends only on the point in A1(X) determined by [,.
o

A subset S of a nt-vector space V is called a cone if for all x, y in S and for all
real numbers a > 0 and b > 0, one has ax + by E S. Let At(X) c Al(X) be the
cone generated by the classes of effective curves. We know that if [, is ample then
(£ . C) > 0 for all C E At(X). Hence the cone po (the ample cone) spanned by the
classes of ample line bundles is contained in the pseudo-ample cone

We will have to use the following basic theorem once:

5.5 Theorem. po is the interior of P. (The ample cone is the interior of the pseudo
ample cone.)

6 Lemmas to be used in the Proof of Thm. I of Faltings

Suppose X is an abelian variety over k and [, is an ample line bundle on X. We
denote by [n] the morphism given by multiplication by n on X: [n]: X --+ X, x~ nx.

6.1 Lemma. [n]*£ == [,@n
2

•

Proof. (for k = C) We can write X an = C9 / Land L ~ Z29. The induced map
[n]*:H2(xan,z) --+ H 2(xan,Z) is equal to multiplication by n2, as is seen from the
identification H2(Xan ,Z) ~ 1\2 Hl(Xan,Z) ~ 1\2 L*. 0

Suppose we have a product situation X = Xl X X 2 • Let us denote by PI: X --+ Xl the
projection onto Xl. Further, we assume given line bundles £1, ... ,£k on Xl and line
bundles £k+l, ... ,L,d on X. Finally, Z C X is a closed subvariety of dimension d.

6.2 Lemma. If dimpl(Z) < k then (Pi(£l) ..... p~(£k) . L,k+1 ..... Ld . Z) = o.

Proof. By linearity of the intersection product and of pi we may assume £1, ... ,Lk
are very ample. By our assumption we can find divisors HI, . .. ,Hk (divisors of sec
tions of £1, ... ,£k) such that HI n ... n Hk nPI (Z) = 0 (recall that dim PI (Z) < k).
Hence also piHl n··· npiHk n Z = 0. This implies by Remark 4.3(d) that

(pi(.e l )·· ... £d· Z) = (£k+l ..... £d· (P~HIn· .. npiHk n Z)) = (£k+l ..... £d· 0) = 0

o

Put P := pn1 X ••. X pnm
• On it we have the line bundles L,i := pr;(Ollni (1)).
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6.3 Exercises.

(a) Sections F E r(P, £,fd1 @ ... @ £~dm) correspond with multihomogeneous poly
nomials of multidegree (dt , ... , dm ).

(b) Pic(P) = Z[£1] $ ... $ Z[£m] and AI(P) = Rm (same basis). The pseudo
ample cone is {(Xt, ... ,xm ) E lRm I Yi:Xi ~ OJ, the ample cone is {(Xl""'Xm ) E
Rm IVi: Xi > O}. If Z c P is an irreducible subvariety, then we get degrees indexed
by et, ... , em with l: ei = dim(Z): the numbers (£~l .£22 •••• • £:nm ·Z). These numbers
are ~ 0; use induction on dim Z and the fact that one can always find a section in £i
"transversal" to Z. 0

6.4 Lemma. (Prop. 2.3 of [22].) Suppose X C P is a closed subscheme which is an
intersection of hypersurfaces of multidegree (d1 , ••• , dm ). If the Xi are lrreducible
c~mponents of X with multiplicities mi, and of the same codimension t, then

Emj(£;l ..... £:nm . Xi) $ (£~l ..... £,:: · (.c~dl 0··· 0 £~dm)t. p)

Proof. The difficult point in this lemma is the fact that the X j do not need to be the
irreducible components of X of the maximal dimension. The proof is by induction on t
(t = 0 is trivial). First we choose t polynomials FI , ... , Ft of multidegree (dl , ... , dm )

in the ideal of X, such that each Xj is an irreducible component of their set of common
zeros. (Having chosen F1 , ••• , Fk one simply chooses for Fk+1 a polynomial which is
non-zero on all the components of V(F1 ) n ... n V(Fk ) which contain an X j .) Then
we might as well replace X by the closed subscheme defined by F1 , ••• , Ft (this will
only make the mj bigger) and enlarge the set of X j to include all the components of
X of codimension t.

Let us denote by Y the closed subscheme defined by FI , •• • , Ft - 1 and by }i the
components of Y of codimension t-I containing some Xi' The multiplicity of }i in
Y is ni. By our choice of Ft we have: the irreducible components of (Ft = 0) n}i are
the X j say with multiplicities kii . The formula mj = Li kijni is a consequence of the
fact that the sequence PI, ... , Ft is a regular sequence in the local ring OP,Xj (Xj E Xi
a generic point). Hence we get:

"'m-(£e1 ••••• £em • X.)
~ JIm J

i i,j

~ (induction) ~ (£~1 ..... £:nm • r, . r,t-l · P)

o



Chapter VIII

The Product Theorem

by Marius van cler Put

1 Differential Operators and Index

In this chapter, k will be a field of characteristic zero.

1.1 Definition. A vector field on a variety X over k is a k-linear derivation D of
the sheaf Ox, i.e., D: Ox ~ Ox is k-linear and for all open subsets U C X and all
j,9 E Ox(U) one has:

D(fg) = D(f)g + fD(g)

In other words, a vector field on X is a global section of the sheaf HomoX(n~/k'Ox)
(see [27], 11.8). 0

1.2 Definition. Let r 2 o. A differential operator on X of degree ~ r is a k-linear
endomorphism L of the sheaf Ox such that every x E X has an open neighborhood
U on which L can be written as a sum of expressions f DI • • • Ds (s ~ r), where each
D i is a vector field on U and f E Ox(U). (The factor f can be omitted for s > 0.)
o

1.3 Remark. This definition is not the same as the one in [25], IV, §16.8, but one
can show that the two definitions are equivalent (note that k has characteristic zero).
o

1.4 Example. Let X = pn with homogeneous coordinates Xo, ... , Xn . Let E be any
k-derivation of k(xo, . .. ,xn ) such that E(Xi) is homogeneous linear for all i. Then E
induces a vector field D on pn where D = the restriction of E to k(XI/XO' ... , xn/xo).
Indeed D(Xifxj) = E(Xifxj) = (XjE(Xi) - xiE(xj)) fx~ E k[xofxj, ... ,xnfxj]. A
calculation shows that every vector field on pn is obtained in this way. In affine
coordinates Yl == Xl fxc, ... ,Yn = X n/ Xo the vector field D has the form:

nan a
~)degree ~ 1)~ + (degree ~ 1)LYi~
i=l y~ i=l y~

o

1.5 Example. Let m ~ 1. Define P = pni X ••• X pnm and let x.(i) denote the
homogeneous coordinates of pn i

• Let R = k[x.(l), ... ,x.(m)] be the (multi-)graded
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ring of P. As in the previous example one can show that any vector field D on l' is
induced by a k-derivation E of R which respects the multigrading, i.e., E(x. (i)) is a
k-linear combination of the elements x.(i) and

D (X.(i)) = xo(i)E(x.(i)) - x.(i)E(xo(i))
xo(i) xo(i)2

A calculation shows that every differential operator L on P can globally be written
as a polynomial in global vector fields; it follows that L acts on R and respects the
multi-grading. 0

Let m ~ 1, Xl, ... , X m varieties over k and X := Xl X ••• X Xm • Any vector
field D on X can be written uniquely as D = L:~1 Di , where Di is a vector field
on X in the direction of the i-th factor, i.e., the image of Di under the projection
prj¢i: X -+ nj¢i X j is zero (note that n:k/k = EBipriOki/k).

1.6 Definition. A differential operator L on X is of multi-degree ~ (rI, ... , Tm ) if,
locally, it can be written as a sum of expressions f DI .• • Ds ' where the Di are vector
fields in the directions of the factors of X and for all j the number of Di in the jth
direction is at most r j . 0

Let dI , ... ,dm be positive integers and let f # 0 be a section of a line bundle £, on
X. In the following definition these di will be used to define a kind of weighted total
degree for differential operators on X: the weighted degree of a vector field in the ith
direction will be 1/di .

1.7 Definition. A differential operator L on X is of weighted degree $ r (or < r) if,
locally, it is a sum of differential operators of some multi-degree ~ (rI, ... ,Tm ) with
ri/dl +... +Tm/dm ~ r (resp. < r). 0

1.8 Definition. Let x E X and s a generator of the stalk £'X of £, at x. Then f = gs
in .ex for a unique 9 E OX,x. We define the index i(x, f) of f at x, with respect to
the weights d1 , •.• , dm , to be (j E Q~o with (j maximal for the property:

(L (g) )(x) = 0 for every differential operator L defined on some neighbor
hood of x and of weighted degree < (j.

(This property of (j and 9 is easily seen to be independent of the choice of s.) 0

Note that in this definition x is not necessarily a closed point of X. For x any point of
X and 9 any element of OX,x we define the value g(x) E k(x) of 9 at x by g(x) := i;g,
where ix:Spec(k(x)) -+ X is the inclusion.

1.9 Example. Let Xi = Al for all i, £, = Ox, x = 0 and

Then

f= "" a' . xi] •.. x im
L...J t}, ...,tm 1 m

(i1, ... ,im )

o
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1.10 Definition. In the situation of Def. 1.8, let (f E lR. The closed subscheme Zq
of X on which the index of f is at least (f is defined by the sheaf of ideals in Ox
generated locally by the L(g), where L is a differential operator of weighted degree
< (J' and f =98 with s a local generator of .L. 0

1.11 Example. Let P be as above, let el, ... , em be non-negative integers and let
.£ be the line bundle O(el, ... , em). We have already seen that global differential
operators on P act on r(p, O( et, ... , em)) and that the sheaf of differential operators
of multi-degree ~ (il"'" im) is generated by its global sections. It follows that Zq
is defined by the homogeneous ideal of R generated by the £(f), where L is of multi
degree ~ (it, ... ,jm) with jl/dt + ... + im/dm < u. Note that all L(f) are global
sections of O(el," . ,em), 0

2 The Product Theorem

2.1 Theorem. Suppose that k is algebraically closed. Let m, nt, ... ,nm be positive
integers. Let P := pn1 X ••• X lPmm . For every € > 0 there exists T E lR such that if:

1. dt , .•. , dm are positive integers satisfying dt /d2 ~ T, ••• , dm - 1/dm ~ T,

2. f E f(P, O(dt , ... ,dm )) is non-zero, and

3. for some 0", Z is an irreducible component of Zq and of Zq+e (here the index of
f is taken with respect to the weights dt , ... ,dm )

then:

(i) Z is a product of closed subvarieties Zi ofpn i
, i.e., Z = Zt x··· X Zm,

(ii) the degrees deg(Zi) are bounded in terms of € and nt +... + nm only.

Proof. Let pri: P ~ pni be the ith projection. Let Zi := priZ and fi := dimZi.
Then Zi is irreducible and closed in pni and of course Z is contained in Zt x ... X Zm.
We have Z = Zl X ••. X Zm if and only if L: Ii = dim Z. Let £'i be the line bundle
priO(1) on P and consider the intersection numbers .c~1 . ·... £:nm • Z for mtuples
(eb·" ,em) of non-negative integers with E ei = dimZ (see Chapter VII).

We claim that L: Ii = dim Z if and only if there exists only one such mtuple
(et, ... ,em) with £~l ..... £:n,m •Z > O. Namely, if E fi =dim Z and ei > Ii for some
i, then .c~l .... ..c:;a .Z = 0 because there exist ei hyperplanes in pni whose common
intersection with Zi is empty (see Chapter VII, Lemma 6.2). Suppose now that
E Ii > dim Z. There exist 11 hyperplanes in pn t such that their common intersection
with Zl is a non-empty set of dimension zero. It follows that there exist el," . , em
with el = 11 and .c~l ..... £~m . Z -# O. For some i we must have ei < fie But in the

same way we show the existence of e~, ... ,e~ with e~ = Ii and .c~~ ..... ..c~~ . Z =1= O.
For what follows we need a lower bound for the multiplicity mZ,Za of Z in Zq.

Recall (Chapter VII, §4) that mZ,Za is by definition the length of the local ring OZa,'1'

where 'TJ is the generic point of Z. The lower bound for mZ,Za we want is a consequence
of the assumption that Z is an irreducible component of both Zq and Zq+(.

First some notation. Let pr>i: P ~ nj>i pnj and pr>i: P ~ fIj>i pnj denote the
projections. Let 8i := dim(pr~iZ)- dim(pr~~Z); hence 61 +... + 8m = dimZ. Let ~
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be the fiber of (pr>i Z -+ pr>iZ) over pr>i11, let "Ii := pr>i11 be the generic point of F;
and let ki := k(TJi)~ Then J=i is a closed subvariety of pnk~ of dimension 6i.

*+1

2.2 Lemma. With the notations as above, suppose that d1 2:: ... 2:: dm , then we
have:

m
mZ,Zq ~ (f/codim(Z))COdim(Z) II dii - Oi

i=1

Proof. We want to get ti,i (1 :5 i :5 m and 1 :5 j :5 ni) in OP,TJ' such that:
(i) the dti,i form a basis of the free Op,TJ-module n~/k'TJ'

(ii) the ti,i with j > 6i form a system of parameters of the regular local ring OP,TJ
of dimension codim(Z),

(iii) the images in nk/k,TJ of the dti,j with j $ bi form a basis of that free OZ,71-module,
(iv) each ti,i is a pullback via pr>i' i.e., ti,j is constant in the first i-I directions.

Such a system ti,j can be gotten inductively, starting with i = m. Let 1 :5 i :5 m and
suppose that we have already chosen the tl,i with I > i. Take Sj E O:Fi,TJi' 1 :5 j :5 6i ,

such that the dS j form a OFi,TJi-basis of O}-i/ki+l'11i. Let Sj, 6i < j :5 ni, be a system of
parameters of the regular local ring O,ni TJ'. Put ti,i := pr;! Sj.

ki+1' I -

Let the k-derivations 8i ,j: Op,'1 ~ Op,l1 be the dual basis of the basis dti,j of n~/k'1J.

From the last property of the ti,i it follows that each 8i ,j is a linear combination of
vector fields in the directions of the Ith factors, with 1 :5 i (the "$" is explained by
the passage to the dual basis). It follows that 8i ,j is of weighted degree :5 1/di , since
we suppose that d1 ~ •• • ~ dm. From now on we only consider Oi,j with j > 6i . The
number of those is codim(Z).

Let ler C Op and I er+f C Op be the ideal sheaves of Zer and Zer+f' respectively.
By construction, we have LIer C I er+f C Iz for all differential operators L of weighted
degree ~ e. In particular, this holds for all L = ni,) 8~j,j with ai,j ~ edi/codim(Z).
Let ai be the largest integer, less than or equal to €di / codim(Z). It follows that the
ideal IZq ,1] of Op,l1 is contained in the ideal generated by the ttj+l (1 :5 i :5 m, j > Ci).
Hence:

m m

length(Oza,Tl) ~ II(O:i + 1)ni -6i ~ (f/codim(Z))codim(Z) II df i -
6i

i=1 i=l

o

Let (el,.'.' em) be an mtuple of non-negative integers with Li ei = dim Z == L Ci.
According to Prop. 2.3 of [22] (see Lemma 6.4 of Chapter VII) and the lemma above,
one has

(.C~l ..... £~ . Z) < _1_£~1 ..... £:nm • (d1£1 +... + dm£m)codim(Z)
mZ,Zq

:::; (codim(Z)/e)COdim(Z) II df;-n i ~orm~Z)~, II <f/,-e,
i I n l e~. i

m

< c(f, codim(Z)) II dfi -ei

i=l

with c(e,t) == (t/f)ttL For 1 :5 i :5 m let TJi := E';::i(<5j - ej). Then TIl = 0 and

n~l dfi-ei = n~2(di/di-l)l1i.
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Suppose now that .c~l .. ·.. .c~ .z =1= o. Then for 1 ~ i ~ m one has:

ei +... +em :5 dim(pr~iZ) = 8i +... +8m

It follows that 'TJi 2:: 0 for all i. Finally suppose that

di /di+l ~ r > max(c(t,codim(Z)),I)

Let 'TJ := 1]2 +... + "1m· Then we have:

1 ~ .c~l ..... .c:nm • z ~ c(e, codim(Z))r- l1

81

So we find that TJ = o. It follows that ei = Si for all i, so by the argument at the
beginning of the proof one has Z = Zl X ••• X Zm and dim(Zi) = bi for all i.

To prove the second part of the theorem, note that

deg(Zt) ..... deg(Zm) = .efl ..... .e~ .z :5 c(f, codim(Z))

It follows that deg(Zi) ~ c(t, codim(Z)) for all i. D

2.3 Remark. The Product theorem will be used in the following way. Let N be an
integer greater than dim(P). Suppose that f has index at least (j at a point x. Then
there exists a chain P f:. Zl :) Z2 :> · .. :> ZN :3 x, with Zi an irreducible component
of Zif7/N. It follows that for some i one has Zi = Zi+l. Then one applies the Product
theorem with f = (j/N. 0

2.4 Remark. Suppose that (with the terminology of the Product theorem) f is de
fined over some subfield ko of k. Then Zf7 and Zf7+t. are also defined over ko. Let
d be the number of conjugates of Z under the Galois group of k over ko. Apply
ing Prop. 2.3 of [22] (see Lemma 6.4 of Chapter VII) to these conjugates of Zone
finds d :5 c( €, codim(Z)). It follows that Z is defined over an extension k1 of ko with
[k1 : ko]~ c(f,codim(Z)). 0

3 From the Product Theorem to Roth's Lemma

This section will not be used in the rest of the book, but is included to show, following
Vojta in [81], §18, how one derives Roth's lemma from the following arithmetic version
of the Product theorem (Thm. 3.3 of [22]).

Let f, f, r, d1, .•• , dm and Z be as in the Product Theorem. Suppose that f
and Z are defined over Q and choose an affine product Ant X ••• X Anrn C P such
that Z n Ant X •.. X A'n,rn i= 0. On Anl x ... x Anrn we represent f by a non-
zero F E Z[y.(l), ... , y.(m)]. Let log IF\ := log(max Icoeflicients of FI) denote the
logarithmic height of F. Then one has:

1) Z = Zl X .•. X Zm

2) deg(Zi) ~ c(c, codim(Z))
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In this statement h(T) denotes the logarithmic height of a subscheme T of P:. We
will give neither definitions nor proofs. We note that for P, q E Z with gcd(p, q) = 1
the subscheme "pxo + qXl = 0" of pi has logarithmic height log(max Ipl, Iql).

3.1 Lemma (Roth). Let m ~ 1 and € > O. There exist positive numbers T, C2 and
Cl such that if-

(i) d1 , •.. , dm satisfy di / di+1 ~ r for all i,
(ii) ql,'." qm are positive integers such that Vi: qti ~ qt1

, log qi 2: C2,
(iii) PI, ... ,Pm are integers with gcd(pi, qi) = 1,
(iv) F E Z[YI, ... ,Ym], F =F 0, satisfies IFlcl :s; qtl and has, for all i, degree at most

di in Yi,
then index(dll...,dm ) (F, (~, ... , :)) < (m + l)t.

The statement above is, except for minor notational changes, the statement used in
Chapter III.

Proof. We apply the arithmetic version with nl = ... = nm = 1. Suppose that the
index is ~ (m+l)f. Then there exists a decreasing set of irreducible components Z(a)
of Zae (a = 1, ... ,m+l) with

P :> Z(l) :> Z(2) :> ... J Z(m + 1) :;, (PI, ... ,pm)
ql qm

Since dim(P) = m one has Z = Z(a) = Z(a +1) for some a. The arithmetic version
applied to Z yields

Z = Zl x ... X Zm

For some i we must have Zi = {~} and so

di log qi ~ Cl ( f) log IF I+C2 ( f) (d1 +... +dm )

hence

o

1
dl 2log ql ~ el(f) log IFI

Choose Ct(€) = 3et (t) and we find a contradiction.

d1(10gQl - mC2(f)) ~ Cl(f) log IFI
since d1 + ... + dm :s; md1 and d1log ql :s; di log qi. Choose C2(f) = 2mc2(f). Since
log ql ~ C2 one has



Chapter IX

Geometric Part of Faltings's Proof

by Carel Faber

We follow Faltings's [22], §4.

Let k be an algebraically closed field of characteristic zero, A an abelian variety
over k, and X c A an irreducible subvariety which does not contain any translate of
an abelian subvariety B C A of positive dimension.

1 Lemma. For m big enough the map am: X m
--t Am-l defined by Om(Xl' ... , xm ) =

(2X t - X2, 2X2 - X3, • •• ,2xm -t - xm ) is finite.

Proof. We use the following facts:
1. A projective morphism that is quasi-finite (i.e., whose fibres are set-theoretically

finite) is finite. ([27], Ch. III, Exc. 11.2.)
2. Let f: Xl --+ X2 be a morphism of projective varieties. Let £ be a line bundle

on Xl that is ample on the fibres of f. Then the set of degrees of fibres of f, measured
with respect to [, (see Chapter VII, §4), is finite. Sketch of proof: We may assume
that f is surjective. So f is flat on an open subset U of Xl containing the generic
fibre. The image in X2 of the complement of U is a finite union of irreducible closed
subsets of lower dimension, etc. ([27], Ch. III, Exc. 9.4 and Cor. 9.10).

The essential points of the proof are:
1. The equations for the fibre over am-l := (at, ... , am-I) :

{ X2
= 2Xl - at

X3 = 2X2 - a2

X m 2Xm -l - am-l

(to be solved with Xl, X2, • •• ,Xm in X) show that for m ~ n the projection onto the
first n factors pm,n: x m

--t x n induces a closed immersion on fibres a;;;,t (am-t) c...-r

o~l(an_l). In particular, via Pm,}: X m
--t X, we get closed immersions of fibres of am

into X.
2. So the maximum of dimensions of fibres of am exists, and decreases with m,

thus is constant, say equal to d, for m ~ mo.
3. We want to show that d = 0: then the morphism am has finite fibres, and we

are done by Fact 1 above.
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4. So suppose that d > O. Fix an ample line bundle £, on A. By the degree
of a subvariety Z of a fibre of Om we will mean the degree of Pm,lZ in A, with
respect to t. (Note that this is the degree of Z with respect to P~,l£.) For all
m 2: rna we look at the d-dimensional irreducible components of fibres of am. Any
such component is also a component of a fibre of a mo (by 1. above). Apply Fact 2
above with amo:Xmo

--t Amo-l and line bundle P:no,l£' We conclude that for any
m 2:: mo the maximum of degrees of d-dimensional irreducible components of fibres of
am exists, and that it decreases with m. I.e., such degrees are bounded.

5. For m 2:: rna define Ym to be the subset of Am-l above which the fibres of am
have dimension d. Since for such m the maximum dimension of a fibre is d, the subsets
Ym are non-empty and closed ([27], Ch. II, Exc. 3.22d). For m ~ n ~ rno, denote by
qm,n: Am-l ~ An-l the projection onto the first n - 1 factors. Then qm,n(Ym) C Yn .

The subsets qm,mo(Ym) of Ymo are non-empty and closed, and any finite intersection
of them is non-empty. Thus the intersection of all these subsets is non-empty.

6. Pick a point y in this intersection. Among the finitely many d-dimensional
components in the fibre above y, there is at least one that occurs in fibres of am for
infinitely many m; thus (by 1. above) it occurs in fibres of am for all m. Let Z be
such a d-dimensional component, and consider Z as a subset of A. Note that for any
irreducible closed SeA we have the following equivalence:

S contained in a fibre of am

<==}

SeX and for all 0 < r < m there exists a bT E A with 2r S + bT C X.

So for all r > 0 there exists a br E A with 2T Z + bT eX, and this again implies that
2T Z + bT is contained in a fibre of a mo , for all positive r. We conclude (by 4. above)
that the degree of 2T Z (which equals the degree of 2r Z +bT ) is bounded uniformly in
r.

7. Let G c A be the algebraic subgroup such that 9 E G if and only if 9 + Z = Z.
Note that G is closed in A, so the connected component GO of the identity is an
abelian subvariety of A. The product of the £'-degree of 2T Z and the degree of the
map 2T

: Z --+ 2T Z equals the (2T )*£-degree of Z (see Chapter VII, §4). Since (2r )*£
is numerically equivalent to £04r (Chapter VII, §6.1), the (2r )*£-degree of Z equals
(4r )d times the £'-degree of Z. It follows that the degree of the map 2T

: Z --+ 2T Z,
which equals the number of 2r -torsion points in G, grows like 4Td • We conclude that
the dimension of G equals d. By the definition of G we have for any z E Z that
z + G c Z. So Z contains a translate of a d-dimensional abelian variety (in fact
equality holds, and G is an abelian variety).

8. We have shown that am is finite for all m ~ mo. It is easy to show that if
X is a curve, then one can take mo = 2. Finally we remark that the assumption is
necessary: if x +B C X where B C A is an abelian subvariety of positive dimension,
then for all b E B and for all m the point (b + x, 2b + x,4b + x, ... , 2m

- 1 b+ x) is in
the fibre over (x, x, ... ,x) E Am-I, so am has infinite fibres. 0

We continue with [22], §4. Choose a big enough integer m such that the map
Om: X m ~ Am-l is finite, and choose a very ample and symmetric line bundle £
on A, embedding A C pn. In the sequel we will mainly use additive notation for the
tensor product in the Picard group. E.g., on A x A we have the Poincare bundle
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P = add*.c - pri£ - pri£ where add: A x A -+ A denotes the addition. We will also
consider linear combinations of line bundles with rational coefficients, i.e., we identify
a line bundle .c with its image in Pic(·) @ Q; we can do this since we are interested
only in ampleness (see Chapter VII, Remark 5.4).

For €, S1, . .. , Sm positive rational numbers we define on Am the (rational) line
bundle £(- e, SI, ..• , sm) as the rational linear combination

m' m-l

(1.1) £(-e, SI,· .. , 8 m ) = -f . E S; . pri(£) + E (SiX; - Si+l Xi+1)*(£)'
i=1 i=1

Here (SiXi - Si+1Xi+l)*(£) means

-; . (nsixi - nSi+IXi+l)*(£)
n

for any non-zero integer n such that nSi and nSi+l are integers, so that sending
(XI, . .. , xm) in Am to nSiXi - nSi+1Xi+l is a morphism. (It follows from Cor. 3.4 that
this is well-defined.)

This line bundle £(-f, 817 ••• ,sm) is a rational linear combination of £i = pr;(£)
and Pi,j = pri,j(P) (use the Theorem of the Cube, Chapter V, Cor. 3.2):

m-l

(1.2) £(-€, S1, . .. , sm) = (1 - f)S~£l + E (2 - f)S~£i +
i=2

m-l

+(1 - €)S~.cm - E Si8i+lPi ,i+1,
i=1

so for fixed € the coefficients of £i are proportional to s~, and those of Pi,j to Si8j.

2 Lemma. Suppose Y = Yi x ... X Ym is a product subvariety of Am. Then as a
function of the Si the intersection product £(-f, S1, .•. , smylim(Y) • Y is proportional

t nm 2·dim(l'i)
o i=1 Si •

Proof. The intersection number is a linear combination of terms Ili .c~i. lli¢j Pi~jj ·Y,
with coefficients proportional to ni Sii. ni;ej(SiSj)ei,J (see 1.2), and L:i ei +L:i¢j ei,j =
dim(Y). We claim that such a term is zero unless for each i one has 2ei +Lj¢i fi,j ~

2 dim(Yi). To see this, we use the cohomological interpretation of intersection numbers
(Chapter VII, §4, Remark g):

II .c:i
• II Pi~jj·y = (AiCl (.ci)e i

/\ l\i¢j Cl (Pi,j )ei.j, [Y])
i i¢j

(note that the order in the wedge product doesn't matter since the factors are of even
degree). In terms of de Rham cohomology this means:

II£:i. II Pi~~J ·Y = 1 AiCI (£i)ei
/\ Ai-#jCI (Pi,j )"iJ

i ¥j yu

where C1 now denotes the first Chern class in H:5R((Am)An) (to integrate a volume
form on a possibly singular variety like van, choose a finite projection Y --+ pdimY

as in Lemma 5 below and perform the integration on (pdimY)an). Note that for each
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i, Cl(£i)e i = Pi(Cl(£)ei ) is a pullback of a differential form of degree 2ei on li. Now
think of Aan as (;limA modulo a lattice. Then add: AaIl X AaIl --+ Aan is induced by
+: (;limA X ()limA -+- CUmA and C1(£) is represented by a linear combination of terms
dx A dy with x,y in HomB(CUmA,R). The calculation:

add*(dx A dy) - pi(dx A dy) - pi(dx /\ dy) =

= d(XI + X2) A d(Y1 +Y2) - dX1 A dY1 - dX2 /\ dY2

= dX1 A dY2 +dX2 A dY1

where Xi = pix and Yi = piY, shows that C1('Pi,j) is a linear combination of terms
piWi I\pjWj with Wi,Wj in HOR(AaIl). The claim follows.

As Li(2ei + L:i~i ei,j) = Li 2dim(l'i), the intersection number is zero unless 2ei +
Ei~i ei,i = 2 dim(}i) for all i. 0

3 Corollary. There exists a positive EO such that for any E :5 Eo and for any product
variety Y C xm the intersection number £( -E, SI, ... ,Sm)dim(Y) • Y is positive.

Proof. Indeed, for 8i = 2m- i we have that £(0,81' ... ,8m ) is the pull-back by the
finite morphism am of the ample line bundle 4m- 2£1 +4m- 3£2 +···+£m-1, hence
it is ample on Xm (see Chapter VII, Cor. 3.2). Hence for these Si and for small E

the bundle £( -E, 81, ... ,8m ) is ample, since the ample cone is open (see Chapter VII,
Thro.4.3.1). It follows that the implied constant in Lemma 2 (depending on E and
Y) is positive for small f and arbitrary Y, showing that the intersection number
£(-f, 81, ... ,smyiim(Y) . Y is positive for small €, arbitrary Y and arbitrary (positive)
Sl, .•• ,Sm. 0

The main result of this section can now be formulated.

4 Theorem. Let A be an abelian variety over an algebraically closed field k of char
acteristic zero. Let X C A be an irreducible subvariety which does not contain any
translate of a positive dimensional abelian subvariety of A. Take m big enough as
in Lemma 1 and let £, be a symmetric ample line bundle on A. For f, SI, ... , Sm

positive rational numbers let £(-f, S1, . .. , sm) be the element of Pic(Am) 0 Q given
by 1.1. Take to as in Cor. 3. For any f < to there exists an integer 8, such that
.c(-f, S1, . .. , sm) is ample on X m if SI/82 ~ s, S2/83 ~ S, ••• , Sm-I/8 m ~ s.

Before proving this result, we need some information concerning projections. Let
L c pn be a linear subvariety of dimension m. After a suitable choice of homogeneous
coordinates Xo, ... , X n , one can assume that L = V(Xm+l' •• • , x n ). Then L gives rise
to a projection morphism 7r:]pm - L --+ pn-m-1, sending (ao:··· :an ) to (am+1:··· :an ).

Let (am+l:···:an ) E pn-m-1, then the map Am+l --+ pn sending (ao, ... ,am ) to
(ao:··· :an ) is an isomorphism between Am+1 and 1I"-1(am+1:··· :an ); hence the fibres
of 1r are affine. Suppose now that X C pn is an irreducible subvariety of dimension
d, such that X n L = 0. Then 71": X ~ 1rX is finite (since it is projective and its fibres
are affine), and deg(X) = deg(1r:X ~ 1rX)·deg(7rX) (see Chapter VII, §4).

5 Lemma. Let X C pn be an irreducible subvariety of dimension d. There exists a fi
nite projection 11'": X ---4 pd of degree deg(X) and a global section s =f 0 in r(pn, O(N»
for some N ~ (n-d) deg(X), such that the ideal sheaf ofV(s) annihilates n~/pd. Es-

pecially,1r is etale on X - (X nV(s »). Moreover, Norm1l"(slx) in r(pd, O(N deg(X)))
defines a hypersurface whose ideal sheaf annihilates n~'Ipd.
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Proof. Let Lo C pn be a linear subvariety of codimension d+2, such that LonX = 0.
This gives a projection 1l'0: pn - Lo --+ pd+l and 1foX C pd+l is a hypersurface of degree
~ deg(X). It follows that X C 1fol7rOX = V(F) with F an irreducible homogeneous
polynomial of degree ~ deg(X). Let Xo, ••• , X n be homogeneous coordinates on pn

such that 8Fj8xn :/; 0 and P := (0:··· :0:1) ¢ V(F). Let 1fl: pn - {P} --+ pn-l be
the projection given by P. A computation shows that the ideal sheaf of V(8Fjoxn )

is the annihilator of n~(F)/pn-l. By induction we can assume that the lemma has

been proved for 1l"l X C pn-l; let 11'"2: 1r1X --+ pd and Sl E r(pn-l, O(N1)) be as
required. Then 1l' := 1l"201fl and s := (8Fj8xn)1l'isl satisfy our requirements. For the
construction, definition and properties of Nornl,r(slx) see [25], II, §6.5. Note that in
our case 1r is not necessarily finite locally free. 0

We will also need the following lemma, the proof of which was communicated to me
by Edixhoven.

6 Lemma. Let X be a projective variety, let D be an ample effective Cartier divisor
on X and let M be an invertible sheaf on X such that the restriction of M to D is
ample. Then for d large enough we have hi(X, M@d) = 0 for all i ~ 2.

Proof. We claim that for d big enough we have that for all i ~ 1 and all n ~ 0 the
cohomology groups Hi(D,M0d(nD)ID) vanish. Assume this for a moment, and take
d as in the claim. Also, take n big enough such that hi(X, M0d(nD)) = 0 for all i ~ 1
(note D is ample, cf. [27], Ch. III, Prop. 5.3).

We consider thickenings of D: let Dn be the n-th infinitesimal neighbourhood of
D in X, i.e., the closed subscheme with ideal sheaf I.o+1

, where ID is the ideal sheaf
of D in X. Then the long exact cohomology sequence belonging to the standard short
exact sequence

gives isomorphisms

for all i 2 1. So we want to show that for i ~ 1 we have H i (Dn - 1 , M0d(nD) IDn - 1 ) = o.
For this we use the filtration of coherent sheaves on Dn - 1 :

whose successive quotients are

From the short exact sequences associated to the filtration we see that indeed

for all i 2 1.



88 c. FABER

. It remains to prove the claim. We prove a more general statement. Let X be a
projective variety, M and JV ample line bundles on X and F a coherent sheaf on X.
Let F(a, b): = F 0 M~a 0 JV~b. Then the set

Sf": = {(a,b) la?:O, b~O, hi(X,:F(a,b)#Oforsomei>O}

is finite.
We may suppose that M and N are very ample (replace M by Mm, N by Nn, F

by the direct sum 67:F(a, b) with 0 $ a < m, 0 :5 b < n). Then we have an embedding
of X in a product of two projective spaces. Now we mimick the argument for one
projective space in [27], Ch. III, proof of Thm. 5.2: we may replace X by the product
of the two projective spaces, and F by any coherent sheaf on that product. There is
a short exact sequence

O-+R-+£-+F-+O

with e a finite direct sum of sheaves O(ai, bi), and 'R. coherent. All we need now is
that &(j, k) has no higher cohomology for j and k big enough. This follows from the
corresponding statement for 0; for this, use a Kiinneth formula as in [71], Ch. VII,
Prop. 12 and Remarque, pp. 185-186 or in [25], Ch. III, Thm. 6.7.8, or, alternatively,
use the Kodaira vanishing theorem. This finishes the proof of the claim and the
lemma. 0

We can now begin the proof of Thro. 4.

Proof. Let f < fa. By induction on r we will show:

For any integers Nand r there exists an integer 80, such that for any
product subvariety Y = Yi x X Ym of xm with dim(Y) = r and
deg(}i) ~ N for all i, £(-f, 81, , 8 m ) is ample on Y if 81/S2 ~ So,

• .. ,8m-l/8 m ~ 80·

For r = 0 this is trivially true, and for r = m· dim(X) and N = deg(X) we get the
statement of the theorem. So assume the statement is proven for all r < ro, and let's
try to prove it for r = roo Let N be given.

First of all, if we take the ratios 81/82, ... , Sm-l/8m big enough, then for all Y =
Yi x ... X Ym C X m with dim(Y) = TO and deg(Yi) ~ N, there exists an effective
ample divisor of Y such that the restriction of £(-f, 81, ..• ,8m ) to that divisor is
ample. Namely, take D1 +... + Dm , with Di = Hi x TIj#i lj, Hi C Yi a hyperplane
section; apply the induction hypothesis with T = ro-l, same N. This will be used
later on.

We will show that, if 81/82, ... , 8m -118m are sufficiently big, and Y is as in the
statement, [,( -€, 81, ... , 8 m ) has non-negative degree on all irreducible curves C C Y.
By Kleiman's theorem (cf. Chapter VII, Thm. 5.5) it follows that £(-f, 81, ... ,8m )

is in the closure of the ample cone. Decreasing € a little bit then gives an ample line
bundle (note that we could have started with (€ + fo)/2 instead of f).

So let Y be as in the statement, and C CYan irreducible curve. The idea of
the proof is now as follows. One shows that if 81 182, ... ,8 m-l /8m are sufficiently
big, for d sufficiently big and divisible there exists a non-trivial global section f of
£(-f, 81, •.. ,8m)~d on Y. If the restriction of f to C is non-zero, then of course
£(-f, 81, •.• , 8 m ) has non-negative degree on C. If the restriction of f to C is zero,
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one distinguishes two cases: f has small or large index along C. If f has large index
along C, one uses the Product Theorem to show that C is contained in a product
variety of dimension less than fo (and of bounded degree), and one uses induction. If
f has small index along C, then one constructs a derivative of f that does not vanish
on C and has suitably bounded poles. How to define these two cases and how big
81/S2,' •• , 8 m -l/8 m should be will follow from the computations below. Of course all
estimates concerning the 8i/8i+l will have to be done uniformly in Y and in C.

As Faltings puts it, "set up the geometry": Choose projections 1ri: li --+ pni = Pi
(with deg(1ri) = deg(JIi)) and (not necessarily reduced) hypersurfaces Zi C Pi of degree
deg(Zd ::; nN2, such that the ideal sheaf of Zi annihilates Ok/Pi (cf. Lemma 5; the
n comes from the pn in which A is embedded). Let 1r: Y -+ P = PI X .•• X Pm
be the product of the 1ri; then deg(1r) is the product of the deg(Yi). We claim that
any derivation 8 on Pi (there are many because I{ is a homogeneous space under
GL(ni+1)) extends to a derivation on Yi with at most a simple pole along 1riZi. To
see this, consider the exact sequence

o--+ 1r;n~i/k -+ n~/k --+ n}i/Pi --+ 0

of [27], Ch. II, Prop. 8.11. Applying HomOl'i (., 1riO(deg(Zi))) to it gives the exact
sequence

o~ Derk(OYi,1riO(deg(Zi))) -4 HomoYi(1r;n~i/k,1r;O(deg(Zi)))~

~ Ext~~.(nh/Pi' 1r;O(deg(Zi)))
a

Let Gi in r(pi , O(deg(Zi))) be an equation for Zi. Saying that the ideal sheaf of Zi
annihilates n~ /Pi means that the map

.Gi:O}i/Pi ---+ 1r;O(deg(Zi)) ~oYi n~/Pi

is zero. One checks that 1ri(Gi8) maps to zero in the Ext!.
If C is contained in the preimage of some Zi, i.e.,

C C 1r;1 Zi x II}j
j~i

then we are done by induction: note that 1ri: 1r;1Zi ~ Zi is finite of degree deg(}ti) ::; N
(since 1ri: Yi --+ Pi is flat in codimension one), hence deg(1I";1 Zi) :::; N deg(Zi) ::; nN3
by Chapter VII, §4, Remark (f). So suppose that C is not contained in the inverse
image of any of the Zi. Then 1r: C ~ D = 'lrG is generically etale.

For 81/82' ... , 8 m-I/8m big enough, and d big enough and sufficiently divisible, we
have that r(Y, £(-f, SI, ••. , Sm)0d) is non-trivial. This follows from:
1. For such d the Euler characteristic X(Y, £(-f, 81, ••• , 8 m )®d) is positive.
2. For such d and i ~ 2 the cohomology groups Hi(Y, £(-f, 81, ... ,8m)~d) vanish.

The second statement is a direct consequence of Lemma 6. To get the first state
ment, recall (Chapter VII, §4) that, as a function of d, X(Y,.c( -€, St, .•. , sm)®d)

is a polynomial of degree:::; dim(Y), and that almost by definition the coefficient of
ddim(Y) is 1/ dim(Y)! times the intersection number (t(-f, 81, ... ,8m ylim(Y). Y), which
is positive by Cor. 3 and the choice of fo. So, if 81/82, ... , 8 m -I/8 m are big enough
(uniformly in Y and C), then for d sufficiently big and divisible, £(-e, 81, .•• , sm)@d

has a non-trivial global section f on Y.
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Next we consider line bundles on Am. We have the identity in Pic(Am) ~ Q (use
the Theorem of the Cube and that £, is symmetric):

(SiXi - Si+t Xi+l)*(£) + (SiXi + Si+t Xi+l)*(£) = 28~.ci + 2S~+1.ci+l

Suitable multiples of the two terms on the left are generated by their global sections
(because .c is). Hence we can find sections without common zeroes. Multiplying by
these, we first find "injections without common zeroes" on Am:

m-l

d· E (SiXi - Si+l Xi+l)*(£) ~ d . (2S~.cl + 48~.c2 +.·.+4S~_1.cm-l +2s~£m)
i=l

then, using that the .ci are also generated by global sections, we find injections without
common zeroes

d · £(-f, 81, ... , Sm) --+ d· ((2 - f)S~.cl + (4 - f)S~£2 + ... + (2 - f)S~£m)

--+ d· (4S~.cl + ... + 4s~.cm)

Define di = 4dsl, and choose an injection p: £(-c, Sb ... , Sm)®d ~ ~i:l£:i which
does not vanish identically on C (i.e., p is an isomorphism at the generic point of C).

We come to the final part of the proof. Define the index i(C, f) of f along C
to be the index i(x, f) of f at the generic point of C, with respect to the weights
d, (cf. Chapter VIII, Def. 1.8). Since p is an isomorphism at x, we have i(x,f) =
i(x, p(f)). Now note that £i = 1T'iO(l) since 1ri is a projection from pn minus a linear
subvariety to Pi and A was embedded in pn via global sections of £. So p(f) can
be viewed as a section on Y of 1r*O(d1 , ••• , dm ). Because 1r: Y ~ P is finite and
surjective, and Y is integral and P is integral and normal, we can take the norm of f
with respect. to 1r (cf. [25], II, §6.5):

9 := Norm1f(p(f)) E r(p, O(d1 , ••• , dm )0 deg(1r») = r(p, O(deg(1r)d1 , ••• , deg(1I")dm )

Let i(D, g) := i(1r(x), g) be the index of 9 at 1r(x) (Le., along D = 1rC) with respect to
the weights deg(1r )di • We claim that i(D, g) 2:: i (C, f) / deg( 11" ). To see this, note that
1r is etale above 1r(x), so that over some etale neighbourhood U of 1l"(x), 1r: Y --+ P is a
disjointunionofdeg(1r) copiesofU; then usetheformulai(x,!lf2) = i(X'!1)+i(x'!2).

Now we choose a sufficiently small positive number (f (the precise choice of (f will
be explained later), and we distinguish two cases.

Case 1: i(D,g) 2:: (f. Then apply the Product Theorem (Chapter VIII, Thm. 2.1)
as in Chapter VIII, Remark 2.3. To be precise: there exists a chain

P =F Zl :> Z2 :> · .. :> Zdim(P)+l 3 x

with Z, an irreducible component of the closed subscheme of P where 9 has index
2:: lo-j(dim(P)+l). Because of dimensions, there exists an 1with 1 ~ 1~ dim(P), such
that ZI = ZI+l. The Product Theorem then shows that if the silSi+l are sufficiently
big (in terms of (f, m, and nl, ... ,nm ), then Z, = "Vi x ... X Vm is a product variety
of dimension < dim(P) (since f =F 0) and the deg(l;i) are bounded in terms of u,
m, and nl, ... , nm • Let Y' be an irreducible component of 1r-1Zl with C c Y'.
Then dim(Y') < dim(Y), Y' = Y{ x ... x Y~ is a product variety and deg(Y:') ~

deg(1ri) deg(lli) ~ N deg(Vi) (note that ~' is an irreducible component of 1r;1\ti and
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use Chapter VII, Remark 4.3.f). By induction, if the 8i/8i+1 are sufficiently big in
terms of a, m, nt, ... , nm and N, then £(-€, 81, ... , 8m ) is ample on V', hence has
positive degree on C.

Case 2: i(D,g) < a. Then i(C, f) < adeg(1t'). For 1 ~ i ~ m let Oi,j, 1 ~ j $ ni,
be global vector fields on Pi which give a basis of the stalk of Homo

Pi
(n~i/k'OpJ at

1ri(X). As 1r: Y ~ P is etale at x, we may view the ai,j as derivations of OY,x. Let 11
be a generator of the stalk £(-€, 81, ... ,8m)~d; then f = h/l for a unique h E OY,x.
By the definition of index (Chapter VIII, Def. 1.8, also recall what we mean by the
value at x of some f E Oy,x) , there exist integers ei,j ~ 0 with Ei,j ei,i = i(x, I),
such that (H(h))(x) =1= 0, where H = ni,j8~jJ (in some order). \Ve want to define
(H(/))(x) as

(H(h))(x)·fl(X) E £(-e, 81,· .. , 8 m )®d(x) = £(-e, 81, ... , Sm)~d @Oy,Z k(x)

so let us check that this is well-defined. Let u E 0Y,x and f~ := u-t fl. Then h' = uh
and H(h') = H(uh) = uH(h)+ terms like Ht (u)H2(h) with H2 of lower differential
degree than H, hence (H2(h))(x) = 0 by the definition of i(x, f). It follows that
(H(f))( x) is well-defined. ~

Since k(x) is the function field of C, (H(f))(x) is a rational section on C of the line
bundle £(-e, 8t, ... , 8 m )0d

; we want to bound its poles. We have already remarked
that each [A,j extends to a derivation on }Ii with at most a simple pole along 11"7 Zi.
Working on an affine open on which £( -£,81, ... , Sm)®d has a generator il we can
write f = hft and Oi,j = g;1[A,j where the Bi,j are regular derivations and gi is an
equation for 1riZi. Then

H = II a;'jj = II(gi1ai,j)ei,j = (IIg;ei'J)(II a;'j') +...
i,i i,j i,j i,j

where the dots stand for terms of lower differential degree. It follows that

(H(h))(x) = ( C119;ei
•
J )(U a;,jJ)(h)) (x)

'&,) 'I,)

hence its poles are no worse than those of ni,j g;ei,j = ni giei , with ei =Ej ei,j. Since
Y can be covered by affine opens on which £(-e, 81, .•• , 8 m )@d is trivial, we get a
non-zero global section ni,j G~i,j (H(f))(x) on C of

where, as before, Gi is an equation for Zi in r(Pi,O(deg(Zi))). Using ei/dst =
4ei/di ~ i(C,f) < adeg(1r) and deg(Gi) $ nN2 one gets a non-zero global section on
C of £(4nN2 deg(1r)a - f, 81, .•. ,8m )0d

, so this line bundle has non-negative degree
on C.

We still have to choose the right 0': we take (J' > 0 such that

l := 4nN2 deg(1t')a +f < fa

The argument above, with f replaced by i', then shows that £(-€, 81, ... , 8 m ) has
non-negative degree on C. 0

Acknowledgement. I would like to thank Bas Edixhoven for his help in preparing
these notes.



Chapter X

Faltings's Version of Siegel's
Lemma

by Robert-Jan Kooman

Siegel's Lemma in its original form guarantees the existence of a small non-trivial
integral solution of a system of linear equations with rational integer coefficients and
with more variables than equations. It reads as follows:

1 Lemma. (C.L. Siegel) Let A = (aij) be an N x M matrix with rational integer
coefficients. Put a = maXi,j laijl. Then, if N < M, the equation Ax = 0 has a solution
x E ZM,x =1= 0, with

IIxll5 (Ma)N/(M-N)

where II II denotes the max-norm: IIxll = lI(xl' ... ' xM)1I = maxl:5i~M IXil in RM.

Stated in an alternative form, the lemma finds a non-trivial lattice element of small
norm which lies in the kernel of a linear map a from aM to lRN with the Z-lattices ZM
and ZN where M > Nand o:(ZM) C ZN. Faltings [22] uses a more general variant
of the lemma, firstly by taking a general Z-lattice in a normed R-vector space, and
secondly, by looking not for one, but for an arbitrary number of linearly independent
lattice elements that lie in the kernel of a and are not zero. The lemma is a corollary
of Minkowski's Theorem, which we state after the following definitions:

2 Definitions. For V a finite dimensional normed real vector space with Z-lattice
M (i.e., M is a discrete subgroup of V that spans V) we define Ai(V, M) as the
smallest number ,\ such that in M there exist i linearly independent vectors of norm
not exceeding '\. Further, by VIM we denote a set

{v E V : v = AlVI + ... + AbVb, 0 ~ Ai < 1 for i = 1, ... , b= dim(V)}

where VI, • •• , Vb is a basis of M. Finally, if V, Ware normed vector spaces with norms
1I·lIv, 1I·lIw, then B(V) denotes the unit ball {x E V : IIxliv ~ I} in V and if 0 is
a linear map from V to W, the norm 11011 of a is defined as the supremum of the
lIa(x)lIwlllxllv with x E V, x I: o. 0

We can endow V with a Lebesgue measure j.lv as follows. Take any isomorphism of
lR-vector spaces 't/J : V --+ )Rb and let Adenote the Lebesgue measure on ]Rb. Then, for
Lebesgue measurable A C R b, put
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Up to a constant, there is only one Lebesgue measure on V. Hence the quantity

JJv(B(V))
Vol(V) = Vol(V, II·II,M):= P,v(VjM)

does not depend on the choice of p,v. Clearly, it is also independent of the choice of
the basis of M in the definition of VIM.

3 Theorem. (H. Minkowski) Let V be a normed real vector space of finite dimen
sion b and with Z-lattice M.Then

2bjb! $ Al(V, M)··· Ah(V, M) · Vol(V) $ 2b•

Proof. See [48]. Note that B(V) is a convex closed body in V, symmetric with
respect to the origin, and that Al(~M), .. . ,Ab(V, M) are precisely the successive
minima of B(V) with respect to M. 0

We now state Faltings's version of Siegel's Lemma.

4 Lemma. (Lemma 1 of [22]) Assume that we have two normed real vector spaces
V and W with Z-lattices M and N, respectively, and a linear map 0 : V --+ W such
that o(M) eN. Let C ~ 2 be a real number such that the map 0 has norm at
most C, that M is generated by elements of norm at most C and that every non-zero
element of M and N has norm at least 0-1. Then, for a = dim(ker(o)), b= dim(V),
and U = ker(o) with the induced norm on ker(o),

Ai+l (U, U nM) $ (C3h • b!)l j (a-i)

forO$i:5a-l.

Thus, for any subset Y of ker(a) of dimension not exceeding i we can find an element
in ker(a) which is not in Y and whose norm is bounded by the right-hand side of the
above equation. The lemma will be applied in situations where the dimensions a and
b tend to infinity and such that bj(a - i) remains bounded. Then the right-hand side
of the equation grows like a fixed power of C times a power of b.

For the proof of the lemma we let 11·11 be the norm on V, and If·llu its restriction
to U. We endow a(V) with the quotient norm: for v* E a(V) we put

IIv*lI* = inf{lIvll : o(v) = v*}.

The unit balls B(U) and B(a(V)) are now defined in a similar way as B(V) and
Vol(U) = Vol(U,II·l!u,UnM), Vol(a(V)) = Vol(a(V),II·II*,a(M)). We first prove
the following lemma.

5 Lemma. Vol(V) =5 2a • Vol(U) . Vol(a(V)).

Proof. Let ltv, p,u be Lebesgue measures on V and U, respectively. On a(V) we
have a unique Lebesgue measure Jla(V), defined by

p,v (E) =1 fE(v.*) dJ.lOt(V) (v*)
Ol(V)
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for /Lv-measurable sets E c V where for v* = a(v) E a(V) we have

fE(v*) = JLu( {u E U : u +VEE} )
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which is independent of v since J,lu is translation invariant. We compute fB(V) (v*)
for v* E a(V). If v* ¢ B(a(V)), then IIvll > 1 so v ¢ B(V) for all v E a-1(v*) and
fB(V)(V*) = O. If v* E B(a(V)), then v E B(V) for some v E a-1(v*). For u E U with
u+v E B(V) we have lIullu ~ \lu +vII + \lvll ~ 2, hence fB(V)(V*) ~ /Lu(2B(U)) =
2a

• J.Lu(B(U)) and

(6) pv(B(V)) ~ 2a
• pu(B(U)) · Pa(V)(B(a(V)).

Furthermore, if Ut, •.• ,Ua is a basis of U n M and Ul, •.. , Ub is a basis of M, then
a(u4 +1)' ... ,a(ub) is a basis of a(M) and

fVjM(V*) = J1.u( {u E U : u + v E VIM}) = t-tu(U/U n M)

for v* E a(V)la(M) and fV/M(V*) = 0 otherwise. Hence

(7) /lv(V/M) = [ fV/M(V*) dJla(V)(v*) = J1.u(U/U n M)· /La(V)(a(V)ja(M)).
Ja(V)

Finally, by the definition of Vol(V), we have that p.v(B(V))IJ.tv(VIM) = Vol(V)
and similarly for Vol(U) and Vol(a(V)). Combination of (6) and (7) now yields the
statement of the lemma. 0

Proof. (of Lemma 4) We have Al(a(V),M*) ~ C-2, since for 0 =I- v* E a(M) c
a(V) we have v* = a(m) with m E M and

II v*lI* = ~~L 11m + ull ~ IIQ~~lIIlW ~ C-
2

,

where 1/ IIw denotes the norm on W. By Minkowski's Theorem we obtain
Al(a(V), M*)b-a·Vol(a(V)) ~ 2b- a , so that Vol(a(V)) ~ (2C 2)b-a. Further, Ab(V, M)
~ C~ and applying Minkowski's Theorem once more, we find that Ab(~ M)b. Vol(V) ~
2bJb!, whence Vol(V) ~ 2b. C-blb!. Finally we have At(U,U n M)) ~ C-l and, by
Lemma 5, Vol(V) ~ 2a.Vol(U)· Vol(o:(V)), so that At(U, Un M)i. Ai+l(U, UnM)a-i.
Vol(U) ~ 2(1. Hence

Ai+l(U, Un M) < (2a . VOl(U)-l . Cif/(a-i) ~ (2a . V~~~~)) . Cif/(a-i)

~ (2a . ci- 2a+3b . blf/(a-i) ~ (C3b . b1f/(a-i)

for 0 $ i ~ a-I. o

We give an example of how one obtains, in a general manner, a normed JR.-vector space
with a Z-lattice.

8 Construction. Let]( be a number field, OK its ring of integers. Let X be a proper
OK-scheme and let {, be a metrized line bundle on X (Le., .c is an invertible Ox
module equipped with a hermitean metric 11·11(1 on £(1 for every embedding a: K ~ C,
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see Chapter V, §4 for details). Then HO(X, £) is a finitely generated OK-module by
[27], Ch. III, Thm. 8.8 and Rem. 8.8.1; it is torsion free if X is flat over OK. We let
V = HO(X, £) ~z R.. Then V is a lR-vector space and the image of the (canonical)
map HO(X, £) ~ HO(X, £) @z lR is by construction a Z-lattice in it. A norm on V can
be obtained as follows. Since K @Q R = Ef)1JKv (the sum being taken over all infinite
places). For v an infinite place of K let v: := HO(XKv,.cKv), where X Kv denotes the
pullback of X to Spec(Kv ) and .cK" denotes the line bundle on XKv induced by .c.
We have

v = HO(X, £) ~OK OK @z lR = Ef)vHO(X, £) ®OK K v = Ef)v~

(for the last equality, use [27], Ch. III, Prop. 9.3). If (7: K ~ C is a complex embedding
giving the infinite place v, then on ~ we have the sup-norm over X(Kv ) = Xq(C).
Note that by Chapter V, Def. 4.3, q gives the same norm on ~. On V = Eav~ we
take the max-norm associated to the norms on the~. In other words, this norm on
V is just the sup-norm over X(C) = Ilq Xq(C). 0



Chapter XI

Arithmetic Part of Faltings's
Proof

by Bas Edixhoven

1 Introduction

In this chapter we will follow §5 of [22] quite closely. We start in the following
situation:

k is a number field, Ale is an abelian variety over k, X le C Ale is a subvariety
such that X k does not contain any translate of a positive dimensional
abelian subvariety of Ak, m is a sufficiently large integer as in Chapter IX,
Lemma 1

Let R be the ring of integers in k. Since we want to apply Faltings's version of Siegel's
Lemma (see Ch. X, Lemma 4) we need lattices in things like r(Xl: ,line bundle). We
obtain such lattices as:

f(proper model of Xl: over R, extension of line bundle).

2 Construction of Proper Models

First we extend Ale to a group scheme over Spec(R). Among all such extensions
there is a canonical "best" one, the so-called Neron model A ~ Spec(R) of Ale. It
is characterized by the property that A ~ Spec(R) is smooth and that for every
smooth morphism of schemes T ~ Spec(R) the induced map A(T) ---t AJc{TIe ) is
bijective. For more information and a proof of existence we refer to [11]; there is an
"explicit" construction of AIR when Ale is a product of elliptic curves. We will use
the following properties of A ~ Spec(R):

(i) it is a group scheme,
(ii) every x E Ak(k) extends uniquely to an x E A(Spec(R)),
(iii) A -t Spec(R) is quasi-projective ([II] §6.4, Thm. 1) and smooth.

We choose an embedding i: A '-+ P~. Let A be the closure of A '-+ JP~ XR lPW
by P ~ (iP,i(-P)), and let A -t A be its normalization. Since A ~ Spec(R) is
projective and A --+ A is finite (by Nagata's theorem [47], Thm. 31.H), A -t Spec(R) is
projective. By construction A contains A as an open subset, A XSpec(R) Spec(k) = Ak,
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and the automorphism [-1] of Ak extends to A. Let (,o be a very ample line bundle
on A. Then £1 := £0 ® [-1]*£0 is a very ample line bundle on A whose restriction
to A k is symmetric. Finally let £ = £1 ® p*O·£}1 , where p: A ~ Spec(R). Then £ is
very ample on A and we have given isomorphisms r, ~ [-1]·£ and OSpec(R) -=+ 0*£.

For 1 ~ i,j ~ m we have the line bundles £i := prt£ and Pi'; := (pri +
prj)·£ ® prir,-1 ® prj.c-1 on Ar. We choose positive rational numbers e $ 1
and 8 as in Chapter IX, Thro. 4: if 81, ..• ,8m are positive rational numbers with
81/8 2 ~ S, .•. ,8m-l/S m ~ sand e' :5 e then the restriction to Xl: of the Q-line
bundle

.c(-e', 81, ... , 8 m )

on Ai: is ample.
Let Am denote the m-fold fibred product of A ~ Spec(R) and let £i ;= pri£ on

Am. We extend the Pi,j to the open subset Am of Am by the same formula as above:
Pi,j := (pri + prj)·£ ® pri£-l ® prj£-l. Using the construction described below it is
easy to find a proper modification B ~ Am such that 1) B is normal, 2) B ~ Am is
an isomorphism over Am and 3) the Pi,j on Am can be extended to line bundles on
B.

2.1 Construction. Let X be an integral scheme, of finite type over Z, U C X open
and normal, D C U a closed subscheme whose sheaf of ideals ID is an invertible
Ou-module. Let D be the scheme theoretic closure of D in X, let 1r: X -+ X be the
blow up in In, let X' be the normalization of the closure of 1r-1U in X and let D'
be the closure of D' := 1r-

l D in X'. Then X' is normal, X' ~ X is proper and an
isomorphism over U, and In' is an invertible Ox,-module. 0

We fix a choice of B and extensions of the Pi,j from Am to B. The pullback of the
£i to B are still denoted £i. We let Y be the closure of XI: in B and we define
yo := Y n Am. Note that every x E X'k(k) extends uniquely to an x E YO(R). We
extend all line bundles £( -e', 81, ... , 8 m )d to B by their defining formula.

3 Applying Faltings's version of Siegel's Lemma

We fix norms on (, at the infinite places. This gives norms on the £i, the Pi,i and
the £(-e',Sl, ... ,sm)d. In order to get some control over r(~£(-e',sl, ... ,sm)d),
using Faltings's version of Siegel's Lemma, we will embed .c(-e', 51, ... , Sm)d into
EB~ ®~l £ti (a independent of the 5i, e' and d) just as in the proof of Chapter IX,
Thro.4. However, this time we have to keep track of norms and denominators.

We fix a finite set of generators fex, ex E I, of the R-module r(A,£). We choose
an isomorphism <P on A~:

(prl +pr2 + pr3)*.£: --=-+ ® (pri +prj)*£ ® ® pri£-l
1~i<j~3 l~i~3

whose existence is guaranteed by the Theorem of the cube. Note that if 4>' is another
such isomorphism then ¢' = u4> for a unique u E k·. From ¢J we can construct
isomorphisms <Pa,b,i,j on Ar for a,b E Z and 1 ~ i,j ~ m:

4>a,b,i,j: (apri + bprj)·£~ £f2 @ £~2 @ p~~
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as follows. Let P := (pr! + pr2)*£ ® pri£-t ® pri£-l on A~. We have (on Ar and
on Ak):

and
¢-l: [a + 1]*£ --=-+ [a]*£2 Q9 [a -1]*£-1 Q9 £2

And by definition: (apri + bprj)*£ -=t april ® bprj£ ~ (apri' bprj)*P on Ar.
3.1 Lemma. (Lemma 5.1 of [22]) For any a, b, i, j let :Fa,b,i,j be the subsheaf of

VB-modules of the OAr-module (£i2
® £~2 Q9 Pi~j) ®k generated by the <Pa,b,i,j(apri +

bpr;)* fa, Q E I. Tbere exists Cl E lIt such tbat for all a, b, i, j there exists r E Z,
o< r < exp(cl(l +a2 +b2

)) with:
1. r· Fa,b,i,j C £f2 ® £~2 ® 'Pi,j (on B)
2 Am. ra2 ..o. £b2 ..0. -nab C -1 ~ .,· on . J..,i '<Y j '0' r i,; r . .ra,b,t,]

Proof. Let us first check that the lemma holds for our choice of data if and only if
it holds for any choice. If ¢' = u-1 </> with u E k* then

A-.' .. =ua(a-l)/2+b(b-l)/2-a-b+2 A-. •.
0/a,b,~,J o/a,b,t,J

If 7r: B' --+ B is another model satisfying the same conditions as B, then for any line
bundle M on B we have: f(B', 1r*M) = feB, 'K*1r*M) = f(B, M); this shows that
Cl works for B' if and only if Cl works for B (if we take Pf,j = 1r*Pi,j).

Let us now prove statements (1) and (2) on Am. By [50] Lemme II, 1.2.1, there
exists do > 0 such that £do lAic can be extended to a .c' on A for which some isomor
phism ¢' on A~ extends to an isomorphism over A3. This means that the lemma is
true for £' on Am, hence for £do and hence for £ itself (on Am).

To finish the proof we have to consider pole orders of the 4>a,b,i,j(apri + bprj)* fa
along the (finitely many) divisors of B contained in B - Am; these divisors are irre
ducible components of closed fibres of B --+ Spec(R). Let V be the local ring on B at
the generic point of such a divisor. Then V is a discrete valuation ring and pri and prj
define V-valued points of A. The lemma is then proved by base changing from R to
V, replacing Av by the Neron model of A over V, and applying the arguments above.
Note that those arguments give upper bounds on pole and zero orders on the whole
model; that upper bounds on the pole orders on the whole model give upper bounds
on the pole orders on V-valued points but that the same is not true for the order
of zeros since the divisors of zeros of the <Pa,b,i,;(apr; + bprj)*f Ot are not necessarily
supported on closed fibres. 0

Let S1, .. . ,Sm be positive rational numbers, let 0 :5 £,' :5 c and let d E Z, d > 0,
be a sufficiently divisible square. Let di := 4ds~. Let (ti (1 $ i $ m-l) and /3i
(1 :::; i $ m) be arbitrary elements of the set I of labels of the !Q. Multiplication by
the product of the ri· <Psev"d,Si+l V'd,i,i+l (Siv!dpri +Si+lv!dpri+1)* lOti (with the ri as given

b L 3 1) th * +e'ds~ *+2ds~ d * +2ds:n . f r(, )dy emma. , epriJPi ,prt JPl an prmJ{jm IS a map romJ.., -c,Sl, ... ,Sm
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to @~I.cti. Since the fa (a E I) are generators of r(A,.c), all such maps together
give an embedding on B:

a m

p: £(-c;', S1, ••. ,Sm)d ~ E9®.cti

j=li=l

where a = #I2m-l. By construction, this embedding remains an embedding after
restriction to Y; however, only on Bk = AI: we know that it is an embedding without
zeros (that is, locally split).

3.2 Constructions. 1. Let A be a commutative ring, al, ... , an, rEA such that
r E Ei Aai. Then the homology of the (start of the Koszul) complex:

is annihilated by r. Proof: choose bi such that L aibi = r. Then use the "homotopy":
(Xi)i ~ L,i biXi, (Xi,j)i,j ~ (Ej bjXi,j)i.

2. Let X be a scheme, £, and M invertible Ox-modules, r E Ox(X), Pj: £ ~ M
(1 ~ J' ~ a) a finite set of morphisms such that rM c Ej Pj(£). Twisting by £-1
gives Pj:Ox --t M ~£-l. As in (1) we get a complex 0 --+ Ox --+ EBj=I(M ®£-1)--+

EBj~I(M ~ £-1)2. Twisting by l gives:

o--+ £ --+ EBj=lM --+ EBj:IM2~ £-1

The homology of this complex is annihilated by r. o

We apply these constructions to the embeddings pj: £,( -c;', 81, ... ,8m )d --+ 0:1£t i • In
this case we can even embed £(-e', 81, ... , 8m )-d into EBj=1 ®~I£ti by multiplication

by the ri . 4>Si'\/d,-Si+lVd,i,i+l(8rv'dpri - 8i+l VdPri+l)* lOti and by the prif~:-~')ds~. All
together we get a complex:

a m a3 m

( ' )d ~ to\ .cdi ffi to\. r3dio--+ .c -€, 81,· .. ,8m --+ Q7 'C>' i --+ Q7 '0' "-'i
j=li=l j=li=1

of sheaves on Y whose homology on yo is annihilated by some r E Z with 0 < r <
exp(C1 L:i::l di ).

3.3 Proposition. (Proposition 5.2 of [22]) There exists C2 E lR such that for all
81, ... ,8m , £' positive rational numbers with 0 < £' ~ c, d E Z square and sufficiently
divisible there exists an exact sequence:

a m 0 3 m

o --+ r(Xk ,£(-e', 81, ... , Sm)d) --+ r(Xf\ E9 ® £ti
) --+ r(Xf\ E9 ®£rdi )

j=li=1 j=li=1

such that:
1. the Dorms of the maps in the exact sequence and the difference between the norm

on r(x;:, £(-£',81, ... , 8 m )d) and that induced on it from r(Xr, Ee,=1 ®~1 £ti
) are

bounded by exp(c2 Li di ),

2. if a section f of .c(-c;', 81, ••. ,8m)d over Xr maps to f(Yo, $a ®~1 .cti
) then

there exists r E Z with O<r< exp(c2 Ei di ) such that rI E r(Yo,.c( -£',81, ... ,8m )d).
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Proof. The exact sequence is obtained by applying r(Xr, -) to the complex above.
It remains to prove the statements concerning norms. To make sense of these state
ments we must say which norms we are talking about. The norms on the line bundles
are obtained from those on £. On kv-vector spaces such as

r(Xi: ,metrized vector bundle) ®k kv

we take the supremum norm over the complex valued points. On finite direct sums
of normed kv-vector spaces we take the maximum norm. Finally, if V is a k-vector
space with given norms on the V Q9k kv then we take the maximum norm on

Note that the norm we have put on ($jf(Xk'\ Fj )) ~QR can be viewed as the supre
mum norm on r(Xr XSpec(Q) Spec(R),ffijFj), the supremum being taken over the
P E XJ:(C). The proof concerning the statements about norms is analogous to the
arguments to bound poles and zeros at the finite places. The analog of Lemma 3.1 is
independent of the choice of metrics on £, and for a particular choice (metrics with
translation invariant curvature forms) if> is an isometry. 0

We want to apply the follo\ving lemma (for a proof see Ch. X, Lemma 4).

3.4 Lemma. (Prop. 2.18 of [22]) Let p: V --+ W be a linear map between norrned
finite dimensionallR-vector spaces with lattices M and N such that p{M) C N. Let
U := ker{p) and L := M n U; then LeU is a lattice. Assume that for some C ~ 2
we have: 1. p has norm ~ C, 2. M is generated by elements of norm ~ C, 3. any non
trivial element of M or of N has norm ~ C-1• Then for any proper subspace Uo c U
there exists an element f E L, f ¢ Uo such that IIfll :s; (C3 dim V)dim(V)/codim(Uo). .0

Now let U := f(X,r, £(-e', 81, ... , 8m )d) Q9QlR, V := r(Xk\ E9j=1 ®~1 £fi) ®QlR and

W := f(Xr, ~j:1 ®~1 .ctdi)®QR. The lattices M and N are r(Y, EBj=1 @~1 .cti
) and

f(Y, EI1j:1 @~1 £rdi
). Condition 1 is satisfied with C = exp(C2 Ei di ). Condition 2 is

satisfied with C of the form exp(C3 Ei di) (with Ca independent of the 8i) because S :=

ffid1, ...,dm>of(Y, @~1 £1i
) is a finitely generated R-algebra by the following argument.

The mo~phism f: Y --+ xm is proper and each L,i is of the form f* .c~, hence S =
ffidll... ,dm >of(Xm

, (!*Oy)®®~1£idi
) by the projection formula ([27], Ch. 2, Exc. 5.1).

Let t: Xm C-..+ P := (IP:{)m denote a closed immersion induced by .c on each factor.
Then S = EBd1,. ..,dm>of(P,F(dt, ... ,dm )), with F the coherent Op-module /,*f*Oy.
One then shows th~t S is a finitely generated module over the multi-homogeneous
coordinate ring of P.

The proof of condition 3 that we give is copied from [81], Lemma 13.9.

3.5 Lemma. There exists C4 E R such that for all di > 0 and for all non-zero
f E f(Y, @~1 £1i

) we have IIfll ;::: exp( -C4 Li dd·

Proof. Let (k' : k] < 00, let R' be the ring of integers in k', P = (PI, ... , Pm) E
Xk(k') = Y(R') such that P*(f) =1= o. Then:

m

hfi!;r,~i (P) = [k' : Q]-l degR'(P* ®i .cti
) = E dihr,(Pi )

f i=l
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h0{'~' (P) = [k' : Q]-l (lOg # ((P* ®i .ct') /R' . P*(f)) - E e(v') log IIf(P)lI v')

v'loo

where e(v') = 1 if v' is real and e(v') = 2 if v'is complex. Hence:

m

[k' : Q]-l E e(v') log IIf(P) IIv' ~ - E dihr,(Pi )
v'loo i=1

Let 7ri: X k -4 pdirnXIc be associated to £: 1r70(l) ~ £, and let h be the naive height
function on pdimXIc{k). Then there exists C4 such that Ih.c(Pi) - h(1ri(Pi))1 ~ C4 for
all k' and all Pi. Now we take the Pi such that all coordinates of the '7ri(Pi) are roots
of unity; then h(1riPi) =O. Note that these points are Zariski dense. So we have:

m

[k': Q]-1 E e(v')logllf(P)lIv' ~ -c4Edi
v'loo i=l

It follows that there exists an infinite place v of k with Ilfllv,sup 2:: exp( -C4 Li di ). 0

To get a suitable subspace Uo of U we put £' = £ - u with 0 < u < £, let x =
(Xl""'Xm ) E X;:(k) be a smooth point and let

Uo := {f E r(Xr\ .c(11 - c, S}, . .. , Sm)d) I index(x, f) ~ O"}

For this to be useful we need a lower bound for codim(Uo). Note that:

d d m dus~
£(u-e,sl, ... ,Sm) = £(-e,sl"",sm) 0®.ci

i=1

Because £(-e, 81,' .. ,8m ) is ample on Xi:', £(-€, St, .. . ,sm)d has a global section
that does not vanish at x. Because £ is very ample on X k there are global sections
of .cdus~ on X k with prescribed Taylor expansion at Xi up to order dU8; = diu/4.
Namely: "£ very ample on X/c" is equivalent to "r(Xk, £) separates points and tan
gent vectors" which implies "r(Xk , £) ~ OX/ClXi/m;i is surjective for all i" which
implies "r(Xk, £udi/4) --+ OXk,Xi/m;Tudi/4 is surjective". It follows that codim Uo 2::
cs(um ni di)dimXk , with Cs > 0 depending only on m and dimX/c. In Chapter VII it
was proved that dim V ~ es(ni di)dimXk with Cs independent of the di (and of (J' of
course). It follows that (dim V)/(codimUo) ~ C7U-mdimXk with C7 independent of the
di and of u. Prop. 3.3 and Lemma 3.4 give us f # 0 in f(Y, £((1 - e, 81,"" Sm)d)
with index < u at x and log II/II ~ csu-mdimXk L:~1 di (where Cs is independent of
the di and of u). We have proved:

3.6 Theorem. (Theorem 5.3 of [22]) Let (1 be a rational number with 0 < u <
e. There exists a real number c(u), depending only on u (recall that e is lixed),
with the following property. For any smooth k-rational point x in Xl:, any se
quence 81,' .. ,8m of positive rational numbers with 81/8 2 2 8, .•• ,8m-l/Sm ~ 8,

and a~ square integer d which is big enough and sufficiently divisible there exists
fEr ~ypo , .c( (J" - C, 81, •.. , 8 m )d) with index less than u at x and norm at the infinite
places bounded by exp(c(u )L~l di ), where di = 4dsT. 0
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4 Leading Terms and Differential Operators
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This section more or less follows part of a manuscript [33] on [22] written by L. Laf
forgue in 1991 (not published), see also [34] and [35]. We will need some properties
of leading terms in Taylor expansions in the follo\ving situation. Let X be an integral
separated R-scheme and x: Spec(R) ~ X an R-valued point of X. Let fA, ... ,am be
R-derivations of Ox, let £, be an invertible Ox-module and I a section of £, vanishing
up to order e along x, that is, f E r(X, Ie£), where I C Ox is the ideal sheaf of
x. Then for integers el, ... ,em ~ 0 with L:i ei = e we can define (a:1

••• a:nm f) (x) in
r(Spec(R), x*£) as follows: locally on X write f = gft with il a generator of £, and
put:

(a~1 ... a:: f)(x) := (a~1 ... a::g)(x)ft(x)

(one easily checks that the right hand side does not depend on the choice of 11, so
the local construction "glues"). Also, it is important to note that (a~1 ... a:nm f) (x)
does not depend on the order in which the derivations are applied, so that we can
write (TIi a;i. f)( x) for it, and that for derivations ~, ... 'O'm locally of the form a: =
ai+ terms like g·a with g E r(X, I) and 8: Ox --+ Ox an R-derivation, one has
(nia:ei·/)(x) = (Iliofiof)(x).

4.1 Lemma. In this situation, (ITi(a: i /ei!)·f)(x), which is a priori only a section of
x*£, over Spec(k), is actually a section of x*{, over Spec(R).

Proof. It suffices to verify this locally, so we may assume that X is affine, that £
is trivialised by 11 and that f = gft. Since f vanishes up to order e at x, 9 can be
written as a sum of products 91 ... ge with the 9i in rex, I). It suffices to verify the
claim for each term, so we may assume that 9 is one such term, say 9 = g1 ... geo Now
consider ((n~1 0;' )gl 0 •• ge) (x). This expression can be expanded by applying the
product rule (8(f9) = f 8(g) +go(f)) as many times as possible. Since we evaluate
at x, and the gi(X) are zero, only terms in which all gi have been derived can give
a non-zero contribution. As Li ei = e, we see that ((n~1 a:i )gl ... ge)(x) equals the
sum over all partitions of {I, 2, 0 •• ,e} into sets SI, .. 0 , Sm of cardinalities et, 0 • 0' em,
of the expresion

so the claim that (ni (a;i / ei!)· I) (x) is integral has now been proved. o

However, in §5 we cannot apply this result directly, because we will only know that
I vanishes at x up to order e on the generic fibre XI; of X. The problem is then that
in general the scheme theoretic closure in X of the closed subscheme of X k defined
by (I·(:Jx,Je is strictly contained in the closed subscheme of X defined by Ie (in other
words: Ie i= Ox n (I·Oxk)e). Yet another complication will be that we will ,,"ork in a
product situation with weighted degrees for differential operators. The result we need
is the following.

Let m ~ 1. For I :5 i ~ m let Pi: Xi --+ Pi be a morphism of integral separated
R-schemes of finite type, M i an invertible Ox,-module, Gi E r(Xi, Mi) a global
section annihilating {lkilPi and 8i ,j, 1 ~ j ~ ni, some set of R-derivations on Pi. Let
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X := Xl X··· X Xm , P := Pl X··· X Pm (fibred products over Spec(R)), and p: X ~ P
the product of the Pi. Let Y be a separated R-scheme with a R-morphism q: Y ~ X
that is an isomorphism on the generic fibres: qk: Yk-=+Xk. Let N be an invertible
Oy-module and N E r(Y,N) a global section annihilating O}/x. Let x E Y(R) and
write q(x) = (Xl' ... ' xm ) with Xi E Xi (R). Suppose that for all i the morphism of
k-schemes Pk: Xi,k --+ Pi,k is etale at Xi,k, and that ~ --+ Spec(R) is smooth along
Pi(Xi). Let £, be an invertible (?y-module, f E r(Y, £) and let (j be the index of fly1c
at Xk with respect to some weights d1 , ... , dm > o. Finally let ei,j ~ 0 be given with
Li,j ei,j / di = (J'. Since the Pi,k: Xi,k --+ Pi,k are etale at Xi,k, the Oi,j can be uniquely
lifted to derivations Oi,j on a neighborhood of Xi,1: in Xi,k. Since Yk = X k = ni Xi,k

we can view the Oi,j as derivations in the ith direction on a neighborhood of Xk in Yk.
As usual, one can define (ni,j a:,ji f)(Xk) in xk£' to be (ni,j a;'~Jg)(xk)·/l(Xk), where
il is a generator of .cX1c and f = gf1.

4.2 Lemma. In this situation,

extends to a global section over Spec(R) of x*.c ® x*Ne ® ®~1 xiMii, where ei =
Ej ei,j and e = Ei ei·

Proof. It suffices to check the statement locally, so after localizing R we may assume
that £, has generator 11, that f = gf1 and that the M i and N are trivial. Let Ji C (?Pi

be the ideal sheaf of Pi(Xi) and let J C Op be the ideal sheaf of p(q(x)). Let Mi C OXi
be the ideal of Xi and M c Ox the ideal of q(x). Let] c Oy be the ideal of x and
Ii := Oy·q#Mi. The closed subscheme of Y defined by the ideal Ie+l + E~l Iii+1

is finite over Spec(R) , hence affine, so isomorphic to Spec(A) for some R-algebra
A. The ideals of A induced by ] and the Ii will be denoted by the same symbols.
For each i, let Spec(Bi ) denote the closed subscheme of Xi defined by Mt i +1

• Let
B := ®~1 Bi (tensor product over R); then Spec(B) is the closed subscheme of X
defined by Ei Mi i+1

• Finally, let Spec(Ci ) be the closed subscheme of Pi defined by
Jti+1 and let C := ®~1 Ci (tensor product over R). Then we have a commutative
diagram

y --+-

i
Spec(A) --+-

X --+

i
Spec(B) --+

P
i

Spec(C)

The rings A, Band Care R-modules of finite type, the morphisms C --+ B --+ A
induce isomorphisms C ®R k~B ®R k-=+A ®R k. Because of the smoothness of the
~ --+ Spec(R) at the p(Xi), the rings Ci and C are torsion free R-modules.

4.3 Lemma. Let B be the image of B in A, then AIB is annihilated by Ne.

Proof. We know that N annihilates fl}/x, hence also x*O}/x = ]1(12 + AM),
where M is the image of M in A; note that M c I. Since A = R + I, we have
]2 +A.M =]2 + M +1M = ]2 + M. It follows that N] c ]2 +M. Induction shows
NeI C Ie+l +M = M, hence NeA = Ne(R+ I) c R+ 1~f = B. 0
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4.4 Lemma. For all i, the morphism Ci ~ B i is injective, and Bi/Ci is annihilated
by Gii.

Proof. The morphism Ci ~ B i is injective since Ci is torsion free and Ci k~Bi k.

The proof that Gii annihilates BilCi is the same as the proof of the previous) lem~a.
o

4.5 Lemma. The morphism C --+ B is injective, and B Ie is annihilated by n~l Gii
•

Proof. The morphism C -+ B is injective since C is torsion free and Ck~Bk. Let
us consider the filtration

where Bi is the image in B = B1 ® ... ® Bm of ®i<i Ci ® ®i>i Bi . The successive
quotient BjIBi+1 of this filtration is a quotient of ®i<i Ci 0 (Bile;) ®®i>i Bj , hence
by the previous lemma it is annihilated by Gjj. The lemma follows. 0

We have now proved that h := (Ne n~l G~i)g, modulo je+l + L:~1 I;i+1
, is in C.

Note that (ni,j a~jjg')(x) is zero for all g' E Ie+l +L~l Iii+1
• Let us consider h as an

element of C. Since the index at Xk of fly1c is 0', it follows that the image of h in Ck is in
the ideal Ck' J;1 .. · ..J~. Since the ring C/ (C·J;1 ·.... J:nm ) is torsion free (this follows
again from the smoothness of P -+ Spec(R) at p(q(x))), h is actually an element of
C·J:l ..... J:nm

• The method of the proof of Lemma 4.1, plus the fact that the 8i ,j

are derivations on P in the direction of Pi, show that ((Oi,j8:,ji lei,j!)h)(p(q(x))) is
integral. 0

5 Proof of the Main Theorem

5.1 Theorem. (Theorem I of [22]) Let k be a number field, Ak an abelian variety
over k and X k C A k a closed subvariety such that Xx: does not contain any translate
of a positive dimensional abelian subvariety of Ak• Then Xk(k) is finite.

Proof. The proof is by contradiction: we suppose that Xk(k) is not finite. We
may also suppose that Xk(k) is Zariski-dense in Xk, because we can replace Xk by a
positive dimensional irreducible component of the Zariski-closure of Xk(k).

The situation is now as in §§1-3: A, £', m, B, Y, the 'Pi,j, c and s are fixed.
We embed X k into some projective space over k by choosing a basis of r(Xk , £,Ixk ).

Composing this embedding with a suitable projection as in Chapter IX, Lemma 5 we
get a finite morphism pr:Xk ---+ Pk', where n = dimXk • Note that £, = pr*O(l). Let
X denote the closure of Xk in A and let X ~ X be a proper modification such that
X k = Xk and that pr: X k --+ Pk' extends to pr: X ---+ P:R (e.g., one can take X to be
the closure in X XSpec(R) PRof the graph of pr: Xk -+ Pk). We choose an integer 9 and
a non-zero G in r(PR,0(9)) which annihilates niflit (Lemma 5 of Chapter IX shows

the existence of such a G annihilating n~kIPk; multiplying such a G by a suitable

integer gives the G we want). Let Y -+ Y be a proper modification such that Yk = Yk
and that the projections pri: Yk = Xr ---+ Xk on the ith factor extend to pri: Y -+ X.
In particular, Y is a model of Xi: dominating both Y and X m (mfold fibred product
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over Spec(R)). Since Y -+ x m is an isomorphism on the generic fibres, we can choose
an integer N > 0 such that N annihilates O}/xm • For 1 ~ i ~ m let Pi := Pkand

~tR := PRo Let Pi: Y -+ PitR be the composition of pri: Y -+ X and pr: X -+ PR. Let
P := n~l Pi and PR := n~l Pi,R (fibred products over k and R) and let p: Y -+ PR
be (Pl, ... ,Pm)' For 1 $ i ~ m and 1 ~ j ~ n let Oi,; be the derivation Xi,jOjoxi,j on
PR, where the Xi,j, 1 ~ j ~ n, are the coordinates of the standard affine open A"R in
~,R' Let Gi be the pullback of G to X m via the projection on the ith factor. Finally,
we choose a non-empty open subset U C Xk such that G is invertible on U and the
ai,j generate the tangent space at every point of U (this last condition just means that
U is disjoint from the n+1 coordinate hyperplanes). In particular, this implies that
pr: Xk -+ p~ is etale on U. Everything up to here will be fixed during the rest of the
proof.

The following two variables (j and b will be crucial; (j is a rational number with
o< 0" < c, and b is any rational number. In the end we will first have to take (J" small
enough, then b large enough. For any (J" and b we can find a point x = (Xl,".' x m ) in
Xr(k) such that:

1. h(XI) ~ b (here h denotes the height function on Xk(k) associated to £; in
particular we have h(XI) = [k : Q]-l deg(xi£))

2. h(X2)/h(Xl) ~ 282
, ••• , h(xm)/h(xm-l) ~ 282

3. (Xi, Xi+l) ~ (1- e/4)l!xill·l!xi+11l (here (x, y) denotes the Neron-Tate pairing in
Ak(k) and IIxll2 = (x, x))

4. Xi E U(k)

(here one uses that, by the theorem of Mordell-Weil, the unit ball in A(k) ® R is
compact). Let hi := h(Xi). We choose Si E Q close to hi1

/
2

: Is1h i - 11 < b-l will
do. Let d be a square integer which is big enough and sufficiently divisible, and put
di := 4ds~. Suppose that b ~ 3. Then Si/Si+l 2:: 8 for 1 ~ i < m, so we can choose
a section f in r(yo,£(O'-e,st, ... ,sm)d) as in Thm. 3.6: the index of f at x is
less than G' and the norm of f at the infinite places is bounded by exp(c((j ) Li di ).

Since the index of f at x is less than (J" there exist non-negative integers ei,j such that
((ni,j {j~j1) f) (x) =F 0 and, if we write ei = Ej ei,j, Li ei/di = (index of f at x) < 0".

By Lemma 4.2 we have a non-zero integral section

of the metrized line bundle

M = x* (£(0' - e, 81>"" Sm)d ® ~£;i9)
~=l

on Spec(R). We will compute an upper bound on the degree of M using the properties
of x and of £((j - C, S1, •.• , 8 m ), and a lower bound using f'. These bounds then give
a contradiction.
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5.2 Lemma. There exists C2 E R, not depending on b, q and the Xi, such that
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Proof. Let h denote the Neron-Tate height on Ak(k) associated to £. Then there
exists C1 E R such that Ih(y) - h(y)1 < C1 and I(y, z) - [k : Q]-1 deg(y, z)*PI < C1 for
all y, z in Ak(k). Then we compute:

[k : Q]-l degx*£(u - e, S1, ... ,Sm)d =
m-1

(1 +u - e)ds~h1 + L (2 + q - c)dsfhi + (1 + q - c)ds~hm
i=2

m-1

- L dSiSi+1[k : Q]-1 deg(xi, Xi+l)*P
i=l

m-l

< (1 +u - c)d(1 +b-1
) + E (2 +u - e)d(1 +b-1

) + (1 +u - c)d(1 +b-1
)

i=2
m-1

- E dSiSi+1((Xi,Xi+1) -C1)
i=1

m-1
~ (m(u-c)d+ 2(m-l)d) (1+b-1

) - L dSisi+l(1-e/4)lIxill·llxi+111 +2c1dmb-1

i=1
m-1

;;;~ 1/2 ;;;A 1/2< (m(u - e)d + 2(m - 1)d) (1 +b-1
) - d(1-c/4) L Si Si+1V2h i v2hi+1

i=1
+2c1dmb-1

~ (m(u - c)d +2(m - l)d) (1 +b-1
)

m-l

-d(l - c/4)2 L SiSi+1(hi - Cl)1/2(hi +1 - Cl)1/2 +2c1dmb-1

i=1
m-1

< (m(u - c)d +2(m - l)d) (1 + b-1) - 2d(l - c/4) E sih:/2si+1h:~~(1 - c1b-1
)

i=l

+2c1dmb-l

< (m(u-e)d +2(m-l)d) (1+b-1
) - 2d(1-e/4)(1-c1 b- 1)(m-l)(1-b-1

)2

+2c1dmb-1

< (m(u-e)d +2(m-l)d) (1+b-1
) - 2d(1-c/4)(m-1)(1- (2+C1)b-1) +2c1dmb-1

~ md(u - e/2) +b-1(2md +2dm(2 +C1) +2c1dm)

= md(u - e/2) + (6 + 4c1)mdb-1

This means that the lemma holds with C2 = (6 +4c1)m.

5.3 Lemma. There exists C3 E lR, not depending on b, u and the Xi, such that

Proof. We have:

m

[k : Q]-1 degM < md(u - c/2) +c2db-1 +L(ei/di)gdihi
i=l

o
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m

= md(q - e/2) + c2db-1 + E(ei/di)g4ds~hi
i=l
m

:::; md(q - e/2) +c2db-1 + E(ei/ddg4d(1 +b-1
)

i=l

< md((l +8g/m)u - c/2) + c2db-1

This means that the lemma holds with C3 = 1 +8g/m. o

5.4 Lemma. There exists C4(q), not depending on b and the Xi, such that for each
infinite place v of k we have log IIf'lIv ~ c4(u)db-1•

Proof. Let v be an infinite place of k. To simplify notation, we denote by II·U a
norm at v. We have:

Note that ei < udi < di as Liei/di < 0', and that Eidi < 8mdb-1 • The first factor
of the right hand side of the formula above is easy to bound, but when it is small
we will need that to bound the whole right hand side. There exists a j such that
Pi: £( (J - c, 81, ... , 8m )d -+ ®i£ti has norm ~ exp( -Cs Ei di ) at x (this Cs is the C2

from Prop. 3.3). Let h:= pi(f); then h E r(Xr,p*O(d1, ... ,dm )). The metric on
®i.cti we fixed a long time ago and the pullback of the product of the standard metrics

on the O(di ) differ by a factor bounded by CFi d
i

• Hence it suffices to show that there
exists c~ ((j ), such that we have:

where the metrics are now the standard metrics. Recall that the standard metric on
O(n) on pm(c) is given by:

IIFI\(Po : ... : Pm) = IF(Po, ... , Pm)I/(E 1~12)n/2
i

Let Yi = pri(Xi); then Yi E pn(c). Let Zo, ... , Zn in f(Pk,O(l)) be the homogeneous
coordinates of Pi:, and for 1 :::; j ~ n let D+(Zj) C Pi: be the affine open subscheme
given by Zj f:. 0; then D+(Zj) ~ AI: and the Zl/Zj (1 =/; j) are coordinates on D+(Zj).
For T in lR let D+(Zj)r denote the standard polydisc of radius r in D+(Zj)(C) given
by IZ1/Zj I ~ r (1 =f j). For each i in {I, ... , m} we choose ji in {O, ... ,n} such that
Yi E D+(Zj)l' i.e., the coordinates Yi,j of Yi in D+(Zii) satisfy IYi,jl :::; 1. We can
bound the derivative, on all standard polydiscs D+(Zj)2 of radius 2, of G in some
trivialization of 0(9). The conclusion is that there exists C1 > 0, C7 < l/IIGl\sup,pn(c) ,

such that G has no zeros in the polydiscs ~i C D+(Zji)2 of radius ri := c711GII(Yi)
and center Yi. It follows that pri= X k ~ Pi is etale over ~i' Let ~ = rr~l ~i' Then
~ is simply connected, hence p-l~ C Xr(C) is a finite disjoint union of copies of ~;
let ~' denote the copy that contains x.
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We trivialize O(di ) on ~i using its section zti
• In other words, on ~' we write

h = hI Oi Z;i. The standard norm of ztion ~i satisfies: (n + 1)-di /2 ~ II Zli II ~ 1 on
~i. By definition we have:

so it remains to estimate the first factor of the right hand side.
On ~' we write hI = L: a(n)z(n), with (n) = (ni,j) (here the Zi,j are the standard

coordinates on ~/: Zi,j = pri(Zj/Zji - Yi,j)). Then we have:

(II ({)/OZi J ) niIi) (h )( ) 1 J f h II -ni i-I II d
. . ni ;'.! 1 x = a(ni,j) = (211" Cf)mn .. ·]l;lzi ,"I=ri 1 .. Zi,j' .. Zi,j
t,J ' V - 1. , I,; I,;

Hence for (n) with 2:j ni,j = ei for all i we have la(nili)1 ~ IIhlllsup,~1ni riei
• Now note

that IIhll1sup,~1 is bounded above by some exp(c'~(O')db-l) by the arguments above plus
the fact that the norm of f is bounded by exp(c(u) Eidi), hence we have:

A standard computation shows that on ~i one can write Oi,j = 2:1 bi,j,l(0/{)Zi,l) with
\bi,j,I(Yi)I~ 1 (in fact, bi,j,I(Yi) E {O, ±Yi,l}). Using this, we can write:

I((u ~:~~) ht) (X)I = I(E) C(ni.;)(X) (u (a/~::;t·;) (hd(X)1

= IL: C(ni,j)(X )oa(ni,])1
(ni,j)

I I e"
C(ni ,j ) ( X ) :::; II . ,. ~ ~ . ,

i et,l· e"n o

Note that the right hand side does not depend on (ni,j). Using this one gets:

where the C(ni,i) are certain polynomials in the bi,i,l. Note that C(ni,,)(X) == 0 unless
for all i one has Lj ni,j = ei. From Ibi,j,l(X)1 ~ 1, and some combinatorics, it follows
that:

This means that finally we have:

which finishes the proof. o
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5.5 Lemma. There exists cs(u), not depending on b and the Xi, such tbat

Proof. By definition we have:

deg M = log # (:1') -E f(V) log IIf'lIv > -[k: Q]c4(u)db-1
11100

o

We can now finish the proof of Thro. 5.1. Take (j < e/(2c3) (C3 as in Lemma 5.3).
Then for b big enough, Lemma 5.3 and Lemma 5.5 give contradicting estimates for
[k: Q]-l degM. 0



Chapter XII

Points of Degree d on Curves over
Number Fields

by Gerard van der Geer

Arithmetic questions on the number of points of degree d on a smooth (irreducible)
algebraic curve over a number field lead to geometric questions about the curve by
using Faltings's big theorem. We discuss here some questions and conjectures initiated
by Abramovich and Harris in [4]. We refer to the end of this paper for a discussion
of the recent literature.

Faltings's theorem (previously Mordell's conjecture) says that an irreducible curve
C of geometric genus 9 2 2 defined over a number field K possesses only finitely many
K-rational points. But since over an algebraic closure K of K the number of points
has the same cardinality as K itself one is led to the question how the number of
points grows with the degree of the extension L / K over which we consider our curve.
More precisely, what can we say about

rd(C,K) = {p E C(K): [K(p): K] ~ d},

the set of points of degree ~ d ?
A first question is: is it finite ? The answer is: no, not always. For if we take a

curve C which admits a non-constant morphism C ~ pl defined over K of degree
$ d then we have #fd(C, K) = 00 in a trivial way: over every rational point on pl

there lies a point of degree $ d. Similarly, if C admits a non-constant K -morphism
C ~ E, where E is an elliptic curve with #E(K) = 00 (or equivalently, with K-rank
~ 1) we find infinitely many points of degree $ d.

This raises a multitude of questions. To begin with, the question arises whether
#fd(C, !() is finite when C does not admit a dominant K -morphism C ~ ]pl or
C ~ E of degree :5 d; or phrased differently, if #fd(C, L) = 00 for some finite
extension L/K, does this imply that C admits a dominant morphism of degree ~ d
to pI or to an elliptic curve?

As we shall see, the answer is : no! There are curves with infinitely many "inter
esting" points of degree d (i.e., not obtained from a morphism of degree d to ]pl or to
an elliptic curve).

To put the questions in the framework of this volume we introduce the algebraic
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C(d) = Sym(d)(C) = Cd/3d,

the d-fold symmetric product of our curve. We have morphisms

G. VAN DER GEER

d

<Pd: C(d) ---+- pic(d)(C) given on geometric points by {PI,' .. ,Pd} ~ EPi.
i=l

Here pic(d)(C) is the variety of divisor classes of degree d. The (geometric) fibres of
this morphism are the linear systems:

ID I = { (PI, ... ,Pd) : E Pi ~ D } ,

where ~ denotes linear equivalence.
Some remarks are in order here.

(i) By Riemann-Roch we have hO(D) 2:: 1 for d 2:: 9, hence 4>d is surjective.
(ii) If C does not admit a dominant morphism C --+ pI of degree ~ d then 4>d is

injective.
(iii) Any curve of genus 9 admits a morphism of degree ~ [(9 +3)/2] onto ]pl.

We need more notation. Define

and set
Wd = w2 = 4>d(C(d»).

These (functors) are (represented by) algebraic varieties defined over K. Examples of
these are: W:- 1 = e c PiC(9-1)(C),

the famous theta divisor of effective divisor classes of degree 9 - 1 on C and

W;_l = Sing(8),

the singular locus of the theta divisor. We know that dimSing(8) ~ 9 - 4.

Let us now assume that C does not admit a dominant morphism to pI of degree
~ d. Then 4>d is injective. A point of C of degree d (over K) determines a K-rational
point of C(d) (note that the natural local coordinates near {PI, ... ,Pd} are the elemen
tary symmetric functions in local parameters ti near Pi) and in turn this determines a
K -rational point of Wd• So if we know that Wd contains only finitely many K -rational
points then necessarily r d(c, K) is finite. But here Faltings's Theorem on rational
points on subvarieties of abelian varieties comes in and weaves the present theme into
the texture of this volume:

if Wd does not contain the translate of a positive dimensional abelian
variety then Wd(K) is finite, and then r d(c, K) is finite too.

All this leads us to the question: when does a jacobian variety contain an abelian
subvariety (always assumed to be of positive dimension) in its Wd ? One way for this
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to happen is when C is a covering of a (complete irreducible smooth) curve D. If
1r: C --t D is a morphism of degree n with g(D) = h we have an induced morphism

1r*: Pic(h) (D) --t pic(nh) (C)

whose image lands in Wnh (since <pd(D(h») = Pic(h)(D)) and thus we see that for
nh S d we find a translate of an abelian variety in Wd( C). This could also happen if
our C is the image of a curve C' which is a d-fold covering of a curve D. Again we
are led to speculate about the converse:

1 Question. If C is a curve of genus 9 and Wd(C) for some d < 9 contains a maximal
abelian subvariety of dimension h then does it follow that C is the image of a curve
C' which admits a dominant morphism C' --t C" of degree S djh with g(C") = h ?
o
Let us call this question A(d, h; g), i.e., does it hold for all C when d, h, 9 are fixed.
A related question is:

2 Question. If C admits a dominant morphism C' -+ C and C' admits a dominant
morphism C' --t e" of degree S d/hand g(C") = h, then does C itself admit a
dominant morphism C --t C'" of degree S djh with g(C"') s h ? 0

Call this question S(d, h; g), Le., does it hold for all C of genus 9 and the given values
of d and h ?

For points of degree d we have the relevant question:

3 Question. Is it true for all irreducible smooth curves of genus 9 over a number
field K that #r d(C, L) = 00 for some finite extension L / K if and only if C admits a
map of degree S d to pI or to an elliptic curve ? 0

Call this question F(d,g). Note that positive answers to A(d, h;g) and S(d, h; g) for
all h with 1 S h S dimply F(d, g) using Faltings's theorem. Indeed, we may deduce
from it that C admits a morphism of degree ~ d/h to a curve C' of genus S h. Either
C' is of genus :::; 1 or 2:: 2. In the latter case the curve C' admits a morphism of degree
~ h to pI since h ~ [(h +3)/2]. In any case we find a morphism of degree::; d to pI
or to an elliptic curve. We do not need consider all h in the range 1, ... ,g in view of
the following remark.

4 Remark. An affirmative answer to A(d, h; g) implies the following statement:

for d < 9 the variety Wd cannot contain an abelian variety of dimension
> d/2.

This last statement was proved to be true by Debarre and Fahlaoui [16]. 0

There are some scattered results concerning question F(d,g). Abramovich and
Harris proved it in [4] for d = 2 and 3 (all g) and for d = 4 provided that in the latter
case 9 =1= 7. Using the same arguments one can also show it for other d provided 9
does not lie in a certain interval, e.g. d = 6 and 9 S 10 or 9 2:: 17. One could also
consider a sharpened version of the question: suppose that #fd( C, L) = 00 for some
finite extension L, but #fe (C, M) < 00 for all e < d and all finite extensions M / K,
then does it follow that C admits a non-constant morphism of degree d to pI or to
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an elliptic curve? It seems that this sharpened question admits a positive answer
for d = p, a prime and 9 ~ 2p - 2 or 9 ~ (~) + 2. None of the questions A(d, h; 9)
and S(d, h; g) has a positive answer for all triples for which the question makes sense.
Abramovich and Harris conjectured in [4] that F(d, g) is true for all tuples (d, g) with
d ~ 1 and 9 ~ O. However, this was disproved shortly afterwards by Debarre and
Fahlaoui [16].

The questions A(d, h; 9) and S(d, h; g) do not admit a positive answer for many triples
(d, h, g). To point out some positive statements, one can see that A(d, h; g) has an
affirmative answer for h = 1. Similarly, the question S(d, h; g) has an affirmative
answer for 9 =o. Coppens [15] proved that S(d, h,g) holds for d a prime and 9 large
using Castelnuovo theory. He also shows that counterexamples to S(d, h,g) produce
counterexamples to S(md, h,g) for large enough 9.

In the following we give a few principles from [16] which give rise to some affir
mative answers to the questions A and S and we give an easy counterexample to
A(2h, h, 2h + 1). For more results we refer to the literature, although the terrain is
largely unexplored and the interested reader might find rewarding challenges there.

5 Lemma. Assume that e c PiC(9-1)(C) contains a subvariety Z stable under trans
lation by an abelian subvariety A ~ Jac(C). Then

dim(Z) +dim(A) ~ 9 - 1.

Proof. We may assume that Z is irreducible and meets areg (otherwise, replace Z
by Z +Wd(C) - Wd(C), where d + 1 = multiplicity of a in the generic point of Z).
Consider the Gauss map

g: ereg ~ JP>(Ta(Jac(C))*), x ~ Ts,x.

If x E Z n areg , then Te,x contains the fixed space x +TA,a, hence we find a map

g: Z n areg ---? P«TJac,ofTA,o)*).

But for a Jacobian the Gauss map has finite fibres (see e.g. [5]), hence

dim(Z) S; 9 - dim(A) - 1.

o

Similarly, if WJ contains Z which is stable by A and if d S 9 - 1 + r then

dim(Z) +dim(A) ~ d - 2r.

(Apply the Lemma to Z + Wg-t-d+r - Wr ~ Wg- 1 = e.)
When do we have equality?

6 Lemma. Suppose that C is such that Wd ( C) contains Z stable under translation
by an abelian variety A # (0) in Jac(C). Assume that dim(Z) + dim(A) = d and
dim(Z)+d ~ g-l. Then there exists a curve B ofgenus h = dim(A) and a morphism
11": C ---? B of degree 2 such that A ~ Jac(B) and Z = 1r*(PicCh)(B)) + W d- 2h(C).
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There is a variation of this Lemma in which one reads WI instead of Wd and assumes
dim(Z) + dim(A) = d - 2r and in which one then finds that Z = 1r*pic(h+r)(B) +
Wd-2r-2h(C). Taking Z = A one obtains the corollary:

7 Corollary. Let C be such that WJ(C) contains a translate of an abelian variety
A of dimension h > O. Assume that d $ 9 - 1 + r. Then dim(A) ~ d/2 - r. If
d ~ ~(g - 1 + r) we have equality if and only if d is even and if there exists a curve B

of genus d/2 - r and a morphism 1r: C -+ B of degree 2 such that A = 1r*(Picd/ 2(B)).

Note that this implies the validity of A(2h, h; g) for h < 9/3.

It is not difficult to construct counterexamples to A(2h, h, 2h + 1) for h ~ 4. One uses
Prym varieties of double covers as follows.

Let C ---+ D be a double etale cover of a smooth irreducible curve of genus g(D) =
h +1. Then the genus g(C) equals 2h + 1 and we can consider the Prym variety

P = Prym(C ~ D) = ker{Nm: Jac(C) ~ Jac(D)}o.

Here Nm is the norm map. This connected component of this kernel has dimension h
and can (up to translation) be identified with

{d E Wg - 1=2h(C): 1r*(d) = KD,hO(d) == O(mod2)},

where !{D is the canonica.l divisor class of D. The claim is then that for general D
and h ~ 4 there does not exist a double covering p: C' --+ B with g(B) = h and a
non-constant morphism q: C' ~ C. Indeed, suppose that it does exist. Then we find
q*(p*(Jac(B»)) inside Jac(C). For D general it is known that the jacobian Jac(D) is
simple and that the Prym P is not isogenous to a jacobian for h ~ 4. We see that
Jac(C) is isogenous to a product P x Jac(D), both factors of which are simple and
not isogenous to each other. It follows that q*(p*(Jac(B)) is a point. But this is
impossible because then for all D E Jac(B) we have deg(q)p*(D) = q*q*p*(D) = 0
which contradicts the fact that the kernel of p* is finite.

8 Additional Remarks

If we change the point of view somewhat (from the jacobian to the abelian variety
in its Wd(C)) we might pose the question differently: which curves do lie on a given
abelian variety? Answers to this type of questions (very interesting in their own right)
can also be helpful in that they put restrictions on the possible abelian varieties.

Instead of curves over a number field one might consider curves over function fields
and ask these questions there. Questions A and S make sense for curves over any field.

9 Discussion of the Literature

Many of the questions treated here were first stated explicitly in a paper of Abramovich
and Harris [4] (the title of which is not what you would think). The merits of this
interesting paper lie more in the questions it poses than in the answers it provides.
The questions "A", "8" and "F" were raised there (though in a slightly different form
and question "F" was stated as a conjecture there). The thesis of Abramovich [1]
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contains additional material. The first author wrote a corrigendum [3] to [4] (the title
of which is not what he thinks) pointing out a number of gaps and misprints in [4],
e.g., the proof of Lemma 6. In Lemma 7 one should read : Tk+l - Tk ~ Tk - rk-l.

Besides that there are more lapses. In particular, Lemma 8 (p. 223-224) of [4] is false.
Abramovich tells me that he manages to salvage Theorem 2 with a lot of effort, but
so far he did not publish how he did that.

The main conjecture of [4] was disproved by Debarre and Fahlaoui [16]. They give
partial answers to the questions A(d,h;g) and S(d,h;g).

Debarre and Klassen [17] classify all points of degree d on a smooth plane curve
of degree d.

In the paper [6] of Alzati and Pirola the reader will find some related results.
Finally, in the paper by Vojta [84] the reader will find a different approach to points
of given degree over a number field using arithmetic surfaces.



Chapter XIII

"The" General Case of S. Lang's
Conjecture (after Faltings)

by Frans Gort

In this talk we discuss (see Thm. 3.2 below) the main result of [23]. It proves the
conjecture stated in [37], page 321, lines 12-15, and it generalizes the main result of
[22], which is the theme of this conference. Also see [81], Theorem 0.3, and §10.

We assume (for simplicity) that Q eKe k = k, i.e., K is a field of characteristic
zero contained in an algebraically closed field k.

1 The Special Subset of a Variety

1.1 Construction. Let X be a variety over an algebraically closed field k. Consider
all abelian varieties C, and all non-constant rational maps

f : C··· ---+ x.

Let Sp(X) c X be the Zariski closure of all the images of these maps. This is called
the special subset of X. (Note that a rational map does not have an "image" in
general, but f is defined on a non-empty open set, and the closure of that image
is well-defined, etc.) If Y is a (reducible) algebraic set, Y = Ui Xi, then we write
Sp(Y) := Ui Sp(Xi ). 0

1.2 Question. Do we really need to take the Zariski closure, or is just the union of
all images already closed? 0

This seems to be unknown in general, but in the case considered in the next section
this is true.

1.3 Example. In the situation of (22] we have Sp(X) = 0, and Thm. 3.1 and Thm. 3.2
below generalize the main result of [22]. 0

Note that an elliptic curve can be mapped onto pI, hence we see that Sp(X) contains
all rational curves contained in X. In fact, for every group variety G and for every
non-constant rational map f from G into X the image of f is contained in Sp(X),
and Sp(X) could be defined using all such maps.
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1.4 The Kodaira Dimension

For a variety X over k one can define the Kodaira dimension, denoted by ~(X) (see
[79], §6). We briefly indicate the idea: take a complete normal model of X, let Kx be
its canonical divisor, let n be a rational integer. If every section in the sheaf £(nKx )
is zero (for every positive rational integer n) we write ~(X) = -00. In all other cases
we write K(X) for the maximum (for all n) of the dimensions of the image of the
(multicanonical) rational map defined by nKx . One can show that this is a birational
invariant.

We say that X is of general type (or: of hyperbolic type) if

dim(X) = ~(X).

Some examples:
(d=l) For complete algebraic curves we have:

g(C) = 0 {:::::> K(C) = -00

g(E) = 1 {:::::> K(E) = 0

g(C) ~ 2 {:::::> It(C) = 1 {:::::> C is of general type

We have: K(pd) = -00 for d > 0, It(pO) = 0 and K(abelian variety) = O.

1.5 Conjecture. (S. Lang, cf. [38], page 17, 3.5) (GT):

Sp(X) =I X {:::::> X is of general type.

1.6 Remarks. If X is defined over K, then Sp(Xk) is also defined over K, i.e., there
exists a K-closed subset Sp(X) c X so that Sp(X)k = Sp(Xk ) (but note that the
abelian varieties C and rational maps f : C .. · -+ X k need not be defined over K).

For algebraic surfaces not of general type one sees that indeed Sp(X) = X; for
K3-surfaces, see [51], page 351. It seems that Conjecture 1.5 for surfaces of general
type is still open. 0

1.7 Conjecture (Lang's conjecture). (LC): Let X be defined over K, suppose
that K is of finite type over Q, then

#{x I x E X(K) and x ¢ Sp(Xk )} < 00

(cf. (38], page 17, 3.6). For (GT) and (LC) also see [39], page 191.
Note that for a curve X the special subset is empty iff the genus g(X) ~ 2. Hence

(GT) is easily proved for curves, and (LC) is "Mordell's conjecture", proved by
Faltings (first for number fields, later for fields of finite type over Q, cf. [24], page 205,
Theorem 3).

If the conjectures (GT) and (LC) are true we could conclude that the following
conjecture holds:

1.8 Conjecture. (cf. [80], page 46) If X is a variety defined over K, a field of finite
type over Q, and X is of general type, then the Zariski closure in X of X(K) is a
proper subset of X.

(This conjecture was mentioned by Bombieri in 1980, cf. [55], page 208).

1.9 Remark. Note that the definition of Sp(X) is purely "geometric", but we shall
see the importance of this notion for arithmetic questions. 0
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2 The Special Subset of a Subvariety of an Abelian Variety

We denote by A an abelian variety over k, and by X c A a closed subvariety. Notation:

Z(X) = {x E X 13B C A, an abelian variety, dimB > 0, and x + B eX}.

Note that Z(X) C Sp(X). From the fact that any rational map between abelian
varieties extends to a morphism of varieties (see [14], Chapter V, Thro. 3.1), and
moreover that any morphism of varieties between abelian varieties is, up to translation,
a homomorphism of abelian varieties (see [14], Chapter V, Cor. 3.6), it follows that
Sp(X) is the Zariski closure of Z(X).

2.1 Theorem. (Veno; Kawamata [32]; Abramovich [1), Thms. 1,2) Z(X) = Sp(X),
in particular Z(X) is closed in X. For every component Zi of Z(X) we write Bi :=

Stab(Zi)O; then we have dim(Bi) > O.

2.2 Lemma. (cf. [54], Lemma 1.5; [22], proof of Lemma 4.1; [1], 1.2.2, Lemma 3)
Let A be an abelian variety over k, let W C A be a closed subvariety (in particular
W is irreducible and reduced), and let t E Z>l. Suppose that tW = W. Then W is a
translate of an abelian subvariety of A.

(Comment: by tW = W we mean that the map [t]: A --i' A maps the subvariety W
onto itself; note that this map is finite, and hence it suffices to require that for all w in
W we have t· w E W; in that case tW c W, and we conclude tW = W by remarking
dim(tW) = dim W.)

2.3 Sketch of a Proof of Theorem 2.1

Using Lemma 2.2 we sketch a proof of that theorem. We choose an integer q E Z>t.
Following Faltings we define for every m > 1 the map

Fm:Xm~Am-l

by:
Fm(al, ... , am) := (qat - a2, qa2 - a3,·.·, qam-l - am).

Define y~ by the cartesian square (i.e., pull-back diagram):

i i g=(q-l)·a

Y:' ~ Xm

where g(x) := ((q - l)x, ... , (q -l)x). Let Ym C A x X be the image of

(projl' h): Y~ ~ A x X.

Note:
(a,x) E Y~ and at = x +b' {::::::} ai = x +qi-1b' for 1 ~ i ~ m.
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Note that

(x + b', x) E Ym <===> (x +b' , X +qb', ... , x +qrn-1b') E Y~,

<===> x + b' E X, ... ,x + qm-1b' E X.

Suppose B' c X is closed, x EX, and b' E B' with x + b' EX; then

qB' = B' => (x +b',x) E Ym ;

F.OORT

we are going to try to prove the "opposite implication". We observe:
a) the maps (projl' h): Y~ -+ Ym C AxX make Ym+1 c Ym C AxX into a descending
chain (2 ~ m) of closed subschemes; clearly this is stationary, let n be chosen such
that Ym = Yn =: Y for all m ~ n;
b) for x E X consider the fiber

Y(x):= h-1(x) C A x {x} ~ A

(as a closed set of A); note that (x, ... ,x),x) E Y~, hence x E Y(x); note that
Y = Ym = Ym+1 (for m ~ n) implies

(x + b,x) E Ym <==> (x +b,x) E Ym +1 =:::} (x +qb,x) E Ym ;

we write B" := -x + Y(x), and we see that multiplication by q maps B" into itself,
hence a power t = q? > 1 of it maps some highest dimensional irreducible component
B' of B" onto itself; now we apply Lemma 2.2 with W = B'; we see that B' is a
translate of an abelian subvariety B of A;
c) hence Z(X) = {x E X I dim(Y(x)) > O}; the projection map Y ~ X is proper,
so by general theory we conclude that Z(X) is a closed subset of X; the equality
Z(X) = Sp(X) has now been proved;
d) let Zi be an irreducible component of Z(X) and let Xi be its generic point; the
method of step (b) (with some minor changes due to the fact that ki := k(Xi) =1= k)
applied to Xi gives a non-zero abelian subvariety Bi of A Q9k ki ; by rigidity of abelian
subvarieties (cf. [40], page 26, Thm. 5) B: is defined over k, Le., we have Bi C A with
B: = Bi ®k ki ; by construction, Bi stabilizes Zi.

2.4 The Ueno Fibration

Let X C A over an algebraically closed field k, and let B be the connected component
of the stabilizer of X:

B:= {a E A Ia + X C X}~ed'

This is an abelian subvariety of A. One can consider the quotient XI B, i.e., the
image of X under the mapping A -+ AlB. The mapping X ~ XIB is called the
Ueno-fibration of X (e.g. cf. [79], pp. 120/121). The Kodaira dimension of X equals
dim(XjB) (cf. [79], Thro. 10.9), hence conjecture (GT) (see §1) holds for subvarieties
of abelian varieties, also cf. [32], Thm 4. For connections with a conjecture made by
A. Bloch in 1926, cf. [57] and [32]. For Z(X), when X is contained in a semi-abelian
variety, cf. [56], Lemma 4.1. Also see [2], Thm. 1.



XIII. "THE" GENERAL CASE OF S. LANG'S CONJECTURE

3 The Arithmetic Case
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In this section we suppose that k is an algebraic closure of K. The crucial result is:

3.1 Theorem. (cf. [23], Thro. 4.1, and §5) Suppose K is of finite type over Q, and
A is an abelian variety over K, and X C A is a K -closed subset; then

#{x Ix E X(K) and x ¢ Sp(Xk)} < 00.

(If x E X then x @ k E Xk, but this point we still denote by x. This theorem and its
proof are generalizations of results and methods from [22].)

3.2 Theorem. (cf. [23], Thm. 4.2, notations and assumptions as in the previous
theorem) (Either X(K) is empty, or) there exist Ci E X(K) and abelian subvarieties
Gi c A (defined over K) such that

m

X(K) = U(Cj +Gj(K).
j=l

In other words, the irreducible components of the Zariski closure X(K) of X(K) in
X are translates of abelian subvarieties of A.

Proof. Induction on dim(X). For dim(X) = 0 it is trivial. If X(K) is finite we are
done. Let T be a positive dimensional irreducible component of X(K). Note that
T is geometrically irreducible since T(K) is Zariski dense in T. From Thm. 3.1 it
follows that Tic = Sp(TIe ). Let B := Stab(T)~ed;note that (Stab(Tk»O = ((Stab(T)O)k;
hence B le is a non-zero abelian subvariety of Ale by Thm. 2.1, and we see that B is
an abelian subvariety of A. By induction, TIBis a translate of an abelian subvariety
CIB of AlB, where C is an abelian subvariety of A containing B. It follows that T
is a translate of C. 0

3.3 Remarks. This theorem proves the conjecture by Lang from 1960, cf. [37],
page 29, which is a special case of (LC).

It does happen that the dimension of the Zariski closure of X(K) depends on the
choice of K (and hence I do not agree with "...that the higher dimensional part of
the closure of X(number field) should be geometric; i.e., independent of that number
field", cf. [81], page 22, lines 11-12). As an easy example one can take X = A = E,
an elliptic curve which has only finitely many points rational over K. One can remark
that the top dimensional part is not geometric, but its dimension eventually is.

Note that Thm. 3.2 does not generalize directly to semi-abelian varieties (e.g.,
take an elliptic curve E C p2 over a number field K such that E(K) is not finite, and
remove the 3 coordinate axes, obtaining U C Gm x Gm ; one can also take a singular
rational curve or a conic instead of E). 0

4 Related Conjectures and Results

4.1 Integral Points

Suppose S is a finite set of discrete valuations on a number field K, and let R := Os be
the integers outside S. One can consider points "over R". For curves it turns out to be
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essential that the curve has only finitely many automorphisms (this condition became
natural in the Kodaira-Parshin construction), and now we have a better understanding
of theorems of Siegel and Mahler: if C is either ph - {O, 1,00}, or E - {OJ (where E
is an elliptic curve over R), or C is a curve over K of genus at least two, then C(R)
is finite (cf. Siegel [74], Mahler [44], Faltings [22]; see the discussion on page 319 of
[37]; for the first case see [12]). For a generalization, see [19].

In [23] Faltings gives an example that one cannot hope for finiteness of integral
points on an open set in an abelian varieties (in case the open set is not affine).

See [36], page 219 for a conjecture concerning finiteness of number of integral
points on an affine open set in an abelian variety.

See [83], Thm. 0.2 for the statement of a result which generalizes this conjecture:
take R as above, take a closed subscheme X of a model A over R of a semi-abelian
variety A over K; the set of integral points on X is contained in a finite number
of translates of semi-abelian subvarieties (Definition: A group variety A is called a
semi-abelian variety if it contains a linear group LeA such that L is an algebraic
torus (Le., product of copies of Gm over the algebraic closure of the field of definition),
such that AlLis an abelian variety, i.e., if A is the extension over an abelian variety
by an algebraic torus). We see, cf. [83], Coroll. 0.5, that on a semi-abelian variety, in
the complement of an ample divisor we have only finitely many integral points.

4.2 Torsion Points on Subvarieties

Manin and Mumford studied a question which was settled by Raynaud:

4.3 Theorem. (Manin-Mumford conjecture, proved by Raynaud, cf. [60], Thm. 1)
Let A be a complex torus (i.e., C9 modulo a lattice), and let SeA be the image of
a Riemann surface into A. Suppose that S is not the Riemann surface of an elliptic
curve (i.e., Dot the translate of a subtorus). Then the set of torsion points of A
contained in S is finite.

More generally one can consider a subgroup of finite type (i.e., finitely generated as
Z-module, or take it of "finite rank" , see below) inside an abelian variety and intersect
with a subvariety (cf. [45], translation page 189, see [36], page 221).

We see that [38], page 37, Conjecture 6.3 can now be derived from the existing
literature (Liardet, Laurent [41], Hindry [29]: see the discussion on pp. 37-39 of [38],
use Faltings [23]):

Consider a semi-abelian variety A over C, a finitely generated subgroup
f o c A(C), and a subvariety X C A. Let

r := {a E A(C) 13n E Z>o with n· a E f o}.

Then X contains a finite number bi + Bi of translates of semi-abelian
subvarieties of A such that
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