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1 Introduction.
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2 Modular curves, modular forms and Hecke operators.

2.1 Modular curves. The aim of this section is to explain how we use the arithmetic moduli

theory of elliptic curves in what follows. We also discuss how the moduli theory of Drinfelds

level structures on elliptic curves, as exposed in [19], extends to the moduli theory of the

generalized elliptic curves of [11]. The delicate results in this section concerning the cusps in

the “bad” characteristics will not really be used in the later sections.

2.1.1 Definition. For n a positive integer we define the following categories fibered in

groupoids over the category (Sch) of schemes:

M(Γ(n)): objects are pairs (E/S, α), where E/S is an elliptic curve and α: (Z/nZ)2 → E(S) is

a Drinfeld basis of E[n] (see [19] 3.1). Morphisms are cartesian squares compatible with

the α’s.

M(Γ1(n)): the objects are pairs (E/S, α), where α:Z/nZ → E(S) is a Z/nZ-structure on E

(see [19] 3.2).

M(Γ0(n)): (E/S,G), where G is a cyclic closed subgroup scheme of E[n] of rank n (see [19] 3.4).

It is well known that M := M(Γ(1)) is an algebraic stack for the etale topology on (Sch),

of finite type, separated and smooth over Spec(Z) (for example see [11] III, Thm. 2.5). Let

P denote Γ(n), Γ1(n) or Γ0(n). Then the obvious morphism M(P) → M is relatively rep-

resentable, finite and flat and makes M(P) into an algebraic stack, regular and of dimension

two, by [19], Thm. 5.1.1.

We can compactify M by adding a chart at infinity as in [15] I, §4 and IV, §5.5. For example

one might take the degenerate elliptic curve over Z[t, (1 + 2633t)−1] defined by:

y2 + xy = x3 − 2232tx− t,

which has c4 = 1 + 2633t, c6 = −c4, ∆ = t(1 + 2633t)2 and j = t−1 + 2633 ([11] VI.1.6). This

gives an algebraic stack M which is proper and smooth over Spec(Z) and contains M as an

open substack. We can then obtain compactifications M(P) of the M(P) by normalizing M in

M(P) ([10] page 104). This procedure of compactifying is essentially the one followed in [19].

What happens at ∞ can be studied using the Tate curve ([19] 8.8).

In [11] Deligne and Rapoport give a moduli interpretation for M: it is equivalent to the

category of generalized elliptic curves whose fibres are irreducible. They also give a moduli

interpretation for the M(P) over Z[1/n], and in some cases over Z. Obvious candidates for

moduli interpretations for the M(P) are the categories M(P)′ defined as follows. For P = Γ(n),

Γ1(n) or Γ0(n) the objects of M(P)′ are pairs (E/S, α), where E/S is a generalized elliptic

curve and α is a Drinfeld basis (Z/nZ)2 → Ereg(S), or a Z/nZ-structure Z/nZ → Ereg(S), or

a cyclic subgroup scheme of rank n of Ereg[n], such that in each case α meets all irreducible

components of all geometric fibres of E/S. The M(P)′ are stacks for the fpqc topology because

the relevant descent data are effective; use [11] III, Lemma 2.1 and show that the level structures

descend too.
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2.1.2 Proposition. Let n be a positive integer and let P denote Γ(n), Γ1(n) or Γ0(n). For

P = Γ(n) and for P = Γ1(n) the obvious morphism M(P) → M(P)′ extends to an isomor-

phism M(P) →̃ M(P)′. The morphism M(Γ0(n)) → M(Γ0(n))′ extends to an isomorphism

M(Γ0(n)) → M(Γ0(n))′ if and only if n is square free. In all cases M(P) is regular.

Proof. Let us first prove the assertions concerning Γ0(n). For n square free one uses [11] V,

Thm. 1.6. If n is not square free we can write n = pa+bm with p prime, p 6 |m, a ≥ b > 0.

We claim that M(Γ0(n)) is not an algebraic stack because it has objects with infinitesimal

automorphisms. Indeed, it is not hard to check that the standard pa-gon over Fp, equipped with

a M(Γ0(n))-structure, has automorphism functor isomorphic to the group scheme µpa ×Z/2Z

over Fp.

The proofs in the two remaining cases P = Γ(n) and P = Γ1(n) will be given in four steps.

Two of these steps depend on certain computations concerning Tate curves that will be done

in §2.2.

Step 1: the diagonal M(P)′ −→ M(P)′ × M(P)′ is representable. Let (E1/X, α1) and

(E2/X, α2) be in M(P)′. By [11] III, Thm. 2.5 the functor IsomX(E1, E2) is representable.

The functor IsomX((E1, α1), (E2, α2)) is represented by the closed subscheme of IsomX(E1, E2)

defined by the compatibility of the universal isomorphism with α1 and α2.

Step 2: there exists an etale surjective X → M(P)′ with X of finite type over Z, regular

and everywhere of dimension two. Using Prop. 2.2.1 and [11] III, Thm. 2.3 (including the two

remarks following it) it is straightforward to verify that M(P)′ is an algebraic stack.

Step 3: the diagonal M(P)′ −→ M(P)′ × M(P)′ is finite. Let X → M(P)′ × M(P)′ be

etale surjective. We have to show that Y := IsomX(p∗1(E, α), p∗2(E, α)) → X is finite. Because

Y → X is quasi-finite it suffices to prove that it is proper. For that we use the valuative

criterion for properness. Because Y → M(P)′ is etale we only need to consider morphisms

Spec(D) → X, D a complete discrete valuation ring, under which the image of the generic

point is in the interior of X. Then use [11] IV, Prop. 1.6.

Step 4: M(P) → M(P)′ extends to an isomorphism M(P) →̃ M(P)′. Let Y → M and

X → M(P)′ be etale surjective. Let X
′
:= Y ×MX. Then X

′
→ M(P)′ is also etale surjective.

Let Y , X and X ′ denote the pullbacks of Y , X and X
′
to M. Let Z := Y ×M M(P) and

let Z → Y be the normalization of Z → Y . So by definition Z → M(P) is etale surjective.

Because X
′

is a chart for M(P)′ it is regular, hence normal. Also X
′
→ Y is everywhere

dominant, so it factors uniquely as X
′
→ Z → Y . It follows from Prop. 2.2.1 that X

′
→ Z is

etale surjective. So now we have two charts X
′
→ M(P) and X

′
→ M(P)′. The projections

from X
′
×M(P)X

′
to X

′
are etale and the morphism X

′
×M(P)X

′
→ X

′
×X

′
is finite. The same

holds for X
′
×M(P)′ X

′
, hence these two fibre products are equal (both being the normalization

of X
′
×X

′
in X ′×M(P)X

′ → X ′×X ′). It is clear that the two “compositions” in the groupoid

structures coincide. ✷

2.2 Computations with Tate curves. In this section we prove some results that are needed

in the proof of Prop. 2.1.2. Let G
q
m/q

Z denote the Tate curve over Z[[q]] as constructed in
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[11] VII, §1.10; it is a generalized elliptic curve whose restriction to Spec(Z[[q]]/(q)) is the

standard 1-gon. The restriction of G
q
m/q

Z to Z((q)) is the elliptic curve denoted Tate(q) in

[19] §8.8. By definition, G
q
m/q

Z induces a formally etale morphism Spec(Z[[q]]) → M. Let n ≥

1 and let P denote Γ(n), Γ1(n) or Γ0(n). By construction (see [19] §8.11), Spec(Z[[q]])×MM(P)

is the normalization of Spec(Z[[q]]) in Spec(Z((q))) ×MM(P).

2.2.1 Proposition. Let α denote the universal level-P structure that G
q
m/q

Z acquires over

Spec(Z((q))) ×MM(P). The object (G
q

m/q
Z, α) of M(P) extends uniquely to an object over

Spec(Z[[q]]) ×MM(P). The induced morphism Spec(Z[[q]]) ×MM(P) → M(P)′ is formally

etale for P = Γ(n) and for P = Γ1(n).

Proof. The uniqueness is clear. Apart from this the proof is a long computation that, in order

to save space, we will give only for P = Γ1(n).

Let us first compute Spec(Z((q))) ×M M(Γ1(n)). As in [19] §8.7 let T [n] denote the n-

torsion subgroup scheme of Tate(q) over Z((q)) (see also [11] VII §1.13). Then T [n] is given as

the extension

0 −→ µn −→ T [n] −→ Z/nZ −→ 0

for which the inverse image of b, 0 ≤ b < n, is the µn-torsor given by the nth roots of qb. It

follows that T [n], as a scheme, is the disjoint union of the schemes Tb = Spec(Z((q))[X]/(Xn −

qb)), with 0 ≤ b < n. The scheme Spec(Z((q))) ×M M(Γ1(n)) is the closed subscheme of

T [n]T [n] = T [n] ×Z((q)) T [n] over which the universal point (i.e., the diagonal) defines a Z/nZ-

structure. Let 0 ≤ b < n and let P denote the tautological point in T [n]Tb
(Tb). Let d be the

order of b in Z/nZ, let m = n/d and let a = b/m. It is now easy to prove that for P to be a

Z/nZ-structure is the same as for dP to be a Z/mZ-structure, i.e., for dP to be a primitive

mth root of unity ([19] Thm. 1.12.9). We find (compare [19] Thm. 13.6.4):

Spec(Z((q))) ×MM(Γ1(n)) =
∐

0<a<d|n

gcd(a,d)=1

Spec(Z((q))[X]/Φm(Xdq−a)) (2.2.2)

We may check the statements in Prop. 2.2.1 separately for each term of the disjoint union

in 2.2.2. These terms are permuted by the action of (Z/nZ)∗ on M(Γ1(n)) and we only need

to consider one term in each orbit. Since (Z/nZ)∗ → (Z/dZ)∗ is surjective we may restrict our

atttention to terms with a = 1. Let d|n be given. We must compute the normalization of Z[[q]]

in Z((q))[X]/Φm(Xdq−1). Let ζm denote the image of Xdq−1 in the last ring; by definition ζm

is a primitive mth root of unity. We get an isomorphism

Z((q))[X]/Φm(Xdq−1) −̃→ Z[ζm]((X)) q 7→ ζ−1
m Xd

It is clear that the normalization of Z[[q]] in Z[ζm]((X)) is equal to Z[ζm][[X]]. In particular

the normalization is regular. By [11] VII, §1.4 and Construction 1.14, G
q
m/q

Z and G
X
m/q

Z are

isomorphic over Z[ζm]((X)) and the tautological Γ1(n)-structure α on G
q

m/q
Z corresponds to

the point X on G
X
m/q

Z. It follows that (G
X
m/q

Z, 1 7→ X) is an object of M(Γ1(n))′ extending

(G
q
m/q

Z, α). It remains to prove that the induced morphism Spec(Z[ζm][[X]]) → M(Γ1(n))′ is

formally etale.
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Let (E/Spec(A), α) be an object of M(Γ1(n))′, with A local artinian. We let k denote the

residue field of A and we suppose that after the base change to k the object (E/A, α) becomes

isomorphic to the standard d-gon with a Γ1(n)-structure such that α(1) lies on P1 × {1}. For

N > 0 we define a scheme ZN by:

ZN = IsomA⊗ZZ[ζm][[X]]/(XN)

(
(E/A, α), (G

X
m/q

Z, 1 7→ X)
)

We want to show that for N large enough ZN → Spec(A) is etale surjective. The surjectivity

is obvious since ZN 6= ∅. The rest of the proof is done in two steps.

Step1: ZN → Spec(A) is unramified. We may suppose that A = k. Then we have to compare

two objects of M(P)′ over k[ζm][[X]]/(XN). The first one is (E, α), with E the standard d-gon.

The second one is (G
X
m/q

Z, 1 7→ X). Let us first consider the image of the non-smooth locus for

both of them. Locally at a non-smooth point the first one is given by a local equation uv = 0,

hence the image of the non-smooth locus is all of Spec(k[ζm][[X]]/(XN)). A local equation for

the second one at a non-smooth point is uv = X, hence the image of the non-smooth locus

is given by the equation X = 0. It follows that ZN lies over Spec(k[ζm]), over which both

generalized elliptic curves become isomorphic to the standard d-gon. Let us now use the Γ1(n)-

structures. In both cases we can interpret d · α(1) as an element of µm(k[ζm]). In the first case

z := d · α(1) lies in µm(k) and in the second case d · α(1) = ζm. We find that ZN lies over

Spec(k[ζm]/(ζm − z)), i.e., over Spec(k). It follows that ZN = Autk(E/k, α), which is easily

seen to be either Spec(k) or (Z/2Z)k.

Step2: ZN → Spec(A) is etale for N large enough. Let Z ′ = Spec(B) be a connected (i.e.,

irreducible) component of ZN . We have to show that Z ′ → Spec(A) is etale. After replacing

A by a finite etale extension we may suppose that B has residue field k. The canonical map

k → k⊗AB is then an isomorphism since Z ′ → Spec(A) is unramified. By Nakayama’s Lemma,

the map A→ B is surjective. It remains to show that A→ B is injective for N large enough.

In order to do that it is sufficient to show that there exists a faithful flat extension A → A′

such that Spec(A′) → Spec(A) factors through Z ′ → Spec(A), i.e., such that Z ′ → Spec(A)

acquires a section. That we will do now.

After a faithful finite flat base change (obtained by extracting a d-th root of some element

of A∗, to be precise) there exists a Γ1(d)-structure β on E/Spec(A). By definition, β is an

embedding of (Z/dZ)A into Ereg. Let E ′ be the quotient of E by the action of Z/dZ via β.

Then E ′/Spec(A) is a deformation of the standard 1-gon. By [11] III, §1.4.2 and Lemme 1.4.3

E ′/Spec(A) arises by pullback from G
q
m/q

Z over Z[[q]]. By [11] II, Prop. 1.17 (E/Spec(A), β)

arises by pullback from (G
q
m/q

dZ, q) over Z[[q]]. One now checks easily that over A[a]/(Φm(ad))

the pair (E, α) arises from (G
q
m/q

dZ, a · q). But this last one is isomorphic to (G
X
m/q

Z, X) via

Z[ζm][[X]] −→ Z[[q]][a]/Φm(ad) ζm 7→ a−d X 7→ qa

This finishes the proof of Prop. 2.2.1. ✷

2.3 Modular forms and q-expansions. Let N and k be positive integers. Let R be a ring in

which N is invertible. We define the R-module of modular forms over R of level N and weight
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k as:

M(N, k)R := H0(M(Γ1(N))R, ω
⊗k) (2.3.1)

where ω is the invertible sheaf 0∗Ω1
E/M

, or, more precisely, its pullback to M(Γ1(N))R. In

more down-to-earth terms this means that a modular form f of type (N, k) over R is a rule,

compatible with cartesian squares, that associates to each (E/S/R, α) in M(Γ1(N))R a section

f(E/S, α) of ω⊗k
E/S. Of course we could have defined M(N, k)R without N being invertible in

R, but for example for R the ring of integers in a number field, M(Γ1(N))R is not always the

best possible model.

If N > 4 then the stack M(Γ1(N))R is represented by the curve X1(N)R and modular

forms of type (N, k) over R are just global sections of the invertible sheaf ω⊗k on X1(N)R. For

general N we have the following description ofM(N, k)R. Let n ≥ 3, then M(Γ(n),Γ1(N))R[1/n]

is represented by a (possibly non-connected) smooth proper curve over R[1/n], say X, on

which GL2(Z/nZ) acts. Then M(N, k)R ⊗R R[1/n] can be identified with the submodule of

GL2(Z/nZ)-invariant sections of ω⊗k over X.

When R contains the Nth roots of unity one obtains the q-expansions of f at the vari-

ous cusps of M(Γ1(N))R by evaluating f on pairs (Tate(qd), α), where Tate(qd) is the Tate

curve Gm/q
dZ over R[[q]](q−1) and d|N . Explicitly: the q-expansion fd,α(q) of f at the cusp

(Tate(qd), α) is the power series f(Tate(qd), α)/(dt/t)⊗k in R[[q]]. A form f is called a cusp

form if all its q-expansions have constant term equal to zero.

The group (Z/NZ)∗ acts on M(Γ1(N)) by:

〈a〉 : (E/S, α) 7→ (E/S, aα), (2.3.2)

for a ∈ (Z/NZ)∗. This gives an action by (Z/NZ)∗ on modular forms:

(〈a〉∗f)(E/S, α) = f(E/S, aα). (2.3.3)

Let ε: (Z/NZ)∗ → R∗ be a character. A modular form f of type (N, k) is said to be of type

(N, k, ε) if 〈a〉∗f = ε(a)f for all a ∈ (Z/NZ)∗. Of course, we always have ε(−1)f = (−1)kf .

We denote the R-module of forms of type (N, k, ε) by M(N, k, ε)R, and its submodule of cusp

forms by Mo(N, k, ε)R.

For more details concerning modular forms in this setting see [18], Chapter 1 or [11], VII, §3.

2.4 Hecke operators. The R-modules M(N, k)R with k ≥ 2 are equipped with certain

endomorphisms, called Hecke operators. For each n ≥ 1 we have an operator T ∗n . The algebra

generated by all T ∗n and 〈a〉∗ acting on M(N, k)R is commutative and generated by the T ∗l for

l prime and the 〈a〉∗. It follows that the T ∗n also act on the submodules M(N, k, ε)R. For a

construction of the T ∗n we refer to [18], §1.11; the hypothesis “k ≥ 2” is needed to use base

change: M(N, k)R = M(N, k)Z[1/N ] ⊗ R. There is no problem to construct T ∗n on forms of

weight one if n is invertible in R. The action of T ∗n on M(N, k)Q (k ≥ 1) is given by:

(T ∗nf)(E/Q, α) = n−1
∑

φ

φ∗(f(E ′/Q, φα)) (2.4.1)
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where φ:E → E ′ ranges over the isogenies of degree n with source E such that φ is injective on

the image of α. If f in M(N, k, ε)R has q-expansion
∑
anq

n at (Tate(q), 1 7→ζN) then we have

for p prime:

(T ∗p f)(Tate(q), 1 7→ζN) =
∑

n

(
anp + ε(p)pk−1an/p

)
qn (dt/t)⊗k (2.4.2)

with the conventions that an/p = 0 if p 6 |n and ε(p) = 0 if p|N .

2.5 Galois representations. Let f be a cusp form over Q of some type (N, k, ε) with

k ≥ 2 and suppose that f is a common eigenvector for all the T ∗p , p 6 |N , with eigenvalues

ap ∈ Q. Let K ⊂ Q be the field generated by the ap, p 6 |N , and the ε(a), a ∈ (Z/NZ)∗;

then [K : Q] < ∞. Let λ be a finite place of K and let l be its residue characteristic. Let

GQ = Gal(Q/Q) denote the absolute Galois group of Q. According to a theorem of Deligne

([12], Thm. 6.1; see also [5]) there exists a unique (up to isomorphism) continuous semi-simple

representation ρλ:GQ → GL2(Kλ) which is unramified outside Nl and has the property that

trace(ρλ(Frobp)) = ap and det(ρλ(Frobp)) = ε(p)pk−1 for all p 6 |Nl. In these equalities ρλ(Frobp)

denotes the image of a Frobenius element at p (unique up to conjugation). We will briefly

describe a construction of ρλ; detailed constructions can be found in [5], [20] and [24].

First of all we may replace f by the unique new form with eigenvalues ap for p 6 |N (see [8],

§2.4 and [2]); the field K remains the same, the level N is replaced by a divisor of it. Now f

is an eigenform for all T ∗n , n ≥ 1, with eigenvalues an ∈ K, of type (N, k, ε). Note that the an

(n ≥ 1) generate K since f is defined over the field generated by the an and is an eigenvector

for the 〈a〉∗.

Let Y denote M(Γ1(N))Q and let π:E → Y be the universal elliptic curve. We have the

sheaf Fk := Symk−2(R1π∗Q) on Y (C) and the sheaf Fk
l := Symk−2(R1π∗Ql) on Yet. There is

the Shimura isomorphism ([7], Thm. 2.10):

H1
par(Y (C),Fk) ⊗Q C −̃→ Mo(N, k)C ⊕Mo(N, k)C (2.5.1)

where Hpar denotes “parabolic” cohomology: the image of the cohomology with compact sup-

port in the ordinary cohomology. This isomorphism is compatible with the T ∗n and 〈a〉∗ acting

on both sides in the usual way (see [7], Prop. 3.18).

Next let H be the opposite of the Q-algebra in EndQ(Mo(N, k)Q) generated by the T ∗n and

the 〈a〉∗. By definition, Mo(N, k)Q is a right H-module and we denote by h∗ the endomorphism

induced by h ∈ H . The algebra H is commutative and of finite dimension over Q. Let

Mo(N, k)∨Q be the left H-module HomQ(Mo(N, k)Q,Q); say that h ∈ H induces h∗ := h∗∨. We

claim that Mo(N, k)∨Q is free of rank 1 as H-module. Namely, it is faithful and for each maximal

ideal m of H , Mo(N, k)∨Q/mM
o(N, k)∨Q = (M0(N, k)[m])

∨
is a 1-dimensional H/m-vector space

because of q-expansions. It follows that H1
par(Y (C),Fk)∨ ⊗Q C is a free H ⊗Q C-module of

rank 2. Hence H1
par(Y (C),Fk)∨ is a free H-module of rank 2 and H1

par(YQ,F
k
l )∨ is a free

H ⊗Q Ql-module of rank 2. Let φ:H → Q be the ring homomorphism such that for all

h ∈ H : h∗(f) = φ(h)f . Let m := ker(φ); then K = im(φ) = H/m and we have a surjection
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H⊗QQl → Kλ. Let Vλ := H1
par(YQ,F

k
l )∨⊗H⊗Ql

Kλ. Then Vλ is a 2-dimensionalKλ-vector space

with a continuous action of GQ. To be precise: we let σ ∈ GQ act on H1
par(Y ×SpecQSpecQ,Fk

l )∨

by (id × Spec(σ−1))∗∨ (note that this is covariant in σ).

The action of GQ on Vλ is unramified at p 6 |Nl because π:E → Y has good reduction at

such p. Congruence formulas as in [7], §4 show that Frobp (p 6 |Nl) satisfies the polynomial

X2 − apX + ε(p)pk−1. In order to show that this polynomial is the characteristic polynomial of

Frobp it suffices to prove that Frobp has determinant ε(p)pk−1. This one can do by computing

the action of Frobp on some non-degenerate alternating Kλ-bilinear form on Vλ. Such a form

is found as follows.

The Weil pairing on π:E → Y gives a non-degenerate alternating pairing on R1π∗Ql with

values in the sheaf Ql(−1) on Y . This induces a non-degenerate pairing on Fk
l with values in

Ql(2−k); this pairing is symmetric if k is even and alternating if k is odd. As explained in

[7], §3.20, Poincaré duality then gives a non-degenerate Ql-bilinear form (·|·) on H1
par(YQ,F

k
l )∨

with values in Ql(k−1); one has (y|x) = (−1)k−1(x|y) for all x and y. Let wζN
be the automor-

phism of YQ(ζN ) = M(Γ1(N))Q(ζN ) defined by:

wζN
: (E/S/Q(ζN), α) 7→ ((E ′/S/Q(ζN), α′) (2.5.2)

where β:E → E ′ is the N -isogeny with ker(β) = im(α), im(α′) = ker(βt) and 〈α(1), α′(1)〉β =

ζN . Here βt:E ′ → E denotes the dual of β and 〈·, ·〉β denotes the pairing of [19], §2.8. The use

of wζN
is that if T t

n denotes the correspondence (on YQ(ζN )) dual to Tn, we have T t
n = wζN

Tnw
−1
ζN

for all n ≥ 1 and 〈a〉−1 = wζN
〈a〉w−1

ζN
for all a ∈ (Z/NZ)∗. We let wζN

act on H1
par(YQ,F

k
l ) by:

w∗ζN
: H1

par(YQ,F
k
l )

w∗
ζN−→ H1

par(YQ, w
∗
ζN
Fk

l )
Symk−2β∗

−→ H1
par(YQ,F

k
l ) (2.5.3)

where β:E → w∗ζN
E; we let wζN∗ := w∗∨ζN

. For h ∈ H let ht
∗ denote the endomorphism of

H1
par(YQ,F

k
l )∨ which is dual to h∗ with respect to (·|·). Then we have ht

∗ = wζN∗h∗w
−1
ζN∗

for

all h ∈ H and wt
ζN∗

= (−1)kwζN∗. In other words, all h∗ are self-adjoint with respect to the

non-degenerate alternating bilinear form 〈x|y〉 := (x|wζN∗y) on H1
par(YQ,F

k
l )∨.

The Kλ-vector space Vλ is canonically isomorphic to (H1
par(YQ,F

k
l )∨ ⊗Ql

Kλ) ⊗H⊗QKλ
Kλ,

where H ⊗Q Kλ → Kλ: a⊗ b 7→ φ(a)b. We extend 〈·|·〉 to a Kλ-bilinear form, still denoted by

〈·|·〉, on H1
par(YQ,F

k
l )∨⊗Ql

Kλ. Since f is a new form the quotient K = H/mH of H is actually

a direct factor: H = K×H ′ as rings, for some (unique) H ′. It follows that H⊗QKλ = Kλ×H
′′

and that H1
par(YQ,F

k
l )∨ ⊗Ql

Kλ = Vλ ⊕ V ′λ. This direct sum decomposition is orthogonal with

respect to 〈·|·〉 because the corresponding idempotents, lying in H ⊗Q Kλ, are self-adjoint. It

follows that the restriction of 〈·|·〉 to Vλ has all the properties we want, i.e., it is Kλ-bilinear,

non-degenerate and alternating. One easily checks that Frobp acts on it as desired.
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3 Fourier expansions of new forms at various cusps.

3.1 The general problem. Let M be a positive integer. Let f be a new form on Γ1(M)

of some weight k, with character ε and with coefficients in Q. Then we ask the following

question: how are the q-expansions of f at the various cusps related? For M square free this

problem has been solved by Asai in [1]. His method uses the Atkin-Lehner operators Wd and

the diamond operators 〈a〉. It works because for M square free these operators permute the

cusps transitively, but for general M this is not necessarily true. We will solve the problem

in a situation described below. It might well be that the general case can be elegantly dealt

with using some explicit information concerning the Kirillov models for the local factors of the

automorphic representation attached to f .

3.2 Our problem. Let N be a positive integer, p a prime not dividing N and f a new form

on X0 := M(Γ0(p
2),Γ1(N))Q of some weight k and character ε: (Z/NZ)∗ → Q

∗
. We want to

relate the q-expansions of f at the p+1 cusps of X0 lying over the cusp (Tate(q), 1 7→ζN) of

M(Γ1(N))Q, where ζN is a fixed Nth root of unity. The most natural way to do this seems

to consist of first passing to a cover X of X0 on which a group G acts, permuting the relevant

cusps transitively, and then applying the representation theory of G. In our case we take

X = M(Γ(p),Γ1(N))Q. Note that by definition 2.1.1 a Γ(p)-structure is not required to be

symplectic. The group G will then be GL2(Fp) and not its subgroup SL2(Fp). We prefer to

work with GL2(Fp) because its representation theory is less complicated.

Let π:X → X0 be the morphism mapping (E/S, φ, α) to (E1/S, ker(φ2◦φt
1), φ1α) where

φ1:E → E1 and φ2:E → E2 are the p-isogenies with ker(φ1) = 〈φ(1, 0)〉 and ker(φ2) =

〈φ(0, 1)〉 (see [19] 11.3.5). We let g in G = Aut(Fp
2) act from the right on X by sending

(E/S, φ, α) to (E/S, φ◦g, α). Then π is the quotient map for the action of the diagonal sub-

group T of G. For f0 in H0(X0, ω
⊗k) we define π∗f0 in H0(X,ω⊗k) by (π∗f0)(E/S, φ, α) =

φ∗1(f0(E1/S, ker(φ2◦φt
1), φ1α)). We define operators T ∗l for l 6= p and 〈a〉∗ for a in (Z/NZ)∗ on

H0(X,ω⊗k) in the obvious way. The T ∗l and the 〈a〉∗ commute with the action (from the left)

of G. The injection π∗ of H0(X0, ω
⊗k) into H0(X,ω⊗k) intertwines the T ∗l and the 〈a〉∗ on both

sides. Now π∗f generates a representation of G, namely the linear span V of the gπ∗f , g ∈ G.

3.2.1 Lemma. The subspace of T -invariants V T of V has basis π∗f and V is irreducible.

Proof. The first statement follows from the multiplicity one principle on X0 applied to the T ∗l ,

l 6= p, and the 〈a〉∗ (recall that f is a new form so that we don’t need T ∗p ). Write V = ⊕r
1Vi

with all Vi irreducible subrepresentations. Then π∗f =
∑
vi with vi ∈ Vi. Since π∗f generates

V we have vi 6= 0 for all i, hence dimV T ≥ r. ✷

Let us now consider q-expansions. The Tate curve Tate(q) = Gm/q
Z over Q((q)) has its p-

torsion rational over Q((q1/p)): the p-torsion points are the ζa
pq

b/p where ζp is a fixed pth root

of unity and a, b are in Fp. It follows that the set of Γ(p)-structures φ on Tate(q) over Q((q1/p))
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is a G-torsor where g ∈ G acts by φ 7→ φ◦g. We have an evaluation map:

H0(X,ω⊗k) −→ ⊕φQ[[q1/p]], f 7→
(
f(Tate(q), φ, 1 7→ζN)/(dt/t)⊗k

)
φ

(3.2.2)

We let G act on ⊕φQ[[q1/p]] by permuting the factors: an element g in G sends (
∑
an,φq

n/p)φ

to (
∑
an,φq

n/p)φ◦g−1 ; this action is compatible with the map 3.2.2. We identify the Galois group

of Q((q1/p)) over Q((q)) with Fp by letting λ ∈ Fp send q1/p to ζλ
p q

1/p. Then λ ∈ Fp induces

the automorphism σ(λ) of the p-torsion of Tate(q) given by: ζa
p q

b/p 7→ ζa+λb
p qb/p. Suppose

that f(Tate(q), φ, 1 7→ζN) =
∑
an,φq

n/p(dt/t)⊗k and let λ ∈ Fp. Base changing by Q((q1/p)) →

Q((q1/p)), q1/p 7→ ζλ
p q

1/p then gives: f(Tate(q), (σλ)◦φ, 1 7→ζN) =
∑
an,φζ

λn
p qn/p(dt/t)⊗k. In

other words, the image of the map 3.2.2 is contained in the subspace consisting of (
∑
an,φq

n/p)φ

such that an,(σλ)φ = ζλn
p an,φ for all n, λ and φ. Note that both the condition on the image of

f we just found and the action of G do not mix terms of different degrees in q1/p, so that it

makes sense to project on the degree n parts.

For n ∈ Z let Wn be the space of functions h:G → Q such that h((1
0

a
1
)x) = ζna

p h(x) for all

a ∈ Fp. We let G act on Wn by right translations. Also let φ0 be the Γ(p)-structure on Tate(q)

with φ0(a, b) = ζa
p q

b/p. Then we can restate the results above as the following proposition.

3.2.3 Proposition. For f ∈ H0(X,ω⊗k) let us define the a(f, n, φ) by

f(Tate(q), φ, 1 7→ζN) =
(∑

a(f, n, φ)qn/p
)

(dt/t)⊗k.

Then, for all n, mapping f to the function x 7→ a(f, n, φ0◦x) on G gives a G-equivariant map

H0(X,ω⊗k) →Wn. ✷

The usefulness of this result clearly depends on the multiplicity of the irreducible representation

V in Wn.

3.3 Applying the representation theory of GL2(Fp). The notation is as in §3.2. We have

G = GL2(Fp), B ⊂ G is the upper triangular Borel subgroup, T is the diagonal subgroup and

U is the subgroup of order p of B. First of all we need a character table for G. The one given

below is copied from [6].

3.3.1 Table. The character table of GL2(Fp).

conjugacy class of π(α, β), α 6= β π(Λ), Λp 6= Λ α◦ det π−(α)

(x
0

0
x
) x ∈ Fp

∗ (p+ 1)α(x)β(x) (p− 1)Λ(x) α(x)2 pα(x)2

(x
0

0
y
) x, y ∈ Fp

∗ x 6= y α(x)β(y) + α(y)β(x) 0 α(x)α(y) α(x)α(y)

(x
0

1
x
) x ∈ Fp

∗ α(x)β(x) −Λ(x) α(x)2 0

( z
0

0
zp ) z ∈ F∗p2 zp 6= z 0 −Λ(z) − Λ(zp) α(zp+1) −α(zp+1)

11



In this table α and β denote characters Fp
∗ → Q

∗
and Λ denotes a character F∗p2 → Q

∗
. As is

well known, the representation Wn is isomorphic to the induced representation IndG
Uρn, where ρn

is the one-dimensional representation ρn(1
0

a
1
) = ζna

p of U . It is now a trivial matter to compute

the multiplicities dim HomG(V,Wn) = dim HomU(ResG
UV, ρn) and the dimensions dimV T . One

finds the following table.

3.3.2 Table.

V π(α, β), α 6= β π(Λ), Λp 6= Λ α◦ det π−(α)

dim HomG(V,Wn) 1 if p 6 |n 1 if p 6 |n 0 if p 6 |n 1

2 if p|n 0 if p|n 1 if p|n

dim V T δ(αβ, 1) δ(Λ|Fp
∗ , 1) δ(α, 1) δ(α, 1) + δ(α2, 1)

In this table the symbol δ denotes the function that takes the value 1 or 0 according to when

its two arguments are equal or not.

Let us go back to the situation of §3.2. So f is a new form on X0, V is the irreducible

subrepresentation of H0(X,ω⊗k) generated by π∗f and π∗f is a basis for V T . Looking at the

last row of Table 3.3.2 one sees that V ∼= π(α, β) implies β = α−1 and α 6= 1, that V ∼= π(Λ)

implies Λ|Fp
∗ = 1, that V ∼= α◦ det is impossible and that V ∼= π−(α) implies that α has

order two. Let n be a positive integer and let hn ∈ Wn be given by hn(x) = a(π∗f, n, φ0◦x)

as in Prop. 3.2.3. Looking at the second row in Table 3.3.2 one sees that hn is determined

up to scalar multiple by the conditions that it is T -invariant and that it generates a quotient

representation of V , except in the case where V ∼= π(α, β) and p|n. To get such a function

h′n we can use the central idempotents in the group rings of G, T and U corresponding to the

representations we want h′n to be in. The central idempotent eχ associated to an irreducible

character χ of a finite group G is given by eχ = χ(1)/(#G)
∑

y χ(y−1)δy, where the sum ranges

over the elements of G (we view the group ring of G as the ring Q[G] of functions on G with

convolution as multiplication). From now on let χ be the character of G on V . We can start

with an arbitrary element of Q[G], project it into Wn, then into its χ-part and finally into the

T -invariants. Starting with δe, the delta function at the unit element of G, gives us the function

h′n(x) =
∑

t∈T,u∈U

ρn(u−1)χ(uxt) (3.3.3)

By construction we have that h′n 6= 0 if dim HomG(V,Wn) 6= 0.

3.3.4 Proposition. In the situation of §3.2 we define the a(n, x) by:

π∗f(Tate(q), φ0◦x, 1 7→ζN) =
(∑

a(n, x)qn/p
)

(dt/t)⊗k.

Suppose that p 6 |n if χ = π(α, α−1) for some α. Then the vector (a(n, x))x∈G is a multiple of

the vector (h′n(x))x∈G as defined in 3.3.3. ✷
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Using this proposition we can almost solve the problem posed in the beginning of §3.2. Let us

write:

f(Tate(q), µp2, 1 7→ζN) =
(∑

anq
n
)
(dt/t)⊗k

f(Tate(ζpq), 〈q
1/p〉, 1 7→ζN) =

(∑
a′nq

n
)
(dt/t)⊗k

f(Tate(qp2
), 〈q〉, 1 7→ζN) =

(∑
a′′nq

n
)
(dt/t)⊗k

(3.3.5)

Applying the definitions of π∗f and φ0 one finds:

an = a(n, (0
1

1
0
))

a′n = a(n, (1
1

0
1
))

a′′n = ε(p)−1p−ka(n, (1
0

0
1
))

(3.3.6)

A direct calculation shows that for p 6 |n we have

h′n(1
0

0
1
) = p(p−1), h′n(0

1
1
0
) = ±p(p−1) (3.3.7)

where ± = α(−1) if χ = π(α, α−1) or χ = π−(α), and ± = −Λ(z0) if χ = π(Λ) and zp−1
0 = −1.

It follows that for p 6 |n we have

a′n = ±p−1(p− 1)−1h′n(1
1

0
1
) · an, a′′n = ±ε(p)−1p−kan (3.3.8)

where the sign ± is as in 3.3.7. It remains to see what the a′n and a′′n are for p|n. For the a′′n
this can be solved using the Atkin-Lehner automorphism wp2 of X0 defined as follows:

wp2: (E/S, ker(φ), α) 7→ (E ′/S, ker(φt), φα) (3.3.9)

where φ:E → E ′ is cyclic of degree p2. On H0(X0, ω
⊗k) we define an operator w∗p2 by:

(w∗p2f0)(E/S, ker(φ), α) = φ∗(f0(E
′, ker(φt), φα)) (3.3.10)

One easily checks that w2
p2 = 〈p2〉N , that w∗2p2 = p2k〈p2〉∗N and that w∗p2 commutes with all T ∗l

(l 6= p) and all 〈a〉∗N (a ∈ (Z/NZ)∗). It follows that w∗p2f = ±ε(p)pkf ; evaluating this on

(Tate(q), µp2, 1 7→ζN) gives ∑
a′′nq

n = ±ε(p)−1p−k
∑

anq
n (3.3.11)

So we see that the equality in 3.3.8 concerning a′′n is in fact true for all n.

It remains to determine the a′n for p|n. Prop. 3.3.4 is of no help when one wants to express

the a′pn and a′′pn in terms of apn, since apn = 0 for all n. For χ = π(Λ) it follows from 3.3.2

that a(pn, x) = 0 for all n and x, hence that apn = 0 = a′pn = a′′pn. The other two cases,

χ = π(α, α−1) or χ = π−(α), will be dealt with in the next section.

3.4 Twisting. Suppose that χ = π(α, α−1). We will show that f is a twist of a new form

on X1 := M(Γ1(p),Γ1(N))Q and use this to solve our problem. For general information about

twisting of modular forms one can consult [26], page 91.
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Let β:Fp
∗ → Q

∗
be a character. We will define an automorphism Θβ of the Q-vector space

H0(X,ω⊗k) such that:

T ∗l ◦Θβ = Θβ◦β(l)T ∗l ∀l 6= p

g◦Θβ = Θβ◦β(det(g))g ∀g ∈ G

(3.4.1)

Let ep denote the Weil pairing on the p-torsion of any elliptic curve (see e.g. [19], §2.8),

let z be the locally constant µp(Q)-valued function ep(φ(1, 0), φ(0, 1)) in H0(X,OX) and let

b :=
∑

i β(i)−1zi, where the sum ranges over i ∈ Fp
∗. Then one easily checks that the operator

Θβ: f 7→ bf on H0(X,ω⊗k) satisfies 3.4.1 and that b is a unit if β is non-trivial.

Let V1 be the image of V under Θα. It follows from 3.4.1 and Table 3.3.1 that V1
∼= π(α2, 1)

and that dimV H
1 = 1, where H ⊂ G is the subgroup {(1

0
∗

∗
)}. Let π1:X → X1 be the morphism

sending (E/S, φ, ψ) to (E/S, 1 7→φ(1, 0), ψ). Then π1 identifies X1 with X/H, π1 is compatible

with the T ∗l for l 6= p and the 〈a〉∗N and π1◦(x
0

a
y
) = 〈x〉p◦π1. This implies that there exists a

unique normalized new form f1 of weight k and character α2ε on X1 such that π∗1f1 ∈ V1. If

we write:

f1(Tate(q), 1 7→ζp, 1 7→ζN) =
(∑

bnq
n
)
(dt/t)⊗k (3.4.2)

then we have an = α−1(n)bn for all n (we will always extend characters Fp
∗→Q

∗
to Fp by 0).

The q-expansions of f1 at other cusps can be computed in various ways, see for example [1]???

and [16]??? ; one just evaluates the identity T ∗p f1 = bpf1 at such a cusp. First of all we have

bp 6= 0. We define the b′n by:

f1(Tate(q)/Q((q1/p)), 1 7→q1/p, 1 7→ζN) =
(∑

b′nq
n/p
)
(dt/t)⊗k (3.4.3)

For β:Fp
∗ → Q

∗
a character and n ∈ Z let g(β, n) denote the Gauss sum

∑
x β(x)ζnx

p . Then:

b′n = b−1
p ε(p)pk−1b′n/p + p−1α−2(n)g(α2, 1)b−1

p bn (3.4.4)

A convenient way to express this result is the following Euler product expansion:

∑
b′nn

−s = p−1b−1
p g(α2, 1)(1 − λ′pp

−s)−1
∏

l 6=p

(
1 − α−1(l)all

−s + α−2(l)ε(l)lk−1−2s
)−1

(3.4.5)

where λ′p is defined by: λ′pbp = ε(p)pk−1. The q-expansions of f at various cusps can now

be computed by expressing π∗f in terms of π∗1f1. By 3.4.1 we have Θα−1π∗1f1 ∈ V . Recall

that π∗f is a basis for V T . Unfortunately the projection of Θα−1π∗1f1 in V T is zero because

(x
0

0
y
)Θα−1π∗1f1 = α(xy−1)Θα−1π∗1f1, but one can check that the projection of (1

1
0
1
)Θα−1π∗1f1 is

non-zero. It follows that:

π∗f = c
∑

x

(x
0

0
1
)(1

1
0
1
)Θα−1π∗1f1 (3.4.6)

for some c ∈ Q
∗
(note that

∑
(x

0
0
1
) projects into V T because the central character of V is trivial).

Evaluating 3.4.6 on say (Tate(q), φ0◦(0
1

1
0
), 1 7→ζN) one finds that c = g(α2, 1)−1bp. Let the a′n be

as defined in 3.3.5. By evaluating 3.4.6 on (Tate(q), φ0◦(1
1

0
1
), 1 7→ζN) one computes that:

a′n = α(−1)g(α2, 1)−1bpg(α, 1)
(
j(α−1, n)b′n + bn/p

)
(3.4.7)
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where for any character β:Fp
∗ → Q

∗
and n ∈ Z:

j(β, n) =
∑

x

β(x)β(x− 1)ζnx
p (3.4.8)

We summarize these results in the following proposition.

3.4.9 Proposition. Let f be a new form as in §3.2. Suppose that π∗f generates the repre-

sentation π(α, α−1) of G for some α:Fp
∗ → Q

∗
. Let f1 be the unique normalized new form on

M(Γ1(p),Γ1(N))Q such that f is the twist of f1 by α−1. Then the q-expansions of f and f1 at

the various cusps are related by formulas 3.3.5, 3.4.2, 3.4.3, 3.4.4, 3.4.5 and 3.4.7.

Suppose now that χ = π−(α). Using techniques as above one can show that there exists

a unique normalized new form g of weight k and character ε, either on M(Γ1(N))Q or on

M(Γ1(p),Γ1(N))Q, such that an = α(n)bn for all n, where T ∗ng = bng. In the first case one

finds:

a′n = ε(p)−1g(α, 1)−1
(
pkε(p)bn/p2 + j(α, n)bn

)
(3.4.10)

In the second case we define the b′n by:

g(Tate(q), 1 7→q1/p, 1 7→ζN) =
(∑

b′nq
n/p
)
(dt/t)⊗k (3.4.11)

Evaluating T ∗p g = bpg one obtains b2p = ε(p)pk−2 and b′n = −p−1b−1
p bn for all n. By the way, it

follows that this case cannot occur if k = 1 since bp has to be integral. For the a′n one finds the

following expression:

a′n = ε(p)−1g(α, 1)−1
(
−pbpbn/p + j(α, n)bn

)
(3.4.12)

3.4.13 Proposition. Let f be a new form as in §3.2. Suppose that π∗f generates the repre-

sentation π−(α) of G, hence with α:Fp
∗ → Q

∗
of order 2. Then there is a unique normalized

new form g of weight k and character ε, either on M(Γ1(N))Q or on M(Γ1(p),Γ1(N))Q, such

that an = α(n)bn for all n, where T ∗ng = bng. In the first case the a′n are given by 3.4.10 and in

the second case by 3.4.12.

3.5 p-adic valuations. Let f be as in §3.2. In §6 we will need to know the p-adic valuation

(in some sense) of the q-expansions of f at certain cusps. More precisely: we fix an embedding

of Q into Qp and we normalize the p-adic valuation vp on Qp by setting vp(p) = 1. Then we

want to know the valuations of the power series
∑
a′nq

n and
∑
a′′nq

n in 3.3.5; by definition we

have vp(
∑
a′nq

n) = min{vp(a
′
n) | n ≥ 0}. Let Zp be the ring of integers in Qp and let Fp be

the residue field of Zp. Let F be a finite extension of Fp. Clearly any character α:F∗ → Q
∗

p

has its image in Z
∗

p. We call α fundamental if α:F → Zp → Fp is an embedding of fields. The

Teichmüller character τ is the unique fundamental character τ :Fp
∗ → Q

∗

p. We denote the two

fundamental characters F∗p2 → Q
∗

p by τ2 and τ ′2 = τp
2 .

3.5.1 Lemma.

1. vp(g(τ
−m, 1)) = m

p−1
for 0 ≤ m < p− 1.
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2. vp(j(τ
m, 1)) =





1 − 2m
p−1

if 0 < m ≤ p−1
2

0 if p−1
2

≤ m < p− 1

3. vp(j(τ
m, 0)) =





1 if 0 < m < p−1
2

0 if p−1
2

≤ m < p− 1

4. Let Λ = τ
(p−1)m
2 with 0 < m < p + 1, let χ = π(Λ) and let h′n be as in 3.3.3. Then

h′n(x) = 0 for all x if p|n. Assume that p 6 |n and that p 6= 2. Then:

(a) vp(h
′
n(1

0
0
1
)) = vp(h

′
n(0

1
1
0
)) = 1

(b) vp(h
′
n(1

1
0
1
)) =





p−m
p−1

if m ≤ p+1
2

m−1
p−1

if m ≥ p+1
2

Proof. 1. Very well known, see for example . . .

2. We compute the image of j(τm, 1) in Fp[ζp] := Zp[ζp]/pZp[ζp]:

j(τm, 1) mod p =
∑

a

am(a− 1)mζa
p =

∑

a

am
m∑

k=0

(
m

k

)
(−1)m−kakζa

p

= (−1)m
m∑

k=0

(−1)k

(
m

k

)
∑

a

am+kζa
p = (−1)m

m∑

k=0

(−1)k

(
m

k

)
g(τm+k, 1)

The statement now follows from part 1 of this lemma.

3. Well known because j(τm, 0) is τ(−1)m times the usual Jacobi sum, see . . .

4. It follows from 3.3.2 that h′n(x) = 0 if p|n. Assume that p 6 |n. Part (a) follows from 3.3.7.

The computation of vp(h
′
n(1

1
0
1
)) is more complicated. By definition 3.3.3 we have:

h′n(1
1

0
1
) =

∑

b,x,y

ζ−nb
p π(Λ)(x+xb

x
by
y
), b ∈ Fp, x, y ∈ Fp

∗.

Write b = a−1. Note that (ax
x

(a−1)y
y

) is never scalar, hence the value of π(Λ) on it is determined

by its trace (= ax+ y) and its determinant (= xy). For any α ∈ Fp and β ∈ Fp
∗ the number of

solutions of 


ax+ y = α

xy = β

equals
(

α2−4aβ
p

)
+1, where

(
·
p

)
denotes the Legendre symbol. Using this fact, Table 3.3.1 and

the non-triviality of Λ, we find:

h′n(1
1

0
1
) = −ζn

p

∑

a∈Fp

ζ−na
p

∑

z∈F∗
p2

Λ(z)

(
(z + zp)2 − 4azp+1

p

)
.

The image of h′n(1
1

0
1
) in Fp2[ζp] can be written as:

h′n(1
1

0
1
) mod p = −ζn

p

∑

a∈Fp

ζ−na
p

∑

z∈F∗
p2

z(p−1)m
(
(z + zp)2 − 4azp+1

)(p−1)/2
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Expanding and rearranging terms gives:

h′n(1
1

0
1
) mod p = −ζn

p

(p−1)/2∑

k=1

(−4)k

(
p−1
2

k

)
∑

z

z(p−1)(m+k+1)(1 + zp−1)p−1−2kg(τk,−n) (3.5.2)

Clearly the right hand side is of the form
∑
ck g(τ

k,−n). It follows from part 1 of this lemma

that vp(g(τ
k,−n)) = 1 − k/(p−1), hence we have to find the largest k for which ck 6= 0. The

exponent of z in each term of 3.5.2 is positive and less than 2(p2−1). Because we sum over

z, only terms with p2−1 as exponent of z can give a non-zero contribution. It follows that we

should look for the largest k for which there is a non-zero term depending on a and z as akzp2−1.

This means that we are looking for the largest k such that there exists i with 0 ≤ i ≤ p−1−2k

such that m+k + 1+i = p+1. Recall that 0 < m < p+1 and 0 < k ≤ (p−1)/2. It is then easy

to see that one should take k = p−m and i = 0 if m ≥ (p+1)/2, and k = m−1 and i = p−1−2k

if m ≤ (p+1)/2. ✷

3.5.3 Proposition. Let N be a positive integer, p > 2 a prime not dividing N and f a

normalized new form on M(Γ0(p
2),Γ1(N))Q of some weight k ≥ 2 and character ε: (Z/NZ)∗ →

Q
∗
. Let χ denote the character of the irreducible representation associated to f as in §3.2. Then

we have χ = π(α, α−1) for some α:Fp
∗ → Q

∗
with α 6= α−1, or χ = π(Λ) for some Λ:F∗p2 → Q

∗

with Λp = Λ−1 6= Λ, or χ = π−(α) with α:Fp
∗ → Q

∗
of order two. Fix an embedding of Q

into Qp and normalize the p-adic valuation vp on Qp by vp(p) = 1. Let τ , τ2 and τp
2 denote the

fundamental characters of level 1 and 2 as in the beginning of §3.5. Let ζp and ζN be a pth and

a Nth root of unity in Q. Let the an, a′n and a′′n be as defined in 3.3.5. Then we have:

1. vp(
∑
anq

n) = 0,

2. vp(
∑
a′′nq

n) = −k,

3. if χ = π(τm, τ−m) with 0 < m < (p−1)/2 then vp(
∑
a′nq

n) = −m/(p−1),

4. if χ = π(τ
(p−1)m
2 ) with 0 < m < (p+1)/2 then vp(

∑
a′nq

n) = (1−m)/(p−1),

5. if χ = π−(τ (p−1)/2) then vp(
∑
a′nq

n) = −1/2.

Finally, the valuations of the q-expansions of f at the cusps (Tate(ζ i
pq), 〈q

1/p〉, 1 7→ζN), 1 ≤ i ≤

p−1, are all equal.

Proof. Part 1 is a consequence of the definition of “normalized”. Part 2 results from 3.3.11.

Parts 3, 4 and 5 are an easy exercise using Lemma 3.5.1, Prop. 3.4.9, Prop. 3.3.4 and Prop. 3.4.13

(for 3 one has to use that in 3.4.5 vp(λ
′
p) ≥ 0). For the last statement one notes that Gal(Qp/Qp)

permutes those cusps transitively; that for any σ ∈ Gal(Qp/Qp), σ(f) generates a representa-

tion with character σ(χ); that σ(χ) = χ (see 3.3.1), and that we have already proved that the

valuation at one of those cusps depends only on that character. ✷

3.5.4 Remark. 1. Note that π(α, α−1) = π(α−1, α) and that π(Λ) = π(Λp).

2. The relation between χ and the Galois representation corresponding to f is given in

Prop.4.8.

3. Note the curious case χ = π(τp−1
2 ) where vp(

∑
a′nq

n) = 0.
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4 A stable model for M(Γ(p),Γ1(N)) at p.

4.1 Construction of a stable model. In order to explain the construction of a stable model

for M(Γ(p),Γ1(N)) at p, it is better to consider the following more general situation. Let S be

the spectrum of a discrete valuation ring with perfect residue field, let s be the closed point of

S and let η be the generic point. Let C → S be a curve: C → S is proper, flat and purely of

relative dimension one. We suppose that Cη is smooth over η and that C is regular.

Under the hypotheses above, the irreducible components of Cs are Cartier divisors on C.

After blowing up repeatedly in closed points of Cs we may assume that Cs is a Cartier divisor

on C with normal crossings. Let n be the least common multiple of the multiplicities of the

irreducible components of Cs, and let π0 be a uniformizer on S. Let T be S[π], with πn = π0,

thus we have T → S totally ramified of degree n. Now we consider C̃T , the normalization of

the pullback of C to T . Let t be the closed point of T .

4.1.1 Proposition. If n is invertible on S, then the geometric fibre C̃T ,t̄ of C̃T /T is a reduced

curve whose singularities are ordinary double points (i.e., C̃T → T is a semi-stable model).

Proof. By replacing S by its strict henselization we may suppose that k(s) is algebraically

closed. We will check that C̃T ,t is reduced and that its singularities are ordinary double points.

In order to do this we compute C̃T locally in the etale topology. Let x ∈ C(s). Since Cs is a

normal crossings divisor on C there is an etale neighborhood U → C of x and a system X, Y of

parameters in OU,x such that XaY b = π0u with u ∈ OU,x a unit and a, b non-negative integers

with a 6= 0. The numbers a and b are the multiplicities of the one or two irreducible components

of Us passing through x; b equals zero if and only if x lies on exactly one irreducible component

of Us. By assumption a is invertible on U , hence U [u1/a] is finite etale over U . Changing X by

an ath root of u we have: XaY b = π0. It follows that CT is locally isomorphic to a subscheme of

A2
T defined by the equation XaY b = πn. The normalizations of the rings OT [X, Y ]/(XaY b−πn)

can be easily computed, see for example [13], §2.2. One finds the following.

4.1.2 The normalization of Spec(OT [X, Y ]/(Xa − πn)) is the disjoint union, indexed by the

ζa ∈ µa, of copies of Spec(OT [Y ]); on the copy labeled by ζa we have X = ζaπ
n/a.

4.1.3 Suppose that b 6= 0. Let c = gcd(a, b), write a = a′c, b = b′c, n = ca′b′m. Write 1 =

a′e+b′d for some integers d and e. Then the normalization of Spec(OT [X, Y ]/(XaY b−πn))

is the disjoint union, indexed be the ζc ∈ µc, of copies of Spec(OT [V, Z]/(V Z − πm)). On

the copy labeled by ζc we have: V = πa′emXdY −e, Z = πb′mdX−dY e, X = ζe
cV

b′ and

Y = ζd
cZ

a′
.

From these results one concludes that indeed C̃T → T is a semi-stable model. ✷

4.1.4 Remark. 1. If Cη is geometrically irreducible and has genus at least 2, one obtains

the stable model (in the sense of [10]) of Cη over T by contracting the projective lines in C̃T ,t̄

intersecting the rest of C̃T ,t̄ in fewer than 3 points. By contracting and blowing up one also

obtains the minimal model of C over T (n.b. C̃T itself may not be regular).
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2. The computations of the normalizations describe the morphism C̃T → CT locally in the

etale topology. In particular, one knows the ramification structure of C̃T ,t → Cs,red.

3. The choice of the uniformizing element π0 on S is unimportant, since all totally ramified

extensions of degree n of S are isomorphic over the strict henselization of S.

4. On the contrary, if n is not invertible on S, there are lots of non-isomorphic (wildly

ramified) extensions of the same degree. If one knows the action of the inertia subgroup of

Gal(η̄/η) on H1(Cη̄,Qℓ) one can pick the right extension. In the case of modular curves (of

arbitrary level) this action is known ([5]). The problem is the description of the rings ÔC,x.

4.2 Construction of a stable model for M(Γ(p),Γ1(N)). Let p be a prime, let N be

an integer that is not divisible by p and let X := M(Γ(p),Γ1(N)) be the compactification

(obtained by normalization, as in §2.1) of the algebraic stack classifying triples (E/S, φ, α)

with E/S an elliptic curve, φ:Fp × Fp → E[p](S) a Drinfeld basis and α:Z/NZ → E[N ](S) a

Drinfeld Z/NZ-structure. For any elliptic curve E/S let ep:E[p]×SE[p] → µp,S denote the Weil

pairing (see [19], §2.8). The morphism X → Spec(Z) factors through Spec(Z[ζp]) by sending

(E/S, φ, α) to ep(φ(1, 0), φ(0, 1)) ∈ Spec(Z[ζp])(S). Let X⊗̃ZZ[ζp] denote the normalization of

X ⊗Z Z[ζp]. For i ∈ Fp
∗ let Xi denote the algebraic stack M(Γ(p)ζi

p−can,Γ1(N)) over Z[ζp] (see

[19], §9.4). By definition, for a scheme S over Z[ζp] an object in M(Γ(p)ζi
p−can,Γ1(N))(S) is a

triple (E/S/Z[ζp], φ, α) with ep(φ(1, 0), φ(0, 1)) = ζ i
p; Xi is obtained from M(Γ(p)ζi

p−can,Γ1(N))

by normalization at infinity. The morphism

∐

i∈Fp
∗

Xi −→ X ⊗ Z[ζp], (E/S/Z[ζp], φ, α) 7→ ((E/S, φ, α), ep(φ(1, 0), φ(0, 1)))

induces an isomorphism ∐

i∈Fp
∗

Xi −̃→ X⊗̃Z[ζp] (4.2.1)

because both sides are normal (in fact, both sides are regular).

We will now apply the construction of §4.1 to X⊗̃Z[ζp] over Z[ζp]. The fact that we are

dealing with an algebraic stack that is not necessarily a scheme is no problem because blowing up

and normalization are compatible with etale descent. We have already remarked that X⊗̃Z[ζp]

is regular. The Xi ⊗Z[ζp] Fp are described in [19], Thm. 13.7.6 and Thm. 13.8.4: Xi ⊗Z[ζp] Fp

has p+1 irreducible components, all isomorphic to M(ExIg(p, 1),Γ1(N)); these irreducible

components are smooth over Fp, geometrically irreducible, have multiplicity one and intersect

each other exactly at the supersingular points; the intersections are pairwise transversal.

Let Y → X⊗̃Z[ζp] be the blow up in the supersingular points in characteristic p. Then

Y ⊗Z[ζp] Fp is a divisor on Y with normal crossings and over each supersingular point lies an

exceptional curve having multiplicity p+1 in Y ⊗Z[ζp]Fp. Let π0 be the uniformizer 1−ζp of Z[ζp]

at p. According to Prop. 4.1.1 Xst := Y ⊗̃Z[ζp]Z[ζp, π], where πp+1 = π0, is a model for X over

Z[ζp, π] that is semi-stable at p. The computations in the proof of Prop. 4.1.1 show that Xst is

regular and that the fibre Xst
p := Xst⊗Z[ζp,π]Fp over Fp has two kinds of irreducible components.

First of all one has the irreducible components that map isomorphically onto an irreducible
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component of (X⊗̃Z[ζp])Fp
; these components are isomorphic to M(ExIg(p, 1),Γ1(N))Fp

; we

call them components of Igusa type. Secondly, there are the irreducible components that map

to a supersingular point in X⊗̃Z[ζp]; over each supersingular point in characteristic p there is

exactly one such component; we call them components of Drinfeld type; they are all isomorphic.

Each component of Drinfeld type maps with degree p+1 to some exceptional curve in Y ⊗Z[ζp]Fp.

This shows a component of Drinfeld type is a cover of degree p+1 of P1
Fp

ramified exactly and

totally over the p+1 Fp-rational points.

4.3 Components of Drinfeld type. In this section we want to get equations for the compo-

nents of Drinfeld type in Xst
p . To do this we follow the construction of §4.2. Let s = (E/Fp, φ, α)

be a supersingular point in Xi(Fp) for some i ∈ Fp
∗. We denote the corresponding component

of Drinfeld type by Di,s. Let W be the ring of Witt vectors of Fp. By [19], Thm. 13.8.4, the

complete local ring of X⊗̃Z[ζp] at s is isomorphic to W [ζp][[x, y]]/(f), with f = f0 + π0f1,

f0 = xpy − xyp + g, g ∈ (x, y)p+2 and f1 a unit. As explained in [13], §1.3.1, the completion

of Y along the exceptional curve lying over s can be covered by two open affines isomorphic

to Spf(A1) and Spf(A2) with A1 = W [ζp][v][[x]]/(f(x, vx)) and A2 = W [ζp][u][[y]]/(f(uy, y))

respectively.

It follows that the completion of Xst along Di,s is covered by two open affines isomorphic to

Spf(Aj⊗̃W [ζp]W [ζp, π]), j in {1, 2}. The normalization Aj⊗̃W [ζp]W [ζp, π] of Aj ⊗W [ζp]W [ζp, π] is

obtained by blowing up in the ideals (x, π) and (y, π) respectively (this can be seen from the

computations in the proof of Prop. 4.1.1). Let us write out what happens for j = 1. Then:

A1 ⊗W [ζp] W [ζp, π] = W [ζp, π][v][[x]]/
(
xp+1(v − vp) + xp+2h+ πp+1f1(x, vx)

)

where we have written g(x, vx) = xp+2h. Blowing up in (x, π) means setting π = xw. We find:

A1⊗̃W [ζp]W [ζp, π] = W [ζp, π][v][[x]][w]/
(
π − xw, v − vp + xh + wp+1f1(x, vx)

)

The corresponding affine part of Di,s is given by the equation x = 0. Substituting this we find

that Di,s is the smooth complete model of the affine curve in A2
Fp

given by the equation

awp+1 = vp − v (4.3.1)

where a ∈ Fp
∗

is the image under W [ζp] → Fp of f1(0, 0). If we put α := w−1 and β := vw−1

then we find the equation:

−a = αpβ − αβp (4.3.2)

for an other affine part of Di,s.

In order to describe various actions on the Di,s it is necessary to recall the construction in

[19], §13.8 of the parameters x and y of the complete local ring ÔXi,s of Xi at s. By definition

we have a triple (E/ÔXi,s, φ, α). Let Z be a parameter of the formal group of E . Then we can

take x = Z(φ(1, 0)) and y = Z(φ(0, 1)). Putting things together we have:

x = Z(φ(1, 0)), y = Z(φ(0, 1)), y = vx, π = xw, α = π−1x, β = π−1y. (4.3.3)
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4.4 Components of Igusa type. In this section we want to give a precise description of the

components of Igusa type in Xst
p . We have already seen in §4.2 that these are precisely the

irreducible components of (X⊗̃Z[ζp]) ⊗ Fp. Because we have the isomorphism 4.2.1 between

X⊗̃Z[ζp] and the disjoint union of the Xi, i ∈ Fp
∗, it is sufficient to describe the irreducible

components of the Xi ⊗Z[ζp] Fp. In fact, all Xi ⊗Z[ζp] Fp are the same: they classify triples

(E/S/Fp, φ, α) with ep(φ(1, 0), φ(0, 1)) = 1.

In [19], §13.7and §13.8 it is shown that the irreducible components of Xi ⊗Z[ζp] Fp are the

compactifications of the p+1 stacks, labeled by the P ∈ P1(Fp), classifying triples (E/S/Fp, φ, α)

with P ⊂ ker(φ), where we view P as a line in Fp
2. We denote the corresponding components

in Xst
p by Igi,P , where i ∈ Fp

∗ and P ∈ P1(Fp). For every P ∈ P1(Fp) we choose a surjective

linear map LP :Fp
2 → Fp such that P = ker(LP ) as in [19], §13.8: for P = Fp · (x

1
) we take

LP : (a
b
) 7→ a−bx and for P = Fp ·(

1
0
) we take LP : (a

b
) 7→ b. Using these LP we get isomorphisms:

Igi,P →̃ M(ExIg(p, 1),Γ1(N))Fp
, (E/S/Fp, φ, α) 7→ (E/S/Fp, φ̄, α) (4.4.1)

where φ̄:Fp → E(S) is the unique map such that φ = φ̄◦LP . Since these isomorphisms depend

on the choice of the LP we will avoid using them as much as we can.

4.5 The action of GL2(Fp). The group G := GL2(Fp) = Aut(Fp
2) acts from the right on X

by automorphisms r(g):

r(g): (E/S, φ, α) 7→ (E/S, φ◦g, α)

We let G act on X ⊗Q(ζp, π) via its action on X; by construction this action extends uniquely

to an action on Xst. The aim of this section is to describe the action that we get on Xst
p . First

of all, since ep(·, ·) is alternating we have:

ep(φ◦g(1, 0), φ◦g(0, 1)) = ep(φ(1, 0), φ(0, 1))det(g)

Hence the action of g ∈ G on
∐

iXi ⊗Z[ζp] Fp is given by:

(
(E/S/Fp, φ, α), i

)
7→
(
(E/S/Fp, φ◦g, α), i det(g)

)

From this we can easily see the action of g ∈ G on the Igi,P . Each g induces an isomorphism

r(g): Igi,P →̃ Igidet(g),g−1P . The stabilizer of Igi,P is the Borel subgroup BP of SL2(Fp) that

fixes P . Let χP :BP → Fp
∗ be the character giving the action on the line P , then for g ∈

BP we have LP ◦g = χP (g)−1LP since det(g) = 1. It follows that the action of g ∈ BP on

M(ExIg(p, 1),Γ1(N))Fp
that we get via the isomorphism 4.4.1 is the so-called diamond operator:

〈χP (g)−1〉p : (E/S, φ̄, α) 7→ (E/S, χP (g)−1φ̄, α) (4.5.1)

Note that any other choice of LP would lead to the same 〈χP (g)−1〉p.

Let us now consider the Di,s. Each g ∈ G induces an automorphism r(g):Di,s →̃ Didet(g),s.

The stabilizer of Di,s is SL2(Fp). Let g = (a
c

b
d
) ∈ SL2(Fp). Then g acts (from the left) on
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W [ζp][[x, y]]/(f) by:

r(g)#x = r(g)#Z(φ(1, 0)) = Z(φ◦g(1, 0)) = Z(φ(a, c)) = Z(aφ(1, 0) + cφ(0, 1)) =

= ax+ cy (mod (x, y)2)

r(g)#y = bx+ dy (mod (x, y)2)

It follows that g acts on Di,s by:

r(g)# : α 7→ aα + cβ, β 7→ bα + dβ (4.5.2)

where α and β are the coordinates from 4.3.2.

4.6 The action of inertia. Let GQ be the Galois group of Q over Q. Let Z be the integral

closure of Z in Q. We fix a surjection Z → Fp (these are permuted transitively by GQ). Then

we have a sequence of subgroups:

Ip ✁ I ✁Gp ⊂ GQ,

where Gp is the decomposition group, I the inertia (or ramification) subgroup, and Ip the

wild inertia subgroup. We can identify Gp with Gal(Qp/Qp), Gp/I with Gal(Fp/Fp), and

It := I/Ip (the tame inertia group) with Gal(Qtr
p /Q

unr
p ) and with lim

←−
F∗pn = lim

←−
µn(Fp) by

σ 7→ (σ(p1/n)p−1/n)
p 6 |n.

For σ ∈ GQ we define γ(σ) to be the automorphism id × Spec(σ) of X × Spec(Q) =

Xst ×Spec(Q(ζp,π)) Spec(Q). Note that γ is a right-action: γ(σ1σ2) = γ(σ2)◦γ(σ1). By con-

struction, the automorphisms γ(σ) extend uniquely to automorphisms γ(σ) of Xst ×Spec(Z[ζp,π])

Spec(Z); the diagrams:

Xst ×Spec(Z[ζp,π]) Spec(Z)
γ(σ)
−→ Xst ×Spec(Z[ζp,π]) Spec(Z)

↓ ↓

Spec(Z)
Spec(σ)
−→ Spec(Z)

are commutative. For each σ ∈ Gp we get an automorphism, still denoted γ(σ), of Xst
p ,

compatible with the automorphism Spec(σ) of Spec(Fp). Finally, for σ ∈ I we get an Fp-

automorphism γ(σ) of Xst
p . This right-action of I on Xst

p is what we call the action of inertia.

Since Xst lives over Z[ζp, π] which is of degree p2−1 over Z and totally ramified at p, the

inertia action of I factors through an antihomomorphism γ̄:F∗p2 → AutFp
(Xst

p ). The composition

of I → F∗p2 and the norm F∗p2 → Fp
∗ is the character giving the action of I on the pth roots of

unity. It follows that the action of u ∈ F∗p2 on the left hand side of 4.2.1 is given by sending

(E/S
f
→ Spec(Z[ζp]), φ, α)i to (E/S

f ′

→ Spec(Z[ζp]), φ, α)iu−p−1, where f ′ = Spec(up+1)◦f . We

conclude that u ∈ F∗p2 induces isomorphisms:

γ̄(u) :





Igi,P −̃→ Igiu−p−1,P

Di,s −̃→ Diu−p−1,s

(4.6.1)
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The stabilizers in F∗p2 of the Igi,P and the Di,s are all equal to µp+1(Fp2). Since the Igi,P already

live in X⊗̃Z[ζp] the γ̄(u) with u ∈ µp+1(Fp2) act trivially on them. The action of the γ̄(u)

with u ∈ µp+1(Fp2) on the Di,s can be read off from equations 4.3.2 and 4.3.3 (just note that

γ(u)#π = uπ mod π2). One finds that for u ∈ µp+1(Fp2) the automorphism γ̄(u) of Di,s is given

in the coordinates from 4.3.2 by:

γ̄(u)#:α 7→ u−1α, β 7→ u−1β. (4.6.2)

4.7 Proposition. The actions of G and F∗p2 from §4.5 and §4.6 on Xst
p commute. The stabilizer

of Igi,P in F∗p2 ×G is {(u, g) | up+1 = det(g), g−1P = P}; it acts on Igi,P by 〈up+1χP (g−1)〉p (cf.

4.5.1). The stabilizer of Di,s is {(u, g) | up+1 = det(g)}; (u, (a
c

b
d
)) in it acts by α 7→ u−1(aα+cβ),

β 7→ u−1(bα + dβ) in the coordinates of 4.3.2.

Proof. The two actions commute by construction. The remaining statements follow from

computations as in §4.5 and §4.6. ✷

4.8 Proposition. Let f and χ be as in Prop. 3.5.3. Let K ⊂ Q be the field generated by the

eigenvalues of f for the T ∗n (n ≥ 1); then χ has values in K. Let λ 6 |p be a finite place of K;

let ρλ:GQ → GL2(Kλ) be associated to f as in §2.5. Then ρλ|Ip
(notation as in §4.6) is trivial

and:

1. if χ = π(α, α−1) with α 6= α−1:Fp
∗ → K

∗
then (ρλ|I) ⊗Kλ

∼= α⊕ α−1,

2. if χ = π−(α) with α:Fp
∗ → K∗ of order 2 then ρλ|I is an extension of α by α,

3. if χ = π(Λ) with Λp = Λ−1 6= Λ:F∗p2 → K
∗

then (ρλ|I) ⊗Kλ
∼= Λ ⊕ Λ−1.

Proof. Since f is defined over K (use a q-expansion) the G-representation V that it generates

is defined over K hence its character χ has values in K. Let χλ := χ⊗K Kλ.

Let Xo denote the complement of the cusps in X and j:Xo →֒ X denote the inclusion. As in

§2.5 one shows that theKλ-representation ρ∨λ⊗χλ ofGQ×G occurs in H1
par(X

o
Q
,Fk

l )⊗Ql
Kλ; after

replacing N by some multiple we can assume that N > 4. The cokernel of the inclusion j!F
k
l →֒

j∗F
k
l is supported on the cusps hence the map H1

c(X
o
Q
,Fk

l ) → H1(XQ, j∗F
k
l ) is surjective.

The Leray spectral sequence for j∗ shows that H1(XQ, j∗F
k
l ) → H1(Xo

Q
,Fk

l ) is injective. It

follows that H1
par(X

o
Q
,Fk

l ) is equal to H1(XQ, j∗F
k
l ). The exact sequence of vanishing cycles

(see [17], VII, Exp. XIII, Thm. 3.4(ii)) reads:

0 → H1(Xst
p , j∗F

k
l ) → H1(Xst

Qp
, j∗F

k
l ) →

⊕

x

Fk
l (−1)x (4.8.1)

where x ranges over the double points of Xst
p . If π denotes the normalization map of Xst

p then

from the short exact sequence 0 → j∗F
k
l → π∗π

∗j∗F
k
l →

⊕
x F

k
l,x → 0 (depending on the choice

of an orientation of the graph associated to Xst
p ) we get an exact sequence:

⊕

x

Fk
l,x −→ H1(Xst

p , j∗F
k
l ) −→

⊕

i,P

H1(Igi,P , j∗F
k
l ) ⊕

⊕

i,s

H1(Di,s,F
k
l,s) −→ 0 (4.8.2)

The exact sequences 4.8.1 and 4.8.2 are compatible with the actions of Gp × G; the inertia

group I ✁Gp acts via its tame quotient It = lim
←−

F∗pn . The following lemma describes the terms

of 4.8.1 and 4.8.2 as It ×G-modules.
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4.8.3 Lemma. (i). ⊕xQl
∼= ⊕s ⊕α α

−1 ⊗ (π−(α) ⊕ α◦ det), where s ranges over the super

singular points in M(Γ1(N))Fp
and α over all characters Fp

∗ → Q
∗

l .

(ii). ⊕i,P H1(Igi,P , j∗F
k
l ) ⊗ Ql is a direct sum of copies of α−1 ⊗ π(α, β), α−1 ⊗ π−(α) and

α−1 ⊗ α◦ det.

(iii). ⊕i,sH
1(Di,s,Ql)

∼= ⊕s ⊕Λ Λ−1 ⊗ π(Λ), with Λp 6= Λ:F∗p2 → Q
∗

l .

Proof. (i). Fix an s and let V := ⊕x 7→sQl. As a representation of G, V ∼= ⊕α(π−(α) ⊕

α◦ det) since V is the induced of the trivial representation of some Borel subgroup of SL2(Fp).

Note that It acts on V via Fp
∗ so that as a representation of Fp

∗ × G, V is the direct sum

over the α of βα ⊗ π−(α) and β ′α ⊗ α◦ det. Since the stabilizer subgroup of some x is the

subgroup H := {(det(b), b) | b ∈ B} of Fp
∗ × B all βα ⊗ π−(α) and β ′α ⊗ α◦ det must have

non-zero H-invariants. From the formulas ResG
Bπ
−(α) = ResT

B(α, α) ⊕ (irr. of dim. p−1) and

ResG
B(α◦ det) = ResT

B(α, α) it follows that βα = β ′α = α−1.

(ii). Let V := ⊕i,PH1(Igi,P , j∗F
k
l ). Note that the action of It on V factors through Fp

∗.

As a representation of G, V is a direct sum of non-cuspidal representations since it is the

induction from B to G of ⊕iH
1(Igi,(1:0), j∗F

k
l ) and B acts on

∐
i Igi,(1:0) through T . Suppose

that W ∼= γ⊗π(α, β) is a subrepresentation of V ⊗Ql. Let H be the subgroup {(u, (u
0

a
1
)) | u ∈

Fp
∗, a ∈ Fp} of Fp

∗ ×G. Then we must have WH 6= 0 since H acts trivially on the Igi,(1:0). One

computes that ResG
HW is the direct sum of the characters γα and γβ of Fp

∗ and an irreducible

representation of dimension p−1. It follows that γ = α−1 and γ = β−1. The cases π−(α) and

α◦ det are treated in the same way.

(iii). Fix an s. Let V := ⊕iH
1(Di,s,Ql). Note that It acts on V via F∗p2. Using the Lefschetz

trace formula one computes that, as a F∗p2-representation, V ∼= ⊕Λ 6=Λp(p− 1)Λ. Let VΛ denote

the Λ-eigenspace of V . The trace of an element g in G on VΛ is equal to the trace of gPrΛ

on V , where PrΛ = (p2 − 1)−1∑
u Λ(u−1)u. Using the Lefschetz trace formula one finds that

VΛ
∼= π(Λ−1) as G-module. ✷

Note that det ◦ρλ|I is trivial. Prop. 4.8 now follows from the exact sequences 4.8.1 and 4.8.2

and Lemma 4.8.3. ✷
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5 A stable model for M(Γ0(p
2),Γ1(N))a at p.

5.1 Construction of a stable model. We keep the notation from §4: X = M(Γ(p),Γ1(N))

and Xst is the model of X over Z[ζp, π] which is stable at p, with πp+1 = 1−ζp, as constructed

in §4.2; in particular, the fibre Xst
p of Xst over Fp is reduced, its irreducible components are

smooth and intersect each other transversally. The right-action of the group G = GL2(Fp) on X

induces a right-action of G on Xst. Let X0 := M(Γ0(p
2),Γ1(N)). The morphism XQ → X0,Q

described in §3.2 comes from a morphism X → X0, which identifies X0 as the quotient of X by

the diagonal subgroup T of G (away from the cusps this is [19] 11.3.5, then use that both X

and X0 are regular). We define Xst
0 := Xst/T ; from general results about quotients (see §5.3)

it follows that Xst
0 is a model of X0 which is stable at p. Note that the order of T is prime to

p, hence the fibre Xst
0,p of Xst

0 over Fp is equal to Xst
p /T .

Another way to construct Xst
0 is to apply the construction of §4.1 to the blow up of

M(Γ0(p
2),Γ1(N)) in its supersingular points in characteristic p. Such a construction is given

in [13].

5.2 Description of the stable model. From now on we assume that p > 2. Let us first

compute the images of the irreducible components of Igusa type of Xst
p in Xst

0,p. In §4.5 we

have seen how the elements of T act on the disjoint union of the Igi,P , where i ∈ Fp
∗ and

P ∈ P1(Fp). The action of T on Fp
∗ × P1(Fp) has four orbits; representatives for them are:

(1, (1 : 0)), (1, (0 : 1)), (1, (1 : 1)), and (1, (1 : d)) where d is some non-square in Fp. The

stabilizers of these representatives are T ∩ SL2(Fp), T ∩ SL2(Fp), {±1} and {±1} respectively.

It follows that the image in Xst
0,p of the disjoint union of the Igi,P consists of exactly four

irreducible components: Ig(2,0) := Ig1,(1:0)/T ∩ SL2(Fp), Ig(0,2) := Ig1,(0:1)/T ∩ SL2(Fp), Ig+ :=

Ig1,(1:1)/{±1}, and Ig− := Ig1,(1:d)/{±1}; we call them the components of Igusa type of Xst
0,p. We

have isomorphisms: Ig(2,0)
∼= Ig(0,2)

∼= M(Γ1(N))Fp
and Ig+

∼= Ig−
∼= M(Ig(p)/{±1},Γ1(N))Fp

,

where M(Ig(p)) is the Fp-stack that classifies pairs (E/S, P ) with P ∈ E(p)(S) a generator

of ker(V :E(p) → E) (see [19], §12.3.1). Under the morphism Xst
0,p → M(Γ0(p

2),Γ1(N))Fp
the

irreducible components Ig(2,0), Ig(0,2), Ig+ and Ig− are mapped to the irreducible components

called of type (2, 0), (0, 2), (1, 1) and (1, 1) in [19] §13.5.6. As stacks over M(Γ1(N))Fp
we

have isomorphisms Ig(2,0)
∼= M(Γ1(N))Fp

, Ig+
∼= Ig−

∼= M(Ig(p)/{±1},Γ1(N))Fp
and Ig(2,0)

∼=

M(Γ1(N))
(p2)

Fp
, where M(Γ1(N))

(p2)

Fp
denotes the pullback of M(Γ1(N))Fp

via the square of the

Fp-linear Frobenius on MFp
.

The stabilizer in T of an irreducible component Di,s of Drinfeld type is T ∩ SL2(Fp). It

follows that the image in Xst
0,p of the disjoint union of the Di,s consists of irreducible components

Ds := D1,s/T ∩ SL2(Fp), labeled by the super singular s in M(Γ1(N))(Fp); we call them the

components of Drinfeld type of Xst
0,p. By construction, the Ds are smooth irreducible curves

over Fp; they are all isomorphic and one can easily verify that their genus is p−1. An element

( t
0

0
t−1 ) acts on the coordinates of Di,s in 4.3.2 by: α 7→ tα, β 7→ t−1β. It follows that v1 := αβ

and u1 := αp−1 are coordinates of an affine open of Ds; equation 4.3.2 gives: u2
1v1+au1−v

p
1 = 0.
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Figure 1: A picture of Xst
0,p → M(Γ1(N))Fp

.

q

q

q

q

q

q

s∞

Ig2,0 Ig0,2Ig+ Ig−

Ds

Ds′

Ds′′

✲

s

s

s

s

s′

s′′

M(Γ1(N))Fp

In other words, Ds is the smooth complete model of the hyperelliptic curve given by:

u2
2 = vp+1

1 + 1
4
a2 (5.2.1)

where u2 = u1v1 + 1
2
a.

The double points of Xst
0,p can be described as follows: the components of Igusa type are

all disjoint and the Ds are all disjoint; each Ds meets all four components of Igusa type at

the unique supersingular point lying over s under the morphism to M(Γ1(N))Fp
. Figure 1

gives a picture of the situation. We will use the following notation for the double points in

Xst
0,p(Fp): x(2,0),s := Ig(2,0) ∩Ds, x(0,2),s := Ig(0,2) ∩ Ds, x+,s := Ig+ ∩Ds and x−,s := Ig− ∩ Ds.

The complete local rings of Xst
0 at the double points can be easily computed using either 4.1.2

and 4.1.3 or Prop. 5.3.3. The complete local rings at x(2,0),s and x(0,2),s are isomorphic to

W [π][[x, y]]/(xy − πp−1) where W denotes the ring of Witt vectors of Fp. The complete local

rings at x+,s and x−,s are isomorphic to W [π][[x, y]]/(xy − π2).

As in §4.6 let I be an inertia subgroup of GQ and let γ̄:F∗p2 → AutFp
(Xst

0,p) be the antiho-

momorphism giving the inertia action. The inertia action preserves the irreducible components

Ds, Ig(2,0) and Ig(0,2); it interchanges Ig+ and Ig−. Let u ∈ F∗p2. Then γ̄(u) is the identity on

Ig(2,0) and on Ig(0,2); on Ds it is the automorphism given by:

γ̄(u)#: u2 7→ u2, v1 7→ up−1v1 (5.2.2)

where u2 and v1 are the coordinates of 5.2.1. If u ∈ F∗p2 is a square then it induces the

automorphism 〈u(p+1)/2〉p on Ig+ and on Ig−. It will be useful to have a list giving the inertia

action on the cotangent spaces of irreducible components of Xst
0,p at the double points.

5.2.3 Table. Inertia action on cotangent spaces at double points.

The bottom row in this table gives the action of γ̄(u)∗ on the cotangent space given in the top
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row for u ∈ F∗p2 fixing the corresponding double point (for x(2,0),s and x(0,2),s this is no condition

on u; for x±,s it means that u is a square).

x∗(2,0),sΩ
1
Ig(2,0)/Fp

x∗(2,0),sΩ
1
Ds/Fp

x∗±,sΩ
1
Ig±/Fp

x∗±,sΩ
1
Ds/Fp

x∗(0,2),sΩ
1
Ig(0,2)/Fp

x∗(0,2),sΩ
1
Ds/Fp

u0 up−1 up+1 u1−p u0 up−1

5.3 Some generalities on quotients of stable curves. The following is based on [19],

pp. 508–510. There it is proved that the quotient of a smooth curve over a noetherian regular

scheme by a finite group acting trivially on the base is again a smooth curve. We do the same

kind of computations for stable curves over discrete valuation rings.

5.3.1 Lemma. Let V be a complete discrete valuation ring with uniformizer π. Let A :=

V [[x, y]]/(xy−πe) and let G be a finite subgroup of AutV (A) that does not interchange the two

branches modulo π. Let AG be the subring of G-invariants in A. Let B := V [[u, v]]/(uv−πeg),

where g := #G. Define B →֒ A by u 7→ N(x), v 7→ N(y), where N :A → AG is the map

a→
∏

σ∈G σ(a). Then the image of B in A is AG.

Proof. Clearly we have that B ⊂ AG. It is a well known fact that both A and B are normal.

Therefore it suffices to show that A is finitely generated as a B-module (then the same holds

for AG) and that the field of fractions Frac(B) of B is equal to Frac(AG).

We will show that 1, x, y,. . . ,xg−1, yg−1 generate A as B-module. For each σ ∈ G we have

σ(x) = xtσ and σ(y) = yt−1
σ with tσ ∈ A∗. Hence N(x) = xgt and N(y) = ygt−1 for some

t ∈ A∗. Now let a ∈ A. Using the relation xy = πe we can write a =
∑
aix

i +
∑
biy

i with ai

and bi in V . It follows that we can write a =
∑g−1

i=0 aix
i +

∑g−1
i=0 biy

i + ua′ + va′′ with a′ and a′′

in A. Iteration of this process shows that a is a linear combination over B of the xi and yi with

0 ≤ i < g.

Let B′ be the local ring of Spec(B) at the generic point of branch given by u = 0 and let A′

be the local ring of Spec(A) at the generic point of x = 0. Then B′ ⊂ A′ is a finite extension of

discrete valuation rings, both with uniformizer π. Hence the degree of the extension of fraction

fields is the degree of the extension of residue fields. Let k := V/πV . The extension of the

residue fields can be written as k((v)) ⊂ k((y)) and 1, y,. . . ,yg−1 is a basis of k((y)) over k((v))

because v = ygt−1. It follows that Frac(AG) = Frac(B) since Frac(A) has dimension g over

both of them. ✷

5.3.2 Lemma. Let V and A be as in Lemma 5.3.1 and let G be a finite subgroup of AutV (A)

that interchanges the two branches mod π. Let H be the subgroup of G that stabilizes the two

branches. Then AG is regular and as parameters one can take π and NH(x) + σNH(y) where

σ 6∈ H and NH :A→ AH is the map a 7→
∏

σ∈H σ(a).

Proof. Let us first take the quotient by H and let h := #H . By Lemma 5.3.1 we are reduced

to the situation where Z/2Z acts on V [[x, y]]/(xy − πeh). Now we have σ(x) = yu with u a

unit. We replace the coordinate y by σ(x). Then the situation is: A = V [[x, y]]/(xy − πehu)
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and σ(x) = y. Any a ∈ A can be written uniquely as a = a0 +
∑

i>0 aix
i +

∑
i>0 biy

i with

a0, ai and bi in V . We see that a = σ(a) if and only if ai = bi for all i. In other words, we

have Aσ = {a0 +
∑

i>0 ai(x
i + yi)}. All the xi + yi can be expressed (with coefficients in Z) in

t := x+ y and xy = πehu. Iteration shows that Aσ = V [[t]]. ✷

5.3.3 Proposition. Let V be a discrete valuation ring with uniformizer π and residue field k.

Let X → Spec(V ) a stable curve whose generic fibre is smooth. Let G be a finite subgroup of

AutV (X). Then we have:

(i) The special fibre of G\X is reduced and its singularities are ordinary double points. In

other words: G\X is a semi-stable curve over V .

(ii) The image in (G\X)k of a smooth point P of Xk is smooth and if π and x are parameters

at P then π and NStab(x) are parameters at the image of P .

(iii) Let P ∈ Xk(k) be singular, say with complete local ring isomorphic over V to the

ring V [[xP , yP ]]/(xPyP = πeP ). Let Q be the image of P in (G\X)k(k). Then Q is singular if

and only if StabP fixes the two branches at P . If Q is singular then the complete local ring

of Q is isomorphic to V [[xQ, yQ]]/(xQyQ − πeQ) with eQ = eP · #StabP , xQ = NStabP (xP ) and

yQ = NStabP (yP ). If Q is smooth then π and NH(xP ) + σNH(xP ) are parameters at Q, where

H ⊂ StabP is the subgroup stabilizing the two branches at P and σ ∈ StabP , σ 6∈ H .

(iv) Let Y be an irreducible component of Xk and Z the image of Y in (G\X)k. Let

H := StabY and K := ker(H → Autk(Y )). Then the restriction to Y of the quotient morphism

X → G\X factorizes as Y → (H/K)\Y → Z, where the first morphism is separable and the

second is purely inseparable of degree #K.

Proof.
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6 Divisors and leading terms of new forms.

6.1 Definitions. Let f be a normalized new form of weight k ≥ 2 on M(Γ0(p
2),Γ1(N))Q as in

§3.2. We fix an embedding Q → Qp. Let Xst
0 denote the model of M(Γ0(p

2),Γ1(N)) over Z[π]

as constructed in §5.1; recall that πp+1 = 1−ζp. We fix an embedding Z[π] → Zp. Then we can

view f as a rational section of the invertible sheaf ω⊗k on Xst
0,Zp

. As such, f has a divisor. This

is not completely “standard” since Zp is not noetherian, so we must explain what we mean.

Let vp:Q
∗

p → Q denote the normalized valuation. Then vp extends uniquely to the local rings

of Xst
0,Zp

at the generic points of the irreducible components of the fibre Xst
0,p over Fp. We can

now define:

div(f) = H + a(2,0)Ig(2,0) + a(0,2)Ig(0,2) + a+Ig+ + a−Ig− +
∑

s

asDs (6.1.1)

with H an effective “horizontal” divisor (as in the theory of arithmetic surfaces, i.e., it is the

closure of the scheme of zeros of f over Qp), and with the a∗ ∈ Q the valuations of f at the

corresponding generic points. If f has valuation a∗ along an irreducible component C of Xst
0,p

then (p−a∗f)|C is a rational section of ω⊗k|C , called the leading term of f along C. The numbers

a(2,0), a(0,2), a+ and a− can be read off from the q-expansions of f . More precisely, we have

formal charts at infinity:

1: (Tate(q), µp2, 1 7→ζN) over Zp[π, ζN ][[q]]

2: (Tate(ζ i
pq), 〈q

1/p〉, 1 7→ζN) over Zp[π, ζN ][[q]] (i ∈ Fp
∗)

3: (Tate(q), 〈q1/p2
〉, 1 7→ζN) over Zp[π, ζN ][[q1/p2

]]

(6.1.2)

The closed fibre of chart 1 is a chart for Ig(2,0); chart 3 gives a chart for Ig(0,2) and one can check

that chart 2 gives a chart for Ig+ (resp. Ig−) if −i is (resp. is not) a square in Fp. Prop. 3.5.3

can now be interpreted as follows.

6.2 Proposition. Let f be as in §6.1, χ as in §3.2 and an, a′n and a′′n as in 3.3.6.

1. a(2,0) = vp(
∑
anq

n) = 0.

2. a(0,2) = vp(
∑
a′′nq

n) = −k.

3. if χ = π(τm, τ−m) with 0 < m < (p−1)/2 then a+ = a− = vp(
∑
a′nq

n) = −m/(p−1),

4. if χ = π(τ
(p−1)m
2 ) with 0 < m < (p+1)/2 then a+ = a− = vp(

∑
a′nq

n) = (1−m)/(p−1),

5. if χ = π−(τ (p−1)/2) then a+ = a− = vp(
∑
a′nq

n) = −1/2. ✷

Let a := a+ = a−; then we have −1
2
≤ a ≤ 0. Let b := mins as. Our main interest in this

section will be to get more information on b and to determine the leading terms of f along the

components of Xst
0,p of Igusa type.

6.3 Lemma. Let V be a complete discrete valuation ring. Let n ≥ 1, t 6= 0 in the maximal

ideal of V and let X := Spec(V [[x, y]]/(xy − t)). Suppose that f ∈ OX(X), considered as a

function on the subscheme defined by the ideal (y, π), has a zero of order k at x = 0. Then the

valuation of f at the generic point of the subscheme defined by (x, π) is at most k times the

valuation of t.
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Proof. Let π ∈ V be a uniformizer and let f̃ =
∑

i,j≥0 ai,jx
iyj ∈ V [[x, y]] be a lift of f .

Using the relation xy = t we can write f̃ = a0 +
∑

i>0 aix
i +

∑
i>0 biy

i. Modulo (y, π) we have:

f̃ = a0 +
∑

i>0 aix
i. Hence ai = 0 for i < k and ak 6= 0. On the open subscheme D(y) of

X where y is invertible the subscheme defined by (x, π) is defined by the equation π = 0. It

follows that the valuation we are after is equal to the valuation of a0 +
∑

i>0 ait
iy−i +

∑
i>0 biy

i

in OX(D(y)) = V [[y, ty−1]][y−1]. The valuation of the coefficient of y−k is k times the valuation

of t. ✷

6.4 Proposition. We have:

b ≤ a + ⌊
k − 1

2
⌋

2

p2 − 1

where for any real number x, ⌊x⌋ is the largest integer less than or equal to x.

Proof. We may suppose that b > a. Then div(p−af) = H−aIg(2,0)−(a+k)Ig(0,2)+
∑

s(as−a)Ds.

Since Xst
0,Zp

is normal, p−af is a section of ω⊗k(−cusps) in an open neighborhood of Ig+. Recall

that in [19] §12.8 a construction is given of a global section A1/(p−1) of ω on M(Ig(p)) which has a

first order zero at every supersingular point, and no other zeros. Because Ig+ is isomorphic over

M(Γ1(N))Fp
to M(Ig(p)/{±1},Γ1(N)), it follows that there is at least one s where (p−af)|Ig+

has a zero of order at most ⌊k−1
2
⌋. The complete local ring of Xst

0 ,Z[π] at x+,s is isomorphic to

W [π][[x, y]]/(xy − π2) (see §5.2). We can apply Lemma 6.3 with V a finite extension of W [π]

over which f is defined. ✷

In the same way one can easily show that b > −k. However, we need a better lower bound for

b. To get such a bound we will use the Kodaira-Spencer morphism.

6.5 The Kodaira-Spencer morphism. Recall ([19], §10.13.10, and [15], III, §9) that for

any morphisms of schemes f :X → S and g:S → T , with f proper and smooth, one has the

Kodaira-Spencer class:

KS ∈ Γ
(
S, (R1f∗TX/S) ⊗OS

Ω1
S/T

)
(6.5.1)

inducing a morphism of OS-modules:

KS:
(
R1f∗TX/S

)∨
−→ Ω1

S/T (6.5.2)

where TX/S = HomOX
(Ω1

X/S ,OX) and (−)∨ denotes the OS-dual. For f ′:X ′ → S ′ obtained

from f by a base change S ′ → S over T , there is an obvious compatibility between the elements

in 6.5.1 for f and f ′. If R1f∗TX/S is locally free, then it is of course equivalent to give 6.5.1 or

6.5.2.

For E → S an elliptic curve we will interpret 6.5.2, via Serre duality, as a morphism

KS:ω⊗2
E/S → Ω1

S/T . It is known ([19], Thm. 10.13.11) that for the universal elliptic curve E/M

the Kodaira-Spencer morphism is an isomorphism with a first order pole at infinity:

KS:ω⊗2 −̃→ Ω1
M/Z

(cusps) (6.5.3)
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Equivalently, viewing KS as a section of the line bundle ω⊗−2 ⊗OM
Ω1
M/Z, we can say that the

divisor of KS on M is “−cusps”. We want to study the divisor of KS for Xst
0,Zp

→ Spec(Zp),

but since Ω1
Xst

0 /Zp
is not a line bundle, we will consider the composition:

KS:ω⊗2 −→ Ω1
Xst

0 /Zp
→֒ ωXst

0 /Zp
(6.5.4)

where ωXst
0 /Zp

is the dualizing sheaf ([11], I, §2.3). As in §6.1 multiplicities of components of

Xst
0,p are measured with the normalized p-adic valuation.

6.5.5 Proposition. 1. The divisor of the Kodaira-Spencer morphism in 6.5.4 is:

−cusps + 2Ig(0,2) +
1

p+ 1

∑

s

Ds

2. On Xst
Zp

: div(KS:ω⊗2 → ωXst/Zp
) = −cusps +

∑
i,P Igi,P + p

p+1

∑
i,sDi,s.

Proof. We will only prove (1); the proof of (2) is analogous. The multiplicities of the cusps

and the components of Igusa type can be seen in the formal charts 6.1.2 at infinity. One

knows ([19], Thm. 10.13.11) that KS for Tate(q)/Z[[q]]/Z maps (dt/t)⊗2 to dq/q. In all three

charts, (dt/t)⊗2 is a local generator of ω⊗2; local generators for ωXst
0 /Zp

are dq/q, dq/q and

d(q1/p2
)/q1/p2

= p−2dq/q. It remains to compute the multiplicities of the Ds. To do this we use

the computations of [13], §2.2.4 alluded to at the end of §5.1.

As explained in [19], Thm. 13.4.7, the complete local ring of M(Γ0(p
2),Γ1(N)) at a su-

persingular point s ∈ M(Γ1(N))(Fp) is isomorphic to W [[x, y]]/(f0 + pf1), with f0 = (xp2
−

y)(x− y)p−1(x − yp2
) and f1 a unit. Moreover, the coordinates x and y are the “local moduli

of source and target”. Let f be a local generator of ω⊗2 at s. Then, since M(Γ1(N)) → M is

etale at s, KS(f) = unit · dx. In [13], §2.2.4 it is shown that u and v, defined by y = vx and

x = uπp−1, induce non-zero rational functions on Ds and that du induces a non-zero rational

differential form on Ds. It follows that the valuation of dx along Ds is the valuation of πp−1,

i.e., 1/(p+ 1). ✷

6.6 Proposition. Let f be as in §6.1 and a and b as in Prop. 6.4. Then we have:

a−
k

p+ 1
≤ b

Proof. Let us first suppose that k is even. Then ω(f) := KS⊗k/2(f) is a section of ω
⊗k/2

Xst
0 /Zp

with divisor:

div(ω(f)) = H −
k

2
cusps + a(Ig+ + Ig−) +

∑

s

a′sDs (6.6.1)

with a′s = as + k
2(p+1)

. We have to prove that for all s: a − a′s ≤ k
2(p+1)

. Assume that for

some s we have a − a′s >
k

2(p+1)
. Then p−a′

sω(f)|Ds
is a global section of ω

⊗k/2

Xst
0 /Zp

|Ds
; according

to Lemma 6.3 is has zeros of order at least k/2 at x(2,0),s and x(0,2),s. On the other hand,

degDs
(ωXst

0 /Zp
) = p+1. One concludes that at x+,s or x−,s, p

−a′
sω(f)|Ds

has a zero of order at

most k(p−1)/4. Lemma 6.3 now gives a−a′s ≤ k/(2(p+1)). This finishes the proof for k even.

31



Let us now deal with the odd k. In that case we can simply repeat the proof for k even but

now applied to f⊗2; the fact that f⊗2 is not an eigenform does not matter at all. ✷

6.7 q-expansions of leading terms. Let f , a and b be as in Prop. 6.6. We are interested

in the q-expansions of the leading terms of f along the components of Xst
0,p that are of Igusa

type. More precisely, we want to evaluate f on the formal charts 6.1.2 and take the leading

terms (in the p-adic sense as in §6.1) of the power series obtained in that way. We have already

computed those power series in §3.3 and §3.4; their p-adic valuations are given in Prop. 3.5.3.

It seems convenient to formulate the result one gets not on the Ig∗ but on M(Γ1(N))Fp
and on

M(Ig(p),Γ1(N))Fp
. Recall from §5.2 that we have isomorphisms:

φ(2,0):M(Γ1(N))Fp
−̃→ Ig(2,0), φ(0,2):M(Γ1(N))Fp

−̃→ Ig(0,2) (6.7.1)

and two morphisms:

φ±:M(Ig(p),Γ1(N))Fp
−→ Ig± (6.7.2)

that are the quotient for the action of {1,−1} on Ig(p). Note that φ(0,2) is “exotic” ([19], §11) in

the sense that it is not compatible with the maps to M; the other three are not exotic. Via these

morphisms we can interpret the leading terms (p−a∗f)|Ig∗ as modular forms on M(Γ1(N))Fp
or

on M(Ig(p),Γ1(N))Fp
with poles (possibly) in the super singular points. Using the description

of the inertia action on Ig± given in §5.2 one finds that φ∗±(p
−af |Ig±) has eigenvalue x−2(p−1)a for

〈x〉∗p, x ∈ Fp
∗. Let (again) A1/(p−1) ∈ M(Ig(p), ω) denote the (p−1)th root of the Hasse invariant

A as constructed in [19], §12.8; then A1/(p−1) has non-zero constant q-expansion at all cusps

and 〈x〉∗pA
1/(p−1) = xA1/(p−1) for all x in Fp

∗. It follows that f ′± := (A1/(p−1))2(p−1)aφ∗±(p−af |Ig±)

is a modular form on M(Γ1(N))Fp
, possibly with poles in the supersingular points, of weight

k+2(p−1)a, with character ε, whose q-expansion at (Tate(q), 1 7→ζN) is up to a constant factor

and some (dt/t)’s equal to that of φ∗±(p−af |Ig±) at (Tate(q), q, 1 7→ζN). Using the results of §3

it is now straightforward (but somewhat long) to prove the following proposition.

6.7.3 Proposition. The four forms φ∗(2,0)(f |Ig(2,0)
), φ∗(0,2)(p

kf |Ig(0,2)
) and f ′± are eigenforms for

all T ∗l (including l=p) with character ε and weights k, p2k and k + 2(p−1)a respectively. The

first two have eigenvalues al, where al is the image of al as in 3.3.5 under Zp → Fp. The

eigenvalues of f ′± depend on the character χ associated to f as in §3.2. For χ = π(τm, τ−m)

with 0 < m < (p−1)/2 one has T ∗l f
′
± = l−malf

′
± (l 6= p) and T ∗p f

′
± = λ′pf

′
± (λ′p as in 3.4.4). For

χ = π(τ
(p−1)m
2 ), with 0 < m < (p+1)/2, one has T ∗l f

′
± = l1−malf

′
± (l 6= p) and T ∗p f

′
± = 0. For

χ = π−(τ (p−1)/2) one has T ∗l f
′
± = l(p−1)/2alf

′
± (l 6= p) and T ∗p f

′
± = bpf

′
± (bp as in Prop. 3.4.13). ✷

6.8 Forms of weight 2 defined over unramified extensions. From now on we suppose

that f is a normalized new form on M(Γ0(p
2),Γ1(N))Q of weight 2, character ε and that f is

defined over an unramified subextension of Qp → Qp (recall that we have a fixed Q → Qp).

In this case we have a(2,0)∈Z, a(0,2)∈Z, a∈(p−1)−1Z and as∈(p+1)−1Z for all s (cf. 6.1.1). Let

ω(f) := KS(f) ∈ H0(Xst
0,Zp

, ωXst
0 /Zp

)⊗Q (note that since f is a cusp form, KS(f) has no pole at
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∞); then div(ω(f)) is given in 6.6.1. Let b′ be the minimum of the a′s, hence b′ = b+ 1/(p+1).

According to Prop.’s 6.4 and 6.6 we have:

a−
1

p+ 1
≤ b′ ≤ a +

1

p+ 1
(6.8.1)

Recall that we already know a in terms of χ (cf. Prop. 6.2), hence in terms of the ρλ|I with

λ 6 |p (cf. Prop. 4.8). Now we want to find the exact value of b′ in terms of the representation

ρ associated to f . By definition, ρ:GQ → GL2(Fp) is the unique (up to isomorphism) semi-

simple continuous representation unramified outside pN such that trace(ρ(Frobl)) = al and

det(ρ(Frobl)) = ε(l)lk−1 for all l 6 |pN .

Recall that the filtration w(g) of a non-zero mod p modular form g ∈ H0(M(Γ1(N))Fp
, ω⊗k)

of weight k is defined to be the smallest integer k′ for which there exists a form g′ ∈ H0(M(Γ1(N))Fp
, ω⊗k′

)

which, at some cusp, has q-expansion equal to that of g (see for example [14], §3 and references

given there). Equivalently, (p−1)−1(k−w(g)) is the minimum of the orders of the zeros of g at

the super singular points. We extend this definition to forms g that are allowed to have poles

at the super singular points (the form g′ is of course not allowed to have poles).

6.8.2 Proposition. Under the assumptions made at the beginning of §6.8 we have:

1. w(φ∗(2,0)(f |Ig(2,0)
)) = 2 − (p2−1)b

2. w(f ′±) = 2 + (p2−1)(a−b) = p+1 + (p2−1)(a−b′) ≤ 2p

3. there exist super singular s∈M(Γ1(N))Fp
with as = b and x(2,0),s, x(0,2),s, x+,s and x−,s

not in the support of H .

Proof. Let us write a = −α/(p−1); then 0 ≤ α ≤ (p−1)/2. Recall that b∈(p+1)−1Z and

that b′ = b + 1/(p+1). According to 6.8.1 there are at most three possible values for b′.

Let us first deal with the case 0 < α < (p−1)/2. Then there are exactly two possibilities:

b′ = −(α+1)/(p+1) and b′ = −α/(p+1); they are equivalent to b′ < a and b′ > a, respectively.

If b′ < a and as = b then p−b′ω(f)|Ds
is a non-zero global section of ωXst

0 /Zp
|Ds

on which inertia

acts via I → Fp2
∗ followed by Fp2

∗ → Fp
∗
: u 7→ u(p−1)(α+1) (see §4.6 for conventions about

inertia). The degree of ωXst
0 /Zp

|Ds
is p+1. From Table 5.2.3 it follows that p−b′ω(f)|Ds

has zeros

at x(2,0),s and x(0,2),s of order α+1 and zeros at x+,s and x−,s of order (p−1)/2 − α.

The complete local ring at x+,s of Xst
0 is isomorphic to W [π][[x, y]]/(xy−π2) (see §5.2). It

follows from the construction as in §4.1 of Xst
0 that the section p−b′ω(f) over this ring is already

defined over W [π2], i.e., to study its divisor we may view p−b′ω(f) as an element of the regular

local ring W [π2][[x, y]]/(xy− π2). Since the p-adic valuation of p−b′ω(f) along Ig+ equals a−b′

and vp(π
2) = (p2−1)/2 we have:

(H ·Ds)x+,s
+
p2 − 1

2
(a− b′) =

p− 1

2
− α

where (H · Ds)x+,s
denotes the local intersection number. It follows that (H · Ds)x+,s

= 0.

Likewise: (H ·Ds)x−,s
= 0. This shows that x+,s and x−,s are not in the support of H . Using

this information one can verify that w(f ′±) = 2 + (p2−1)(a−b).
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To prove that x(2,0),s is not in the support of H we do a similar computation. Now we

view p−b′ω(f) as an element of W [πp−1][[x, y]]/(xy−πp−1). The fact that −b′/vp(π
(p−1)) is

the order of vanishing of p−b′ω(f)|Ds
at x(2,0),s gives the result. One can now verify that

w(φ∗(2,0)f |Ig(2,0)
) = 2 − (p2−1)b.

Suppose now that b′ > a, i.e., that b′ = −α/(p+1). Then p−aω(f)|Ig+
is a global section

of ωXst
0 /Zp

|Ig+
on which inertia acts via I → Fp2

∗ followed by Fp2
∗ → Fp

∗
: u 7→ u(p+1)α. It

follows that φ∗+(p−aω(f)|Ig+
) is a global section of Ω1(s.s.) on M(Γ1(N), Ig(p)) on which 〈x〉∗

has eigenvalue x2α for all x∈Fp
∗; therefore it has zeros of order 2α modulo p−1 at the super-

singular points. A computation shows that degM(Γ1(N),Ig(p)) Ω1(s.s.) = (p+1) degM(Γ1(N))(s.s.)−

(p−1) degM(Γ1(N))(cusps). This implies that there exist super singular s where φ∗+(p−aω(f)|Ig+
)

has a zero of order exactly 2α, or equivalently, where p−aω(f)|Ig+
has a zero of order exactly

α. Fix such a s. Since (p2−1)(b′−a)/2 = α, a computation as above shows that as = b and

that x+,s is not in the support of H . Likewise: x−,s is not in the support of H . It follows that

p−b′ω(f)|Ds
has poles of order exactly α at x±,s. The action of inertia shows that p−b′ω(f)|Ds

has zeros of order exactly α modulo p+1 at x(2,0),s and x(0,2),s. Moreover, the orders of vanishing

at x(2,0),s and x(0,2),s are equal. Since degDs
ωXst

0
= p+1 we see that p−b′ω(f)|Ds

has zeros of

order exactly α at x(2,0),s and x(0,2),s. It follows that x(2,0),s and x(0,2),s are not in the support

of H and that w(f ′±) and w(φ∗(2,0)(f |Ig(2,0)
)) are as claimed.

It remains to study the cases a = 0 and a = −1/2. Suppose first that a = 0. Then

χ = π(τ
(p−1)
2 ), hence T ∗p f = 0 by Prop. 3.3.4 and Lemma 3.5.1(4). By Prop. 6.7.3 φ∗(2,0)(f |Ig(2,0)

)

and f ′+ are eigenforms for all T ∗l (including l = p) and have the same eigenvalues, so their

q-expansions are equal up to a scalar factor. Consequently: w(f ′±) = w(f). According to 6.8.1

b′ ∈ {1/(p+1), 0,−1/(p+1)}. If b′ = 1/(p+1) then b = 0, f |Ig(2,0)
has no poles at the super

singular points and since it is a cusp form of weight two it cannot have zeros at all super singular

s hence w(f) = 2. If b′ = −1/(p+1) and as = b then p1/(p+1)ω(f)|Ds
is a non-zero global section

of ωXst
0 /Zp

|Ds
on which inertia acts by u 7→ up−1; hence it has zeros of order exactly 1 and

(p−1)/2 at x(2,0),s and x±,s, respectively; computations as above prove the required statements.

Suppose now that b′ = 0. Then ω(f)|Ig(2,0)
, ω(f)|Ig(0,2)

and ω(f)|Ig± are global sections of

Ω1(s.s.) with q-expansions equal up to scalar factors. If all residues of ω(f)|Ig(2,0)
at the super

singular points are zero then the same is true on the other components of Igusa type and the

ω(f)|Ds
are global sections of Ω1

Ds
for all s on which inertia acts trivially; but no such non-zero

differential forms exist. Hence not all residues are zero. But then g := Aφ∗(2,0)f |Ig(2,0)
is a

cusp form on M(Γ1(N))Fp
of weight p+1, w(g) = p+1 and T ∗p g = 0; by [14], Prop. 3.3 this is

impossible. It follows that b′ = 0 is impossible.

Finally, suppose that a = −1/2. According to 6.8.1 at most three values for b′ are possible.

If b′ = −1/2−1/(p+1) and as = b then p−b′ω(f)|Ds
is a non-zero global section of Ω1

Ds
on which

inertia acts by u 7→ u−(p−1)(p+3)/2. But no such differential forms exist, hence b′ = −1/2 or

b′ = −1/2+1/(p+1). In these two cases computations as above prove the required statements. ✷

6.8.3 Corollary. Let k(ρ) ∈ Z be the “Serre weight” associated to ρ as in [14], Def. 4.3.

Suppose that ρ is irreduible. If k(ρ) > p+1 then b = (2− k(ρ))/(p2−1). If k(ρ) = 2 and ρ is of
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level one (see [14], §2.4) then b = −2/(p+1). If k(ρ) = 2 and ρ is of level two then b = 0. The

case k(ρ) = p+1 does not occur.

Proof. Let us first remark that the difference between k(ρ) and Serre’s original definition in

[25], §1–2 of the “weight” of ρ is irrelevant in our situation; see [14], Rem. 4.4 and note that we

have p > 2 and k(ρ) ≡ 2(p−1). Theorem 4.5 of [14] shows that there exists a mod p cuspidal

eigenform g of weight k(ρ), level N and character ε such that φ∗(2,0)f |Ig(2,0)
and g have the same

eigenvalues for all T ∗l (l 6= p). If k(ρ) > p+1 then T ∗p g = 0 by [16], Prop. 4.12, hence φ∗(2,0)f |Ig(2,0)

and g have the same q-expansions at a fixed cusp, so k(ρ) = w(g) = w(φ∗(2,0)f |Ig(2,0)
). If k(ρ) = 2

and ρ is of level two then T ∗p g = 0 by [14], Thms. 2.5 and 2.6, hence w(φ∗(2,0)f |Ig(2,0)
) = 2, hence

b = 0. If k(ρ) = 2 and ρ is of level one then T ∗p g 6= 0 hence w(φ∗(2,0)f |Ig(2,0)
) = w(θp−1g = 2p.

(see [14], §3). If k(ρ) = p+1 then T ∗p g 6= 0 and w(φ∗(2,0)f |Ig(2,0)
) = w(θp−1g = p2+p hence

−b = 1 + 1/(p+1) which is impossible. ✷

6.8.4 Remark. 1. The representation ρ an only be reducible if ρ|I ∼ χα
p ⊕χ

β
p , where χp:GQ →

Fp
∗ is the p-cyclotomic character and (α, β) equals (0, 1) or ((p−1)/2, (p+1)/2).

2. We have already seen in Prop. 4.8 that a is determined by ρλ|I . Cor. 6.8.3 shows that

b is determined by ρ|I , at least if ρ is irreducible. Eqn. 6.8.1 gives a strong restriction on the

possible combinations (ρλ|I , ρ|I).
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7 Modular parametrizations.

7.1 Definitions. For M a positive integer, let X0(M) denote coarse moduli scheme over Z

associated to the stack M(Γ0(M)). Let J0(M) be the Néron model over Z of the jacobian

J0(M)Q of X0(M). An elliptic curve E over Q is said to be modular if it is an isogeny factor

of some J0(M)Q; the smallest M for which this happens is called the level of E. The Shimura-

Taniyama conjecture states that every elliptic curve E over Q is modular, and that the level

of E equals the conductor of (the system of l-adic representations of) E. One knows that for

modular elliptic curves the level equals the conductor ([5], [20] and [9]). A modular elliptic

curve E of level M is called strong if there exists a closed immersion E →֒J0(M)Q. It follows

from the multiplicity one principle that such an immersion is unique up to sign.

Let E be a strong modular elliptic curve of level M . The corresponding strong modular

parametrization φ:X0(M)Q → E is obtained as follows:

J0(M)Q → E

↑ րφ

X0(M)Q

(7.1.1)

where J0(M)Q → E is the dual of one of the two closed immersions E →֒J0(M)Q and where

X0(M)Q → J0(M)Q is the standard immersion sending the cusp ∞ to 0. Let E be the Néron

model over Z of E. Then the Z-module Γ(E ,Ω1) is free of rank one; let ω be one of the two

generators. We get the differential form φ∗ω on X0(M)Q. There is also another differential

form on X0(M)Q related to E: the normalized newform
∑
anq

ndq/q corresponding to E. The

multiplicity one principle gives:

φ∗ω = c
∑

n≥1

anq
ndq

q
(7.1.2)

for some c ∈ Q∗. This number c is called the Manin constant of E (see [21], [22], [23] and [4]).
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8 Manin constants.
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9 More on parametrizations.
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Séminaire Bourbaki, Exp. 658 (1986).

[7] P. Deligne. Formes modulaires et représentations ℓ-adiques. Séminaire Bourbaki, Exp. 355
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