Modular parametrizations at primes

of bad reduction.

Bas Edixhoven

September 7, 2001

Contents

1

2

Introduction.

Modular curves, modular forms and Hecke operators.
Fourier expansions of new forms at various cusps.

A stable model for M(T'(p),T;(N)) at p.

A stable model for M(Ty(p?),I'1(N))a at p.

Divisors and leading terms of new forms.

Modular parametrizations.

Manin constants.

More on parametrizations.

10

18

25

29

36

37

38



1 Introduction.



2 Modular curves, modular forms and Hecke operators.

2.1 Modular curves. The aim of this section is to explain how we use the arithmetic moduli
theory of elliptic curves in what follows. We also discuss how the moduli theory of Drinfelds
level structures on elliptic curves, as exposed in [19], extends to the moduli theory of the
generalized elliptic curves of [11]. The delicate results in this section concerning the cusps in

the “bad” characteristics will not really be used in the later sections.

2.1.1 Definition. For n a positive integer we define the following categories fibered in

groupoids over the category (Sch) of schemes:

M(T'(n)): objects are pairs (F/S, a), where E/S is an elliptic curve and a: (Z/nZ)? — E(S) is
a Drinfeld basis of F[n] (see [19] 3.1). Morphisms are cartesian squares compatible with

the a’s.

M(T'1(n)): the objects are pairs (E/S,«), where a:Z/nZ — E(S) is a Z/nZ-structure on E
(see [19] 3.2).

M(To(n)): (E/S,G), where G is a cyclic closed subgroup scheme of E[n| of rank n (see [19] 3.4).

It is well known that M := M(T'(1)) is an algebraic stack for the etale topology on (Sch),
of finite type, separated and smooth over Spec(Z) (for example see [11] III, Thm. 2.5). Let
P denote I'(n), I'y(n) or I'y(n). Then the obvious morphism M(P) — M is relatively rep-
resentable, finite and flat and makes M(P) into an algebraic stack, regular and of dimension
two, by [19], Thm. 5.1.1.

We can compactify M by adding a chart at infinity as in [15] I, §4 and IV, §5.5. For example
one might take the degenerate elliptic curve over Z[t, (1 + 2633t)7!] defined by:

v 4oy = 2 — 223%te — t,

which has ¢; = 1+ 2933, ¢g = —cy, A = (1 4+ 2°3%)? and j = ¢ 4 2633 ([11] VI.1.6). This
gives an algebraic stack M which is proper and smooth over Spec(Z) and contains M as an
open substack. We can then obtain compactifications M(P) of the M(P) by normalizing M in
M(P) ([10] page 104). This procedure of compactifying is essentially the one followed in [19].
What happens at oo can be studied using the Tate curve ([19] 8.8).

In [11] Deligne and Rapoport give a moduli interpretation for M: it is equivalent to the
category of generalized elliptic curves whose fibres are irreducible. They also give a moduli
interpretation for the M(P) over Z[1/n], and in some cases over Z. Obvious candidates for
moduli interpretations for the M(P) are the categories M(P)’ defined as follows. For P = I'(n),
['y(n) or Ty(n) the objects of M(P)" are pairs (E/S, ), where E/S is a generalized elliptic
curve and « is a Drinfeld basis (Z/nZ)?* — E™8(S), or a Z/nZ-structure Z/nZ — E™8(S), or
a cyclic subgroup scheme of rank n of E*™8[n], such that in each case a meets all irreducible
components of all geometric fibres of £/S. The M(P)’ are stacks for the fpqc topology because
the relevant descent data are effective; use [11] III, Lemma 2.1 and show that the level structures

descend too.



2.1.2 Proposition. Let n be a positive integer and let P denote I'(n), I'y(n) or I'y(n). For
P = T'(n) and for P = I'y(n) the obvious morphism M(P) — M(P)" extends to an isomor-
phism M(P) = M(P)'. The morphism M(T¢(n)) — M(Ty(n)) extends to an isomorphism
M(Ty(n)) — M(Ty(n)) if and only if n is square free. In all cases M(P) is regular.

Proof. Let us first prove the assertions concerning I'g(n). For n square free one uses [11] V,

Thm. 1.6. If n is not square free we can write n = p®*®

m with p prime, pfm, a > b > 0.
We claim that M(I'y(n)) is not an algebraic stack because it has objects with infinitesimal
automorphisms. Indeed, it is not hard to check that the standard p®-gon over E,, equipped with
a M(To(n))-structure, has automorphism functor isomorphic to the group scheme 0 x Z/2Z
over E,.

The proofs in the two remaining cases P = I'(n) and P = I';(n) will be given in four steps.
Two of these steps depend on certain computations concerning Tate curves that will be done
in §2.2.

Step 1: the diagonal M(P) — M(P) x M(P)" is representable. Let (E;/X, ;) and
(Ey/X,as) be in M(P)’. By [11] III, Thm. 2.5 the functor Isomy(FEy, F») is representable.
The functor Isomy ((E, aq), (Ea, ag)) is represented by the closed subscheme of Isomx (Fy, E»)
defined by the compatibility of the universal isomorphism with «; and as.

Step 2: there exists an etale surjective X — M(P) with X of finite type over Z, regular
and everywhere of dimension two. Using Prop. 2.2.1 and [11] III, Thm. 2.3 (including the two
remarks following it) it is straightforward to verify that M(P)’ is an algebraic stack.

Step 3: the diagonal M(P)" — M(P)" x M(P)' is finite. Let X — M(P) x M(P)" be
etale surjective. We have to show that Y := Isomx (pj(E, ), p5(E,a)) — X is finite. Because
Y — X is quasi-finite it suffices to prove that it is proper. For that we use the valuative
criterion for properness. Because Y — M(P)’ is etale we only need to consider morphisms
Spec(D) — X, D a complete discrete valuation ring, under which the image of the generic
point is in the interior of X. Then use [11] IV, Prop. 1.6.

Step 4: M(P) — M(P) extends to an isomorphism M(P) = M(P). Let Y — M and
X — M(P) be etale surjective. Let X' :=Y x5 X. Then X' — M(P)’ is also etale surjective.
Let Y, X and X’ denote the pullbacks of Y, X and X to M. Let Z := Y x4 M(P) and
let Z — Y be the normalization of Z — Y. So by definition Z — M(P) is etale surjective.
Because X is a chart for M(P) it is regular, hence normal. Also X' — Y is everywhere
dominant, so it factors uniquely as X — Z — Y. It follows from Prop. 2.2.1 that X — Z is
etale surjective. So now we have two charts X — M(P) and X - M(P)". The projections
from X' XJ(P) X' to X are etale and the morphism X' XJ(P) X' — X' x X' is finite. The same
holds for X XJ(Ppy Y/, hence these two fibre products are equal (both being the normalization
of X' x X in X’ Xmpy X' — X' x X'). It is clear that the two “compositions” in the groupoid

structures coincide. O

2.2 Computations with Tate curves. In this section we prove some results that are needed

in the proof of Prop. 2.1.2. Let G! /¢% denote the Tate curve over Z[[q]] as constructed in



[11] VII, §1.10; it is a generalized elliptic curve whose restriction to Spec(Z][q]]/(¢)) is the
standard 1-gon. The restriction of G /q% to Z((q)) is the elliptic curve denoted Tate(q) in
[19] §8.8. By definition, G /¢% induces a formally etale morphism Spec(Z[[q]]) — M. Let n >
1 and let P denote I'(n), ['1(n) or [y(n). By construction (see [19] §8.11), Spec(Z[g]]) x iz M(P)
is the normalization of Spec(Z[[¢]]) in Spec(Z((q))) X am M(P).

2.2.1 Proposition. Let a denote the universal level-P structure that G, /q% acquires over
Spec(Z((q))) x p M(P). The object (G /q%, ) of M(P) extends uniquely to an object over
Spec(Z[[q]]) x5 M(P). The induced morphism Spec(Z[q]]) x5z M(P) — M(P)" is formally
etale for P =I'(n) and for P = I'y(n).

Proof. The uniqueness is clear. Apart from this the proof is a long computation that, in order
to save space, we will give only for P = I'y(n).

Let us first compute Spec(Z((q))) xpm M(T'1(n)). As in [19] §8.7 let T'[n] denote the n-
torsion subgroup scheme of Tate(q) over Z((q)) (see also [11] VII §1.13). Then T'[n] is given as
the extension

0— p, — Tn| — Z/nZ — 0

for which the inverse image of b, 0 < b < n, is the p,-torsor given by the nth roots of ¢*. It
follows that T'[n], as a scheme, is the disjoint union of the schemes T}, = Spec(Z((q))[X]/(X™ —
¢®)), with 0 < b < n. The scheme Spec(Z((q))) xr M(T'1(n)) is the closed subscheme of
T'n)rp = T[n] xz(q) T[n] over which the universal point (i.e., the diagonal) defines a Z/nZ-
structure. Let 0 < b < n and let P denote the tautological point in T'[n|r, (1}). Let d be the
order of b in Z/nZ, let m = n/d and let a = b/m. It is now easy to prove that for P to be a
Z /nZ-structure is the same as for dP to be a Z/mZ-structure, i.e., for dP to be a primitive
mth root of unity ([19] Thm. 1.12.9). We find (compare [19] Thm. 13.6.4):

Spec(Z((9)) xm M(Ti(n)) = I  Spec(Z((q))[X]/®m(X ")) (2.2.2)

0<a<d|n
ged(a,d)=1

We may check the statements in Prop. 2.2.1 separately for each term of the disjoint union
in 2.2.2. These terms are permuted by the action of (Z/nZ)* on M(I';(n)) and we only need
to consider one term in each orbit. Since (Z/nZ)* — (Z/dZ)* is surjective we may restrict our
atttention to terms with a = 1. Let d|n be given. We must compute the normalization of Z[[¢]]
in Z((¢))[X]/®n (X% 1). Let ¢, denote the image of X% ~! in the last ring; by definition ¢,

is a primitive mth root of unity. We get an isomorphism
Z((@)[X]/®n(X7") = Z[Ga)((X)) g+ ¢, X1

It is clear that the normalization of Z[[¢]] in Z[(,]((X)) is equal to Z[(,][[X]]. In particular
the normalization is regular. By [11] VII, §1.4 and Construction 1.14, G. /¢% and G.. /q% are
isomorphic over Z[(,,]((X)) and the tautological T';(n)-structure o on G, /¢% corresponds to
the point X on éi/qz. It follows that (Ci/qz, 1 — X) is an object of M(T';(n))’ extending
(G! /%, ). Tt remains to prove that the induced morphism Spec(Z[(,][[X]]) — M(T1(n)) is

formally etale.



Let (E/Spec(A), @) be an object of M(T';(n))’, with A local artinian. We let k denote the
residue field of A and we suppose that after the base change to k the object (E/A, ) becomes
isomorphic to the standard d-gon with a I'y(n)-structure such that (1) lies on P! x {1}. For
N > 0 we define a scheme Zy by:

=X
ZN = ISOInA(X)ZZ[Cm][[XH/(XN) ((E/A, Oz), (Gm/qz, 11— X))

We want to show that for N large enough Zy — Spec(A) is etale surjective. The surjectivity
is obvious since Zy # (). The rest of the proof is done in two steps.

Stepl: Zy — Spec(A) is unramified. We may suppose that A = k. Then we have to compare
two objects of M(P) over k[¢,][[X]]/(XY). The first one is (E, «), with E the standard d-gon.
The second one is (éi /q%,1 — X). Let us first consider the image of the non-smooth locus for
both of them. Locally at a non-smooth point the first one is given by a local equation uv = 0,
hence the image of the non-smooth locus is all of Spec(k[(,,][[X]]/(XY)). A local equation for
the second one at a non-smooth point is uv = X, hence the image of the non-smooth locus
is given by the equation X = 0. Tt follows that Zy lies over Spec(k[(,]), over which both
generalized elliptic curves become isomorphic to the standard d-gon. Let us now use the I'y(n)-
structures. In both cases we can interpret d - a(1) as an element of i,,,(k[(,,]). In the first case
z = d-«al) lies in p,,(k) and in the second case d - a(1) = (,,. We find that Zy lies over
Spec(k[Cnl/(Gn — 2)), i.e., over Spec(k). It follows that Zy = Autg(E/k, «), which is easily
seen to be either Spec(k) or (Z/2Z).

Step2: Zy — Spec(A) is etale for N large enough. Let Z’ = Spec(B) be a connected (i.e.,
irreducible) component of Zy. We have to show that Z’ — Spec(A) is etale. After replacing
A by a finite etale extension we may suppose that B has residue field k. The canonical map
k — k®4 B is then an isomorphism since Z' — Spec(A) is unramified. By Nakayama’s Lemma,
the map A — B is surjective. It remains to show that A — B is injective for N large enough.
In order to do that it is sufficient to show that there exists a faithful flat extension A — A’
such that Spec(A’) — Spec(A) factors through Z' — Spec(A), i.e., such that Z’ — Spec(A)
acquires a section. That we will do now.

After a faithful finite flat base change (obtained by extracting a d-th root of some element
of A*, to be precise) there exists a ['y(d)-structure 8 on E/Spec(A). By definition, 3 is an
embedding of (Z/dZ), into E™8. Let E’ be the quotient of E by the action of Z/dZ via (3.
Then E’/Spec(A) is a deformation of the standard 1-gon. By [11] III, §1.4.2 and Lemme 1.4.3
E'/Spec(A) arises by pullback from G /¢% over Z[[q]]. By [11] II, Prop. 1.17 (E/Spec(A), 3)
arises by pullback from (G, /q%, q) over Z[[q]]. One now checks easily that over A[a]/(®,,(a?))
the pair (E, ) arises from (G, /q%,a - q). But this last one is isomorphic to (Gi/qz, X) via

Z[Gnll[X)) — Z[lalllal/Pm(a’) G a™ X = qa

This finishes the proof of Prop. 2.2.1. a

2.3 Modular forms and g-expansions. Let N and k be positive integers. Let R be a ring in

which N is invertible. We define the R-module of modular forms over R of level N and weight
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k as:

M(N, k) = HO(M(T3 (N)) g, ) (2.3.1)
1
E/M’
more down-to-earth terms this means that a modular form f of type (IV,k) over R is a rule,

where w is the invertible sheaf 0*(2 or, more precisely, its pullback to M(T'1(N))g. In

compatible with cartesian squares, that associates to each (E/S/R, «) in M(I'1(NN))g a section
f(E/S,a) of g%’js. Of course we could have defined M (N, k)r without N being invertible in
R, but for example for R the ring of integers in a number field, M(I';(N))g is not always the
best possible model.

If N > 4 then the stack M(T';(N))g is represented by the curve X;(N)z and modular
forms of type (N, k) over R are just global sections of the invertible sheaf w®* on X;(N)g. For
general N we have the following description of M (N, k). Let n > 3, then M(T'(n), T1(N)) rpi/n)
is represented by a (possibly non-connected) smooth proper curve over R[1/n], say X, on
which GLy(Z/nZ) acts. Then M(N,k)r ®g R[1/n] can be identified with the submodule of
GLy(Z/nZ)-invariant sections of w®* over X.

When R contains the Nth roots of unity one obtains the g-expansions of f at the vari-
ous cusps of M(I'(N))r by evaluating f on pairs (Tate(q?), «), where Tate(q?) is the Tate
curve G,,/q% over R[[q]](¢™!) and d|N. Explicitly: the g-expansion fy,(q) of f at the cusp
(Tate(q?), ) is the power series f(Tate(q?), )/ (dt/t)®* in R[[q]]. A form f is called a cusp
form if all its g-expansions have constant term equal to zero.

The group (Z/NZ)* acts on M(I'y(N)) by:

(a) : (E/S,a)— (E/S,aq), (2.3.2)
for a € (Z/NZ)*. This gives an action by (Z/NZ)* on modular forms:

((a)*f)(E/S,a) = f(E/S,ax). (2.3.3)

Let €: (Z/NZ)* — R* be a character. A modular form f of type (N, k) is said to be of type
(N, k,e) if {a)*f = (a)f for all a € (Z/NZ)*. Of course, we always have e(—1)f = (—1)f.
We denote the R-module of forms of type (N, k,e) by M(N,k,e)g, and its submodule of cusp
forms by M°(N, k,<)r.

For more details concerning modular forms in this setting see [18], Chapter 1 or [11], VII, §3.

2.4 Hecke operators. The R-modules M (N, k)gr with k& > 2 are equipped with certain
endomorphisms, called Hecke operators. For each n > 1 we have an operator 77. The algebra
generated by all T and (a)* acting on M (N, k)g is commutative and generated by the T} for
[ prime and the (a)*. It follows that the T'F also act on the submodules M (N, k,e)g. For a
construction of the T we refer to [18], §1.11; the hypothesis “k > 2” is needed to use base
change: M(N,k)r = M(N,k)zu/ny ® R. There is no problem to construct 77; on forms of
weight one if n is invertible in R. The action of T,y on M (N, k)q (k > 1) is given by:

(T, I(E/Qa)=n"" %sb*(f(E'/Q ¢a)) (2.4.1)

7



where ¢: E — E’ ranges over the isogenies of degree n with source F such that ¢ is injective on
the image of a. If f in M (N, k, e)g has g-expansion Y a,q" at (Tate(q), 1—(y) then we have

for p prime:

(T, f)(Tate(q), l—(y) = Z(anp+s(p)pk‘1an/p) q" (dt/t)e* (2.4.2)

n

with the conventions that a,/, = 0 if p fn and €(p) = 0 if p|N.

2.5 Galois representations. Let f be a cusp form over Q of some type (N, k,¢) with
k > 2 and suppose that f is a common eigenvector for all the T, p [N, with eigenvalues
a, € Q. Let K C Q be the field generated by the a,, pfN, and the e(a), a € (Z/NZ)*;
then [K : Q] < oco. Let A be a finite place of K and let [ be its residue characteristic. Let
Gq = Gal(Q/Q) denote the absolute Galois group of Q. According to a theorem of Deligne
([12], Thm. 6.1; see also [5]) there exists a unique (up to isomorphism) continuous semi-simple
representation py: Gq — GLo(K,) which is unramified outside NI and has the property that
trace(py(Frob,)) = a, and det(py(Frob,)) = &(p)p*~! for all p fNI. In these equalities py(Frob,)
denotes the image of a Frobenius element at p (unique up to conjugation). We will briefly
describe a construction of py; detailed constructions can be found in [5], [20] and [24].

First of all we may replace f by the unique new form with eigenvalues a, for p fN (see [§],
§2.4 and [2]); the field K remains the same, the level N is replaced by a divisor of it. Now f
is an eigenform for all T, n > 1, with eigenvalues a,, € K, of type (IV, k,e). Note that the a,
(n > 1) generate K since f is defined over the field generated by the a, and is an eigenvector
for the (a)*.

Let Y denote M(I'1(N))q and let m: E — Y be the universal elliptic curve. We have the
sheaf F* := Sym*?(R'7,Q) on Y (C) and the sheaf Ff := Sym*?(R'7,Q;) on Y. There is
the Shimura isomorphism ([7], Thm. 2.10):

H. (Y(C),F*)®q C — M°(N,k)c ® M°(N,k)c (2.5.1)

par

where Hp,, denotes “parabolic” cohomology: the image of the cohomology with compact sup-
port in the ordinary cohomology. This isomorphism is compatible with the 7)* and (a)* acting
on both sides in the usual way (see [7], Prop. 3.18).

Next let H be the opposite of the Q-algebra in Endg(M°(N, k)q) generated by the T)* and
the (a)*. By definition, M°(N, k)q is a right H-module and we denote by h* the endomorphism
induced by h € H. The algebra H is commutative and of finite dimension over Q. Let
MP°(N, k)g be the left H-module Homgq(M°(N, k)q, Q); say that h € H induces h, := h*". We
claim that M°(N, k)q is free of rank 1 as H-module. Namely, it is faithful and for each maximal
ideal m of H, M°(N, k)¢4/mM°(N, k)§ = (M°(N, k)[m])" is a 1-dimensional H /m-vector space
because of g-expansions. It follows that H!  (V(C), F*)" ®q C is a free H ®q C-module of

par

rank 2. Hence H} (Y(C),F*)" is a free H-module of rank 2 and H, (Yg, )" is a free

par par

H ®q Q;-module of rank 2. Let ¢: H — Q be the ring homomorphism such that for all
h € H: h*(f) = ¢(h)f. Let m := ker(¢); then K = im(¢) = H/m and we have a surjection



H@QQ[ — K)\. Let V)\ = I‘I1

par

(YQ, FF)®neq, Kx. Then V) is a 2-dimensional K-vector space
with a continuous action of Gq. To be precise: we let 0 € Gq act on Hy, (Y Xgpecq SpecQ, FF)Y
by (id x Spec(a™'))*V (note that this is covariant in o).

The action of Gq on V) is unramified at p /NI because m: E — Y has good reduction at
such p. Congruence formulas as in [7], §4 show that Frob, (p/NI) satisfies the polynomial
X2 —a,X +¢(p)p*!. In order to show that this polynomial is the characteristic polynomial of
Frob, it suffices to prove that Frob, has determinant £(p)p*~'. This one can do by computing
the action of Frob, on some non-degenerate alternating K)-bilinear form on V). Such a form
is found as follows.

The Weil pairing on m: E — Y gives a non-degenerate alternating pairing on Rl Q; with
values in the sheaf Q;(—1) on Y. This induces a non-degenerate pairing on F* with values in
Qi (2—Fk); this pairing is symmetric if k is even and alternating if £ is odd. As explained in
[7], §3.20, Poincaré duality then gives a non-degenerate Qj-bilinear form (-|-) on H},, (Yo, )"
with values in Q;(k—1); one has (y|z) = (—1)*"'(z|y) for all z and y. Let w¢, be the automor-
phism of Yg(cy) = M(I'1(V))q(cy) defined by:

wey: (B/5/Q(Cn), @) = ((E'/S/Q(Cn), o) (2.5.2)

where 5: E — E’ is the N-isogeny with ker(f) = im(«), im(o/) = ker(3") and («(1), /(1)) =
(n. Here " E' — E denotes the dual of 5 and (-, -)5 denotes the pairing of [19], §2.8. The use
of we,, is that if T)! denotes the correspondence (on Yq(¢y)) dual to T,,, we have T} = wc, angNl
for all n > 1 and (a) ™' = wey (a)wg, for all a € (Z/NZ)*. We let we, act on H},, (Yo, F) by:

X W¢ X
wg,: H! (Ya,}"ﬁ) N H! (Ya,ch}"ﬁ)

par par

Symk726*

v, (Yq 7 (2.5.3)

par

where 0:E — wi E; we let wey. = wzx For h € H let hl denote the endomorphism of
H!,.(Yg, FF)¥ which is dual to h, with respect to (-|-). Then we have bl = wey.hawg,), for

par

all b € H and wf_, = (—=1)"w¢y.. In other words, all h, are self-adjoint with respect to the

non-degenerate alternating bilinear form (zly) := (z|w¢y.y) on H, (Y, FF)Y.

The K)-vector space Vy is canonically isomorphic to (H,,(Yg, )" ®q, Kx) ®usqi, K,

where H ®q K\ — Ky: a ® b+— ¢(a)b. We extend (-|-) to apK)\-bilinear form, still denoted by
(-]-), on Hp,. (Yg; FF)V ®q, Ky Since f is a new form the quotient K = H/mH of H is actually
a direct factor: H = K x H' as rings, for some (unique) H'. It follows that H ®q K\ = K\ x H"
and that H} (Yg, Ff)” ®q, Kx = Vy @ V. This direct sum decomposition is orthogonal with
respect to (-|-) because the corresponding idempotents, lying in H ®q K, are self-adjoint. It
follows that the restriction of (:|-) to V) has all the properties we want, i.e., it is K-bilinear,

non-degenerate and alternating. One easily checks that Frob, acts on it as desired.



3 Fourier expansions of new forms at various cusps.

3.1 The general problem. Let M be a positive integer. Let f be a new form on I'y(M)
of some weight k, with character ¢ and with coefficients in Q. Then we ask the following
question: how are the g-expansions of f at the various cusps related? For M square free this
problem has been solved by Asai in [1]. His method uses the Atkin-Lehner operators W and
the diamond operators (a). It works because for M square free these operators permute the
cusps transitively, but for general M this is not necessarily true. We will solve the problem
in a situation described below. It might well be that the general case can be elegantly dealt
with using some explicit information concerning the Kirillov models for the local factors of the

automorphic representation attached to f.

3.2 Our problem. Let N be a positive integer, p a prime not dividing N and f a new form
on Xg := M(Ty(p?), ['1(N))g of some weight k and character e: (Z/NZ)* — Q". We want to
relate the g-expansions of f at the p+1 cusps of X, lying over the cusp (Tate(q), 1—(y) of
M(T'1(N))g, where (y is a fixed Nth root of unity. The most natural way to do this seems
to consist of first passing to a cover X of Xy on which a group G acts, permuting the relevant
cusps transitively, and then applying the representation theory of G. In our case we take
X = M(I(p),T1(N))gq. Note that by definition 2.1.1 a T'(p)-structure is not required to be
symplectic. The group G will then be GLy(F,) and not its subgroup SLo(E,). We prefer to
work with GL2(E,) because its representation theory is less complicated.

Let m: X — X, be the morphism mapping (E/S, ¢, a) to (E1/S,ker(dao¢), p1a) where
¢1:E — E; and ¢o: E — E5 are the p-isogenies with ker(¢;) = (¢(1,0)) and ker(¢s) =
(#(0,1)) (see [19] 11.3.5). We let g in G = Aut(E,?) act from the right on X by sending
(E/S,¢,a) to (E/S, ¢og,a). Then 7 is the quotient map for the action of the diagonal sub-
group T of G. For fy in H%(X,, w®*) we define 7* fy in HO(X,w®*) by (7*fo)(E/S, ¢, a) =
&5 (fo(E1/S, ker(gaog!), p1c0)). We define operators T} for | # p and (a)* for a in (Z/NZ)* on
H?(X,w®*) in the obvious way. The T}* and the (a)* commute with the action (from the left)
of G. The injection 7* of HY( Xy, w®*) into HO(X, w®*) intertwines the 7} and the (a)* on both

sides. Now 7*f generates a representation of G, namely the linear span V' of the gn*f, g € G.
3.2.1 Lemma. The subspace of T-invariants V' of V has basis 7* f and V is irreducible.

Proof. The first statement follows from the multiplicity one principle on X, applied to the 7},
[ # p, and the (a)* (recall that f is a new form so that we don’t need 7). Write V = @7V,
with all V; irreducible subrepresentations. Then 7*f = > v; with v; € V;. Since 7* f generates
V we have v; # 0 for all 4, hence dim VT > r. O

Let us now consider g-expansions. The Tate curve Tate(q) = G,,/q% over Q((q)) has its p-

torsion rational over Q((¢'/?)): the p-torsion points are the (gqb/p where ¢, is a fixed pth root
of unity and a, b are in E,. It follows that the set of I'(p)-structures ¢ on Tate(q) over Q((¢*/?))
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is a G-torsor where g € G acts by ¢ — ¢og. We have an evaluation map:
H(X,w™) — ©Qd'7), [ (f(Tatel), 6, 1-C0)/(@t/07),  (3:22)

We let G act on ©,Q[[¢"/?]] by permuting the factors: an element g in G sends (3 a,.46"")4
to (X2 an,d)q"/p)wgfl; this action is compatible with the map 3.2.2. We identify the Galois group
of Q((¢"/?)) over Q((q)) with E, by letting A € E, send ¢/* to (}¢*/?. Then X € E, induces
the automorphism o(\) of the p-torsion of Tate(q) given by: ngb/” — Cg“‘bqb/p. Suppose
that f(Tate(q), ¢, l=(xn) = 3 anoq™?(dt/t)®* and let A € E,. Base changing by Q((¢*/?)) —
Q((¢"7)), ¢ + (3q"/7 then gives: f(Tate(q), (0A)e¢, 1—(y) = 3 anC"q™P(dt/t)®F. In
other words, the image of the map 3.2.2 is contained in the subspace consisting of (3 an,d)q"/ )
such that a, n) = anan,aﬁ for all n, A and ¢. Note that both the condition on the image of
f we just found and the action of G' do not mix terms of different degrees in ¢'/?, so that it
makes sense to project on the degree n parts.

For n € Z let W, be the space of functions h: G — Q such that h((;{)z) = (?*h(z) for all
a € E,. We let G act on W, by right translations. Also let ¢y be the I'(p)-structure on Tate(q)

with ¢g(a,b) = ngb/ P, Then we can restate the results above as the following proposition.

3.2.3 Proposition. For f € H*(X,w®*) let us define the a(f,n,¢) by

f(Tate(q), ¢, 1C) = (3 alf,n, 6)q"/") (dt/t)*".

Then, for all n, mapping f to the function x — a(f,n, gex) on G gives a G-equivariant map
HO(X,w®*) — W,,. O

The usefulness of this result clearly depends on the multiplicity of the irreducible representation
Vin W,.

3.3 Applying the representation theory of GLy(E,). The notation is as in §3.2. We have
G = GLy(E,), B C G is the upper triangular Borel subgroup, T is the diagonal subgroup and
U is the subgroup of order p of B. First of all we need a character table for G. The one given

below is copied from [6].

3.3.1 Table. The character table of GLy(E,).

conjugacy class of w(a, ), a£f | mA), WAA| acdet | 7 ()
(5) v € B’ (p+ Da(z)p(x) (p—DA() | a@)? | pa(z)
(60) mye B w#y | a@)by) + aly)b(z) 0 a(z)a(y) | alz)a(y)
(5.) € E’ a(z)B(z) —A(z) a(z)? 0
(gzop) z€EL 2P #2 0 —A(2) — A(zP) | a(zPTh) | —a(zPt)

11



In this table o and [ denote characters E," — Q" and A denotes a character E: — Q. Asis
well known, the representation W), is isomorphic to the induced representation Indg Pn, Where p,,
is the one-dimensional representation pn((l)‘f) = (, of U. It is now a trivial matter to compute
the multiplicities dim Homg(V, W,,) = dim Homg (Res{V, p,) and the dimensions dim V7. One
finds the following table.

3.3.2 Table.
4 m(a,B), a#B|m(A), AP#N| acdet m(a)
dim Homg (V, W,,) 1ifpfn Lifpfn  |0ifpn 1
2 if pln Oifpln | 1ifpn
dim V7T 5(ap, 1) S(Alge,1) | d(e,1) | 0(c, 1) + (0% 1)

In this table the symbol ¢ denotes the function that takes the value 1 or 0 according to when
its two arguments are equal or not.

Let us go back to the situation of §3.2. So f is a new form on X, V is the irreducible
subrepresentation of HO(X,w®*) generated by 7*f and 7* f is a basis for V7. Looking at the
last row of Table 3.3.2 one sees that V = 7(a, 8) implies f = a~! and o # 1, that V = 7(A)
g = 1, that V = acdet is impossible and that V' = 77 (a) implies that a has
order two. Let n be a positive integer and let h, € W, be given by h,(z) = a(7*f,n, pgox)

implies A

as in Prop. 3.2.3. Looking at the second row in Table 3.3.2 one sees that h,, is determined
up to scalar multiple by the conditions that it is T-invariant and that it generates a quotient
representation of V', except in the case where V' = 7(«, 3) and p|n. To get such a function
h!, we can use the central idempotents in the group rings of G, T" and U corresponding to the
representations we want h; to be in. The central idempotent e, associated to an irreducible
character x of a finite group G is given by e, = x(1)/(#G) >, x(y~')d,, where the sum ranges
over the elements of G (we view the group ring of G as the ring Q[G] of functions on G with
convolution as multiplication). From now on let x be the character of G on V. We can start
with an arbitrary element of Q[G], project it into W,,, then into its x-part and finally into the

T-invariants. Starting with J., the delta function at the unit element of GG, gives us the function

ha(@) = > palu)x(uxt) (3.3.3)

teT uclU

By construction we have that A/, # 0 if dim Homq(V, W,,) # 0.

3.3.4 Proposition. In the situation of §3.2 we define the a(n,x) by:

7 f(Tate(q), ooz, 1—Cy) = (3 a(n, 2)g"") (dt /).

Suppose that p fn if x = w(a,a™!) for some o. Then the vector (a(n,z)).cq is a multiple of
the vector (h,,(z)).cc as defined in 3.3.3. O
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Using this proposition we can almost solve the problem posed in the beginning of §3.2. Let us

write:

f(Tate(q)a Mp% 1'_>CN) — (Z anq”) (dt/t)®k
F(Tate(Ga), (q'7), 1-Cn) = (S alg")(dt/t)*" (3.3.5)

f(Tate(q”), (@), 1—Cy) = (S alq")(dt/t)*"
Applying the definitions of 7* f and ¢q one finds:

an = a(n, (1))
al, = a(n,(1})) (3.3.6)

ar = e(p)~paln, (}9))

A direct calculation shows that for p f/n we have

h(39) = plp—1), h (1) = £p(p—1) (3.3.7)

where + = a(—1) if y = m(a,a™ ') or x = 7 (), and & = —A(z) if x = 7(A) and 25" = —1.
It follows that for p /n we have

a, =4p~'(p— 1)y (1]) - an, ay = +e(p)~'p *ay, (3.3.8)

where the sign + is as in 3.3.7. It remains to see what the a/, and a!/ are for p|n. For the a

this can be solved using the Atkin-Lehner automorphism w,. of X defined as follows:
wye: (B/S,ker(6),a) > (E'/S, ker(6"), da) (3:3.9)
where ¢: E — E' is cyclic of degree p?. On H°(X(,w®*) we define an operator wrs by:

(wr2 fo)(E/S, ker (), o) = ¢*(fo(E, ker(¢"), pa)) (3.3.10)

One easily checks that w? = (p*)n, that w'3 = 2k (p?)% and that wy, commutes with all T}

(I # p) and all (a)y (a € (Z/NZ)*). Tt follows that w’f = Fe(p)p*f; evaluating this on

(Tate(q), pp2, 1—(n) gives
Yoang" = +e(p) 'p Y ang” (3.3.11)
So we see that the equality in 3.3.8 concerning a! is in fact true for all n.

It remains to determine the a, for p|n. Prop. 3.3.4 is of no help when one wants to express

the a,,, and ay, in terms of a,,, since a,, = 0 for all n. For xy = 7(A) it follows from 3.3.2

"

pn- Lhe other two cases,

that a(pn,r) = 0 for all n and x, hence that a,, = 0 = a;,, = a

x = m(a,a™t) or x = 7 (), will be dealt with in the next section.

3.4 Twisting. Suppose that x = 7(a,a™!). We will show that f is a twist of a new form

on X := M(I'1(p),'1(IV))g and use this to solve our problem. For general information about

twisting of modular forms one can consult [26], page 91.
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Let B:E,* — Q" be a character. We will define an automorphism Op of the Q-vector space
HO(X,w®") such that:

Tr-0p = Opp)T7 Vi#p

905 = Opf(det(g))g Vgedl

(3.4.1)

Let e, denote the Weil pairing on the p-torsion of any elliptic curve (see e.g. [19], §2.8),
let 2 be the locally constant u,(Q)-valued function e,(¢(1,0),¢(0,1)) in H°(X, Ox) and let
b:=Y;B(i)" 2", where the sum ranges over ¢ € E,*. Then one easily checks that the operator
Op: f +— bf on HO(X,w®*) satisfies 3.4.1 and that b is a unit if 3 is non-trivial.

Let V; be the image of V under ©,. It follows from 3.4.1 and Table 3.3.1 that V; & 7r(a?, 1)
and that dim V¥ =1, where H C G is the subgroup {((1] )} Let m: X — X, be the morphism
sending (E/S, ¢,v) to (E/S,1—¢(1,0),). Then m identifies X; with X/H, 7 is compatible
with the 7}" for I # p and the (a)} and mo(g,) = (2)pem. This implies that there exists a
unique normalized new form f; of weight k and character a®c on X; such that «jf; € V;. If

we write:
fi(Tate(q), 1Gy, 1+Cw) = (3 bag™) (dt/1)® (3.4.2)

then we have a,, = a~'(n)b, for all n (we will always extend characters E,*—~Q" to E, by 0).
The g-expansions of f; at other cusps can be computed in various ways, see for example [1]777

and [16]?77 ; one just evaluates the identity T fi = b,f1 at such a cusp. First of all we have
b, # 0. We define the 0/, by:

F1(Tate(q)/Q((q"7)), 1q"7, 1=Cn) = (30 b,q"/7) (dt /) (3.4.3)
For 3:F,* — Q" a character and n € Z let g(8,n) denote the Gauss sum ¥, B(x)¢)*. Then:

b, = b te(p)pt lbn/p +p 'a*(n)g(a? 1)b, b, (3.4.4)

n p

A convenient way to express this result is the following Euler product expansion:

St =p b, gl (1 - Xp ) TI(1 - a Daid ™ + a2 ) T (3.45)
l#p

where X is defined by: \)b, = e(p)pF~1. The g-expansions of f at various cusps can now
be computed by expressing 7*f in terms of 7} f;. By 3.4.1 we have O,-17}f; € V. Recall
that 7*f is a basis for VZ. Unfortunately the projection of ©,-17}f; in V7T is zero because
z 0
(z°
non-zero. It follows that:

)Ou-175 fi = a(zy~1)O,-17 f1, but one can check that the projection of (19)0,-17] f; is

mf=c> (0N ))Ou 17 fi (3.4.6)

for some ¢ € Q" (note that Y (¢7) projects into VT because the central character of V' is trivial).
Evaluating 3.4.6 on say (Tate(q), doo(] ), 1—Cy) one finds that ¢ = g(a?,1)71b,. Let the a], be
as defined in 3.3.5. By evaluating 3.4.6 on (Tate(q), gboo(}?), 1+—(x) one computes that:

), = a(=1)g(a*, 1) byg(er 1) (G0 )b, + buyy) (3.47)
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where for any character 3:E,* — Q and n € Z:
j(B,n) = Bx)B(x —1)¢" (3.4.8)

We summarize these results in the following proposition.

3.4.9 Proposition. Let f be a new form as in §3.2. Suppose that 7*f generates the repre-
sentation m(c, ') of G for some a: E,* — Q. Let f, be the unique normalized new form on
M(Ty(p), ['1(N))g such that f is the twist of fi by a~t. Then the q-expansions of f and f; at
the various cusps are related by formulas 3.3.5, 3.4.2, 3.4.3, 3.4.4, 3.4.5 and 3.4.7.

Suppose now that x = 7 (a). Using techniques as above one can show that there exists
a unique normalized new form g of weight & and character ¢, either on M(I';(N))g or on

M(T'1(p), I'1(N))g, such that a, = a(n)b, for all n, where T;;g = b,g. In the first case one
finds:

a, = £(p) (e, 1) (pPe(p)bajpe + j(c, n)by) (3.4.10)

In the second case we define the 0/, by:

g(Tate(q), 1—q"?, 1—Cy) = (3 0,q"7) (dt/H)** (3.4.11)

Evaluating T7¥g = b,g one obtains b2 = &(p)p*~* and b}, = —p~'b, 'b, for all n. By the way, it
follows that this case cannot occur if k = 1 since b, has to be integral. For the a], one finds the

following expression:
a, = £(p)g(a, 1) (=pbpbup + (v, n)bn) (3.4.12)

3.4.13 Proposition. Let f be a new form as in §3.2. Suppose that ©* f generates the repre-
sentation 7~ («) of G, hence with a: E,* — Q" of order 2. Then there is a unique normalized
new form g of weight k and character e, either on M(T'1(N))g or on M(I'y(p), T1(N))g, such
that a,, = a(n)b,, for all n, where T*g = b,g. In the first case the a!, are given by 3.4.10 and in
the second case by 3.4.12.

3.5 p-adic valuations. Let f be as in §3.2. In §6 we will need to know the p-adic valuation
(in some sense) of the g-expansions of f at certain cusps. More precisely: we fix an embedding
of Q into Qp and we normalize the p-adic valuation v, on Qp by setting v,(p) = 1. Then we
want to know the valuations of the power series > al,¢"™ and > al'¢™ in 3.3.5; by definition we
have v,(3" al,q") = min{vy(a,) | n > 0}. Let Z, be the ring of integers in Q, and let E, be
the residue field of Z,. Let F be a finite extension of E,. Clearly any character a: F* — Q;
has its image in Z;. We call a fundamental if «: F — Z, — E, is an embedding of fields. The
Teichmiiller character 7 is the unique fundamental character 7: E,* — Q; We denote the two

fundamental characters ]F;)*2 — Q; by 7 and 75 = 75.
3.5.1 Lemma.

L ovy(g(r™™,1)) = ;%1 for0<m<p-—1.
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1—2m  §f 0<m< B2
0 if p%lgm<p—1

1 if 0<m<2t

0 if p—;l§m<p—1

4 Let A = 7" V™ with 0 < m < p+ 1, let x = w(A) and let B!, be as in 3.3.3. Then
h! (x) =0 for all x if p|n. Assume that p fn and that p # 2. Then:

(a) vp(R (1)) = vp(h(V9)) =

pomof o < 2
10\ - 1 >
(b) Up<h;1(1 1)) - { %:11 if m > 1%1

Proof. 1. Very well known, see for example . ..
2. We compute the image of j(7, 1) in E,[(,] := Z,[(,|/pZ,[C,):

jr™ modp = Y a™(a—1)"¢ = a" i (Z) (=)™ e
= () et = e S ae

The statement now follows from part 1 of this lemma.
3. Well known because j(7™,0) is 7(—1)™ times the usual Jacobi sum, see ...
4. It follows from 3.3.2 that A/ (z) = 0 if p|n. Assume that p fn. Part (a) follows from 3.3.7.
The computation of v,(h, (7)) is more complicated. By definition 3.3.3 we have:
PG = 32 G, bER, ny e R
b,y
Write b = a—1. Note that (% (“_yl)y) is never scalar, hence the value of 7(A) on it is determined
by its trace (= ax + y) and its determinant (= zy). For any o € E, and § € E,* the number of
solutions of
ar+y = «o
{ vy = B

equals (%) +1, where (5) denotes the Legendre symbol. Using this fact, Table 3.3.1 and
the non-triviality of A, we find:

(1) = =G 26" 3 AR)

ack zGF;)*Q

((z + 2P)% — 4azp+1>
5 :

The image of h/,(17) in E2[¢,] can be written as:

n —na —1)m (p—1)/2
W (1% modp=—¢ > ¢ Y 207 ((z + 2P)? — 4azp+1)

ack, zel‘]:‘2
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Expanding and rearranging terms gives:

~1)/2 —1
W, (1) mod p = ¢ (:Z)l/ (4 (Z) 3 DO (L () (352)
Clearly the right hand side is of the form 3 ¢; g(7%, —n). It follows from part 1 of this lemma
that v,(g(7%, —n)) = 1 — k/(p—1), hence we have to find the largest k for which ¢ # 0. The
exponent of z in each term of 3.5.2 is positive and less than 2(p®—1). Because we sum over
z, only terms with p?—1 as exponent of z can give a non-zero contribution. It follows that we
should look for the largest k for which there is a non-zero term depending on a and z as ak "1,
This means that we are looking for the largest k such that there exists ¢ with 0 <17 < p—1-2k
such that m+k + 1+i = p+1. Recall that 0 <m < p+1 and 0 < k < (p—1)/2. It is then easy
to see that one should take k = p—m and i = 0 if m > (p+1)/2, and k = m—1 and i = p—1—2k
it m < (p+1)/2. O

3.5.3 Proposition. Let N be a positive integer, p > 2 a prime not dividing N and f a
normalized new form on M (T'y(p?), ['1(N))g of some weight k > 2 and character €: (Z/NZ)* —
Q. Let x denote the character of the irreducible representation associated to f as in §3.2. Then
we have y = m(a,a”!) for some a: E,* — Q" with a # o™, or x = 7(A) for some A: E: — Q
with A = A=' £ A, or x = 7 () with a:E,* — Q" of order two. Fix an embedding of Q
into Qp and normalize the p-adic valuation v, on Qp by v,(p) = 1. Let 7, 7o and 75 denote the
fundamental characters of level 1 and 2 as in the beginning of §3.5. Let (, and (x be a pth and
a Nth root of unity in Q. Let the a,, a,, and a!. be as defined in 3.3.5. Then we have:

1. v,(X ang™) =0,

2. v,(>Xalg™) = —k,

3. if x =m(r™,77™) with 0 < m < (p—1)/2 then v,(>a,q") = —m/(p—1),

4. if x = 7T(7'2(p_1)m) with 0 < m < (p+1)/2 then v,(}_al ¢") = (1-m)/(p—1),

5. if x = 7~ (7?°7V/2) then v, (¥ a,¢") = —1/2.
Finally, the valuations of the q-expansions of [ at the cusps (Tate(g,q), (@), 1=(y), 1 <i <
p—1, are all equal.

Proof. Part 1 is a consequence of the definition of “normalized”. Part 2 results from 3.3.11.
Parts 3, 4 and 5 are an easy exercise using Lemma 3.5.1, Prop. 3.4.9, Prop. 3.3.4 and Prop. 3.4.13
(for 3 one has to use that in 3.4.5 v,(X\,) > 0). For the last statement one notes that Gal(Q,/Q,)
permutes those cusps transitively; that for any o € Gal(Qp/ Q,), o(f) generates a representa-
tion with character o(x); that o(y) = x (see 3.3.1), and that we have already proved that the

valuation at one of those cusps depends only on that character. O

3.5.4 Remark. 1. Note that m(a,a™!) = m(a™!, a) and that 7(A) = 7(AP).
2. The relation between y and the Galois representation corresponding to f is given in
Prop.4.8.

3. Note the curious case y = W(Tg_l) where v,(> a,¢") = 0.
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4 A stable model for M(T'(p),['1(N)) at p.

4.1 Construction of a stable model. In order to explain the construction of a stable model
for M(T'(p), T1(N)) at p, it is better to consider the following more general situation. Let S be
the spectrum of a discrete valuation ring with perfect residue field, let s be the closed point of
S and let n be the generic point. Let C — S be a curve: C — S is proper, flat and purely of
relative dimension one. We suppose that C, is smooth over n and that C is regular.

Under the hypotheses above, the irreducible components of C, are Cartier divisors on C.
After blowing up repeatedly in closed points of C; we may assume that Cs is a Cartier divisor
on C with normal crossings. Let n be the least common multiple of the multiplicities of the
irreducible components of Cy, and let 7y be a uniformizer on S. Let T be S[r|, with 7™ = 7,
thus we have T' — S totally ramified of degree n. Now we consider Cr, the normalization of
the pullback of C to T'. Let t be the closed point of T

4.1.1 Proposition. If n is invertible on S, then the geometric fibre 5;“7{ of CNT/T is a reduced

curve whose singularities are ordinary double points (i.e., Cr — T is a semi-stable model).

Proof. By replacing S by its strict henselization we may suppose that k(s) is algebraically
closed. We will check that CAit is reduced and that its singularities are ordinary double points.
In order to do this we compute Cr locally in the etale topology. Let x € C(s). Since C; is a
normal crossings divisor on C there is an etale neighborhood U — C of x and a system X,Y of
parameters in Oy, such that X Yt = mou with u € Oy, a unit and a, b non-negative integers
with @ # 0. The numbers a and b are the multiplicities of the one or two irreducible components
of U, passing through x; b equals zero if and only if x lies on exactly one irreducible component
of U,. By assumption a is invertible on U, hence U[u!/?] is finite etale over U. Changing X by
an ath root of u we have: X*Y? = ;. It follows that Cr is locally isomorphic to a subscheme of
AZ defined by the equation X*Y?® = 7. The normalizations of the rings Or[X,Y]/(X*Y?—7")

can be easily computed, see for example [13], §2.2. One finds the following.

4.1.2 The normalization of Spec(Or[X,Y]/(X* — n™)) is the disjoint union, indexed by the
Cq € Jta, of copies of Spec(Or[Y]); on the copy labeled by ¢, we have X = (,7"/°.

4.1.3 Suppose that b # 0. Let ¢ = ged(a,b), write a = d'c, b = b'e, n = ca’b'm. Write 1 =
a'e+b'd for some integers d and e. Then the normalization of Spec(O7[X,Y]/(X2Y?—7"))
is the disjoint union, indexed be the (. € ., of copies of Spec(Or[V, Z]/(VZ — 7™)). On
the copy labeled by (, we have: V = g@emXdy—¢ 7 = gVmdx—dye X — ggvb/ and
Y =129,

From these results one concludes that indeed CNT — T is a semi-stable model. O

4.1.4 Remark. 1. If C, is geometrically irreducible and has genus at least 2, one obtains
the stable model (in the sense of [10]) of C, over T' by contracting the projective lines in E’}’{
intersecting the rest of CA;,E in fewer than 3 points. By contracting and blowing up one also

obtains the minimal model of C over T (n.b. Cr itself may not be regular).
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2. The computations of the normalizations describe the morphism Cr — Cr locally in the
etale topology. In particular, one knows the ramification structure of CNT,t — Cs red-

3. The choice of the uniformizing element 7 on .S is unimportant, since all totally ramified
extensions of degree n of S are isomorphic over the strict henselization of S.

4. On the contrary, if n is not invertible on S, there are lots of non-isomorphic (wildly
ramified) extensions of the same degree. If one knows the action of the inertia subgroup of
Gal(77/n) on H'(C5,Qy) one can pick the right extension. In the case of modular curves (of
arbitrary level) this action is known ([5]). The problem is the description of the rings Oc.,.

4.2 Construction of a stable model for M(I'(p),[';(N)). Let p be a prime, let N be
an integer that is not divisible by p and let X := M(I'(p),'1(N)) be the compactification
(obtained by normalization, as in §2.1) of the algebraic stack classifying triples (E/S, ¢, «)
with E/S an elliptic curve, ¢: E, x E, — E[p|(S) a Drinfeld basis and a: Z/NZ — E[N](S) a
Drinfeld Z/NZ-structure. For any elliptic curve E/S let e,: E[p| X s E[p] — 1, 5 denote the Weil
pairing (see [19], §2.8). The morphism X — Spec(Z) factors through Spec(Z[(,]) by sending
(E/S, ¢, ) to ey(p(1,0),6(0,1)) € Spec(Z[¢,))(S). Let X®zZ[(,] denote the normalization of
X ®z Z[¢,). Fori € E* let X; denote the algebraic stack M(I'(p)% = T'1(N)) over Z[(,] (see
[19], §9.4). By definition, for a scheme S over Z[¢,] an object in M(I'(p)%~" T';(N))(S) is a
triple (E/S/Z[(,), ¢, o) with e,(¢(1,0),$(0,1)) = ¢! X; is obtained from M(T(p)%= Ty(N))
by normalization at infinity. The morphism

X — Xz, (E/S/ZIG), &, a) = ((E/S, ¢, @), e5((1,0),6(0,1)))

i€E*

induces an isomorphism
II X — X®Z[¢) (4.2.1)
i€R*

because both sides are normal (in fact, both sides are regular).

We will now apply the construction of §4.1 to X®Z[(,] over Z[(,]. The fact that we are
dealing with an algebraic stack that is not necessarily a scheme is no problem because blowing up
and normalization are compatible with etale descent. We have already remarked that X ®Z[(,)]
is regular. The X; ®z,] E, are described in [19], Thm. 13.7.6 and Thm. 13.8.4: X; ®z,] E,
has p+1 irreducible components, all isomorphic to M(ExIg(p,1),I'1(N)); these irreducible
components are smooth over E,, geometrically irreducible, have multiplicity one and intersect
each other exactly at the supersingular points; the intersections are pairwise transversal.

Let Y — X®Z[(,] be the blow up in the supersingular points in characteristic p. Then
Y ®z¢,) B, is a divisor on Y with normal crossings and over each supersingular point lies an
exceptional curve having multiplicity p+1 in Y ®z¢ | F,. Let m be the uniformizer 1—¢, of Z[(,)
at p. According to Prop. 4.1.1 X* := Y ®g¢,|Z[(,, 7], where 777! = 7, is a model for X over
Z[(,, w] that is semi-stable at p. The computations in the proof of Prop. 4.1.1 show that X is
regular and that the fibre X' := X**®g., 1 F, over E, has two kinds of irreducible components.

First of all one has the irreducible components that map isomorphically onto an irreducible
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component of (X@Z[Cp])fp; these components are isomorphic to M (ExIg(p, 1),I'1(N))g; we
call them components of Igusa type. Secondly, there are the irreducible components that map
to a supersingular point in X®Z[(,]; over each supersingular point in characteristic p there is
exactly one such component; we call them components of Drinfeld type; they are all isomorphic.
Each component of Drinfeld type maps with degree p+1 to some exceptional curve in Y®Z[Cp}Fp-
This shows a component of Drinfeld type is a cover of degree p+1 of Plﬁ) ramified exactly and
totally over the p+1 F,-rational points.

4.3 Components of Drinfeld type. In this section we want to get equations for the compo-
nents of Drinfeld type in X5*. To do this we follow the construction of §4.2. Let s = (E/E,, ¢, a)

be a supersingular point in X;(F,) for some ¢ € E,*. We denote the corresponding component
of Drinfeld type by D;s. Let W be the ring of Witt vectors of E,. By [19], Thm. 13.8.4, the
complete local ring of X®Z[(,] at s is isomorphic to W[¢][[z,y]]/(f), with f = fo + 7o f1,
fo=aPy —xy’ + g, g € (x,y)P™ and f; a unit. As explained in [13], §1.3.1, the completion
of Y along the exceptional curve lying over s can be covered by two open affines isomorphic
to Spf(A1) and Spf(A,) with Ay = W[G][v][[z]]/(f(z,vz)) and Ay = WIG][ul[ly]]/(f (uy,y))
respectively.

It follows that the completion of X** along D; ; is covered by two open affines isomorphic to
Spt(A;@wic,)W ¢y, ), j in {1,2}. The normalization A;Qyc,;W[(p, 7] of A; Quwie,] W (. 7] is
obtained by blowing up in the ideals (x,7) and (y,7) respectively (this can be seen from the
computations in the proof of Prop. 4.1.1). Let us write out what happens for j = 1. Then:

A1 @wie) WG m] = WG, mlo]lall/ (7 (v = v) + 2?2k 7 fi (, o))
where we have written g(z,vz) = 2P*2h. Blowing up in (z,7) means setting 7 = zw. We find:
A@wiga WG 7] = WGy o] [[e]][w]/ (7 — 2w, v = o + wh + wP* fi(z, vx))

The corresponding affine part of D; ; is given by the equation x = 0. Substituting this we find

that D; , is the smooth complete model of the affine curve in A% given by the equation
awPt™t =P — v (4.3.1)

where a € Fp* is the image under W([¢,] — E, of f1(0,0). If we put a := w™! and § := vw™!
then we find the equation:
—a = o’ — afP (4.3.2)

for an other affine part of D, ;.

In order to describe various actions on the D, ; it is necessary to recall the construction in
[19], §13.8 of the parameters z and y of the complete local ring (’A)Xi,s of X; at s. By definition
we have a triple (5/(;)Xi7s, ¢,a). Let Z be a parameter of the formal group of £. Then we can
take x = Z(¢(1,0)) and y = Z(4(0,1)). Putting things together we have:

r=7Z(¢(1,0), y=Z((0,1), y=vr, T=aw, a=7 'z, f=1"1y. (4.3.3)
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4.4 Components of Igusa type. In this section we want to give a precise description of the
components of Igusa type in X;t. We have already seen in §4.2 that these are precisely the
irreducible components of (X®Z[(,]) ® E,. Because we have the isomorphism 4.2.1 between
X®Z[(,) and the disjoint union of the X;, i € E*, it is sufficient to describe the irreducible

components of the X; ®zi ) E,. In fact, all X; ®gz, Fp are the same: they classify triples
(E/S/E,, ¢,a) with e,(¢(1,0),(0,1)) = 1.

In [19], §13.7and §13.8 it is shown that the irreducible components of X; ®z,] E, are the
compactifications of the p+1 stacks, labeled by the P € P!(E,), classifying triples (E/S/E,, ¢, a)
with P C ker(¢), where we view P as a line in F},Q. We denote the corresponding components
in X' by Ig; p, where i € E,* and P € P'(E,). For every P € P'(E,) we choose a surjective
linear map Lp:E,> — E, such that P = ker(Lp) as in [19], §13.8: for P = E, - () we take

Lp:(;) = a—bx and for P = F,- (é) we take Lp: (j) +— b. Using these Lp we get isomorphisms:

Ig; p = M(ExIg(p,1).Iy(N))g,  (E/S/E,¢,0) — (E/S/E, ¢,q) (4.4.1)

where ¢: E, — E(S) is the unique map such that ¢ = ¢oLp. Since these isomorphisms depend

on the choice of the Lp we will avoid using them as much as we can.

4.5 The action of GLy(E,). The group G := GLy(E,) = Aut(E,?) acts from the right on X
by automorphisms r(g):

r(g): (E/S ¢,a) = (E/S, ¢eg, )
We let G act on X ® Q((,, 7) via its action on X; by construction this action extends uniquely

to an action on X®'. The aim of this section is to describe the action that we get on X;t. First

of all, since e,(, -) is alternating we have:

ep(0og(1,0), ¢og(0,1)) = e, ((1,0), ¢(0, 1))

Hence the action of g € G on [[; X; ®z¢,) E, is given by:

((B/S/B,,6,0),i) — ((E/S/E, ¢og,),idet(g))

From this we can easily see the action of g € G on the Ig; p. Each g induces an isomorphism
7(9):1g; p = 18i4e1(y) g-1p- The stabilizer of Ig; p is the Borel subgroup Bp of SLy(F,) that
fixes P. Let xp: Bp — E,” be the character giving the action on the line P, then for g €
Bp we have Lpog = xp(g) 'Lp since det(g) = 1. It follows that the action of ¢ € Bp on
M(ExIg(p, 1), I'1(N))g that we get via the isomorphism 4.4.1 is the so-called diamond operator:

<XP(g)_1>p : (E/Sa ana) = (E/Sa XP(Q)_%,OZ) (451)

Note that any other choice of Lp would lead to the same (xp(g) '),
Let us now consider the D; ,. Each ¢ € G induces an automorphism r(g): D; s = D;qet(q),s-

The stabilizer of D; is SLo(E,). Let g = (*)) € SLy(E,). Then g acts (from the left) on
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r(g)fe = r(9)*Z(6(1,0)) = Z(¢=g(1,0)) = Z(d(a,c)) = Z(ad(1,0) + c4(0,1)) =
= ar+cy (mod (z,y)%)
r(@)*y = br+dy (mod (z,y)?)

It follows that g acts on D;  by:
r(g)* o —aa+cB, [ ba+dp (4.5.2)

where o and (3 are the coordinates from 4.3.2.

4.6 The action of inertia. Let Gq be the Galois group of Q over Q. Let Z be the integral
closure of Z in Q. We fix a surjection Z — F, (these are permuted transitively by Ggq). Then

we have a sequence of subgroups:
[p <l Gp C GQ,

where G, is the decomposition group, I the inertia (or ramification) subgroup, and I, the
wild inertia subgroup. We can identify G, with Gal(Q,/Q,), G,/I with Gal(E,/E,), and
= I/I, (the tame inertia group) with Gal(Q,'/Q;*) and with ImFJ, = lim 1in(B,) by
o = (o)), g
For 0 € Gq we define v(0) to be the automorphism id x Spec(c) of X x Spec(Q) =
X Xspec(Q(,m) Spec(Q). Note that v is a right-action: y(o102) = y(02)ey(01). By con-
struction, the automorphisms (o) extend uniquely to automorphisms (o) of X** Xgpec(zic, 7))

Spec(Z); the diagrams:

X ><Spec (Z[¢p,m Spec(z) M X ><Spec(Z [Cp, Spec( )

! !

Spec(Z) Specle) Spec(Z)

are commutative. For each o € G, we get an automorphism, still denoted (o), of X;t,
compatible with the automorphism Spec(c) of Spec(FE,). Finally, for 0 € I we get an E,-
automorphism (o) of X5'. This right-action of I on X' is what we call the action of inertia.

Since X** lives over Z[(,, 7] which is of degree p*—1 over Z and totally ramified at p, the
inertia action of I factors through an antihomomorphism 3: E — Autfp (X;t). The composition
of I — E and the norm E; — E,” is the character giving the action of I on the pth roots of
unity. It follows that the action of u € E% on the left hand side of 4.2.1 is given by sending
(B[S £ Spec(ZIG)), 6,); to (E/S & Spec(Z[G]). 6. a)iu-r-1, where [/ = Spec(u*!)-f. We
conclude that v € E; induces isomorphisms:

Ig, p —— g v
(u):{ &ip T BusoLp (4.6.1)

Di,s 7 Diufpfl,s
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The stabilizers in Ej; of the Ig; p and the D; ; are all equal to j,41(Ez). Since the Ig, p already
live in X®Z[(,) the Y(u) with w € pp1(Epe) act trivially on them. The action of the y(u)
with u € ppi1(E,2) on the D, can be read off from equations 4.3.2 and 4.3.3 (just note that
v(u)#m = ur mod 72). One finds that for u € y,1(E,:2) the automorphism 7(u) of D; 4 is given
in the coordinates from 4.3.2 by:

) o uta, B ulB (4.6.2)

4.7 Proposition. The actions of G and E; from §4.5 and §4.6 on XSt commute. The stabilizer
of Ig; p in % x G is {(u, g) | w?*' = det(g), g~'P = P}; it acts on Ig, p by (u"*'xp(g7")), (cf.
4.5.1). The stabilizer of D is {(u, g) | uP™ = det(g)}; (u, (*")) in it acts by a — u~!(aa+cB),
B+ u~Y(ba + df3) in the coordinates of 4.3.2.

Proof. The two actions commute by construction. The remaining statements follow from

computations as in §4.5 and §4.6. a

4.8 Proposition. Let f and y be as in Prop. 3.5.3. Let K C Q be the field generated by the
eigenvalues of f for the T (n > 1); then x has values in K. Let A fp be a finite place of K;
let py: Gq — GL2(Ky) be associated to f as in §2.5. Then py|;, (notation as in §4.6) is trivial
and:

1. if x = m(a,a™') with a # a " E* — K then (py|;)) @ Kx Za®a™?,

2. if x =7 () with a: B, — K* of order 2 then p,|; is an extension of « by a,

3. if x = w(A) with AP = A7 £ A:Fs — K then (pxlr) @ Ky =A@ A~

Proof. Since f is defined over K (use a g-expansion) the G-representation V' that it generates
is defined over K hence its character x has values in K. Let x) := x ®g K.

Let X° denote the complement of the cusps in X and j: X° < X denote the inclusion. Asin
(X, FF)®q,Ky; after

replacing NV by some multiple we can assume that N > 4. The cokernel of the inclusion j;FF <

§2.5 one shows that the K )-representation pY @y, of GqxG occurs in Hpar
J«FF is supported on the cusps hence the map Hé(X%, FF) — HI(X@ J«FF) is surjective.
The Leray spectral sequence for j, shows that H'(Xg, j.F) — Hl(X%, FF) is injective. It
follows that H. (X & FF) is equal to Hl(Xa, 4+ FF). The exact sequence of vanishing cycles

par

(see [17], VII, Exp. XIII, Thm. 3.4(ii)) reads:

0— Hl(X;t,j*}“l ) — Hl(XSt ,j*fk P F(-1), (4.8.1)

where x ranges over the double points of X;t. If 7w denotes the normalization map of X;t then
from the short exact sequence 0 — j,FF — m,71*j. FF — @, ﬂkx — 0 (depending on the choice

of an orientation of the graph associated to X;t) we get an exact sequence:

@ HY (X3, 5.F)) —>@H (Igi.p. j=F) ® PHY(D; s, Ff,) — (4.8.2)

ZS

The exact sequences 4.8.1 and 4.8.2 are compatible with the actions of G, x G; the inertia
group I < G, acts via its tame quotient I; = @F;n The following lemma describes the terms
of 4.8.1 and 4.8.2 as I; x G-modules.
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4.8.3 Lemma. (i). ©,Q, =
singular points in M(I';(N ))fp nd a over all characters E," — Q,.

(ii). ®; le(Igzp,j*]—"l ) ® Q, is a direct sum of copies of a7 @ 7(a, 3), a7 @ 7 (a) and
a™! @ aedet.

(iii). ©; H'(Dis, Q) = @, ®p A~ @ w(A), with AP # A:Ej — Q).

s Do a1 @ (77 () @ acdet), where s ranges over the super

Proof. (i). Fix an s and let V := @,_,Q,. As a representation of G, V = @®,(7 (a) @
acdet) since V' is the induced of the trivial representation of some Borel subgroup of SLy(E),).
Note that I, acts on V via E,* so that as a representation of E, x GG, V is the direct sum
over the a of 5, ® 77 (a) and f, ® a-det. Since the stabilizer subgroup of some z is the
subgroup H := {(det(b),b) | b € B} of E,* x B all §, ® 77 (a) and [, ® a-det must have
non-zero H-invariants. From the formulas Res%n~ (o) = Resh(a, o) @ (irr. of dim. p—1) and
Res$(aedet) = Resh(a, a) it follows that 3, = 3, = a1

(ii). Let V := @; pH'(Ig; p, . F[). Note that the action of I, on V factors through E,*.
As a representation of GG, V' is a direct sum of non-cuspidal representations since it is the
induction from B to G of EBZ-Hl(IgL(LO),j*]:f) and B acts on [];Ig; 1.9 through 7. Suppose
that W = y®@7(a, ) is a subrepresentation of V@ Q;. Let H be the subgroup {(u, (;)) | v €
E*,a € E} of E* x G. Then we must have W# # 0 since H acts trivially on the Ig; (1.0)- One
computes that Res$ 1V is the direct sum of the characters ya and v4 of E," and an irreducible
representation of dimension p—1. It follows that v = a~! and v = 7. The cases 7~ (a) and
aedet are treated in the same way.

(iii). Fix an s. Let V := &;H'(D; 5, Q,). Note that I; acts on V via E%. Using the Lefschetz
trace formula one computes that, as a Ej-representation, V' = @ppr (p — 1)A. Let V, denote
the A-eigenspace of V. The trace of an element g in G on V), is equal to the trace of gPry
on V, where Pry = (p*> — 1)7' 3, A(u™)u. Using the Lefschetz trace formula one finds that
Vi = m(A™1) as G-module. O

Note that detopy|; is trivial. Prop. 4.8 now follows from the exact sequences 4.8.1 and 4.8.2
and Lemma 4.8.3. a
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5 A stable model for M(T'y(p?),I'1(N))a at p.

5.1 Construction of a stable model. We keep the notation from §4: X = M(T'(p),['1(N))
and X' is the model of X over Z[(,, 7| which is stable at p, with 77! = 1—(,, as constructed
in §4.2; in particular, the fibre X>* of X* over E, is reduced, its irreducible components are
smooth and intersect each other transversally. The right-action of the group G = GLy(E,) on X
induces a right-action of G on X*. Let X, := M(Lo(p*),T'1(N)). The morphism Xg — X, g
described in §3.2 comes from a morphism X — X, which identifies X, as the quotient of X by
the diagonal subgroup T of G (away from the cusps this is [19] 11.3.5, then use that both X
and X, are regular). We define X§' := X®*/T'; from general results about quotients (see §5.3)
it follows that X' is a model of X, which is stable at p. Note that the order of T' is prime to
p, hence the fibre X§! of X§' over F, is equal to X3'/T.

Another way to construct X§' is to apply the construction of §4.1 to the blow up of
M(To(p*),T1(N)) in its supersingular points in characteristic p. Such a construction is given

n [13].

5.2 Description of the stable model. From now on we assume that p > 2. Let us first
compute the images of the irreducible components of Igusa type of X;t in ngp. In §4.5 we
have seen how the elements of T" act on the disjoint union of the Ig; p, where i € E,” and
P € PY(E,). The action of T on E,* x P!(E,) has four orbits; representatives for them are:
(1,(1:0)), (1,(0 : 1)), (1,(1 : 1)), and (1,(1 : d)) where d is some non-square in E,. The
stabilizers of these representatives are T'N SLy(F,), T'N SLo(E,), {£1} and {£1} respectively.
It follows that the image in Xg,tp of the disjoint union of the Ig; p consists of exactly four
irreducible components: Ig ) = Ig; 1.0)/T N SLa(E,), 1gg2) = 1gy (0.1)/T N SLa(Ey), g, =
Igy 1y /{£1}, and Ig_ = Tg; (4.4)/{F1}; we call them the components of Igusa type of X', We
have isomorphisms: Ig ) = Ig o) = M(Fl(N))E and Ig, =~ Ig_ =~ M(Ig(p)/{+£1}, I'i(N))g
where M(Ig(p)) is the E,-stack that classifies pairs (E/S, P) with P € E®(S) a generator
of ker(V: E®) — E) (see [19], §12.3.1). Under the morphism X§', — ﬂ(l"o(pz),l"l(]\f))fp the
irreducible components Ig, ), 1g(92), 184 and Ig_ are mapped to the irreducible components
called of type (2,0), (0,2), (1,1) and (1,1) in [19] §13.5.6. As stacks over M(I'1(N))g we
heve somorpliss 15 V(T (V) 15, . = Flls(p)/ (211 To(N)g and T >
M(Tl(N))E , where M(T'y(N ))FZ denotes the pullback of M(I'y(N ))g, via the square of the
E,-linear Frobenius on M.

The stabilizer in T' of an irreducible component D; ¢ of Drinfeld type is 7'M SLy(E,). It
follows that the image in X3!, of the disjoint union of the D; ; consists of irreducible components
Dy = D, /T N SLy(E,), labeled by the super singular s in M(T';(N))(E,); we call them the

components of Drinfeld type of X&tp. By construction, the Dy are smooth irreducible curves

over E,; they are all isomorphic and one can easily verify that their genus is p—1. An element
<Ot ,) acts on the coordinates of D; in 4.3.2 by: «a — ta, 8+ t7!3. Tt follows that v; := a3

and u; := P! are coordinates of an affine open of D,; equation 4.3.2 gives: u2v;+au; —v} = 0.
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Figure 1: A picture of X§! — M(Fl(]\f))fp.
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In other words, Dy is the smooth complete model of the hyperelliptic curve given by:
us = op ™+ 1a? (5.2.1)

where us = ujv; + %a.

The double points of XSfp can be described as follows: the components of Igusa type are
all disjoint and the D, are all disjoint; each Dy meets all four components of Igusa type at
the unique supersingular point lying over s under the morphism to M(I';(N ))Fp Figure 1
gives a picture of the situation. We will use the following notation for the double points in
X5 (EB): z20)s = Ig50) N Dy, T02),s = 1802) N Dy, 74 s :=Ig, N Dy and z_, :=Ig_ N D,.
The complete local rings of X&' at the double points can be easily computed using either 4.1.2
and 4.1.3 or Prop. 5.3.3. The complete local rings at x(20),s and z(2), are isomorphic to
Win][[z,y]]/(zy — 7wP~1) where W denotes the ring of Witt vectors of E,. The complete local
rings at =, ; and x_ , are isomorphic to W{r|[[z, y]]/(zy — 7).

As in §4.6 let I be an inertia subgroup of Gq and let 7: E; — AutE(XS’tp) be the antiho-
momorphism giving the inertia action. The inertia action preserves the irreducible components
Dy, Ig(p) and Igo); it interchanges Ig, and Ig_. Let u € Ej. Then J(u) is the identity on
Ig(2,0y and on Ig g 4); on D; it is the automorphism given by:

() ug > ug, vy uP oy (5.2.2)

where uy and v, are the coordinates of 5.2.1. If u € ]F;)*g is a square then it induces the

automorphism <u(p+1)/2)p on Ig, and on Ig_. It will be useful to have a list giving the inertia

t

action on the cotangent spaces of irreducible components of Xg,

at the double points.

5.2.3 Table. Inertia action on cotangent spaces at double points.

The bottom row in this table gives the action of (u)* on the cotangent space given in the top
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row foru € ]F;)*g fixing the corresponding double point (for T(2,0),s and x(g2),s this is no condition

on u; for xy ; it means that u is a square).

* 1 * 1 * 1 * 1 * 1 * 1

T Q = |z QF 2t Q0 =2t QL — Q - | x Q. =

(2,0),5" Ig (5.0, /B | T(20),s" "Dy /B, | TE5 Mg, /B, | TEST Dy /E | T(02)5 g o) /B | T(0,2),57 D, /F,
UO up—l up-i—l ul—p UO up—l

5.3 Some generalities on quotients of stable curves. The following is based on [19],
pp- 508-510. There it is proved that the quotient of a smooth curve over a noetherian regular
scheme by a finite group acting trivially on the base is again a smooth curve. We do the same

kind of computations for stable curves over discrete valuation rings.

5.3.1 Lemma. Let V be a complete discrete valuation ring with uniformizer w. Let A :=
Vl|x,y]]/(zy —7¢) and let G be a finite subgroup of Auty (A) that does not interchange the two
branches modulo 7. Let A® be the subring of G-invariants in A. Let B := V[[u,v]]/(uv — 7¢),
where g := #G. Define B — A by u — N(x), v — N(y), where N: A — A% is the map
a — [l,ec o(a). Then the image of B in A is AY.

Proof. Clearly we have that B C AY. It is a well known fact that both A and B are normal.
Therefore it suffices to show that A is finitely generated as a B-module (then the same holds
for A%) and that the field of fractions Frac(B) of B is equal to Frac(A%).

We will show that 1, z, y,...,297 %, y9~! generate A as B-module. For each ¢ € G we have
o(x) = zt, and o(y) = yt;* with t, € A*. Hence N(z) = 29 and N(y) = y9t! for some
t € A*. Now let a € A. Using the relation xy = 7¢ we can write a = 3 a;2° + 3 byy* with a;
and b; in V. It follows that we can write a = Zf;ol a;xt + Zfz_ol byt + ua’ + va” with o' and a”
in A. Iteration of this process shows that a is a linear combination over B of the z* and y* with
0<i1<yg.

Let B’ be the local ring of Spec(B) at the generic point of branch given by u = 0 and let A’
be the local ring of Spec(A) at the generic point of z = 0. Then B’ C A’ is a finite extension of
discrete valuation rings, both with uniformizer 7. Hence the degree of the extension of fraction
fields is the degree of the extension of residue fields. Let k := V/xV. The extension of the
residue fields can be written as k((v)) C k((y)) and 1, y,... 59! is a basis of k((y)) over k((v))
because v = y9t~ L. It follows that Frac(AY) = Frac(B) since Frac(A) has dimension g over
both of them. O

5.3.2 Lemma. Let V and A be as in Lemma 5.3.1 and let G be a finite subgroup of Auty (A)
that interchanges the two branches mod 7. Let H be the subgroup of G that stabilizes the two

branches. Then A% is regular and as parameters one can take m and Ny(x) + o Ny(y) where
o & H and Ng: A — A" is the map a +— [[,cy o(a).

Proof. Let us first take the quotient by H and let h := #H. By Lemma 5.3.1 we are reduced
to the situation where Z/2Z acts on V|[xz,y]]/(xy — 7°*). Now we have o(z) = yu with u a

unit. We replace the coordinate y by o(z). Then the situation is: A = V[[z,y]]/(zy — 7"u)
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and o(r) = y. Any a € A can be written uniquely as a = ag + Y ;o0 @ + Y ;o0 biy® with
ag, a; and b; in V. We see that a = o(a) if and only if a; = b; for all i. In other words, we
have A7 = {ag + ;-0 ai(z + y)}. All the z° + y* can be expressed (with coefficients in Z) in
t :=x +y and xy = 7°hu. Iteration shows that A° = V[[t]]. O

5.3.3 Proposition. Let V' be a discrete valuation ring with uniformizer = and residue field k.
Let X — Spec(V') a stable curve whose generic fibre is smooth. Let G be a finite subgroup of
Auty (X). Then we have:

(i) The special fibre of G\ X is reduced and its singularities are ordinary double points. In
other words: G\X is a semi-stable curve over V.

(ii) The image in (G\ X)), of a smooth point P of X}, is smooth and if  and x are parameters
at P then m and Ngyp(x) are parameters at the image of P.

(iii) Let P € Xy(k) be singular, say with complete local ring isomorphic over V to the
ring Vl][xp,yp]]/(xpyp = 7). Let Q be the image of P in (G\X)i(k). Then Q is singular if
and only if Stabp fixes the two branches at P. If () is singular then the complete local ring
of Q) is isomorphic to V{[zg, ygll/(xqyo — m°?) with eqg = ep - #Stabp, g = Nsabp(zp) and
Y = Nstabp(yp)- If Q is smooth then m and Ny (xp) + cNg(xp) are parameters at (), where
H C Stabp is the subgroup stabilizing the two branches at P and o € Stabp, 0 & H.

(iv) Let Y be an irreducible component of Xj and Z the image of Y in (G\X). Let
H := Staby and K :=ker(H — Auty(Y')). Then the restriction toY of the quotient morphism
X — G\X factorizes as Y — (H/K)\Y — Z, where the first morphism is separable and the
second is purely inseparable of degree # K.

Proof.
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6 Divisors and leading terms of new forms.

6.1 Definitions. Let f be a normalized new form of weight k& > 2 on M(Tg(p*), T'1(N))g as in
§3.2. We fix an embedding Q — Q,,. Let X&' denote the model of M(To(p?), T'1(N)) over Z[n]
as constructed in §5.1; recall that 7771 = 1 —¢,. We fix an embedding Z[r] — Z,. Then we can
view f as a rational section of the invertible sheaf w®* on X szp. As such, f has a divisor. This
is not completely “standard” since Z, is not noetherian, so we must explain what we mean.
Let vp:Q; — Q denote the normalized valuation. Then v, extends uniquely to the local rings
of X3¢ at the generic points of the irreducible components of the fibre ngp over E,. We can

07ZP
now define:

div(f) = H + a@olg@ee + ao2)g0) +arlg, +a-lg_ + > asDy (6.1.1)

with H an effective “horizontal” divisor (as in the theory of arithmetic surfaces, i.e., it is the
closure of the scheme of zeros of f over Qp), and with the a, € Q the valuations of f at the
corresponding generic points. If f has valuation a, along an irreducible component C' of ngp
then (p~% f)|¢ is a rational section of w®*|¢, called the leading term of f along C. The numbers
ae,0), 4(02), d+ and a_ can be read off from the g-expansions of f. More precisely, we have

formal charts at infinity:

1: (Tate(q), pp2, 1—Cn) over Z,[m, (n)[[d]]
2 (Tate(¢lq). (q"7), 1-Cy) over Zy[r.(ullld] (i€ ) (6.1.2)

3. (Tate(q), (¢"/7"), 1~Cn)  over Z,[m, Cnl[[q"/7]]

The closed fibre of chart 1 is a chart for Ig, o); chart 3 gives a chart for Ig, 5) and one can check
that chart 2 gives a chart for Ig, (resp. Ig_) if —i is (resp. is not) a square in E,. Prop. 3.5.3

can now be interpreted as follows.

6.2 Proposition. Let f be as in §6.1, x as in §3.2 and a,, a,, and a! as in 3.3.6.

a0 = vp(X ang") = 0.

a2 = vp(Xapq") = —k.

if x =m(r™,77™) with 0 <m < (p—1)/2 then a; = a_ =v,(>al,q¢") = —m/(p—1),
if x = 7T(7'2(p_1)m) with 0 < m < (p+1)/2 then ay = a_ = v,(Xal,¢") = (1-m)/(p—1),
if Y =7~ (7?"Y/2) then ay = a_ = v,(X a,q") = —1/2. O

Tk 0=

Let a := a; = a_; then we have —% < a < 0. Let b := min,a;. Our main interest in this

section will be to get more information on b and to determine the leading terms of f along the

t

components of X5,

of Igusa type.

6.3 Lemma. Let V be a complete discrete valuation ring. Let n > 1, t # 0 in the maximal
ideal of V' and let X := Spec(V|[x,y]]/(zy — t)). Suppose that f € Ox(X), considered as a
function on the subscheme defined by the ideal (y, ), has a zero of order k at x = 0. Then the
valuation of f at the generic point of the subscheme defined by (x,m) is at most k times the
valuation of t.
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Proof. Let m € V be a uniformizer and let f = Y500y’ € Vi, y]] be a lift of f.
Using the relation zy = ¢ we can write f = ag + Sis0 @+ Ym0 biy'. Modulo (y, 7) we have:
f=a+ Siso@r’. Hence @; = 0 for i < k and @ # 0. On the open subscheme D(y) of
X where y is invertible the subscheme defined by (x, ) is defined by the equation 7 = 0. It
follows that the valuation we are after is equal to the valuation of ag + 3 ;o0 @ity ™" + X ;=0 biyf*
in Ox(D(y)) = Vl[y, ty Y][y~!]. The valuation of the coefficient of y~* is k times the valuation
of t. O

6.4 Proposition. We have:
- Lk — 1J 2
a[ _— —_—
- 2 “p?P-1

where for any real number x, | x| is the largest integer less than or equal to .

Proof. We may suppose that b > a. Then div(p™*f) = H—alg, o)~ (a+k)lgg ) +>s(as—a)Ds.
Since X szp is normal, p~f is a section of w®*(—cusps) in an open neighborhood of Ig_ . Recall
that in [19] §12.8 a construction is given of a global section AY®~ of w on M(Ig(p)) which has a
first order zero at every supersingular point, and no other zeros. Because Ig, is isomorphic over
M(Tl(N))fp to M(Ig(p)/{£1},T'1(N)), it follows that there is at least one s where (p~*f)|ig,
has a zero of order at most L%J The complete local ring of XStZ[w} at x4 5 is isomorphic to
Wir]([z, y]]/(xy — 72) (see §5.2). We can apply Lemma 6.3 with V' a finite extension of W|r]
over which f is defined. O

In the same way one can easily show that b > —k. However, we need a better lower bound for

b. To get such a bound we will use the Kodaira-Spencer morphism.

6.5 The Kodaira-Spencer morphism. Recall ([19], §10.13.10, and [15], III, §9) that for
any morphisms of schemes f: X — S and ¢g: S — T, with f proper and smooth, one has the

Kodaira-Spencer class:

KS € T (S, (R'£.Tx/s) ®os Q1) (6.5.1)

inducing a morphism of Og-modules:
1 v 1
KS: (R £.Txys) — Qbr (6.5.2)

where Tx/s = Homy, (%5, Ox) and ()" denotes the Os-dual. For f: X’ — S’ obtained
from f by a base change S’ — S over T, there is an obvious compatibility between the elements
in 6.5.1 for f and f'. If R' f, Ty s is locally free, then it is of course equivalent to give 6.5.1 or
6.5.2.

For E — S an elliptic curve we will interpret 6.5.2, via Serre duality, as a morphism
KS: g%is — Q}S’/T' It is known ([19], Thm. 10.13.11) that for the universal elliptic curve E/ M

the Kodaira-Spencer morphism is an isomorphism with a first order pole at infinity:

KS: w®2 =, le/z(cusps) (6.5.3)
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Equivalently, viewing KS as a section of the line bundle w®~? ®0,, Q}, /z» We can say that the
divisor of KS on M is “—cusps”. We want to study the divisor of KS for XStZ — Spec(Z,),
»Hp

but since QL

X3t /Z is not a line bundle, we will consider the composition:
0 P

where Wxst/z, is the dualizing sheaf ([11], I, §2.3). As in §6.1 multiplicities of components of

X¢!, are measured with the normalized p-adic valuation.

6.5.5 Proposition. 1. The divisor of the Kodaira-Spencer morphism in 6.5.4 is:

1
—Cusps + 21g<072) —+ m Z Ds

2. On X%tp: div(KS: w®? — Wystz,) = —cusps + 33; plg; p + 5305 Dis.-

Proof. We will only prove (1); the proof of (2) is analogous. The multiplicities of the cusps
and the components of Igusa type can be seen in the formal charts 6.1.2 at infinity. One
knows ([19], Thm. 10.13.11) that KS for Tate(q)/Z[[q]]/Z maps (dt/t)®? to dq/q. In all three
charts, (dt/t)®? is a local generator of w®?; local generators for Wyst 7z, Bre dq/q, dq/q and
d(¢/?*)/¢"/?* = p~2dq/q. Tt remains to compute the multiplicities of the D,. To do this we use
the computations of [13], §2.2.4 alluded to at the end of §5.1.

As explained in [19], Thm. 13.4.7, the complete local ring of M(T¢(p?),T1(N)) at a su-
persingular point s € M(T'y(N))(E,) is isomorphic to W([z,y]]/(fo + pfi), with fo = (2" —
y)(z —y)P(x —y*") and f; a unit. Moreover, the coordinates x and y are the “local moduli
of source and target”. Let f be a local generator of w®? at s. Then, since M(T'1(N)) — M is
etale at s, KS(f) = unit - dz. In [13], §2.2.4 it is shown that u and v, defined by y = vz and
z = unP~!, induce non-zero rational functions on D, and that du induces a non-zero rational
differential form on D,. It follows that the valuation of dx along D is the valuation of 7~!,
ie, 1/(p+1). m

6.6 Proposition. Let f be as in §6.1 and a and b as in Prop. 6.4. Then we have:

a———<b
p+1
Proof. Let us first suppose that k is even. Then w(f) := KS®*2(f) is a section of w;e;ft//%
0 P
with divisor: L
div(w(f)) = H — o Cusps + a(lg, +Ig_)+> a.D, (6.6.1)
with o, = as + 2(1)111). We have to prove that for all s: a —a), < ﬁ. Assume that for

k ®k/2
2(p+1) X5t /Zy
to Lemma 6.3 is has zeros of order at least k/2 at T(2,0),s and T2 s. On the other hand,

some s we have a — a, > Then p~%w(f)|p, is a global section of w p.; according

degp, (wxgt/ip) = p+1. One concludes that at x4, or x_,, p~%w(f)|p, has a zero of order at
most k(p—1)/4. Lemma 6.3 now gives a —a’, < k/(2(p+1)). This finishes the proof for k even.
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Let us now deal with the odd k. In that case we can simply repeat the proof for k even but

now applied to f®?; the fact that f®? is not an eigenform does not matter at all. O

6.7 g-expansions of leading terms. Let f, a and b be as in Prop. 6.6. We are interested
in the g-expansions of the leading terms of f along the components of X' that are of Igusa
type. More precisely, we want to evaluate f on the formal charts 6.1.2 and take the leading
terms (in the p-adic sense as in §6.1) of the power series obtained in that way. We have already
computed those power series in §3.3 and §3.4; their p-adic valuations are given in Prop. 3.5.3.
It seems convenient to formulate the result one gets not on the Ig, but on M(T';(N ))g, and on

M(Ig(p), I'1(N))g - Recall from §5.2 that we have isomorphisms:
¢(2,0)3M(F1(N))Fp — Ig(2,0)7 ¢(0,2)ZM(P1(N))E, — Ig(o,z) (6.7.1)

and two morphisms:
ou: M(Ig(p), T1(V))g, — Te, (6.7.2)
that are the quotient for the action of {1, —1} on Ig(p). Note that ¢y is “exotic” ([19], §11) in

the sense that it is not compatible with the maps to M; the other three are not exotic. Via these
morphisms we can interpret the leading terms (p~® f)|;y. as modular forms on M(I'y(N ))g, or
on M(Ig(p), Tl(N))fp with poles (possibly) in the super singular points. Using the description
of the inertia action on Ig. given in §5.2 one finds that ¢% (p~* f|g, ) has eigenvalue x 2= for
(z)s, x € B*. Let (again) AY®~1 € M(Ig(p),w) denote the (p—1)th root of the Hasse invariant
A as constructed in [19], §12.8; then AY(~Y has non-zero constant g-expansion at all cusps
and (z)5AY @D = g AY®=D for all z in E,". It follows that f} := (AY@=D)2p=Dags (p=e f[;, )
is a modular form on M(I';(N ))E , possibly with poles in the supersingular points, of weight
k+2(p—1)a, with character ¢, whose g-expansion at (Tate(q), 1—(y) is up to a constant factor
and some (dt/t)’s equal to that of ¢% (p™*f|,, ) at (Tate(q), g, 1+=(y). Using the results of §3

it is now straightforward (but somewhat long) to prove the following proposition.

6.7.3 Proposition. The four forms ¢, ) ([flig.): P0.2) (pkfhg(o’g)) and f!. are eigenforms for
all Ty (including l=p) with character ¢ and weights k, p*k and k + 2(p—1)a respectively. The
first two have eigenvalues a;, where @; is the image of a; as in 3.3.5 under Z,, — Fp. The
eigenvalues of fi depend on the character x associated to f as in §3.2. For x = w(7™,77™)
with 0 < m < (p—1)/2 one has T} fi, = I"™arf, (1 # p) and T fL = X fi. (X, as in 3.4.4). For
x = 7(7P™) with 0 < m < (p+1)/2, one has TF f}, = '""af, (I # p) and Ty fi =0. For
x = (7?=V/2) one has Ty fi. = 1"~V2a;f} (1 # p) and T} f}, = b, f". (b, as in Prop. 3.4.13). O

6.8 Forms of weight 2 defined over unramified extensions. From now on we suppose
that f is a normalized new form on M(To(p®), T'1(N))q of weight 2, character € and that f is
defined over an unramified subextension of Q, — Q,, (recall that we have a fixed Q — Q,).
In this case we have a(2,0)€Z, a2 €Z, ac(p—1)"'Z and a,e(p+1)~'Z for all s (cf. 6.1.1). Let
w(f) :=KS(f) € HO(Xs% Wxgt/ip) ® Q (note that since f is a cusp form, KS(f) has no pole at

0,Z’
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00); then div(w(f)) is given in 6.6.1. Let b’ be the minimum of the a), hence ' = b+ 1/(p+1).
According to Prop.’s 6.4 and 6.6 we have:

a—zﬁ gb’§a+]ﬁ (6.8.1)
Recall that we already know a in terms of x (cf. Prop. 6.2), hence in terms of the py|; with
A fp (cf. Prop. 4.8). Now we want to find the exact value of b in terms of the representation
p associated to f. By definition, p: Gq — GLy(E,) is the unique (up to isomorphism) semi-
simple continuous representation unramified outside p/N such that trace(p(Frob;)) = @ and
det(p(Froby)) = e(1)I*~! for all [ fpN.

Recall that the filtration w(g) of a non-zero mod p modular form g € HO(M(FI(N))E, w®)
of weight k is defined to be the smallest integer &’ for which there exists a form ¢’ € H*(M(T'y (N g WO
which, at some cusp, has ¢g-expansion equal to that of g (see for example [14], §3 and references
given there). Equivalently, (p—1)~'(k —w(g)) is the minimum of the orders of the zeros of g at
the super singular points. We extend this definition to forms g that are allowed to have poles

at the super singular points (the form ¢’ is of course not allowed to have poles).

6.8.2 Proposition. Under the assumptions made at the beginning of §6.8 we have:
1. w(¢>(k270)(f|1g(2’0))) =2- (pZ—l)b
2. w(fl) = 2+ (pP—1)(a—b) = p+1 + (pP—1)(a—b) < 2p
3. there exist super singular SEM(Fl(N))E with a, = b and T(2,0),s, T(0,2),s» T4,s and T_ g

not in the support of H.

Proof. Let us write a = —a/(p—1); then 0 < a < (p—1)/2. Recall that be(p+1)~'Z and
that & = b+ 1/(p+1). According to 6.8.1 there are at most three possible values for b'.
Let us first deal with the case 0 < a < (p—1)/2. Then there are exactly two possibilities:
b =—(a+1)/(p+1) and ' = —a/(p+1); they are equivalent to b’ < a and b’ > a, respectively.
If ¥ < aand as = b then p~¥w(f)|p, is a non-zero global section of Wt /7,|p, on which inertia
acts via I — Ep" followed by E.* — Fp*: u +— uP~HEHD (see §4.6 for conventions about
inertia). The degree of w Xs/Zy |p. is p+1. From Table 5.2.3 it follows that p~*w(f)|p, has zeros
at T(2,0),s and (g9),s of order a+1 and zeros at x; ; and z_ ; of order (p—1)/2 — a.

The complete local ring at z ¢ of X§' is isomorphic to Win][[z, y]]/(zy—7?) (see §5.2). It
follows from the construction as in §4.1 of X§ that the section p~"w(f) over this ring is already
defined over W r?], i.e., to study its divisor we may view p~¥w(f) as an element of the regular
local ring W [r?][[z,y]]/(xy — 72). Since the p-adic valuation of p~¥w(f) along Ig, equals a—¥’
and v, (%) = (p*—1)/2 we have:

21 -1
b (a—b'):p——a

H'DSJ:
( )+,s+ 2 2

where (H - Dy) = 0.
Likewise: (H - Ds),_, = 0. This shows that x; , and x_, are not in the support of H. Using

denotes the local intersection number. It follows that (H - Dy)

Tt,s Tt,s

this information one can verify that w(fL) = 2 + (p*—1)(a—b).
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To prove that w(30), is not in the support of H we do a similar computation. Now we
view p~Yw(f) as an element of W[r?~![[z,y]]/(zy—nP~!). The fact that —b'/v,(7® ) is
the order of vanishing of p*b'w( Flp, at x@20)s gives the result. One can now verify that
w<¢z<2,0)f|1g(2,0)) =2- <p2_1>b

Suppose now that b’ > a, i.e., that b’ = —a/(p+1). Then p~®w(f)|g, is a global section
of wys 7 |1g, on which inertia acts via I — " followed by_E,z* — B ou o u@te Tt
follows that ¢% (p~*w(f)lig, ) is a global section of Q'(s.s.) on M(I'\(N),Ig(p)) on which (x)*
has eigenvalue z?* for all z€E,*; therefore it has zeros of order 2a modulo p—1 at the super-
singular points. A computation shows that degizr, (v) 1a(n) Ol(s.s.) = (p+1) deg i, (ny)(8:8.) —
(p—1) degzi(r, (ny) (cusps). This implies that there exist super singular s where ¢% (p™*w(f)lrg, )
has a zero of order exactly 2a, or equivalently, where p~@w(f)]iz, has a zero of order exactly
a. Fix such a s. Since (p*—1)(V'—a)/2 = «a, a computation as above shows that a; = b and
that x 4 is not in the support of H. Likewise: z_ 4 is not in the support of H. It follows that

v
P w(f)

has zeros of order exactly a modulo p+1 at z(2) s and z(g2),s. Moreover, the orders of vanishing

p, has poles of order exactly a at x4 ;. The action of inertia shows that p‘blw( f)

Dy

at (2,0),s and z(o2),s are equal. Since degp wys = p+1 we see that pYw(f)|p, has zeros of
order exactly a at x(20),s and x(2),. It follows that x(20) s and z(2) . are not in the support
of H and that w(f}) and w(¢(y ([, )) are as claimed.

It remains to study the cases a = 0 and a = —1/2. Suppose first that a = 0. Then
X = 7T(7'2(p_1)), hence T f = 0 by Prop. 3.3.4 and Lemma 3.5.1(4). By Prop. 6.7.3 ¢>(k2,o)(f|1g(2,o))
and f are eigenforms for all 7}* (including [ = p) and have the same eigenvalues, so their
g-expansions are equal up to a scalar factor. Consequently: w(fL) = w(f). According to 6.8.1
v e {1/(p+1),0,-1/(p+1)}. £V = 1/(p+1) then b = 0, flig,,, has no poles at the super
singular points and since it is a cusp form of weight two it cannot have zeros at all super singular
s hence w(f) = 2. If ¥ = —1/(p+1) and a, = b then p"/®+Vw(f)|p, is a non-zero global section
of Wyt /z,|p, on which inertia acts by u — uP™!; hence it has zeros of order exactly 1 and
(p—1)/2 at z(5,0),s and x4 ,, respectively; computations as above prove the required statements.

Suppose now that 0" = 0. Then w(f)g,, . w(f)

Q(s.s.) with g-expansions equal up to scalar factors. If all residues of w(f )|Ig(2 o at the super

l1g 00 20d w(f)[1g, are global sections of
singular points are zero then the same is true on the other components of Igusa type and the
w(f)|p, are global sections of Q, for all s on which inertia acts trivially; but no such non-zero
differential mes exist. Hence not all residues are zero. But then g := Adp g flrg,,, Is a
cusp form on M(I'1(IV))g of weight p+1, w(g) = p+1 and T,;g = 0; by [14], Prop. 3.3 this is
impossible. It follows that " = 0 is impossible.

Finally, suppose that a = —1/2. According to 6.8.1 at most three values for & are possible.
Ift = —1/2—1/(p+1) and as = b then p~w(f)|p, is a non-zero global section of 2}, on which
inertia acts by u + u~®~D®+3)/2 But no such differential forms exist, hence = —1/2 or

b = —1/241/(p+1). In these two cases computations as above prove the required statements. 0

6.8.3 Corollary. Let k(p) € Z be the “Serre weight” associated to p as in [14], Def. 4.3.
Suppose that p is irreduible. If k(p) > p+1 then b = (2 — k(p))/(p*—1). If k(p) = 2 and p is of
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level one (see [14], §2.4) then b = —2/(p+1). If k(p) = 2 and p is of level two then b = 0. The

case k(p) = p+1 does not occur.

Proof. Let us first remark that the difference between k(p) and Serre’s original definition in
[25], §1-2 of the “weight” of 7 is irrelevant in our situation; see [14], Rem. 4.4 and note that we
have p > 2 and k(p) = 2(p—1). Theorem 4.5 of [14] shows that there exists a mod p cuspidal
eigenform g of weight k(p), level N and character € such that ¢f, o flig,,, and g have the same
eigenvalues for all )" (I # p). If k(p) > p+1 then T7g = 0 by [16], Prop. 4.12, hence ¢, g flig .,
and g have the same g-expansions at a fixed cusp, so k(p) = w(g) = w(P{y0) [ ligp,) ). U k(p) =2
and p is of level two then 77g = 0 by [14], Thms. 2.5 and 2.6, hence w(¢(y ) f|1g,,) = 2, hence
b= 0. If k(p) = 2 and p is of level one then Tj7g # 0 hence w(¢( ) flig,)) = w(6P~lg = 2p.
(see [14], §3). If k(p) = p+1 then Tyg # 0 and w(¢fyg)flign,) = w(#'g = p*+p hence
—b =1+ 1/(p+1) which is impossible. O

6.8.4 Remark. 1. The representation p an only be reducible if p|; ~ x5 @ X;ﬁ; , where x,: Gq —
E,* is the p-cyclotomic character and («, 8) equals (0,1) or ((p—1)/2, (p+1)/2).

2. We have already seen in Prop. 4.8 that a is determined by py|;. Cor. 6.8.3 shows that
b is determined by p|;, at least if p is irreducible. Eqn. 6.8.1 gives a strong restriction on the

possible combinations (py|r, p|1)-
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7 Modular parametrizations.

7.1 Definitions. For M a positive integer, let Xo(M) denote coarse moduli scheme over Z
associated to the stack M(T'o(M)). Let Jo(M) be the Néron model over Z of the jacobian
Jo(M)q of Xo(M). An elliptic curve E over Q is said to be modular if it is an isogeny factor
of some Jy(M)q; the smallest M for which this happens is called the level of E. The Shimura-
Taniyama conjecture states that every elliptic curve E over Q is modular, and that the level
of E equals the conductor of (the system of [-adic representations of) E. One knows that for
modular elliptic curves the level equals the conductor ([5], [20] and [9]). A modular elliptic
curve E of level M is called strong if there exists a closed immersion E—Jy(M)q. It follows
from the multiplicity one principle that such an immersion is unique up to sign.

Let E be a strong modular elliptic curve of level M. The corresponding strong modular

parametrization ¢: Xo(M)q — FE is obtained as follows:

Jo(M)q — E
1 y (7.1.1)
XO(M)Q

where Jy(M)q — E is the dual of one of the two closed immersions E<—Jy(M)q and where
Xo(M)q — Jo(M)q is the standard immersion sending the cusp oo to 0. Let £ be the Néron
model over Z of E. Then the Z-module T'(£,Q) is free of rank one; let w be one of the two
generators. We get the differential form ¢*w on Xo(M)Q. There is also another differential
form on X(M)q related to E: the normalized newform Y- a,q"dq/q corresponding to E. The
multiplicity one principle gives:

P'w=c anq"@ (7.1.2)

n>1

for some ¢ € Q*. This number c is called the Manin constant of E (see [21], [22], [23] and [4]).
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8 Manin constants.
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9 More on parametrizations.

38



References

1]

[11]

[12]

[13]

[14]

[15]

[16]

T. Asai. On the Fourier coefficients of automorphic forms at various cusps and some
applications to Rankin’s convolution. Journal of the Math. Soc. of Japan 28, No. 1, 48-61
(1976).

A.O.L. Atkin, J. Lehner. Hecke operators on I'g(m). Mathematische Annalen 185, 134-160
(1970).

A.O.L. Atkin, Wen-Ch’ing Winnie Li. Twists of new forms and pseudo-eigenvalues of W -
operators. Invent. Math. 48, 221-243 (1978).

B.J. Birch and H.P.F. Swinnerton-Dyer. Elliptic curves and modular functions. Modular
functions of one variable IV, 2-32. Springer Lecture Notes in Mathematics 476 (1975).

H. Carayol. Sur les représentations l-adiques associées aux formes modulaires de Hilbert.
Ann. Sci. Ecole Norm. Sup. (4) 19, 409-468 (1986).

P. Cartier. Détermination des caractéres des groupes finis simples: travaux de Lusztig.
Séminaire Bourbaki, Exp. 658 (1986).

P. Deligne. Formes modulaires et représentations (-adiques. Séminaire Bourbaki, Exp. 355

(1968-1969).

P. Deligne. Formes modulaires et représentations de GLy. In Modular Functions of One
Variable II. Springer Lecture Notes in Mathematics 349 (1973).

P. Deligne. Dear Piatetskii-Shapiro. Letter to Piatetskii-Shapiro of March 25, 1973.

P. Deligne, D. Mumford. The irreducibility of the space of curves of given genus. Publica-
tions Mathématiques de 'ILH.E.S. 36, 75-125, (1969).

P. Deligne, M. Rapoport. Les schémas de modules des courbes elliptiques. In Modular
Functions of One Variable II. Springer Lecture Notes in Mathematics 349 (1973).

P. Deligne and J.-P. Serre. Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. (4)
7, 507-530 (1974).

B. Edixhoven. Minimal resolution and stable reduction of X(N). Annales de I'Institut
Fourier de I'université de Grenoble 40, Fasc. 1 (1990).

B. Edixhoven. The weight in Serre’s conjectures on modular forms. Invent. Math. 109,
563-594 (1992).

G. Faltings, C.-L. Chai. Degeneration of abelian varieties. Springer-Verlag (1990).

B.H. Gross. A tameness criterion for Galois representations associated to modular forms
(mod p). Duke Mathematical Journal 61, No. 2 (1990).

39



[17]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

A. Grothendieck. Séminaire de géométrie algébrique. Springer Lecture Notes in Mathe-
matics 151, 152, 153, 224, 225, 269, 270, 288, 305, 340, 589.

N.M. Katz. p-adic properties of modular schemes and modular forms. In Modular Functions
of One Variable III. Springer Lecture Notes in Mathematics 350 (1973).

N.M. Katz, B. Mazur. Arithmetic moduli of elliptic curves. Annals of Mathematics Studies
108, Princeton University Press (1985).

R.P. Langlands. Modular forms and l-adic representations. In Modular Functions of One
Variable II. Springer Lecture Notes in Mathematics 349 (1973).

B. Mazur. Rational isogenies of prime degree. Invent. Math. 44, 129-162 (1978).

B. Mazur. Courbes elliptiques et symboles modulaires. Séminaire Bourbaki juin 1972.
Springer Lecture Notes in Mathematics 317.

B. Mazur and H.P.F. Swinnerton-Dyer. Arithmetic of Weil curves. Invent. Math. 25, 1-16
(1974).

L.I. Piatetskii-Shapiro. Zeta functions of modular curves. In Modular Functions of One
Variable II. Springer Lecture Notes in Mathematics 349 (1973).

J.-P. Serre. Sur les représentations de degré 2 de Gal(Q/Q). Duke Mathematical Jour-
nal 54, No. 1, (1987).

G. Shimura. Introduction to the arithmetic theory of automorphic functions. Princeton

University Press and Iwanami Shoten, Publishers (1971).

Institut Mathématique

Campus de Beaulieu
35042 Rennes cedex

France.

40



