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Abstract

The Poincaré torsor of a Shimura family of abelian varieties can be viewed both as

a family of semi-abelian varieties and as a mixed Shimura variety. We show that the

special subvarieties of the latter cannot all be described in terms of the group subschemes

of the former. This provides a counter-example to the relative Manin-Mumford con-

jecture, but also a confirmation of Pink’s conjecture on unlikely intersections in mixed

Shimura varieties. The main part of the article concerns mixed Hodge structures and

the uniformization of the Poincaré torsor, but other, more geometric, approaches are also

discussed.
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1 Introduction

In the unpublished preprint [26] Pink formulated a very influential conjecture (the equivalent
Conjectures 1.1–1.3) on so-called “unlikely intersections” in mixed Shimura varieties. Here we
merely recall the statement of his Conjecture 1.3:

if Y is a Hodge generic irreducible closed subvariety of a mixed Shimura variety S,
then the union of the intersections of Y with the special subvarieties of S of codi-
mension at least dim(Y ) + 1 is not Zariski dense in Y .

∗AMS Classification: 14K05, 14G35, 11G15, 14K30, 11G15. Key words: semi-abelian varieties; Poincaré

biextensions; mixed Shimura varieties; Manin-Mumford, André-Oort and Zilber-Pink conjectures.
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We refer to [31] for more details on such intersections, and for their relations to the conjectures
by Manin–Mumford, Mordell–Lang (which are now theorems), and André–Oort. See also [26],
[25], and [19]. The André–Oort conjecture was recently proved for all Ag in [30].

In the last section of [26], Pink states a relative version of the Manin-Mumford conjecture
for families of semi-abelian varieties, Conjecture 6.1:

if B → X is a family of semi-abelian varieties over C and Y is an irreducible
closed subvariety in B that is not contained in any proper closed subgroup scheme
of B → X , then the union of the intersections of Y with algebraic subgroups of
codimension at least dim(Y ) + 1 of the fibres of B → X is not Zariski dense in Y .

Furthermore, Thm 6.3 of [26] claims that Conjecture 1.3 implies Conjecture 6.1. However,
a counter-example to Conjecture 6.1 was given in the unpublished preprint [2], based on a
relative version of a construction of Ribet ([17], [27]), leading to the notion of Ribet sections on
certain semi-abelian schemes. But it was also shown in [2] that this counter-example was not
in contradiction with Conjecture 1.3, and so, the error was in the proof of Theorem 6.3 (see
Remark 5.4.4). The conclusion is that the context of mixed Hodge structures is the right one for
a relative Manin-Mumford conjecture for families of semi -abelian varieties: indeed, the image
of a Ribet section is a special subvariety that can in general not be interpreted as a subgroup
scheme (see Remark 5.4.2). However, for families of abelian varieties (that is, mixed Shimura
varieties of Kuga type), Theorem 6.3 is correct, see [25], Proposition 4.6, [14], Proposition 3.4,
and again Remark 5.4.4 below.

The aim of this article is to provide not only a published account of this story, sharpening
the results of [2], but also a self-contained description of the involved mixed Hodge structures
and the corresponding mixed Shimura varieties, made as accessible as possible.

The article is structured as follows. In Section 2 we present the (counter)example, in the
case of complex elliptic curves with complex multiplications, and in Section 3 (which introduces
a different viewpoint) for abelian schemes. In Sections 4 and 5 we give the description of the
example in the context of mixed Shimura varieties whose pure part parametrises principally
polarised abelian varieties. We show that it gives evidence for Pink’s Conjecture 1.3. Finally,
in Section 6 we give a description of the example, in the case of elliptic curves, in terms of
generalised jacobians.

1.1 Remark In each section, we construct Ribet sections under various denominations, namely
tϕ in (2.1.1), rf in Proposition 3.1, rShf in Thm 5.2, and tJϕ in (6.0.2). At each step, we prove their
compatibility, as well as some of their properties. The main property, leading to the searched-
for counterexample, is stated in Theorem 2.4 and asserts that the Ribet section tϕ maps torsion
points of the base to torsion points of their fibres. The proof (with sharper additional properties)
is given in terms of rf in Proposition 3.3, of rShf in Proposition 5.3 and of tJϕ in Theorem 6.1.
So, these proofs have logically unnecessary overlaps, but their settings are sufficiently distinct
to justify this presentation. We should mention that yet another construction of the Ribet
sections was proposed in [2], based as in [17] on the theory of 1-motives. But as shown in [8],
the latter is equivalent to the construction of tϕ in Section 2.

1.2 Remark We will sometimes abbreviate “the image of a given section” by “the section”.
On the other hand, the image of a Ribet section will be called a Ribet variety.

2 The example with elliptic curves

The key player in the example in [2] is the Poincaré torsor P on a product E × E∨, where E
is a complex elliptic curve and where E∨ is its dual.
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To make P and E∨ more explicit, we choose the isomorphism λ : E → E∨ that sends a point
P to the class of the invertible O-module O((−P )−0) ∼= O(0−P ) (this is the unique principal
polarisation of E). In the notation of [23, Section 6], λ = ϕM, where M is the invertible
O-module O(0) on E, and where ϕM sends P to the class of (tr∗PM) ⊗O M−1, with trP the
translation by P map on E.

The Poincaré bundle L on E ×E is then

(2.0.1) L = add∗M⊗O pr∗1M
−1 ⊗O pr∗2M

−1 ⊗O 0∗M,

where add, pr1, pr2, and 0 are the addition map, the projections, and the constant map 0 from
E ×E to E. It is isomorphic (with the isomorphism given by the choice of a non-zero element
of the fibre M(0) of M at 0, i.e., of a non-zero tangent vector of E at 0) to O(D), with

(2.0.2) D = add−10− pr−1
1 0− pr−1

2 0

The fibre L(x, y) at a point (x, y) is given by:

(2.0.3) L(x, y) = M(x+ y)⊗M(x)−1 ⊗M(y)−1 ⊗M(0).

In particular: L(x, 0) = M(x) ⊗ M(x)−1 ⊗ M(0)−1 ⊗ M(0) = C, and similarly for L(0, y).
Hence L is canonically trivial on the union of E×{0} and {0}×E. But let us remark that the
pullback of L via diag : E → E × E has fibre at x equal to M(2x)⊗M(x)−2 ⊗M(0), hence
is given by the divisor

∑
P∈E[2] P − 2·0 which is of degree 2 and linearly equivalent to 2·0.

The Poincaré torsor P is then the Gm-torsor on E × E (trivial locally for the Zariski
topology) of isomorphisms from O to L:

(2.0.4) P = Isom(O,L).

It is represented by a complex algebraic variety over E × E, also denoted P. Its fibre P(x, y)
over (x, y) is the C×-torsor Isom(C,L(x, y)).

The theorem of the cube ([23, Section 6]) says that any invertible O-module N on En with
n ≥ 3, whose restrictions to ker(pri) are trivial for all i in {1, . . . , n}, is trivial. If this is so, then,
for any non-zero element s0 of N (0, . . . , 0) there is a unique s in N (En) such that s(0) = s0
(the reason is that O(En) = C).

For example, the invertible O-module

⊗

I⊂{1,2,3}

add∗
IM

(−1)#I

on E ×E × E,

where addI : E
3 → E, (x1, x2, x3) 7→

∑
i∈I xi, is canonically trivial (canonically because its fibre

at (0, 0, 0) is M(0)⊗4 ⊗M(0)⊗−4 = C). Explicitly: for all points (x, y, z) of E3 we have

M(x+y+z)⊗M(x+y)−1⊗M(x+z)−1⊗M(y+z)−1⊗M(x)⊗M(y)⊗M(z)⊗M(0)−1 = C.

Similarly, the invertible O-modules on E3 with fibres

L(x, y + z)⊗L(x, y)−1 ⊗L(x, z)−1 and L(x+ y, z)⊗ L(x, z)−1 ⊗L(y, z)−1

are canonically trivial. Therefore, for all points x, y and z of E we have:

(2.0.5) L(x, y + z) = L(x, y)⊗ L(x, z), L(x+ y, z) = L(x, z)⊗L(y, z).

This gives two composition laws on P: for α : C → L(x, y) in P(x, y) and β : C → L(x, z) in
P(x, z) we get α⊗β : C → L(x, y+ z) in P(x, y+ z), and similarly with the 2nd variable fixed.
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With the first variable fixed, P is a commutative group-variety over E, via pr1, whose fibres
are extensions of E by Gm, and similarly for pr2; for details, see Chapter I, Section 2.5 of [22]
and the Proposition of Section 2.6 there. In particular, P is a bi-extension of E and E by Gm:
the two partial group laws commute with each other in the following sense. For x1, x2, y1 and
y2 in E, and pi,j in P(xi, yj), the various ways of summing the pi,j leads to the same result
in P(x1 + x2, y1 + y2). This is proved by considering the universal case T := E4, x1 = pr1,
x2 = pr2, y1 = pr3 ad y2 = pr4, and concluding that the trivialisations of

L(x1 + x2, y1 + y2)⊗ L(x1, y1)
−1 ⊗ L(x1, y2)

−1 ⊗L(x2, y1)
−1 ⊗L(x2, y2)

−1

corresponding to the various ways of summing are equal because they are so at (0, 0, 0, 0):
writing it out in terms of M leads to the tensor product of as many M(0)’s as M(0)−1’s.

With these preliminaries behind us, we can finally proceed to the construction of Ribet
sections. Let ϕ be an endomorphism of E and let ϕ := λ−1 ◦ ϕ∨ ◦ λ be the conjugate of ϕ. Let

γ = (id, ϕ− ϕ) : E → E ×E, P 7→ (P, (ϕ− ϕ)(P ))

be the graph map attached to ϕ− ϕ. The following fact was observed in [7]; see also [17] for a
description in terms of 1-motives.

2.1 Proposition The invertible O-module γ∗L on E is canonically trivial.

Proof As this is the crucial ingredient of the example that we present in this article, we
give two proofs: one for readers who prefer a computation using divisors, and one for those
who prefer universal properties. But first we note that if ϕ = ϕ, then γ = (id, 0) and γ∗L is
canonically trivial because, as mentioned above, L is canonically trivial on E × {0}. So in the
first proof below we may and do assume that ϕ 6= ϕ.

A proof by divisors.

As the fibre of γ∗L at 0 is L(0, 0) = C, and L is isomorphic to O(D) with

D = add−10− pr−1
1 0− pr−1

2 0

as in (2.0.2) it suffices to show that γ∗D is linearly equivalent to 0 on E. Let α := ϕ− ϕ. We
note that

add ◦ γ = add ◦ (id, α) = id + α, pr1 ◦ γ = id, and pr2 ◦ γ = α.

Hence we have the following equalities of divisors on E:

(id, α)∗D = (id + α)∗0− id∗0− α∗0 =
∑

P∈ker(id+α)

P − 0−
∑

Q∈ker(α)

Q.

This divisor has degree 0 because, in End(E), α is imaginary, so we have

deg(id + α) = (id + α)(id + α) = id + αα = 1 + deg(α).

Any degree zero divisor on E is linearly equivalent to R − 0, with R the image of the divisor
under the group morphism Div0(E) → E that sends each point to itself. So in our case R
is the sum of the points in ker(id + α), minus the sum of the points in ker(α). These two
kernels are finite commutative groups. For such a group, the sum of the elements is 0, except
when its 2-primary part is cyclic and non-trivial, in which case it is the element of order 2.
Let a := ϕ + ϕ be the trace of ϕ; it is in the subring Z of End(E). Then α = −a + 2ϕ, and
id+α = (1−a)+2ϕ. So one of these has odd degree, and the other is divisible by 2 in End(E),
and so for none of them the 2-primary part of the kernel is cyclic and non-trivial.
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A proof by universal properties.

We view E×E as an E-scheme via pr2. Then L is the universal invertible O-module of degree 0
on E with given trivialisation at 0: for every complex algebraic variety S and every invertible
O-module N on ES, fibrewise of degree 0, and with a given trivialisation OS → 0∗N , there
is a unique f : S → E such that the pullback of L via id × f : ES → EE is isomorphic to N .
Moreover, in this case there is a unique isomorphism g : N → (id×f)∗L that is compatible with
the given trivialisations at 0. Of course, the analogous statements are true with pr2 replaced
by pr1.

Let us turn to ϕ. It is defined as λ−1 ◦ ϕ∨ ◦ λ. Hence, for y in E, ϕ(y) is obtained as
follows: λ(y) is the isomorphism class of some invertible O-module N of degree 0 on E, and
then λ(ϕ(y)) corresponds to ϕ∗N . Now consider (ϕ× id)∗L on E×E; fibrewise it is of degree 0
and it has its canonical trivialisation at 0. The fact that we transported the universal invertible
O-module with trivialisation at 0 from E×E∨ to E×E via id×λ implies that ϕ is the unique
morphism from E to E such that (id × ϕ)∗L is isomorphic to (ϕ × id)∗L. Hence we have a
canonical isomorphism between (id× ϕ)∗L and (ϕ× id)∗L.

As L together with its trivialisations on E×{0} and {0}×E is symmetric (that is, invariant
under the automorphism of E ×E that sends (x, y) to (y, x)), we get a canonical isomorphism
between (id× ϕ)∗L and (id× ϕ)∗L.

From (2.0.5), applied with x = idE , y = ϕ and z = ϕ we get a canonical isomorphism,
on E, from γ∗L to (id, ϕ)∗L ⊗ (id,−ϕ)∗L. Applying it again, but now with x = idE , y = ϕ
and z = −ϕ, we get a canonical isomorphism from O to (id,−ϕ)∗L ⊗ (id, ϕ)∗L, giving us a
canonical isomorphism from (id,−ϕ)∗L to (id, ϕ)∗L−1. Combining, we see that

γ∗L = (id, ϕ)∗L ⊗ (id,−ϕ)∗L = (id, ϕ)∗L⊗ (id, ϕ)∗L−1 = (id, ϕ)∗L ⊗ (id, ϕ)∗L−1 = O.

�

Now we view P as a group variety over E via pr1 : E × E → E. The canonical trivialisation

(2.1.1) tϕ : O → γ∗L = (id, α)∗L

on E gives, for every x in E, an element tϕ(x) in Isom(C,L(x, α(x))), hence an element in
P(x, α(x)). As such, tϕ is a section of the group variety P over E, which we call the Ribet

section attached to ϕ.
Following [2], we will now show that if ϕ 6= ϕ, then tϕ gives a counterexample to Conjec-

ture 6.1 of [26].

2.2 Lemma Let Gm ֌ G ։ E be an extension whose class in Ext(E,Gm) is not torsion.
Then the only connected algebraic subgroups of G are {0}, Gm and G.

Proof Let H be a connected algebraic subgroup of G. Then dim(H) is 0, 1 or 2. If it is 0
then H = {0}, and if it is 2 then H = G, so we assume it is 1, and that H is not equal to Gm.
Then H maps surjectively to E. Then H is a finite cover of E, hence is itself an elliptic curve,
and there is an n ∈ Z>0 and a factorisation n· : E → H → E. This means that the extension
Gm ֌ G ։ E is split after pullback via n· : E → E, hence its class is torsion. �

2.3 Lemma If ϕ 6= ϕ, then the union over all n ∈ Z of the images (n·tϕ)(E) of the sections
n·tϕ is Zariski dense in P.

Proof Let Z be the Zariski closure of the union of the (n·tϕ)(E). Let x in E be of infinite
order. Then y := α(x) is of infinite order as well. The point tϕ(x) of the extension Px of E
by Gm has image y in E. The Zariski closure in Px of {n·tϕ(x) : n ∈ Z} is a closed subgroup
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H of Px. The image of H in E is closed (H → E is a morphism of algebraic groups), and
contains y, hence is equal to E. Hence dim(H) is 1 or 2. Assume that dim(H) = 1. By
Lemma 2.2 the extension class of Px is torsion, but as this class is x, it is not torsion. We
conclude that dim(H) = 2, and H = Px. Hence Z contains all Px with x not torsion. Then
Z = P. �

2.4 Theorem For every torsion point x in E, tϕ(x) is torsion in Px.

Proof We will give three proofs: one in the context of abelian schemes and biextensions
(Proposition 3.3), one, more elementary, using generalised jacobians of elliptic curves with
a double point in Section 6, and a third proof, using the description of tϕ(E) as a special
subvariety of a mixed Shimura variety (Proposition 5.3). We refer to [2, Section 1], for the
initial proof of Theorem 2.4, based on the theory of 1-motives. �

We now explain why the closed subvariety Y := tϕ(E) in the family of semi-abelian varieties
B := P over X := E is a counter-example to [26, Conjecture 6.1] when ϕ− ϕ 6= 0. First of all,
Y is not contained in a proper subvariety of B that is a subgroup scheme of B over X because
of Lemma 2.3.

Secondly, d := dim(Y ) = 1, hence according to the conjecture, the intersection of Y with
the set B[>1] that is the union, over all x in X , of all subgroups of Bx of codimension > 1,
should not be Zariski dense in Y . However, B[>1] is the set of points that are torsion in their
fibre, and Theorem 2.4 says that the intersection is infinite.

3 The example with abelian schemes

In this section we consider abelian schemes, but even in the case of elliptic curves, this section
provides a new point of view on Ribet sections and their properties. We recommend Chapter I
of [22] and references therein for further details about biextensions, duality and pairings.

Let S be a scheme, A an abelian scheme over S, and A∨ its dual (Section I.1 in [12]). Let
L be the universal line bundle on A ×S A∨, rigidified, compatibly, at {0} × A∨ and A × {0};
it identifies A with the dual of A∨. Then P = IsomA×SA∨(O,L) is the Poincaré Gm-torsor on
A×SA

∨, and as described in the previous section in the case of elliptic curves, it is a biextension
of A and A∨ by Gm. In particular, over A∨, P is the universal extension of A by Gm, and over A,
P is the universal extension of A∨ by Gm. Proposition 2.1 extends to the present situation as
follows (see [7], [8], [20, Section 8.3]).

3.1 Proposition Let S be a scheme, A an abelian scheme over S, P the Poincaré torsor on
A×S A∨, f : A∨ → A a morphism of group schemes, f∨ : A∨ → (A∨)∨ = A its dual, and

α := f − f∨ : A∨ → A .

The restriction of P to the graph of α has a unique section rf

GmA∨ P AA∨ = A×S A∨

A∨

rf

(α,id)

with value 1 at the origin.
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Proof We start in a more general situation: let A1 and A2 be abelian schemes over S, P1 and
P2 their Poincaré torsors, and f : A1 → A2. Then the dual f∨ : A∨

2 → A∨
1 is defined by the

condition that the pullback of the universal extension

GmA∨

2
P2 (A2)A∨

2
= A2 ×S A∨

2

by f × id : A1 ×S A∨
2 → A2 ×S A∨

2 is isomorphic to the pullback of the universal extension

GmA∨

1
P1 (A1)A∨

1
= A1 ×S A∨

1

by id× f∨ : A1 × A∨
2 → A1 ×A∨

1 . Such an isomorphism is unique, hence

for all T → S, x ∈ A1(T ), y ∈ A∨
2 (T ): P1(x, f

∨y) = P2(fx, y) .

Now we specialise to the situation where A1 = A∨
2 . Then A1×S A

∨
1 = A∨

2 ×S A2, with Poincaré
torsors P1 and σ∗P2, where σ : A∨

2 ×S A2 → A2 ×S A
∨
2 is the coordinate switch. Then we have,

for T → S, x ∈ A1(T ) = A∨
2 (T ) and y ∈ A∨

2 (T ):

(3.1.1) P2(fx, y) = P1(x, f
∨y) = P2(f

∨y, x) .

Now we restrict to the situation where y = x, where we have P2(fx, x) = P2(f
∨x, x). Then

additivity in the first factor gives that

(3.1.2) P2(αx, x) = P2((f − f∨)x, x) = P2(fx− f∨x, x)

= P2(fx, x)⊗P2(f
∨x, x)−1 = Hom(P2(fx, x),P2(f

∨x, x)) = GmT .

Now we take A2 = A, and define rf : A
∨ → P by letting it send x to the T -point of P(αx, x)

corresponding to the unit section of GmT via the isomorphism in (3.1.2).
By construction, rf(0) = 1. This condition makes it unique, as two such sections differ by

a factor in O(A∨)× = O(S)×, with value 1 at 0 ∈ A∨(S). �

3.2 Remark When A → S is a complex elliptic curve E, and λ : E → E∨ is as in Section 2,
and ϕ is in End(E), and f = ϕ ◦ λ, then tϕ as in (2.1.1) and rf as in Proposition 3.1 are equal
(well, up to switching the factors of E × E), because they are sections of the same Gm-torsor
over E, with the same value at 0. Therefore, Proposition 3.3 below proves Theorem 2.4.

The following Proposition gives the torsion property of rf at the torsion points of A∨: it
implies that for T → S and x in A∨[n](T ) we have n2rf(x) = 1. (See Proposition 5.3 and
Theorem 6.1 for other proofs of this equality.)

3.3 Proposition Let S, A, P, f , α and rf be as in Proposition 3.1. Let n ≥ 1, let T be an
S-scheme, and x ∈ A∨[n](T ). Then

nrf (x) = en(fx, x) in P(nαx, x) = P(0, x) = Gm(T ),

with en : A[n](T )× A∨[n](T ) → µn(T ) the Weil pairing (whose definition is recalled below).

Proof The base change T → S reduces to the case where T = S. First we describe the Weil
pairing in terms of P. Let z ∈ A[n](S) and y ∈ A∨[n](S). We have the following canonical
isomorphisms between Gm-torsors on S,

GmS P(z, 0) P(z, ny) P(z, y)⊗n

GmS P(0, y) P(nz, y) P(z, y)⊗n

en(z,y)

+2

id

+1

7



where the superscript +1 means “induced by additivity in the first coordinate”, etc., and where
P(z, y)⊗n is the contracted product of n copies of P(z, y). As the diagram shows, we define
en(z, y) to be the image of the section 1 of the top GmS in the bottom GmS. We claim that
this is the usual Weil pairing: let Py be the extension of A by GmS at y, then there is a unique
ñ : A → Py that lifts n· : A → A, and the restriction ñ : A[n] → µn sends z to en(z, y).

The following commutative diagram relates nrf (x) to en(fx, x) and en(x, f
∨x): going from

bottom right to upper right and then upper left is multiplication by en(x, f
∨x), going from

bottom right to middle right and then middle left and then upper left is nrf (x), and from
bottom right to upper left via bottom left is en(fx, x).

(3.3.1)

GmS GmS GmS

P(0, x) (σ∗P)(0, f∨x) P(f∨x, 0)

P(fx, x)⊗n (σ∗P)(x, f∨x)⊗n P(f∨x, x)⊗n

P(fx, 0) (σ∗P)(x, 0) P(0, x)

GmS GmS GmS

id

b

id

f

c
g

d h

nrf (x)

e i

id

en(fx,x) a

id

en(x,f∨x)j

Here are arguments for the commutativity of all faces (a–j) in the diagram.

a This is the definition of en(fx, x).

b–e This is because the equality signs in (3.1.1) are isomorphisms of biextensions on A∨
2 ×SA

∨
2 .

f–i These follow directly from the definition of σ∗P.

j This is the definition of en(x, f
∨x).

Let us remark that the commutativity of this diagram shows that f∨ and f are adjoints for the
en-pairing, and that when f∨ = f , en(fx, x) = 1 for all x in A∨[n](S), in particular, that the
pairings attached to a polarisation are alternating. �

4 The Poincaré torsor as mixed Shimura variety

In this section we describe the Poincaré torsor of the universal family of principally polarised
complex abelian varieties of dimension d as a mixed Shimura variety, that is, as a moduli space
for mixed Hodge structures. We recommend [25, Section 2] (and also [18] and [10]) as an
introduction to mixed Hodge structures and (connected) mixed Shimura varieties, but we do
not assume the reader to be familiar with these notions. In fact, we hope that the example
treated here also provides a good introduction, and perhaps a motivation to read more. We find
that the point of view of mixed Shimura varieties gives a simple and beautiful perspective on
the uniformisation of the universal Poincaré torsor. The notion of 1-motives from [11] provides
an algebraic description of the mixed Hodge structures that we encounter, but we will not use
this.
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4.1 Pure Hodge structures

For n in Z, a Z-Hodge structure of weight n is a finitely generated Z-module M together with
a decomposition (called Hodge decomposition) of the complex vector space MC := C⊗M :

MC =
⊕

p,q∈Z
p+q=n

Mp,q, such that for all p, q in Z with p+ q = n: M q,p = Mp,q,

where Mp,q is the image of Mp,q under the map MC → MC that sends z⊗m to z⊗m. A pure Z-

Hodge structure is a finitely generated Z-module M , together with a direct sum decomposition

M/Mtors =
⊕

n∈Z

Mn, and for each n a Hodge structure of weight n, Mn,C =
⊕

p+q=n

Mp,q.

For T ⊂ Z2, M is said to be of type T , if, for all (p, q) not in T , Mp,q is zero.
A morphism of pure Z-Hodge structures from (M, (Mp,q)p,q) to (N, (Np,q)p,q) is a morphism

f : M → N of Z-modules such that for all (p, q) one has fC(M
p,q) ⊂ Np,q.

For M and N pure Z-Hodge structures, M∨, M ⊗N are given pure Z-Hodge structures as
follows:

(M∨)p,q = (M−p,−q)∨ , (M ⊗N)p,q =
⊕

a+c=p
b+d=q

(Ma,b ⊗N c,d) ,

and this dictates the rule for Hom(M,N):

Hom(M,N)p,q = (M∨ ⊗N)p,q =
⊕

−a+c=p
−b+d=q

Hom(Ma,b, N c,d) .

It is convenient to define, for m in Z, the Z-Hodge structure Z(m) of weight −2m as the
sub-Z-module (2πi)mZ of C, with Z(m)C = Z(m)−m,−m. For M a pure Z-Hodge structure,
and m in Z, M(m) denotes M ⊗ Z(m). The embedding (2πi)mZ ⊂ C gives the isomorphisms
Z(m)C = C and M(m)C = MC.

A polarisation on a pure Z-Hodge structure M of weight n is a morphism of pure Z-Hodge
structures Ψ: M ⊗M → Z(−n) such that for every (p, q) with p+ q = n the map

Mp,q ×Mp,q → C, (v, w) 7→ (−1)pΨ(v, w)

is a complex inner product (that is, for all (v, w), Ψ(w, v) = Ψ(v, w), and, for all v 6= 0,
(−1)pΨ(v, v) > 0). The symmetry condition is equivalent to Ψ being symmetric if n is even
and antisymmetric if n is odd. The symmetry and positivity conditions are equivalent to the
restriction to MR ×MR of the C-bilinear map

MC ×MC → C , (x, y) 7→ (2πi)nΨ(x⊗ i·y)

with i acting on Mp,q as multiplication by i−pi
−q

being R-valued, symmetric and positive
definite.

4.2 Principally polarised abelian varieties

Let d be in Z≥1. Principally polarised complex abelian varieties of dimension d are conveniently
described as follows. Their lattice is a free Z-module M of rank 2d with a Hodge structure
MC = M−1,0 ⊕M0,−1, and the polarisation Ψ: M ⊗M → Z(1) = 2πiZ is antisymmetric and
induces an isomorphism M → M∨(1). The abelian variety is then MC/(M

0,−1 +M). Then M
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together with Ψ is isomorphic to Z2d with Ψ: Z2d ⊗ Z2d → Z(1), x ⊗ y 7→ 2πixt( 0 −1
1 0 )y, and

such an isomorphism is unique up to composition with an element of Sp(Ψ)(Z) (the stabiliser
of Ψ in GL2d(Z)). Let (e1, . . . , e2d) be the standard basis of Z2d. The subspace M0,−1 of C2d,
on which (v, w) 7→ Ψ(v, w) is an inner product, has trivial intersection with the isotropic sub-
spaces generated by e1, . . . , ed and ed+1, . . . , e2d, hence there is a unique τ in GLd(C) such that
M0,−1 = {(τvv ) : v ∈ Cd}. As Ψ is a morphism of Hodge structures, M0,−1 is isotropic for Ψ, giv-
ing τ t = τ . The positivity of the complex inner product on M0,−1 gives that Im(τ) = (τ−τ )/2i
is positive definite. Conversely, for every τ ∈ Md(C) with τ t = τ and Im(τ) positive definite,
τ is in GLd(C) and M0,−1 := {(τvv ) : v ∈ Cd} gives a Hodge structure on Z2d such that Ψ is a
principal polarisation.

We conclude: the set DΨ of Hodge structures of type {(−1, 0), (0,−1)} on Z2d for which
Ψ is a polarisation is in bijection with the Siegel half space Hd of symmetric τ ∈ Md(C) with
Im(τ) positive definite, via τ 7→ M0,−1

τ := {(τvv ) : v ∈ Cd}. Note that Hd is a convex open subset
of the set of symmetric d by d complex matrices. The action of Sp(Ψ)(Z) describes the moduli
of complex principally polarised abelian varieties of dimension d: the quotients by suitable
congruence subgroups give fine moduli spaces, and the stacky quotient by Sp(Ψ)(Z) gives the
stack of complex principally polarised abelian varieties of dimension d. Let us write more
explicitly the abelian variety Aτ := C2d/(M0,−1

τ +Z2d) at τ in Hd. The C-linear map C2d → Cd,
(wv) 7→ w− τv is surjective and has kernel M0,−1. So Aτ is the cokernel of (1d −τ )· : Z2d → Cd,
(xy) 7→ x− τy, that is, Aτ is the quotient of Cd by the lattice generated by Zd and the columns
of τ .

For M0,−1 in DΨ and g in GL2d(R), gM
0,−1 is a Hodge structure of type {(−1, 0), (0,−1)}

for which gΨ is a polarisation, where, for all x, y in R2d, (gΨ)(x ⊗ y) = Ψ((g−1x) ⊗ (g−1y)).
Hence Sp(Ψ)(R), the subgroup of GL2d(R) that preserves Ψ, acts on DΨ.

The following argument shows that this action is transitive. Let M0,−1 be in DΨ, and let
v1, . . . , vd be an orthonormal basis for M0,−1. Then Re(v1), . . . ,Re(vd), Im(v1), . . . , Im(vd) is an
R-basis of R2d with respect to which M0,−1 and Ψ do not depend on M0,−1.

In fact a slightly bigger group acts on DΨ. We view Ψ as an element of the R-vector space
(R2d ⊗R R2d)∨ ⊗R R(1), on which the group GL2d(R) × R× acts. An element (g, λ) acts as
(g−1⊗ g−1)∨⊗λ. Then (g, λ) fixes Ψ if and only if for all x, y ∈ R2d, Ψ(gx, gy) = λΨ(x, y). We
let GSpΨ(R) be the group of such (g, λ), and GSpΨ(R)

+ the subgroup of the (g, λ) with λ > 0.
Then GSpΨ(R)

+ acts on DΨ via M0,−1 7→ g·M0,−1.

4.3 Mixed Hodge structures

A mixed Hodge structure on a finitely generated Z-module M is the data of an increasing
filtration (WnM)n∈Z (called the weight filtration) with WnM = Mtors for n small enough
and WnM = M for n large enough, with all M/WnM torsion free, and a decreasing fil-
tration (F pMC)p∈Z of the C-vector space MC, with F pMC = MC for small enough p and
F pMC = 0 for large enough p, such that for each n in Z the filtration induced by F on
(GrWn M)C := ((WnM)/(Wn−1M))C is a Hodge structure of weight n:

(GrWn M)C =
⊕

p+q=n

(GrWn M)p,qC , with (GrWn M)p,qC = F p(GrWn M)C ∩ F q(GrWn M)C.

As an example, let us determine all mixed Hodge structures on M := Z·e1 ⊕ Z·e2, with
W−3(M) = 0, W−2(M) = W−1(M) = Z·e1 and W0(M) = M , of type {(−1,−1), (0, 0)},
that is, extensions of Z(0) by Z(1). Then F−1MC = MC, F

1MC = 0, and F 0MC ∩ C·e1 = 0
and under the quotient map q : MC → MC/W−1MC = C·e2, F 0MC is mapped surjectively. So
F 0MC is a line, of the form La := C·(e2 + ae1) for a unique a in C, giving a bijection from C

to the set DW of mixed Hodge structures of the type we consider.
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Let PW (R) be the subgroup of GL2(R) × GL(R(1)) × GL(R(0)) that fixes R(1) → R2,
2πi 7→ e1, that fixes R2 → R(0), (x, y) 7→ y, and that fixes R(0) ⊗ R(0) → R(0), x ⊗ y 7→ xy.
Then

PW (R) =

{((
λ x
0 1

)
, λ, 1

)
: λ ∈ R×, x ∈ R

}
.

By definition PW (R) acts on DW , and transported to C this action is given by a 7→ λa + x.
This action has two orbits: R and C− R. We would like to have a transitive action (in order
to get a “connected mixed Shimura datum” as in [25, Def. 2.1]). To get that, we allow x to be
complex, that is, we let UW (C) be the subgroup of GL2(C) of unipotent matrices ( 1 x

0 1 ) with
x ∈ C, and let

PW (R)UW (C) =

{((
λ x
0 1

)
, λ, 1

)
: λ ∈ R×, x ∈ C

}

act on DW . The action of PW (Z) on C describes the moduli of mixed Z-Hodge structures
that are extension of Z(0) by Z(1). The coarse moduli space is the quotient C → C× → C,
a 7→ exp(2πia) 7→ exp(2πia) + exp(−2πia).

4.4 The universal Poincaré torsor as moduli space of mixed Hodge

structures

Let d be in Z≥1 and M := Z(1) ⊕ Z2d ⊕ Z, with standard basis 2πie0, e1, . . . , e2d+1, and with
the following filtration:

W−3M = {0}, W−2M = Z·2πie0, W−1M = Z·2πie0 ⊕ · · · ⊕ Z·e2d, W0M = M.

Let D be the set of filtrations F on MC such that (M,W,F ) is a mixed Z-Hodge structure
of type {(−1,−1), (−1, 0), (0,−1), (0, 0)}, and such that Ψ: (x, y) 7→ 2πixt( 0 −1

1 0 )y is, via the
given bases, a polarisation on GrW−1M . For F in D we have F−1MC = MC, and F 1MC = {0},
so F is given by F 0MC. We get a map from D to the set DΨ (see Section 4.2) by sending F 0 to
F 0(GrW−1MC). Recall that we have a bijection Hd → DΨ that sends τ to M0,−1

τ = ( τ
1d)C

d ⊂ C2d.
For m and n in Z≥0 we denote by Mm,n(C) the set of complex m by n matrices.

4.5 Proposition There is a bijection

Hd ×M1,d(C)×Md,1(C)× C −→ D, (τ, u, v, w) 7→




u w
τ v
1d 0
0 1


Cd+1 ⊂ MC =

2d+1⊕

j=0

Cej .

Proof Let τ be in Hd. The F 0(W−1(M)C) in the fibre over τ are the subspaces of W−1(M)C
that are mapped isomorphically to the subspace M0,−1

τ of GrW−1(M)C in the short exact sequence

0 → W−2(M)C → W−1(M)C → GrW−1(M)C → 0.

This accounts for the first d columns in the matrix above. We take these columns as the first
d elements of our basis of F 0MC.

Each F 0(MC) in D that restricts to F 0(W−1MC) given by a (τ, u) has a unique d+1th basis
vector

∑
aiei ending with d zeros and then a 1. This accounts for the last column. �

Let P be the subgroupscheme of GL(M) × GL(Z(1)) that fixes W , Z(1) → W−2(M),
2πia 7→ 2πiae0, Z(0) → GrW0 (M), a 7→ ae2d+1, and Ψ: GrW−1(M)⊗GrW−1(M) → Z(1). Then, for
any Z-algebra R (we will only use Z, R and C), we have

(4.5.1) P (R) =







µ(g) x z
0 g y
0 0 1


 :

(g, µ(g)) ∈ GSp(Ψ)(R),

x ∈ M1,2d(R), y ∈ M2d,1(R), z ∈ R



 ,
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where the matrices are with respect to the Z-basis 2πie0, e1, . . . , e2d+1 of M . We let U be the
subgroupscheme of P given by

U(R) =







1 0 z
0 1 0
0 0 1


 : z ∈ R



 .

We also let P u be the unipotent radical of P , that is,

P u(R) =







1 x z
0 1 y
0 0 1


 : x ∈ M1,2d(R), y ∈ M2d,1(R), z ∈ R



 ,

also known as the Heisenberg group. Then P u is a central extension of the vector group P u/U
by Ga. The commutator pairing on P u/U sends ((x, y), (x′, y′)) to xy′ − x′y.

For R a subring of C, the matrix with respect to the C-basis e0, . . . , e2d+1 of MC of the
element of P (R) above is

(4.5.2)



µ(g) 2πix 2πiz
0 g y
0 0 1


 .

By definition, P (R)+U(C) acts on D. We make this explicit for elements of P u(R)U(C), with
respect to the C-basis e0, . . . , e2d+1, writing 2πix = (2πix1 2πix2) and y = (y1y2):

(4.5.3)




1 2πix1 2πix2 2πiz
0 1d 0 y1
0 0 1d y2
0 0 0 1







u w
τ v
1d 0
0 1


Cd+1

=




u+ 2πix1τ + 2πix2 w + 2πix1v + 2πiz
τ v + y1
1d y2
0 1


Cd+1

=




u+ 2πix1τ + 2πix2 w + 2πix1v + 2πiz
τ v + y1
1d y2
0 1




(
1d −y2
0 1

)
Cd+1

=




u+ 2πix1τ + 2πix2 w + 2πix1v + 2πiz − (u+ 2πix1τ + 2πix2)y2
τ v + y1 − τy2
1d 0
0 1


Cd+1 .

As the action of SpΨ(R) on DΨ is transitive, we conclude that the action of P (R)+U(C) on D
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is transitive. We also write out the action of GSpΨ(R)
+ on D:

(4.5.4)




µ 0 0 0
0 a b 0
0 c d 0
0 0 0 1







u w
τ v
1d 0
0 1


Cd+1 =




µu µw
aτ + b av
cτ + d cv

0 1




(
(cτ + d)−1 0

0 1

)
Cd+1

=




µu(cτ + d)−1 µw
(aτ + b)(cτ + d)−1 av

1d cv
0 1




(
1d −cv
0 1

)
Cd+1

=




µu(cτ + d)−1 µw − µu(cτ + d)−1cv
(aτ + b)(cτ + d)−1 av − (aτ + b)(cτ + d)−1cv

1d 0
0 1


Cd+1 .

4.6 Proposition The quotient P u(Z)\D is the universal Poincaré torsor over Hd.

Proof We prove this by showing that the universal extension of the universal abelian variety
over Hd by C× is unformised in exactly the same way when we express everything in terms
of matrices. We view M1,d(C) and Md,1(C) as duals via the matrix multiplication (row times
column).

Let us first consider a complex torus A = V/L, and an extension of complex Lie groups

0 → C× → E → A → 0 .

Passing to universal covers gives us an extension of C-vector spaces

0 → C → Ẽ → V → 0 ,

mapping to the previous sequence by exponential maps. The kernels of these maps form an
extension

0 → Z(1) → M → L → 0 .

The extensions of V by C and of L by Z(1) admit splittings, unique up to V ∨ := HomC(V,C)
and HomZ(L,Z(1)) = L∨(1). It follows that all extensions of A by C× are obtained as cokernels
of maps

(4.6.1) Z(1)⊕ L → C⊕ V, (2πin,m) 7→ (2πin− α(m), m), with α ∈ HomZ(L,C) = L∨
C.

Our reason for choosing 2πin−α(m) in the line above, and not 2πin+α(m), is to avoid a sign
in the isomorphism under construction between our universal extension here and that given by
P u(Z)\D; see the term −uy2 in the upper right coefficient in the last matrix in (4.5.3).

More explicitly, over L∨
C we have a family of extensions, with fibre at α the cokernel above.

This family is universal for extensions with given splitting of their tangent spaces at 0 and
given splitting of the kernel of the exponential map. On it, we have actions of V ∨ and L∨(1),
the quotient by which gives us the universal extension of A by C×, with base L∨

C/(V
∨+L∨(1)),

which is therefore the dual complex torus. The family itself is the quotient of L∨
C × V × C

by a joint action of V ∨, L∨(1), L and Z(1). By “joint action” we mean that the actions of
the individual elements of these four groups taken in this order induce a group structure on
V ∨×L∨(1)×L×Z(1) and an action by that group on L∨

C×V ×C. We make this more explicit
for the family over Hd.
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Let τ be in Hd. As in Section 4.2 we have

Aτ = C2d/(( τ
1d)C

d + Z2d) = Cd/((1d − τ)Z2d) = Md,1(C)/((1d − τ)M2d,1(Z)).

The universal extension of Aτ by C× is the quotient of M1,2d(C) × Md,1(C) × C by the joint
actions of M1,d(C), M2d,1(Z), M1,2d(Z(1)), and Z(1). We admit that this is not the same order
as a few lines above, but the rest of the proof shows that once the quotient by M1,d(C) has
been taken, the remaing three groups match the corresponding pieces of the Heisenberg group,
and therefore the order in which we consider their actions is irrelevant.

An element l in M1,d(C) acts by postcomposing the embedding of Z(1) ⊕ M2d,1(Z) in
C⊕Md,1(C) as in (4.6.1) with

(
w
v

)
7→

(
1 l
0 1d

)(
w
v

)
=

(
w + lv

v

)

giving the embedding



2πin
m1

m2


 7→

(
1 l
0 1d

)(
1 −α1 −α2

0 1d −τ

)
·



2πin
m1

m2


 =

(
1 −α1 + l −α2 − lτ
0 1d −τ

)
·



2πin
m1

m2


 .

The two displayed formulas above give the actions of l on (v, w) in Md,1(C)×C and on (α1, α2)
in M1,2d(C), and therefore the action on M1,2d(C)×Md,1(C)× C

l : (α1, α2, v, w) 7→ (α1 − l, α2 + lτ, v, w + l(v)).

We make a quotient map for this action as follows. For every (α1, α2, v, w) there is a unique l,
namely, α1, that brings it to the subset of all (0, α2, v, w). This gives us the quotient map

q : M1,2d(C)×Md,1(C)× C → M1,d(C)×Md,1(C)× C,

(α1, α2, v, w) 7→ (α1τ + α2, v, w + α1v) ,

whose target is the source at τ of the bijection in Proposition 4.5. Now we consider the other
actions and push them to this quotient.

At the point (α1 α2) in M1,2d(C) the embedding of Z(1)⊕M2d,1(Z) in C⊕Md,1(C) is



2πin
m1

m2


 7→

(
1 −α1 −α2

0 1d −τ

)
·



2πin
m1

m2


 ,

and therefore (2πin, (m1
m2)) in Z(1)×M2d,1(Z) acts on M1,2d(C)×Md,1(C)×C by the translations

(2πin, (m1
m2)) : (α1, α2, v, w) 7→ (α1, α2, v +m1 − τm2, w + 2πin− α1m1 − α2m2) .

It follows that 2πin and (m1
m2) act on M1,d(C)×Md,1(C)× C by

(4.6.2) 2πin : (u, v, w) 7→ (u, v, w + 2πin), (m1
m2) : (u, v, w) 7→ (u, v +m1 − τm2, w − um2) .

An element 2πi(n1 n2) in M1,2d(Z(1)) acts by precomposing the embedding of Z(1)⊕M2d,1(Z)
in C⊕Md,1(C) with



2πin
m1

m2


 7→



1 −2πin1 −2πin2

0 1d 0
0 0 1d


 ·



2πin
m1

m2


 =



2πi(n− n1m1 − n2m2)

m1

m2


 .

14



where we have introduced a factor −1 because we want a left action. This gives the embedding



2πin
m1

m2


 7→

(
1 −α1 −α2

0 1d −τ

)
·



1 −2πin1 −2πin2

0 1d 0
0 0 1d


 ·



2πin
m1

m2




=

(
1 −α1 − 2πin1 −α2 − 2πin2

0 1d −τ

)
·



2πin
m1

m2


 .

So the identity on C⊕Md,1(C) and the inverse of the action of 2πi(n1 n2) on Z(1)⊕M2d,1(Z)
induce an isomorphism from the extension at (α1, α2) to the extension at (α1+2πin1, α2+2πin2).
Therefore the action of 2πi(n1 n2) in M1,2d(Z(1)) on M1,2d(C)×Md,1(C)×C is by the translations

2πi(n1 n2) : (α1, α2, v, w) 7→ (α1 + 2πin1, α2 + 2πin2, v, w).

Pushing this to the quotient gives

(4.6.3) 2πi(n1 n2) : (u, v, w) 7→ (u+ 2πin1τ + 2πin2, v, w + 2πin1v) .

By inspection, one sees that the bijection in Proposition 4.5 is equivariant for the actions
on its source by M2d,1(Z), M1,2d(Z(1)), and Z(1) given in (4.6.2) and (4.6.3) and the action
on its target by P u(Z) given in (4.5.3), where 2πin in Z(1), (m1

m2) in M2d,1(Z) and 2πi(n1 n2)
in M1,2d(Z(1)) respectively correspond to

(4.6.4)



1 0 2πin
0 12d 0
0 0 1


 ,




1 0 0 0
0 1d 0 m1

0 0 1d m2

0 0 0 1


 ,




1 2πin1 2πin2 0
0 1d 0 0
0 0 1d 0
0 0 0 1


 .

This finishes our identification of P u(Z)\D with the universal Poincaré torsor over Hd. �

4.7 Duality and the Poincaré torsor

Proposition 4.6 and equations (4.5.3) give us an explicit description of the Poincaré torsor
over Hd. Let τ be in Hd. Then we have (as in Section 4.2) Aτ = Md,1(C)/(1d −τ )·M2d,1(Z)
(see the 2nd column of the last matrix in (4.5.3), and Bτ = M1,d(C)/M1,2d(Z(1))·(

τ
1d) (consider

the first row), and the Poincaré torsor Pτ on Aτ×Bτ that is the universal extension of Aτ by C×

and of Bτ by C×, giving isomorphisms Bτ = Ext1(Aτ ,C
×) = A∨

τ and Aτ = Ext1(Bτ ,C
×) = B∨

τ .
Let now f : Bτ → Aτ be a morphism of abelian varieties. Then f is given by a complex

linear map
M1,d(C) −→ Md,1(C), u 7→ fC·u

t, with fC in Md(C) ,

and a Z-linear map

M1,2d(Z(1)) −→ M2d,1(Z), 2πi(n1 n2) 7→ fZ·

(
nt
1

nt
2

)
, with fZ =

(
α β
γ δ

)
∈ M2d(Z) .

The fact that these form a commutative diagram

M1,2d(Z(1)) M1,d(C)

M2d,1(Z) Md,1(C)

·(
τ
1d)

fZ fC

(1d −τ)·
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gives us

(4.7.1) 2πifCτ
t = α− τγ, and 2πifC = β − τδ .

The morphism f : Bτ → Aτ gives us the dual f∨ : Bτ → Aτ . We want to know what (f∨)C and
(f∨)Z are. The following proposition answers this question.

4.8 Proposition In the situation above, (f∨)Z = −(fZ)
t, and (f∨)C = 1

2πi
(−γt + τδt).

Proof Let b ∈ Bτ . Then f∨(b) is the unique a ∈ Aτ such that there is a morphism of
extensions

C× Pτ,b Aτ

C× Pτ,a Bτ

f .

Let u ∈ M1,d(C) be an element that maps to b. Then we are looking for a v in Md,1(C) (mapping
to a), b1 and b2 in Md,1(Z), and y in Md,1(C) such that the diagram

(2πin, 2πi(n1 n2))
(
2πi(n+ (n1 n2)·(

b1
b2
)), fZ·

(
nt
1

nt
2

))

Z(1)⊕M1,2d(Z(1)) Z(1)⊕M2d,1(Z)

C⊕M1,d(C) C⊕Md,1(C)

(z, x) (z + x·y, fC·x
t)

·

(
1 0
v τ
0 1d

) (
1 0 −u
0 1d −τ

)
·

is commutative. This commutativity is equivalent to:

∀n1, n2 ∈ M1,d(Z) : 2πi(n1·(v + τ ·y) + n2·y) = 2πi(n1·b1 + n2·b2)− u·(γ·nt
1 + δ·nt

2) ,

which in turn is equivalent to:

2πi(v + τ ·y) = 2πib1 − γt·ut and 2πiy = 2πib2 − δt·ut .

We solve this by taking

b1 = 0, b2 = 0, y = −(2πi)−1δt·ut, v = (2πi)−1(−γt·ut + τ ·δt·ut) .

We conclude that f∨ : Bτ → Aτ is given by

M1,d(C) → Md,1(C), u 7→ (f∨)C·u
t, with (f∨)C = (2πi)−1(−γt + τ ·δt) .
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The fact that (f∨)Z is as claimed follows from the commutativity of the diagram

2πi(n1 n2) −( αt γt

βt δt
)·(n

t
1

nt
2
)

M1,2d(Z(1)) M2d,1(Z)

M1,d(C) Md,1(C)

2πi(n1·τ + n2) (−γt + τ ·δt)·(τ t·nt
1 + nt

2) .

·(
τ
1d) (1d −τ)·

To establish this commutativity one uses (4.7.1). �

To finish this section, we include the polarisation

Ψ: M2d,1(Z)⊗M2d,1(Z) −→ Z(1), x⊗ y 7→ 2πi xt·( 0 −1d
1d 0 )·y

in the present discussion (up to here we haven’t used it, and the results above are valid for
τ in Md(C) whose imaginary part is invertible). Fixing the second variable in Ψ gives us the
isomorphism

Ψ1 : M2d,1(Z) −→ M2d,1(Z)
∨(1), y 7→ (x 7→ Ψ(x⊗ y))

of Z-Hodge structures (at τ in Hd), and therefore an isomorphism of complex tori

λτ : Aτ = M2d,1(C)/(M
0,−1
τ +M2d,1(Z)) −→ M2d,1(C)

∨/((M∨)0,−1
τ +M2d,1(Z)

∨(1)) = Bτ ,

where the identification with Bτ is via universal extensions as in the proof of Proposition 4.6.

4.9 Proposition With the notation above, the C-linear and Z-linear maps corresponding to
λτ are

Md,1(C) → M1,d(C) , v 7→ 2πi vt

and
M2d,1(Z) → M1,2d(Z)(1) , y = (y1y2) 7→ 2πi yt·( 0 1d

−1d 0 ) = 2πi (−yt2 yt1) .

Proof For (λτ )Z, this follows directly from the proof of Proposition 4.6. For (λτ )C, it follows
from the commutativity of the diagram

M2d,1(Z) M1,2d(Z)(1) (y1y2) 2πi (−yt2 yt1)

Md,1(C) M1,d(C) v 2πi vt .

(1d −τ)· ·(
τ
1d)

Here one uses that τ t = τ . �

It is reassuring to see, using Proposition 4.8, that λ∨
τ = λτ , as (λτ )Z = ( 0 1d

−1d 0 ) is antisymmetric.
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5 Ribet varieties are special subvarieties

We recall that in Section 3 we had an abelian scheme A → S and a morphism f : A∨ → A, and
α := f − f∨ : A∨ → A, hence α∨ = −α, and a section rf of the Poincaré torsor over the graph
of α. Now we describe this in the present context, over C, in the principally polarised case.

Let M := Z(1) ⊕ Z2d ⊕ Z, W , D, and P be as in Section 4.4, and recall the notation
Bτ from the beginning of Section 4.7. Let τ0 be in Hd, f : Bτ0 → Aτ0 a morphism, and
α := f − f∨ : Bτ0 → Aτ0 . Then α gives (and is given by) the Z-linear map

(5.0.1) GrW−1(M)∨(1) = M1,2d(Z(1)) −→ M2d,1(Z) = GrW−1(M) , 2πi(n1 n2) 7→ αZ·

(
nt
1

nt
2

)
,

with αZ ∈ M2d(Z). By Proposition 4.8,

αZ = fZ − (f∨)Z = fZ + (fZ)
t .

Hence αZ is symmetric and the quadratic form

M1,2d(Z) −→ Z, x 7→
1

2
x·αZ·x

t = x·fZ·x
t

is Z-valued. Just for completeness, we include that the endomorphism β := α ◦ λτ0 of Aτ0 is
anti-symmetric for the Rosati involution:

λ−1
τ0

◦ β∨ ◦ λτ0 = λ−1
τ0

◦ (α ◦ λτ0)
∨ ◦ λτ0 = λ−1

τ0
◦ λ∨

τ0
◦ α∨ ◦ λτ0 = −α ◦ λτ0 = −β .

Now, everything is in place to introduce the connected mixed Shimura subvariety of the uni-
versal Poincaré-torsor P u(Z)\D over Hd (with its GSp(Ψ)(Z)-action) that is dictated by the
map in (5.0.1) being a morphism of Hodge structures. Concretely, we let Pα and Gα be the
connected components of identity of the stabilisers of (5.0.1) in P and in GSp(Ψ). As the
action of P on GrW−1(M) factors through GSp(Ψ), Pα is the inverse image in P of Gα, and the
unipotent radical P u

α of Pα is equal to P u, hence contains U . In D and Hd, we consider the
orbits

(5.0.2) Dα := Pα(R)
+U(C)·τ̃0 ⊂ D and Hd,α := Gα(R)

+·τ0 ⊂ Hd ,

where τ̃0 is the element of D that corresponds to (τ0, 0, 0, 0) under the bijection of Propo-
sition 4.5. More intrinsically: τ̃0 is the mixed Hodge structure on M in which the weight
filtration is split over Z by the given Z-basis (hence it is pure), and which induces that given
by τ0 on GrW−1M . Here, it does not matter which lift of τ0 we take, but it will matter further
on when we describe the Ribet section in Dα.

Deligne’s group theoretical description of Shimura varieties shows that Hd,α is the connected
component containing τ0 of the set of τ ∈ Hd where (5.0.1) is a morphism of Hodge structures
(equivalently: where it induces a morphism α : Bτ → Aτ ). Let us explain in a few lines how
this works; for details, see [21, Section 2.4] and [9, Section 1.1.12]. Pure Hodge structures on
an R-vector space correspond to R-algebraic actions of C×. For G a connected linear algebraic
group over R, the set of R-morphisms Hom(C×, G(R)) is the set of R-points of a smooth
R-scheme, which is the disjoint union of G-orbits (for G acting by composition with inner
automorphisms). The G(R)+-orbits in Hom(C×, G(R)) are the connected components for the
Archimedean topology. References in [29] (SGA 3): Exp. IX, Cor. 3.3, and Exp. XI, Cor. 4.2.

The pairs (PQ, D), (Gα,Q,Hd,α) and (Pα,Q, Dα) are connected mixed Shimura data as in [25,
Def. 2.1], and we have the diagram of morphisms of connected mixed Shimura data

(5.0.3)

(Pα,Q, Dα) (PQ, D)

(Gα,Q,Hd,α) (GSp(Ψ)Q,Hd) .
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The careful reader will have noticed that we must show that D is a P (R)+U(C)-orbit in
Hom(C×, P (C)) and Dα is a Pα(R)

+U(C)-orbit in Hom(C×, Pα(C)). For the fact that the
natural maps from these orbits to D and Dα are isomorphisms we refer to Propositions 1.18
and 1.16(c) in [24] (the surjectivity is clear because source and target are orbits for the same
group, for the injectivity one has to show that the stabilisers are the same).

5.1 Proposition The quotient P u
α (Z)\Dα is the universal Poincaré torsor over Hd,α. The

quotient of Dα by P u
α (Z)U(C) is the universal family of Aτ × Bτ ’s over Hd,α. The quotient of

Dα by P u
α (Z)M1,2d(R)U(C) is the universal family of Aτ ’s over Hd,α, and the quotient of Dα by

P u
α (Z)M2d,1(R)U(C) is the universal family of Bτ ’s over Hd,α.

Proof One easily deduces this from Proposition 4.6 and parts of its proof. �

Now we proceed directly to the Ribet section, by revealing the tensor that defines it, namely,
the map (encoded by a matrix α̃Z)

(5.1.1)

M∨(1) Z⊕M1,2d(Z(1))⊕ Z(1) Z(1)⊕M2d,1(Z)⊕ Z M

x (k1 2πin 2πik2)



−2πik2
αZ·nt

−k1


 α̃Z·xt ,

where

(5.1.2) α̃Z =




0 0 −1
0 αZ 0
−1 0 0


 in M2d+2(Z) .

This tensor was already described in [27], see also [3, Lemme 6]. We let Pα̃ be the stabiliser
in P of this map (5.1.1), as a group scheme over Z. Then, for any Z-algebra R and for
any p in P (R) we have p ∈ Pα̃(R) if and only if p·α̃Z = µ(p)α̃Z·p−1,t in M2d+2(R), which is
equivalent to p·α̃Z·pt = µ(p)α̃Z. A direct computation then shows, for any Z-algebra R in which
multiplication by 2 is injective:

(5.1.3) Pα̃(R) =







µ(g) x µ(g)−1xfZx

t

0 g µ(g)−1gαZx
t

0 0 1


 : (g, µ(g)) ∈ Gα(R), x ∈ M1,2d(R)



 ,

where the matrices are with respect to the Z-basis 2πie0, e1, . . . , e2d+1 of M . We note that for
R on which multiplication by 2 is injective, Pα̃(R) is the semi-direct product

(5.1.4) Pα̃(R) = M1,2d(R)⋊Gα(R) =







1 x xfZx

t

0 12d αZx
t

0 0 1





 ·







µ(g) 0 0
0 g 0
0 0 1





 .

where x ranges over M1,2d(R) and g over Gα(R). In particular, the unipotent radical (over
Z[1/2]) of Pα̃ is a vector group scheme, and the weight −2 part of its Lie algebra is zero. We
define

(5.1.5) Dα̃ := Pα̃(R)
+·τ̃0 ⊂ Dα ⊂ D .

Then we have the following diagram of connected mixed Shimura data

(5.1.6)

(Pα̃,Q, Dα̃) (Pα,Q, Dα)

(Gα,Q,Hd,α) .
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5.2 Theorem The quotient P u
α̃ (Z)\Dα̃ is the image of a section rShf in P u

α (Z)\Dα (the universal
Poincaré torsor over Hd,α, see Proposition 5.1) over the family of Bτ with τ ranging over Hd,α.
In particular, the image of rShf is a special subvariety. This section rShf is equal, in this setting,
to the section rf of Proposition 3.1.

Proof It is sufficient to verify the claim at each τ ∈ Hd,α. So let τ be such. The description
in (4.5.3) of the action of P u

α (R)U(C) = P u(R)U(C) on D shows that it is free and transitive
on the fibre Dα,τ of Dα → Hd,α at τ . This gives us the bijection

(5.2.1) P u
α (R)U(C) Dα,τ

≃ p 7→ p·τ̃ ,

where τ̃ is the element ofD that corresponds to (τ, 0, 0, 0) under the bijection of Proposition 4.5.
For g in Gα(R)

+ with g·τ0 = τ , we have g ∈ Pα̃(R)
+ via (5.1.4), and τ̃ = g·τ̃0 (use (4.5.4)),

hence Dα̃,τ = P u
α̃ (R)·τ̃ . Via the bijection (5.2.1), the inclusion Dα̃,τ ⊂ Dα,τ corresponds to

the inclusion P u
α̃ (R) ⊂ P u

α (R)U(C), and the P u
α̃ (Z)-action on Dα̃ corresponds to the action by

left-multiplication on P u
α̃ (R). By (5.1.4), P u

α̃ (R) = M1,2d(R), and (5.2.1) identifies this with
M1,d(C), sending (x1, x2) to 2πi(x1τ + x2). Hence P u

α̃ (Z)\Dα̃,τ = Bτ . Proposition 5.1 together
with the description (5.1.4) of P u

α̃ show that P u
α̃ (Z)\Dα̃ is the image of a section rShf of the

Poincaré torsor over the graph of α : Bτ → Aτ (equivalently, over Bτ ). This section differs from
rf by multiplication by a global regular function on Bτ , hence by a constant factor in C×. As
both sections have value 1 at 0 ∈ Bτ , they are equal. �

5.3 Proposition Let τ be in Hd,α. On the left hand side of the bijection in (5.2.1), Bτ is
M1,2d(R)/M1,2d(Z). For x in M1,2d(R) and x its image in Bτ , the extension Eτ,x of Aτ by C×

corresponding to x is, as real Lie group, (C/2πiZ)× (M2d,1(R)/M2d,1(Z)), and rf(x) is given by
(2πixfZx

t, αZx
t). If x is of order n in Bτ , then rf(x) in Eτ,x is killed by n2.

Proof Consider (5.2.1) and (4.5.3). Let x = (x1, x2) ∈ M1,2d(R). This gives the element

px :=




1 2πix1 2πix2 0
0 1d 0 0
0 0 1d 0
0 0 0 1


 ∈ P u

α (R) , and px·τ̃ =




2πi(x1τ + x2) 0
τ 0
1d 0
0 1


Cd+1 ∈ Dα,τ .

This shows that on the left hand side of (5.2.1), Bτ is M1,2d(R)/M1,2d(Z). To describe Eτ,x, let,
for z in C and ( y1

y2 ) in M2d,1(R),

pz,y :=




1 0 0 2πiz
0 1d 0 y1
0 0 1d y2
0 0 0 1


 , then pz,y·px·τ̃ =




2πi(x1τ + x2) 2πi(z − (x1τ + x2)y2)
τ y1 − τy2
1d 0
0 1


Cd+1 .

Now observe that 2πi(z − (x1τ + x2)y2) and y1 − τy2 are R-linear in z, y1 and y2, and
that 2πi(x1τ + x2) does not depend on z, y1 and y2. Hence the R-vector space structure
on {2πi(x1τ + x2)} × Md,1(C) × C in Dα,τ corresponds to the R-vector space structure on
M2d,1(R)×C on the left, and therefore the same holds for the group structures. The left-action
by the pz,y with z ∈ Z and y ∈ M2d,1(Z) on these 2 real vector spaces then gives the description
of Eτ,x. The description of P u

α̃ in (5.1.4) proves the last two claims in the proposition. �

5.4 Remark Assume that α is an isogeny.
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1. The tensor α̃ in (5.1.1) that defines the Ribet variety as an irreducible component of its
Hodge locus is a selfduality of mixed Q-Hodge structures. It is interesting to see that on
the underlying Z-module M it is a symmetric Z(1)-valued pairing. Algebraically this can
be described as a self-duality of 1-motives with Q-coefficients, see [27] and also [3].

2. Let Γα(3) be the kernel of Gα(Z) → Gα(F3). Then Γα(3) acts on the whole situation of
Theorem 5.2, freely on the base Hd,α. The quotient Γα(3)\Dα is then the Poincaré torsor
P for the abelian scheme A := Γα(3)\(P u

α (Z)M1,2d(R)U(C)\Dα) over the pure Shimura
variety S := Γα(3)\Hd,α, with the image of the Ribet section rf as a special subvariety of
a family of semi-abelian varieties. As a generalisation of Lemma 2.3, we will now prove
that this special subvariety is not a torsion translate of a family of algebraic subgroups.
Let τ be in Hd,α and x = (x1, . . . , x2d) be in M1,2d(R) such that x1, . . . , x2d, xαZx

t in R

are Q-linearly independent. Then the coordinates of αZ·xt and xαZx
t are Q-linearly

independent. By Proposition 5.3, the subgroup of Eτ,x generated by rf(x) is dense, for
the Archimedean topology, in (iR/2πiZ) × (M2d,1(R)/M2d,1(Z)). This shows that the
union of the images of the nrf , with n ∈ Z, is dense, for the Archimedean topology, in a
circle bundle of real codimension 1 in P. The fibres of this circle bundle are the maximal
compact subgroups of the corresponding complex analytic semi-abelian varieties.

3. The example just given (the image of rf) now supports Pink’s Conjecture 1.3 of [26]:
indeed, it is a subvariety Y of P containing a Zariski dense set of special points (i.e. special
subvarieties of maximal codimension in P), and it is itself a special subvariety of P. For
further verifications in this context of [26], Conjecture 1.3, see [4] and [5].

4. Let us now clarify what is wrong in the proof of Theorem 6.3 of [26]. The error is in
the statement “Since the special subvarieties of A that dominate S are precisely the
translates of semiabelian subschemes by torsion points,. . . ”; we have just seen that this
is not true. Similarly, note the sentence “Conversely, for any special subvariety T ⊂ A,
every irreducible component of T ∩As is a translate of a semiabelian subvariety of As by
a torsion point.” in the proof of Theorem 5.7 of [26].

The essential difference between the case of Kuga varieties (Shimura families of abelian va-
rieties over pure Shimura varieties), where the statement is correct ([25], Proposition 4.6),
and the case of Shimura families of tori over Kuga varieties is as follows. In the first case
the morphism of mixed Shimura varieties A → S is induced by a morphism of Shimura
data (P,DP ) → (G,DG) with G reductive, and P → G surjective, split, with kernel V
a Q-vector space. Then the special subvarieties Z of A that surject to S are given by
morphisms of sub-Shimura data (Q,DQ) of (P,DP ), with Q → G is surjective. Then
Q is an extension of G by Q ∩ V , a sub-Q-vector space of V . This extension is split
because H2(G,Q∩V ) = 0, and the splitting is unique op to conjugation by Q∩V because
H1(G,Q ∩ V ) = 0. So indeed such special subvarieties come from subfamilies B → S of
A → S and Hecke correspondences that account for translations by torsion points. In the
second case, say T → A, these arguments no longer apply because the group P in the
Shimura datum for A (such as Pα/U as above) is not necessarily reductive (and indeed
the extension Pα of Pα/U by U is not split).

6 The example with elliptic curves, using generalised

jacobians

In this section we give a description of the example in Section 2 in terms of the generalised
jacobian of a family of singular curves. Our reason to include it is that this description is more
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elementary than the one using the Poincaré bundle, and that it is more explicit in terms of
divisors, rational functions, Weil pairing, and is a nice application of Weil reciprocity.

We return to the situation as in Section 2, except that now we let k be an arbitrary alge-
braically closed field. Let E be an elliptic curve over k. Here we will view E × E as a family
of elliptic curves over E via the 2nd projection pr2 : EE = E × E → E, (x, y) 7→ y.

In our construction, we will remove a finite number of points of the base curve E, and
denote the complement by U . This U will be shrunk a few times.

The diagonal morphism ∆: E → EE , x 7→ (x, x), is a section, and the group law of EE over
E gives us a second section 2∆, x 7→ (2x, x). The sections ∆ and 2∆ are disjoint over the open
subset U := E − {0}.

We let C → U be the singular curve over U obtained by identifying the disjoint sections 2∆
and ∆. As a set, it is the quotient of EU by the equivalence relation generated by (2x, x) ∼ (x, x)
with x ranging over U . The topology on C is the finest one for which the quotient map
quot : EU → C is continuous: a subset V of C is open if and only if quot−1V is open in EU .
The regular functions on an open set V of C are the regular functions f on quot−1V such that
f(2x, x) = f(x, x) whenever quot(x, x) is in V . It is proved in Theorem 5.4 of [13] that this
topological space with sheaf of rings is indeed an algebraic variety over k. In the category of
varieties over k, quot : EU → C is the co-equaliser of the pair of morphisms (2∆,∆) from U
to EU :

U EU C
2∆

∆

quot
.

The curve C → U is a family of singular curves, each with an ordinary double point; it
is semi-stable of genus 2 (see [6, 9.2/6]). Its normalisation is quot : EU → C. Its generalized
jacobian

G := Pic0C/U

is described in [6], 8.1/4, 8.2/7, 9.2, 9.4/1, and in more direct terms in this specific situation
in [15]. As C → U has a section (for example ∆ := quot ◦∆), we have, for every T → U , that
G(T ) = Pic0(CT/T )/Pic(T ), where Pic

0(CT/T ) is the group of isomorphism classes of invertible
O-modules on CT that have degree zero on the fibres of CT → T . The group Pic(T ) is contained
as direct summand in Pic0(CT/T ) via pullback by the projection CT → T and a chosen section.
In particular, a divisor D on C that is finite over U , disjoint from ∆(U) and of degree zero
after restriction to the fibres of C → U gives the invertible OC-module OC(D) that has degree
zero on the fibres and therefore gives an element denoted [D] in G(U). An alternative and very
useful description, given in detail in [15], of Pic(CT ) is the set of isomorphism classes of (L, σ),
with L an invertible O-module on ET and σ : (2∆)∗L → ∆∗L an isomorphism of O-modules
on T , where an isomorphism from (L, σ) to (L′, σ′) is an isomorphism f : L → L′ such that
(∆∗f) ◦ σ = σ′ ◦ (2∆)∗f .

For x in U , the fibre Gx is, as abelian group, the group Pic0(Cx). In terms of divisors this
is the quotient of the group Div0(Cx) of degree zero divisors with support outside {∆(x)} by
the subgroup of principal divisors div(f) for nonzero rational functions f in k(Cx)

× that are
regular and invertible at ∆(x). As Cx − {∆(x)} is the same as E − {2x, x}, Div0(Cx) is the
group of degree zero divisors on E with support outside {2x, x}. An element f of k(Cx)

× that
is regular at ∆(x) is an element of k(E)× that is regular at 2x and x and satisfies f(2x) = f(x).
This gives us a useful description of Gx.

The normalisation map quot : EU → C induces a morphism of group schemes over U

π : G = Pic0C/U → Pic0EU/U = EU ,

and identifies G with the extension of E by Gm given by the section ∆ ∈ EU(U). For x in U
and D ∈ Div0(Cx), the class [D] in Gx lies in the kernel k× of πx if and only if there exists
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f ∈ k(E)× such that D = div(f) on E, and it is then a torsion point in k× if and only if the
quotient f(2x)/f(x) ∈ k×, which does not depend on the choice of f , is a root of unity.

We recall that for u in End(E), the pullback map u∗ on Div(E) induces u∨ in End(E∨),
the dual of u, and then u := λ−1u∨λ in End(E) is called the Rosati-dual of u, where λ is
the standard polarization as in Section 2. The map End(E) → End(E), u 7→ u is a anti-
morphism of rings, in fact an involution. It is characterised by the property that in End(E)
we have uu = deg(u) = deg(u) and u + u ∈ Z. Also, the pushforward map u∗ on Div(E)
induces an element still denoted u∗ in End(E∨) such that λu = u∗λ in Hom(E,E∨), and
u∗u

∗ = deg(u) in End(E∨). Hence u∗ and u∗ are each other’s Rosati duals. For f a nonzero
rational function on E and u 6= 0 we have u∗div(f) = div(f ◦u), and u∗div(f) = div(Normu(f)),
where Normu : k(E)× → k(E)× is the norm map along u.

We will use Weil reciprocity: for f and g nonzero rational functions on E such that div(f)
and div(g) have disjoint supports, one has f(div(g)) = g(div(f)), where for D =

∑
P D(P )·P

a divisor on E one defines f(D) =
∏

P f(P )D(P ), cf. [28], III, Proposition 7.
We will also use the Weil pairing. For n a positive integer and P and Q in E[n] the element

en(P,Q) in µn(k) is defined as follows. Let DP and DQ in Div0(E) be disjoint divisors repre-
senting λ(P ) and λ(Q). Let f and g be in k(E)× such that nDP = div(f) and nDQ = div(g).
Then en(P,Q) = f(DQ)/g(DP ). For n invertible in k this pairing en is a perfect alternating
pairing, see [16], Chapter 12, Remark 3.7.

We assume that ϕ is an endomorphism of E such that α := ϕ− ϕ 6= 0. We set

(6.0.1) Dϕ := ϕ∗

(
(∆)− (2∆)

)
− ϕ∗

(
(∆)− (2∆)

)
in Div0(EU).

Note that (∆) − (2∆) is linearly equivalent to (0) − (∆), and that, under λ : E → E∨, ∆ in
E(E) is mapped to [(0)− (∆)]. We want the support of Dϕ to be disjoint from ∆ and 2∆, and
this becomes true by removing from U the kernels of 2(ϕ−1), of 2ϕ−1 and of ϕ−2 (as ϕ 6= ϕ,
only a finite set is removed). We can now also view Dϕ as element of Div0(C), and we set:

(6.0.2) tJϕ := [Dϕ] in G(U).

Combining Parts 2 and 4 of the following theorem provides a new proof in the elliptic case of
Proposition 3.3, while Part 3 sharpens Theorem 2.4.

6.1 Theorem 1. The image π(tJϕ) of t
J
ϕ equals (α, idU) : U → E × U = EU .

2. Let n be a positive integer and x in E with nx = 0. Then n2tJϕ(x) = 0 in Gx, and
ntJϕ(x) = en(ϕ(x), x).

3. Let n be a positive odd integer that is prime to deg(α), invertible in k, and that divides
none among deg(2(ϕ−1)), deg(2ϕ−1) and deg(ϕ−2). Then there is an x ∈ U of order n,
such that the order of tJϕ(x) is equal to n2.

4. The extension G of EU by GmU is uniquely isomorphic to the restriction to EU of the
Poincaré torsor P as in Section 2 (up to a switch of the factors of E×E), and under this
isomorphism, tJϕ equals the Ribet section tϕ.

Proof We prove part 1. The image π(tJϕ) in EU(U) of tJϕ is the class of the divisor Dϕ on EU ,

hence we have, denoting by ≃ linear equivalence on Div0(EU):

Dϕ ≃ ϕ∗

(
(∆)− (2∆)

)
− ϕ∗

(
(∆)− (2∆)

)

=
(
(ϕ(∆))− (2ϕ(∆))

)
−
(
(ϕ(∆))− (2ϕ(∆))

)

≃
(
(0)− (ϕ(∆))

)
−

(
(0)− (ϕ(∆))

)

≃
(
(0)− ((ϕ− ϕ)(∆))

)
=

(
(0)− (α(∆))

)
.
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Under the principal polarisation λ : E → E∨, x 7→ [(0)−(x)], this corresponds to α(∆) in E(U).
This proof of part 1 is finished.

We prove part 2. So, let n be a positive integer, and let x ∈ U be a point such that nx = 0
in E. As nx = 0, we have nπtJϕ(x) = nα(x) = 0 in E. This means that nDϕ,x is a principal
divisor on E. Let f ∈ k(E)× be such that div(f) = n(x) − n(2x) in Div(E). Then we have,
on E:

div(f ◦ ϕ) = ϕ∗div(f) = ϕ∗ (n(x)− n(2x)) ,

div(Normϕ(f)) = ϕ∗div(f) = ϕ∗ (n(x)− n(2x)) .

We define:
gϕ := Normϕ(f)/(f ◦ ϕ) in k(E)×.

Then we have:
nDϕ,x = div(Normϕ(f))− div(f ◦ ϕ) = div(gϕ) on E.

This means that ntJϕ(x) in Gx is the element gϕ(x)/gϕ(2x) of k×. By the construction of U ,
the divisor of f has support disjoint from that of gϕ and of ϕ∗div(f) and ϕ∗div(f), and Weil
reciprocity gives us:

(
gϕ(x)

gϕ(2x)

)n

= gϕ(div(f)) = f(div(gϕ)) = f(div(Normϕ(f))− div(f ◦ ϕ))

=
f(div(Normϕ(f)))

f(div(f ◦ ϕ))
=

f(ϕ∗div(f))

(f ◦ ϕ)(div(f))
=

f(ϕ∗div(f))

f(ϕ∗div(f))
= 1.

So, n2tJϕ(x) is indeed equal to 0 in Gx. Let us also prove that ntJϕ(x) = en(ϕ(x), x). We have

λ(x) = [(x)− (2x)] in E∨ , n((x)− (2x)) = div(f) in Div(E),

and

λ(ϕ(x)) = [ϕ∗(x)− ϕ∗(2x)] in E∨, n(ϕ∗(x)− ϕ∗(2x)) = div(Normϕ(f)) in Div(E) .

So, by the description above of the Weil pairing,

en(ϕ(x), x) =
(Normϕ(f))((x)− (2x))

f(ϕ∗((x)− (2x)))
= gϕ((x)− (2x))

=
gϕ(x)

gϕ(2x)
= ntJϕ in k×.

We prove part 3. Let n be a positive odd integer that is prime to deg(α), invertible in k,
and that divides none among deg(2(ϕ− 1)), deg(2ϕ− 1) and deg(ϕ− 2). To prove that there
is a x in U such that the order of x is n and the order of tJϕ(x) is n2, it is sufficient to show
that there is an x in U of order n such that en(ϕ(x), x) is of order n. As n does not divide
deg(2(ϕ− 1)), deg(2ϕ− 1), and deg(ϕ− 2), each x in E of order n is in U .

Let now p be a prime number dividing n. Then p is odd, and p is invertible in k, hence E[p]
is of dimension two as Fp-vector space, with the symmetric bilinear form

E[p]×E[p] −→ k×, (x, y) 7→ ep(α(x), y).

As p does not divide deg(α), this form is perfect. Therefore, there is an xp in E[p] such that
ep(α(xp), xp) is of order p. As ep(α(xp), xp) = ep(ϕ(xp), xp)

2, ep(ϕ(xp), xp) is then also of order p.
Let np be the exponent of p in the factorisation of n, and x′

p ∈ E such that xp = pnp−1x′
p, then

x′
p is in E[n], and the order of en(ϕ(x

′
p), x

′
p) is p

np.
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Taking for x the sum of the x′
p for p dividing n gives an x as desired. We have now finished

the proof of part 3.
We prove part 4. The two families of extensions of E by Gm are fibrewise isomorphic by

construction, hence there is a unique isomorphism of extensions between them as Hom(E,Gm)
is trivial. The sections tϕ and tJϕ lie above the graph of α : E → E. We will show that tJϕ
extends from U to E, and that tϕ(0) = tJϕ(0). Then there is a unique c ∈ k× such that tJϕ = ctϕ,
and the c equals 1 because of the values at 0.

We show that tJϕ extends from U to E by viewing as explained above, for T → U , Pic(CT )
as the group of isomorphism classes of (L, σ), with L an invertible O-module on ET and
σ : ∆∗L → (2∆)∗L an isomorphism of O-modules on T . This description extends as such
to all T → E, hence gives us an extension over all of E of the extension G of EU by GmU .
Now we show that tJϕ extends over E. It suffices to take T = E, and show that the divisor
∆∗(Dϕ) − (2∆)∗(Dϕ) on E is principal, and that the restriction Dϕ,0 of Dϕ to E × {0} is
principal.

Definition (6.0.1) shows that Dϕ,0 = 0 as divisor. We claim that also ∆∗(Dϕ)− (2∆)∗(Dϕ)
is zero, as divisor. We give the computation. Let R be any k-algebra. Then

(∆∗(ϕ∗(∆)))(R) = {x ∈ E(R) : ϕ(x) = x}

(∆∗(ϕ∗(2∆)))(R) = {x ∈ E(R) : 2ϕ(x) = x}

(∆∗(ϕ∗(∆)))(R) = {x ∈ E(R) : ϕ(x) = x}

(∆∗(ϕ∗(2∆)))(R) = {x ∈ E(R) : ϕ(x) = 2x} .

and

((2∆)∗(ϕ∗(∆)))(R) = {x ∈ E(R) : ϕ(x) = 2x}

((2∆)∗(ϕ∗(2∆)))(R) = {x ∈ E(R) : 2ϕ(x) = 2x}

((2∆)∗(ϕ∗(∆)))(R) = {x ∈ E(R) : 2ϕ(x) = x}

((2∆)∗(ϕ∗(2∆)))(R) = {x ∈ E(R) : 2ϕ(x) = 2x} .

A little bit of bookkeeping shows that the balance is zero. �
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