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Abstract Since Faltings proved Mordell’s conjecture in [16] in 1983, we have known that the sets of
rational points on curves of genus at least 2 are finite. Determining these sets in individual cases is
still an unsolved problem. Chabauty’s method (1941) [10] is to intersect, for a prime number p, in the
p-adic Lie group of p-adic points of the Jacobian, the closure of the Mordell–Weil group with the p-adic
points of the curve. Under the condition that the Mordell–Weil rank is less than the genus, Chabauty’s
method, in combination with other methods such as the Mordell–Weil sieve, has been applied successfully
to determine all rational points in many cases.

Minhyong Kim’s nonabelian Chabauty programme aims to remove the condition on the rank. The
simplest case, called quadratic Chabauty, was developed by Balakrishnan, Besser, Dogra, Müller, Tuitman
and Vonk, and applied in a tour de force to the so-called cursed curve (rank and genus both 3).

This article aims to make the quadratic Chabauty method small and geometric again, by describing it
in terms of only ‘simple algebraic geometry’ (line bundles over the Jacobian and models over the integers).
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1. Introduction

Faltings proved in 1983 [16] that for every number field K and every curve C over K of

genus at least 2, the set of K-rational points C(K) is finite. However, determining C(K)

in individual cases is still an unsolved problem. For simplicity, we restrict ourselves in
this article to the case K =Q.

Chabauty’s method (1941) for determining C(Q) is to intersect, for a prime number p,

in the p-adic Lie group of p-adic points of the Jacobian, the closure of the Mordell–Weil
group with the p-adic points of the curve. There is a fair amount of evidence (mainly

hyperelliptic curves of small genus [3]) that Chabauty’s method, in combination with

other methods such as the Mordell–Weil sieve, does determine all rational points when
r < g, with r the Mordell–Weil rank and g the genus of C.

For a general introduction to Chabauty’s method and Coleman’s effective version of

it, we highly recommend [24] and, for an implementation of it that is ‘geometric’ in the

sense of this article, [17], in which equations for the curve embedded in the Jacobian are
pulled back via local parametrisations of the closure of the Mordell–Weil group.

Minhyong Kim’s nonabelian Chabauty programme aims to remove the condition that

r < g. ‘Nonabelian’ here refers to fundamental groups; the fundamental group of the
Jacobian of a curve is the abelianised fundamental group of the curve. The most striking

result in this direction is the so-called quadratic Chabauty method, applied in [5] – a

technical tour de force – to the so-called cursed curve (r = g = 3). For more details, we
recommend the introduction to [5].

This article aims to make the quadratic Chabauty method small and geometric again,

by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the
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Jacobian, models over the integers and biextension structures). The main result is

Theorem 4.12. It gives a criterion for a given list of rational points to be complete,

in terms of points with values in Z/p2Z only. In §2 we describe the geometric method
in fewer than three pages, §§3–5 give the necessary theory, §§6 and 7 give descriptions

that are suitable for computer calculations and §8 treats an example with r = g = 2 and

14 rational points. As explained in the remarks following Theorem 4.12, we expect that
this approach will make it possible to treat many more curves. In §9.1 we give some

remarks on the fundamental groups of the objects we use. They are subgroups of higher-

dimensional Heisenberg groups, where the commutator pairing is the intersection pairing
of the first homology group of the curve. In §9.2 we re-prove the finiteness of C(Q), for

C with r < g+ρ−1, where ρ is the rank of the Z-module of symmetric endomorphisms

of the Jacobian of C. It also shows that a version of Theorem 4.12 that uses higher p-

adic precision will always give a finite upper bound for C(Q). In §9.3 we give, through an
appropriate choice of coordinates that split the Poincaré biextension, the relation between

our geometric approach and the p-adic heights used in the cohomological approach.

Already for the case of classical Chabauty (working with J instead of T , and under the
assumption that r < g), where everything is linear, the criterion of Theorem 4.12 can be

useful; this has been worked out and implemented in [30]. We recommend this work as a

gentle introduction to the geometric approach taken in this article. A generalisation from
Q to number fields is given in [13]. For a generalisation of the cohomological approach,

see [2] (quadratic Chabauty) and [14] (nonabelian Chabauty).

Although this article is about geometry, it contains no pictures. Fortunately, many

pictures can be found in [19], and some in [15].

2. Algebraic geometry

Let C be a scheme over Z, proper, flat, regular, with CQ of dimension 1 and geometrically

connected. Let n be in Z≥1 such that the restriction of C to Z[1/n] is smooth. Let g be

the genus of CQ. We assume that g ≥ 2 and that we have a rational point b ∈ C(Q);
it extends uniquely to a b ∈ C(Z). We let J be the Néron model over Z of the Jacobian

Pic0CQ/Q. We denote by J∨ the Néron model over Z of the dual J∨
Q of JQ, and by λ : J→ J∨

the isomorphism extending the canonical principal polarisation of JQ. We let PQ be the
Poincaré line bundle on JQ×J∨

Q , trivialised on the union of {0}×J∨
Q and JQ×{0}. Then

the Poincaré torsor is the Gm-torsor on JQ×J∨
Q defined as

P×
Q = IsomJQ×J∨

Q

(
OJQ×J∨

Q
,PQ

)
. (2.1)

For every scheme S over JQ×J∨
Q , P

×
Q (S) is the set of isomorphisms from OS to (PQ)S ,

with a free and transitive action of OS(S)
×. Locally on S for the Zariski topology,

(
P×
Q

)
S

is trivial, and P×
Q is represented by a scheme over JQ×J∨

Q .

The theorem of the cube gives P×
Q the structure of a biextension of JQ and J∨

Q by Gm;
for the details of this notion, we recommend [26, §I.2.5], Grothendieck’s Exposés VII

and VIII [29] and references therein. This means the following. For S a Q-scheme, x1 and

x2 in JQ(S) and y in J∨
Q (S), the theorem of the cube gives a canonical isomorphism of
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4 B. Edixhoven and G. Lido

OS-modules

(x1,y)
∗PQ⊗OS

(x2,y)
∗PQ = (x1+x2,y)

∗PQ. (2.2)

This induces a morphism of schemes

(x1,y)
∗P×

Q ×S (x2,y)
∗P×

Q −→ (x1+x2,y)
∗P×

Q (2.3)

as follows. For any S-scheme T , and z1 in
(
(x1,y)

∗P×
Q

)
(T ) and z2 in

(
(x2,y)

∗P×
Q

)
(T ), we

view z1 and z2 as nowhere-vanishing sections of the invertible OT -modules (x1,y)
∗PQ and

(x2,y)
∗PQ. The tensor product of these two then gives an element of

(
(x1+x2,y)

∗P×
Q

)
(T ).

This gives P×
Q → J∨

Q the structure of a commutative group scheme, which is an extension

of JQ by Gm over the base J∨
Q . We denote this group law, and the one on JQ×J∨

Q , as

(z1,z2) z1+1 z2

((x1,y),(x2,y)) (x1,y)+1 (x2,y) (x1+x2,y).

(2.4)

In the same way, P×
Q → JQ has a group law +2 that makes it an extension of J∨

Q by Gm

over the base JQ. Therefore, P
×
Q is both the universal extension of JQ by Gm and the

universal extension of J∨
Q by Gm. The final ingredient of the notion of biextension is that

the two partial group laws are compatible in the following sense. For any Q-scheme S, for

x1 and x2 in JQ(S), y1 and y2 in J∨
Q (S) and all i and j in {1,2}, zi,j in

(
(xi,yj)

∗
P×
Q

)
(S),

we have

(z1,1+1 z2,1)+2 (z1,2+1 z2,2) (z1,1+2 z1,2)+1 (z2,1+2 z2,2)

(x1+x2,y1)+2 (x1+x2,y2) (x1,y1+y2)+1 (x2,y1+y2),

(2.5)

with the equality in the upper line taking place in
(
(x1+x2,y1+y2)

∗P×
Q

)
(S).

Now we extend this geometry over Z. We denote by J0 the fibrewise connected

component of 0 in J , which is an open subgroup scheme of J , and by Φ the quotient J/J0,
which is an étale (not necessarily separated) group scheme over Z, with finite fibres,

supported on Z/nZ. Similarly, we let J∨0 be the fibrewise connected component of J∨.

[29, Exposé VIII, Theorem 7.1] gives that P×
Q extends uniquely to a Gm-biextension

P× −→ J ×J∨0 (2.6)

(Grothendieck’s pairing on component groups is the obstruction to the existence of such
an extension). Note that in this case, the existence and uniqueness follow directly from

the requirement of extending the rigidification on JQ×{0} (for details, see §6.7).

Our base point b ∈ C(Z) gives an embedding jb : CQ → JQ which sends, functorially in
Q-schemes S, an element c ∈CQ(S) to the class of the invertible OCS

-module OCS
(c−b).

Then jb extends uniquely to a morphism

jb : C
sm −→ J, (2.7)
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where Csm is the open subscheme of C consisting of points at which C is smooth over Z.
Note that CQ(Q) = C(Z) = Csm(Z).
Our next step is to lift jb, at least on certain opens of Csm, to a morphism to a Gρ−1

m -

torsor over J , where ρ is the rank of the free Z-module Hom
(
JQ,J

∨
Q

)+
, the Z-module of

self-dual morphisms from JQ to J∨
Q . This torsor will be the product of pullbacks of P×

via morphisms

(id,m· ◦ trc ◦f) : J → J ×J∨0, (2.8)

with f : J → J∨ a morphism of group schemes, c ∈ J∨(Z), trc the translation by c, m the

least common multiple of the exponents of all Φ
(
Fp
)
with p ranging over all primes and

m· the map of multiplication by m on J∨. For such a map m· ◦ trc ◦f , jb : CQ → JQ can

be lifted to (id,m· ◦ trc ◦f)
∗P×

Q if and only if j∗b (id,m· ◦ trc ◦f)
∗P×

Q is trivial. The degree

of this Gm-torsor on CQ is minus the trace of λ−1 ◦m· ◦ (f + f∨) acting on H1(J(C),Z).
For example, for f = λ the degree is −4mg. Note that jb : CQ → JQ induces

j∗b =−λ−1 : J∨
Q → JQ, (2.9)

(see [25, Propositions 2.7.9 and 2.7.10]). This implies that for f such that this degree is
0, there is a unique c such that j∗b (id,trc ◦f)

∗P×
Q is trivial on CQ, and hence also its mth

power j∗b (id,m· ◦ trc ◦f)
∗P×

Q .

The map

Hom
(
JQ,J

∨
Q

)
−→ Pic(JQ)−→NSJQ/Q(Q) = Hom

(
JQ,J

∨
Q

)+
(2.10)

sending f to the class of (id,f)∗PQ sends f to f + f∨, and hence its kernel is

Hom
(
JQ,J

∨
Q

)−
, the group of antisymmetric morphisms. But actually, for f antisymmetric,

its image in Pic(JQ) is already zero (see, e.g., example [6] and the references therein).

Hence the image of Hom
(
JQ,J

∨
Q

)
in Pic(JQ) is free of rank ρ, and its subgroup of classes

with degree 0 on CQ is free of rank ρ−1. Let f1, . . . ,fρ−1 be elements of Hom
(
JQ,J

∨
Q

)
whose

images in Pic(JQ) form a basis of this subgroup, and let c1, . . . ,cρ−1 be the corresponding

elements of J∨(Z).
By construction, for each i the morphism jb : CQ → JQ lifts to (id,m· ◦ trci ◦fi)

∗
P×
Q ,

unique up to Q×. Now we spread this out over Z, to open subschemes U of Csm obtained
by removing, for each q dividing n, all but one irreducible components of Csm

Fq
, with the

remaining irreducible component geometrically irreducible. For such a U , the morphism

Pic(U)→ Pic(CQ) is an isomorphism and OC(U) = Z; thus for each i there is a lift

(id,m· ◦ trci ◦fi)
∗
P×

U J,
jb

j̃b (2.11)

unique up to Z× = {1,−1}.
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6 B. Edixhoven and G. Lido

At this point we can explain the strategy of our approach to the quadratic Chabauty
method. Let T be the Gρ−1

m -torsor on J obtained by taking the product of all Ti :=

(id,m· ◦ trci ◦fi)
∗
P×:

T P×,ρ−1

U J J ×
(
J∨0

)ρ−1
.

j̃b

jb (id,m·◦trci◦fi)i

(2.12)

Then each c∈CQ(Q) =Csm(Z) lies in one of the finitely many U(Z)s. For each U , we have

a lift j̃b : U → T , and for each prime number p, j̃b(U(Z)) is contained in the intersection, in

T (Zp), of j̃b (U (Zp)) and the closure T (Z) of T (Z) in T (Zp) with the p-adic topology. Of
course, one expects this closure to be of dimension at most r := rank(J(Q)), and therefore

one expects this method to be successful if r < g+ ρ− 1, the dimension of T (Zp). The
next two sections make this strategy precise, giving first the necessary p-adic formal and
analytic geometry and then the description of T (Z) as a finite disjoint union of images of

Zrp under maps constructed from the biextension structure.

3. From algebraic geometry to formal geometry

Let p be a prime number. Given X a smooth scheme of relative dimension d over Zp
and x ∈ X (Fp), let us describe the set X (Zp)x of elements of X (Zp) whose image in

X (Fp) is x. The smoothness implies that the maximal ideal of OX,x is generated by p
together with d other elements t1, . . . ,td. In this case we call p,t1, . . . ,td parameters at x; if,

moreover, xl ∈X (Zp)x is a lift of x such that t1(xl) = . . . td(xl) = 0, then we say that the

tis are parameters at xl. The ti can be evaluated on all the points in X(Zp)x, inducing a

bijection t := (t1, . . . ,td) : X (Zp)x → (pZp)
d
. We get a bijection

t̃ :=
(
t̃1, . . . ,t̃d

)
=

(
t1
p
, . . . ,

td
p

)
: X (Zp)x

∼
−→ Zdp. (3.1)

This bijection can be interpreted geometrically as follows. Let π : X̃x → X denote the

blowup of X in x. By shrinking X, X is affine and the ti are regular on X, t : X→AdZp
is

étale and t−1
{
0Fp

}
= {x}. Then π : X̃x →X is the pullback of the blowup of AdZp

at the

origin over Fp. The affine open part X̃p
x of X̃x where p generates the image of the ideal

mx of x is the pullback of the corresponding open part of the blow up of AdZp
, which is the

multiplication-by-pmorphism AdZp
→AdZp

that corresponds to Zp[t1, . . . ,td]→Zp
[
t̃1, . . . ,t̃d

]

with ti 7→ pt̃i. It follows that the p-adic completion O
(
X̃p
x

)∧p

of O
(
X̃p
x

)
is the p-adic

completion Zp
〈
t̃1, . . . ,t̃d

〉
of Zp

[
t̃1, . . . ,t̃d

]
. Explicitly, we have
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Zp
〈
t̃1, . . . ,t̃d

〉
=




∑

I∈Nd

aI t̃
I ∈ Zp

[[
t̃1, . . . ,t̃d

]]
: ∀n≥ 0, ∀almostI, vp(aI)≥ n



 . (3.2)

With these definitions, we have

X (Zp)x = X̃p
x (Zp) = Hom

(
Zp
〈
t̃1, . . . ,t̃d

〉
,Zp
)
= Ad (Zp),(

X̃p
x

)
Fp

= Spec
(
Fp
[
t̃1, . . . ,t̃d

])
.

(3.3)

The affine space
(
X̃p
x

)
Fp

is canonically a torsor under the tangent space of XFp
at x.

This construction is functorial. Let Y be a smooth Zp-scheme and f : X → Y be a
morphism over Zp, and define y := f(x) ∈ Y (Fp). Then the ideal in OX̃p

x
generated by

the image of mf(x) is generated by p. That gives us a morphism X̃p
x → Ỹ pf(x), and then

a morphism from O
(
Ỹ pf(x)

)∧p

to O
(
X̃p
x

)∧p

. Reduction mod p then gives a morphism
(
X̃p
x

)
Fp

→
(
Ỹ pf(x)

)
Fp

, the tangent map of f at x, up to a translation.

If this tangent map is injective and dx and dy denote the dimensions of XFp
at x

and of YFp
at y, then there are t1, . . . ,tdy in OY ,y such that p,t1, . . . ,tdy are parameters

at y and such that tdx+1, . . . ,tdy generate the kernel of OY ,y → OX,x. Then the

images in OX,x of p,t1, . . . ,tdx are parameters at x, and O
(
Ỹ pf(x)

)∧p

→ O
(
X̃p
x

)∧p

is

Zp
〈
t̃1, . . . ,t̃dy

〉
→ Zp

〈
t̃1, . . . ,t̃dx

〉
, with kernel generated by t̃dx+1, . . . ,t̃dy .

4. Integral points, closure and finiteness

Let us now return to our original problem. The notation U , J , T , jb, j̃b, r, ρ, etc., is as

at the end of §2. We assume moreover that p does not divide n (n as in the start of §2)

and that p > 2 (for p = 2, everything that follows can probably be adapted by working
with residue polydisks mod 4).

Let u be in U (Fp) and define t := j̃b(u). We want a description of the closure T (Z)t
of T (Z)t in T (Zp)t. Using the biextension structure of P×, we will produce, for each

element of J(Z)jb(u), an element of T (Z) over it. Not all of these points are in T (Z)t, but

we will then produce a subset of T (Z)t whose closure is T (Z)t.
If T (Z)t is empty, then T (Z)t is empty too. So we assume that we have an element t̃ ∈

T (Z)t and we define xt̃ ∈ J(Z) to be the projection of t̃. Let f = (f1, . . . ,fρ−1) : J→ J∨,ρ−1

and let c = (c1, . . . ,cρ−1) ∈ J∨,ρ−1(Z). We denote by P×,ρ−1 the product over

J ×
(
J∨0

)ρ−1
of the ρ−1 Gm-torsors obtained by pullback of P× via the pro-

jections to J × J∨0; it is a biextension of J and
(
J∨0

)ρ−1
by Gρ−1

m , and T =

(id,m· ◦ trc ◦f)
∗
P×,ρ−1. We choose a basis x1, . . . ,xr of the free Z-module J(Z)0, the

kernel of J(Z) → J(Fp). For each i,j ∈ {1, . . . ,r}, we choose Pi,j , Ri,t̃ and St̃,j in

P×,ρ−1(Z) whose images in
(
J ×

(
J∨0

)ρ−1
)
(Z) are (xi,f (mxj)), (xi,(m· ◦ trc ◦f)(xt̃))

and (xt̃,f (mxj)):
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8 B. Edixhoven and G. Lido

Pi,j Ri,t̃ St̃,j P×,ρ−1

(xi,f (mxj)), (xi,(m· ◦ trc ◦f)(xt̃)), (xt̃,f (mxj)), J ×
(
J∨0

)ρ−1
.

(4.1)

For each such choice there are 2ρ−1 possibilities.
For each n ∈ Zr, we use the biextension structure on P×,ρ−1 → J ×

(
J∨0

)ρ−1
to define

the following points in P×,ρ−1(Z), with specified images in
(
J ×

(
J∨0

)ρ−1
)
(Z):

At̃(n) =

r∑
2

j=1

nj ·2 St̃,j Bt̃(n) =

r∑
1

i=1

ni ·1Ri,t̃

(
xt̃,

r∑

i=1

nif(mxi)

)
,

(
r∑

i=1

nixi,(m· ◦ trc ◦f)(xt̃)

)
,

(4.2)

C(n) =

r∑
1

i=1

ni ·1




r∑
2

j=1

nj ·2Pi,j




(
r∑

i=1

nixi,

r∑

i=1

nif(mxi)

)
,

(4.3)

where
∑

1 and ·1 denote iterations of the first partial group law +1 as in formula (2.4),
and analogously for the second group law. We define, for all n ∈ Zr,

Dt̃(n) := (C(n)+2Bt̃(n))+1

(
At̃(n)+2 t̃

)
∈ P×,ρ−1(Z), (4.4)

which is mapped to
(
xt̃+

r∑

i=1

nixi,(m· ◦ trc ◦f)

(
xt̃+

r∑

i=1

nixi

))
∈
(
J ×

(
J∨0

)ρ−1
)
(Z). (4.5)

Hence Dt̃(n) is in T (Z), and its image in J (Fp) is jb(u). We do not know its image
in T (Fp).
We claim that for n in (p−1)Zr, Dt̃(n) is in T (Z)t. Let n

′ be in Zr and let n= (p−1)n′.

Then in the trivial F×,ρ−1
p -torsor P×,ρ−1(jb(u),0), on which +2 is the group law, we have

At̃(n) = (p−1)·2At̃(n
′) = 1 in F×,ρ−1

p . (4.6)

Similarly, in P×,ρ−1(0,(m· ◦ trc ◦f)(jb(u))) = F×,ρ−1
p , we have Bt̃(n) = 1, and, similarly in

P×,ρ−1(0,0) = F×,ρ−1
p , we have C(n) = 1. So, with apologies for the mix of additive and
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multiplicative notations, in P×,ρ−1 (Fp) we have

Dt̃(n) = (1+2 1)+1 (1+2 t) = t, (4.7)

mapping to the following element in
(
J ×J∨0,ρ−1

)
(Fp):

((0,0)+2 ((0,(m· ◦ trc ◦f)(jb(u)))))+1 ((jb(u),0)+2 (jb(u),(m· ◦ trc ◦f)(jb(u))))

= (jb(u),(m· ◦ trc ◦f)(jb(u))).
(4.8)

We have proved our claim that Dt̃(n) ∈ T (Z)t.
So we now have the map

κZ : Z
r → T (Z)t, n 7→Dt̃((p−1)n). (4.9)

The following theorem will be proved in Section 5:

Theorem 4.10. Let x1, . . . ,xg be in OJ,jb(u) such that together with p they form a system

of parameters of OJ,jb(u), and let v1, . . . ,vρ−1 be in OT,t such that p,x1, . . . ,xg,v1, . . . ,vρ−1

are parameters of OT,t. As in §3, these parameters, divided by p, give a bijection

T (Zp)t −→ Zg+ρ−1
p . (4.10.1)

The composition of κZ with the map (4.10.1) is given by uniquely determined

κ1, . . . ,κg+ρ−1 in O
(
ArZp

)∧p

= Zp〈z1, . . . ,zr〉. The images in Fp[z1, . . . ,zr] of κ1, . . . ,κg

are of degree at most 1, and the images of κg+1, . . . ,κg+ρ−1 are of degree at most 2. The
map κZ extends uniquely to the continuous map

κ= (κ1, . . . ,κg+ρ−1) : A
r (Zp) = Zrp −→ T (Zp)t , (4.10.2)

and the image of κ is T (Z)t.

Now the moment has come to confront U (Zp)u with T (Z)t. We have j̃b : U → T , whose
tangent map (mod p) at u is injective (here we use that CFp

is smooth over Fp). Then,

as at the end of §3, j̃b : Ũ
p
u → T̃ pt is, after reduction mod p, an affine linear embedding of

codimension g+ρ−2, j̃b
∗
: O
(
T̃ pt

)∧p

→O
(
Ũpu

)∧p

is surjective and its kernel is generated

by elements f1, . . . ,fg+ρ−2 (we apologise for using the same letter as for the components

of f : J → J∨,ρ−1), whose images in Fp⊗O
(
T̃ pt

)
are of degree at most 1 and such that

f1, . . . ,fg−1 are in O
(
J̃pjb(u)

)∧p

. The pullbacks κ∗fi are in Zp〈z1, . . . ,zr〉; let I be the ideal

in Zp〈z1, . . . ,zr〉 generated by them, and define

A := Zp〈z1, . . . ,zr〉/I. (4.11)

Then the elements of Zrp whose image is in U (Zp)u are zeros of I, hence morphisms of

rings from A to Zp and hence from the reduced quotient Ared to Zp.

Theorem 4.12. For i ∈ {1, . . . ,g+ρ−2}, let κ∗fi be the image of κ∗fi in Fp[z1, . . . ,zr],
and let I be the ideal of Fp[z1, . . . ,zr] generated by them. Then κ∗f1, . . . ,κ

∗fg−1 are
of degree at most 1, and κ∗fg, . . . ,κ

∗fg+ρ−2 are of degree at most 2. Assume that

A := A/pA = Fp[z1, . . . ,zr]/I is finite. Then A is the product of its localisations Am at

its finitely many maximal ideals m. The sum of the dimFp
Am over the m such that
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10 B. Edixhoven and G. Lido

A/m = Fp is an upper bound for the number of elements of Zrp whose image under κ is
in U (Zp)u, and also an upper bound for the number of elements of U(Z) with image u

in U (Fp).

Proof. As every fi is of degree at most 1 in x1, . . . ,xg,v1, . . . ,vρ−1, every κ
∗fi is an Fp-

linear combination of κ1, . . . ,κg+ρ−1, and hence of degree at most 2. For i < g, fi is a

linear combination of x1, . . . ,xg, and therefore κ∗fi is of degree at most 1.

We claim that A is p-adically complete. More generally, let R be a noetherian ring that

is J-adically complete for an ideal J , and let I be an ideal in R. The map from R/I to
its J-adic completion (R/I)∧ is injective [1, Thm.10.17]. As J-adic completion is exact

on finitely generated R-modules [1, Prop.10.12], it sends the surjection R→ R/I to a

surjection R=R∧ → (R/I)∧ (see [1, Prop.10.5] for the equality R=R∧). It follows that
R/I → (R/I)∧ is surjective.

Now we assume that A is finite. As A is p-adically complete, A is the limit of the system

of its quotients by powers of p. These quotients are finite: for every m∈Z≥1, A/p
m+1A is,

as an abelian group, an extension of A/pA by a quotient of A/pmA. As a Zp-module, A

is generated by any lift of an Fp-basis of A. Hence A is finitely generated as a Zp-module.

The set of elements of Zrp whose image under κ is in U (Zp) is in bijection with the

set of Zp-algebra morphisms Hom(A,Zp). As A is the product of its localisations Am at
its maximal ideals, Hom(A,Zp) is the disjoint union of the Hom(Am,Zp). For each m,

Hom(Am,Zp) has at most rankZp
(Am) elements, and is empty if Fp → A/m is not an

isomorphism. This establishes the upper bound for the number of elements of Zrp whose
image under κ is in U (Zp). By Theorem 4.10, the elements of U(Z) with image u in U (Fp)
are in T (Z)t, and therefore of the form κ(x) with x ∈ Zrp such that κ(x) is in U (Zp)u.
This establishes the upper bound for the number of elements of U(Z) with image u
in U (Fp).

We include some remarks to explain how Theorem 4.12 can be used, and what we hope

it can do.

Remark 4.13. The κ∗fi as in Theorem 4.12 can be computed from their reductions

Frp → T (Z/p2Z) of κZ and (to get the fi) from j̃b : U
(
Z/p2Z

)
u
→ T

(
Z/p2Z

)
t
. For this,

one does not need to treat T and J as schemes, one just computes with Z/p2Z-valued
points. Now assume that r≤ g+ρ−2. If, for some prime p, the criterion in Theorem 4.12

fails (that is, A is not finite), then one can try the next prime. We hope (but also expect)

that one quickly finds a prime p such that A is finite for every U and for every u in U (Fp)
such that j̃b(u) is in the image of T (Z)→ T (Fp). By the way, note that our notation in

Theorem 4.12 does not show the dependence on U and u of j̃b, κZ, κ and the fi. Instead of

varying p, one could also increase the p-adic precision, and then the result of §9.2 proves

that one gets an upper bound for the number of elements of U(Z).

Remark 4.14. If r < g+ ρ− 2, then we think that it is likely (when varying p), for

dimension reasons – unless something special happens as in [3] or [4, Remark 8.9] – that
for all u ∈ U (Fp), the upper bound in Theorem 4.12 for the number of elements of U(Z)
with image u in U (Fp) is sharp. For a precise conjecture in the context of Chabauty’s

method, see the ‘Strong Chabauty’ conjecture in [31].
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Remark 4.15. Suppose that r = g+ρ−2. Then we expect, for dimension reasons, that
it is likely (when varying p) that, for some u ∈ U (Fp), the upper bound in Theorem 4.12

for the number of elements of U(Z) with image u in U (Fp) is not sharp. Then, as in

the classical Chabauty method, one must combine the information gotten from several
primes, analogous to Mordell–Weil sieving [27]. In our situation, this amounts to the

following. Suppose that we are given a subset B of U(Z) that we want to prove to be

equal to U(Z). Let B′ be the complement in U(Z) of B. For every prime p > 2 not

dividing n, Theorem 4.12 gives (interpreting A as in the end of the proof of the theorem)
a subset Op of J(Z), with Op a union of cosets for the subgroup p·ker(J(Z) → J(Fp)),
that contains jb(B

′) Then one hopes that, taking a large enough finite set S of primes,

the intersection of the Op for p in S is empty.

5. Parametrisation of integral points, and power series

In this section we give a proof of Theorem 4.10. The main tools here are the formal

logarithm and formal exponential of a commutative smooth group scheme over a Q-

algebra [20, Theorem 1]: they give us identities like n·g = exp(n· logg) that allow us to
extend the multiplication to elements n of Zp.
The evaluation map from Zp〈z1, . . . ,zn〉 to the set of maps Znp → Zp is injective

(induction on n; nonzero elements of Zp〈z〉 have only finitely many zeros in Zp).
We say that a map f : Znp → Zmp is given by integral convergent power series if its

coordinate functions are in Zp〈z1, . . . ,zn〉 = O
(
AnZp

)∧p

. This property is stable under

composition: composition of polynomials over Z/pkZ gives polynomials.

5.1. Logarithm and exponential

Let p be a prime number, and let G be a commutative group scheme, smooth of relative

dimension d over a scheme S smooth over Zp, with unit section e in G(S). For any

s in S (Fp), G(Zp)e(s) is a group fibred over S (Zp)s. The fibres have a natural Zp-

module structure: G(Zp)e(s) is the limit of the G(Z/pnZ)e(s) (n ≥ 1), S (Zp)s is the

limit of the S (Z/pnZ)s and for each n ≥ 1, the fibres of G(Z/pnZ)e(s) → S(Z/pnZ)s
are commutative groups annihilated by pn−1. Let TG/S be the relative (geometric)
tangent bundle of G over S. Then its pullback TG/S(e) by e is a vector bundle on S of

rank d.

Lemma 5.1.1. In this situation, and with n the relative dimension of S over Zp, the
formal logarithm and exponential of G base-changed to Q⊗OS,s converge to maps

log : G̃pe(s) (Zp) =G(Zp)e(s) → (TG/S(e))(Zp)0(s) ,

exp: T̃G/S(e)
p
0(s) (Zp) = (TG/S(e))(Zp)0(s) →G(Zp)e(s) ,

that are each other’s inverse and, after a choice of parameters for G → S at e(s) as

in definition (3.1), are given by n+ d elements of O
(
G̃pe(s)

)∧p

and n+ d elements of

O
(
T̃G/S(e)

p
0(s)

)∧p

.
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12 B. Edixhoven and G. Lido

For a in Zp and g in G(Zp)e(s), we have a·g = exp(a· logg), and after a choice of

parameters for G→ S at e(s), this map Zp×G(Zp)e(s) → G(Zp)e(s) is given by n+ d

elements of O
(
A1

Zp
×Zp

G̃pe(s)

)∧p

. The induced morphism A1
Fp

×
(
G̃pe(s)

)
Fp

→
(
G̃pe(s)

)
Fp

,

where
(
G̃pe(s)

)
Fp

is viewed as the product of TSFp
(s) and TG/S(e(s)), is a morphism

over TSFp
(s), bilinear in A1

Fp
and TG/S(e(s)).

Proof. Let t1, . . . ,tn be in OS,s such that p,t1, . . . ,tn are parameters at s. Then we have

a bijection

t̃ : S (Zp)s → Znp , a 7→ p−1·(t1(a), . . . ,tn(a)). (5.1.2)

Similarly, let x1, . . . ,xd be generators for the ideal Ie(s) of e in OG,e(s). Then p, the ti and

the xj together are parameters for OG,e(s) and give the bijection

(t,x)∼ : G(Zp)e(s) → Zn+dp , b 7→ p−1·(t1(b), . . . ,xd(b)). (5.1.3)

The dxi form an OS,s-basis of Ω
1
G/S(e)s and so give translation-invariant differentials ωi

on GOS,s
. As G is commutative, for all i, dωi = 0 [20, Proposition 1.3]. We also have the

dual OS,s-basis ∂i of TG/S(e) and the bijection

(t,x)∼ : (TG/S(e))(Zp)0(s) → Zn+dp ,

(
a,
∑

i

vi∂i

)
7→ p−1·(t1(a), . . . ,tn(a),v1, . . . ,vd).

(5.1.4)

Then log is given by elements logi in (Q⊗OS,s)[[x1, . . . ,xd]] whose constant term is 0,
uniquely determined [20, Proposition 1.1] by the equality

dlogi = ωi in ⊕jOS,s[[x1, . . . ,xd]]·dxj . (5.1.5)

Hence the formula from calculus, logi(x)− logi(0) =
∫ 1

0
(t 7→ tx)∗ωi, gives us that with

logi =
∑

J 6=0

logi,J x
J and logi,J ∈ (Q⊗OS,s), (5.1.6)

we have – for all i and J , with |J | denoting the total degree of xJ –

|J |· logi,J ∈ OS,s. (5.1.7)

The claim about convergence and definition of log : G(Zp)e(s) → (TG/S(e))(Zp)0(s), is now

equivalent to having an analytic bijection Zn+dp → Zn+dp given by
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G(Zp)e(s) (TG/S(e))(Zp)0(s)

Zn+dp Zn+dp ,

(a,b)
(
a,p−1·

(∑
J 6=0 logi,J

(
t̃−1(a)

)
(pb)J

)
i

)
.

?

(t,x)∼ (t,x)∼

?

?

(5.1.8)

We have, for each i,

p−1·
∑

J 6=0

logi,J
(
t̃−1(a)

)
(pb)J =

∑

J 6=0

p|J|−1

|J |

(
|J | logi,J

)(
t̃−1(a)

)
bJ . (5.1.9)

For each i, this expression is an element of Zp
〈
t̃1, . . . ,t̃n,x̃1, . . . ,x̃d

〉
= O

(
G̃pe(s)

)∧p

, even

when p= 2, because for each J , |J | logi,J is in OS,s, which is contained in Zp
〈
t̃1, . . . ,t̃n

〉
,

and the function Z≥1 →Qp, r 7→ pr−1/r, has values in Zp and converges to 0. The existence

and analyticity of log is now proved (even for p=2). As p> 2, the image of equation (5.1.9)

in Fp⊗O
(
G̃pe(s)

)∧p

is x̃i, and on the first n coordinates, log is the identity – so by applying

Hensel mod powers of p, log is invertible, and the inverse is also given by n+d elements

of O
(
T̃G/S(e)

p
0(s)

)∧p

.

The function Zp×G(Zp)e(s) →G(Zp)e(s), (a,g) 7→ exp(a· logg), is a composition of maps

given by integral convergent power series, hence it is also of that form.

5.2. Parametrisation by power series

The notation and assumptions are as in the beginning of §4; in particular, p > 2 and T

is as defined in diagram (2.12). We have a t in T (Fp), with image jb(u) in J (Fp), and
a t̃ in T (Z) lifting t. For every Q in T (Z) mapping to jb(u) in J (Fp), there are unique
ε ∈ Z×,ρ−1 and n ∈ Zr such that Q= ε·Dt̃(n): the image of Q in J(Z) is in J(Z)jb(u), and
hence differs from the image xt̃ in J(Z) of t̃ by an element of J(Z)0 (with here 0∈ J (Fp)),∑
inixi for a unique n∈Zr, and hence Dt̃(n) and Q are in T (Z) and have the same image

in J(Z), which gives the unique ε. So we have a bijection

Z×,ρ−1×Zr −→ T (Z)jb(u) = {Q ∈ T (Z) :Q 7→ jb(u) ∈ J(Fp)},

(ε,n) 7→ ε·Dt̃(n). (5.2.1)

But a problem that we are facing is that the map Zr → T (Fp)jb(u) sending n to the image

of Dt̃(n) depends on the (unknown) images of the Pi,j , Ri,t̃ and St̃,j from formula (4.1)

in P×,ρ−1 (Fp), and so we do not know for which n and ε the point ε·Dt̃(n) is in T (Z)t.
Luckily, we have the Z×,ρ−1

p -action on T (Zp). Using the fact that Z×
p = F×

p × (1+pZp),
we have F×,ρ−1

p acting on T (Zp)jb(u) compatibly with the torsor structure on T (Fp)jb(u).

So for every n in Zr there is a unique ξ(n) in F×,ρ−1
p such that ξ(n)·Dt̃(n) is in T (Zp)t.
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We define

D′(n) := ξ(n)·Dt̃(n). (5.2.2)

Then for all n in Zr,

κZ(n) =Dt̃((p−1)·n) =D′((p−1)·n), (5.2.3)

because Dt̃((p−1)·n) maps to t in T (Fp). Moreover, for every Q in T (Z)t there is a unique

n ∈ Zr and a unique ε ∈ Z×,ρ−1 such that Q= ε·Dt̃(n) = ξ(n)·Dt̃(n) =D′(n). Hence

T (Z)t ⊂D′(Zr). (5.2.4)

The following lemma proves the existence and uniqueness of the κi of Theorem 4.10 and

the claims on the degrees of the κi:

Lemma 5.2.5. After any choice of parameters of OT,t as in Theorem 4.10, D′ is given

by elements κ′1, . . . ,κ
′
g+ρ−1 of O

(
ArZp

)∧p

, and then κZ is given by κ1, . . . ,κg+ρ−1 with, for

all i ∈ {1, . . . ,g+ρ−1} and all a ∈ Zrp,

κi(a) = κ′i((p−1)a).

For all i in {1, . . . ,g+ρ−1}, we let κ′i be the reduction mod p of κ′j. Then κ
′
1, . . . ,κ

′
g are

of degree at most 1, and the remaining κ′j are of degree at most 2.

Proof. In order to get a formula for D′(n), we introduce variants of the Pi,j , Ri,t̃ and

St̃,j as follows. The images in
(
J ×

(
J∨0

)ρ−1
)
(Fp) of these points are of the form (0,∗),

(0,∗) and (∗,0), respectively. Hence the fibres over them of P×,ρ−1 are rigidified – that
is, equal to F×,ρ−1

p . We define their variants P ′
i,j , R

′
i,t̃

and S′
t̃,j

in P×,ρ−1 (Zp) to be the

unique elements in their orbits under F×,ρ−1
p whose images in P×,ρ−1 (Fp) are equal to

the element 1 in F×,ρ−1
p . Replacing these Pi,j , Ri,t̃ and St̃,j in formulas (4.2) and (4.3) by

P ′
i,j , R

′
i,t̃

and S′
t̃,j

gives variants A′, B′ and C ′, and using these in definition (4.4) gives

a variant D′
t̃
(n) of definition (5.2.2).

Then for all n in Zr, we have that D′
t̃
(n) and D′(n) (as in definition (5.2.2)) are equal,

because both are in P×,ρ−1 (Zp)t and in the same F×,ρ−1
p -orbit. Hence we have, for all n

in Zr,

A′(n) =

r∑
2

j=1

nj ·2 S
′
t̃,j
, B′(n) =

r∑
1

i=1

ni ·1R
′
i,t̃
,

C ′(n) =

r∑
1

i=1

ni ·1




r∑
2

j=1

nj ·2P
′
i,j


,

D′(n) = (C ′(n)+2B
′(n))+1

(
A′(n)+2 t̃

)
.

(5.2.6)

This shows how the map n 7→D′(n) is built up from the two partial group laws +1 and
+2 on P×,ρ−1 and the iterations ·1 and ·2. Lemma 5.1.1 gives that the iterations are

given by integral convergent power series. The functoriality in §3 gives that the maps

induced by +1 and +2 on residue polydisks are given by integral convergent power series.
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Stability under composition then gives that n 7→D′(n) is given by elements κ′1, . . . ,κ
′
g+ρ−1

of Zp〈z1, . . . ,zr〉.
We call the κ′i the coordinate functions of the extension D′ : Zrp → T (Zp)t = Zg+ρ−1

p ,
and their images κ′1, . . . ,κ

′
g+ρ−1 in Fp[z1, . . . ,zr] the mod p coordinate functions, viewed

as a morphism D
′
Fp

: ArFp
→ Ag+ρ−1

Fp
.

The mod p coordinate functions of A′ : Zrp→P×,ρ−1 (Zp) =Zρg+ρ−1
p (after choosing the

necessary parameters) are all of degree at most 1. The same holds for B′. We define

C ′
2 : Z

r×Zr −→ P×,ρ−1 (Zp), C ′
2(n,m) =

r∑
1

i=1

ni ·1




r∑
2

j=1

mj ·2P
′
i,j


 . (5.2.7)

Then the mod p coordinate functions of C ′
2, elements of Fp[x1, . . . ,xr,y1, . . . ,yr], are linear

in the xi and in the yj – hence of degree at most 2 – and the same follows for the mod p
coordinate functions of C ′. However, as the first ρg parameters for P×,ρ−1 come from

J ×J∨ρ−1, and the first and second partial group laws there act on different factors, the

first ρg mod p coordinate functions of C ′ are in fact linear. As D′ is obtained by summing
the results of A′, B′ and C ′ using the partial group laws, we conclude that κ′1, . . . ,κ

′
g are

of degree at most 1, and the remaining κj are of degree at most 2. The same holds then

for all κj .

5.3. The p-adic closure

We know from equation (5.2.3) that κZ(Zr) =D′((p−1)Zr). From formula (4.9) we know

that κZ(Zr)⊂ T (Z)t, and from formula (5.2.4) we know that T (Z)t ⊂D′(Zr). So together

we have

D′((p−1)Zr) = κZ(Z
r)⊂ T (Z)t ⊂D′(Zr). (5.3.1)

We have extended D′ to a continuous map Zrp → T (Zp)t. As Zrp is compact, D′
(
Zrp
)
is

closed in T (Zp)t. As Z
r and (p−1)Zr are dense in Zrp, the closures of their images under

D′ are both equal to D′
(
Zrp
)
and equal to κ

(
Zrp
)
. This finishes the proof of Theorem 4.10.

6. Explicit description of the Poincaré torsor

The aim of this section is to give explicit descriptions of the Poincaré torsor P× on

J ×J∨,0 and its partial group laws, to be used for making computations when applying
Theorem 4.12. The main results are as follows. Proposition 6.3.2 describes the fibre of P

over a point of J ×J∨,0, say with values in Z/p2Z with p not dividing n or in Z[1/n],
when the corresponding points of J and J∨,0 are given by a line bundle on C (over
Z/p2Z or Z[1/n], and rigidified at b) and an effective relative Cartier divisor on C (over

Z/p2Z or Z[1/n]). It also translates the partial group laws of P× in terms of such data.

Lemma 6.4.8 shows how to deal with linear equivalence of divisors. Lemma 6.5.4 makes
the symmetry of P× explicit. Lemma 6.6.8 gives parametrisations of residue polydisks

of P×
(
Z/p2Z

)
, and Lemma 6.6.13 gives partial group laws on these residue polydisks.

Proposition 6.8.7 describes the unique extension over J ×J∨,0 of the Poincaré torsor on
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16 B. Edixhoven and G. Lido

(
J ×J∨,0

)
Z[1/n]

, in terms of line bundles and divisors on C. Finally, Proposition 6.9.3

describes the fibres of P over Z-points of J ×J∨,0.

In this article, we have chosen to use line bundles and divisors on curves for describing

the Jacobian and the Poincaré torsor. Another option is to use line bundles on curves
and the determinant of coherent cohomology, as in [25, §2]. We note that there only the

restriction of P to J0×J∨,0 is treated, and moreover, under the assumption that C is

nodal (that is, all fibres CFp
are reduced and have only the mildest possible singularities).

Another choice we have made is to develop the basic theory of norms of Gm-torsors under

finite locally free morphisms in this article (§§6.1 and 6.2) and not to refer, for example,

to EGA or SGA, because we think this is easier for the reader and because this way we
can adapt the definition directly to our use of it.

6.1. Norms

Let S be a scheme, and let f : S′ → S be finite and locally free, say of rank n. Then

OS′ = f∗OS′ (we view OS′ as a sheaf on S) is an OS-algebra, locally free as an OS-module

of rank n, and O×
S′ is a subsheaf of groups of GLOS

(OS′). Then the norm morphism is
the composition

O×
S′ GLOS

(OS′) O×
S .

NormS′/S

det (6.1.1)

Our viewing of OS′ as a sheaf on S does not change the notion of O×
S′ -torsor, because

of the equivalence with invertible OS′ -modules: triviality locally on S′ implies triviality
locally on S.

For T an O×
S′ -torsor, we let NormS′/S(T ) be the O×

S -torsor

NormS′/S(T ) :=O×
S ⊗O×

S′
T =

(
O×
S ×T

)
/O×

S′, (6.1.2)

with – for every open U of S and every u ∈ O×
S′(U) – u acting as (v,t) 7→(

v·NormS′/S(u),u
−1·t

)
. This is functorial in T : a morphism ϕ : T1 → T2 induces an

isomorphism NormS′/S(ϕ). It is also functorial for cartesian diagrams (S′
2 → S2) →

(S′
1 → S1).

For U ⊂ S open, T an O×
S′ -torsor and t ∈ T (U), we have the isomorphism of

O×
S′

∣∣
U
-torsors O×

S′

∣∣
U

→ T |U sending 1 to t. Functoriality gives NormS′/S(t) in
(NormS′/S(T ))(U), also denoted 1⊗ t.
The norm functor (6.1.2) is multiplicative:

NormS′/S

(
T1⊗OS′ T2

)
=NormS′/S(T1)⊗OS

NormS′/S(T2) (6.1.3)

such that if U ⊂ S is open and t1 and t2 are in T1(U) and T2(U), then

NormS′/S(t1⊗ t2) 7→NormS′/S(t1)⊗NormS′/S(t2). (6.1.4)

Let L be an invertible OS′ -module; locally on S, it is free of rank 1 as an OS′ -

module. This gives us the O×
S′ -torsor (on S) IsomOS′ (OS′,L), which gives back L as
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L=OS′ ⊗O×

S′
IsomOS′ (OS′,L). The norm of L via f : S′ → S is then defined as

NormS′/S(L) :=OS⊗O×

S
NormS′/S

(
IsomOS′ (OS′,L)

)
. (6.1.5)

This construction is functorial for isomorphisms of invertible OS′ -modules.

6.2. Norms along finite relative Cartier divisors

This part is inspired by [21, §1.1]. Let S be a scheme and f : X → S be an S-scheme

of finite presentation. A finite effective relative Cartier divisor on f : X → S is a closed

subscheme D of X that is finite and locally free over S, and whose ideal sheaf ID is
locally generated by a nonzero divisor (equivalently, ID is locally free of rank 1 as an

OX -module). For such a D and an invertible OX -module L, the norm of L along D is

defined, using definition (6.1.5), as

NormD/S(L) := NormD/S(L|D). (6.2.1)

Then NormD/S(L) is functorial for cartesian diagrams (X ′ → S′,L′)→ (X → S,L).

Lemma 6.2.2. Let f : X → S be a morphism of schemes that is of finite presentation.

For D a finite effective relative Cartier divisor on f , the norm functor NormD/S in

definition (6.2.1) is multiplicative in L:

NormD/S(L1⊗L2) = NormD/S(L1)⊗OS
NormD/S(L2), (6.2.3)

with – for U ⊂ S open, V ⊂ X open, containing f−1U ∩D and li ∈ Li(V ) generating

Li|V –

NormD/S(l1⊗ l2) = NormD/S(l1)⊗NormD/S(l2). (6.2.4)

Let D1 and D2 be finite effective relative Cartier divisors on f . Then the ideal sheaf

ID1
ID2

⊂OX is locally free of rank 1 and the closed subscheme D1+D2 defined by it is
a finite effective relative Cartier divisor on f . The norm functor in definition (6.2.1) is

additive in D:

Norm(D1+D2)/S(L) = NormD1/S(L)⊗OS
NormD2/S(L), (6.2.5)

with – for U ⊂S open, V ⊂X open, containing f−1U ∩(D1+D2) and l ∈L(V ) generating
L|D1+D2

–

Norm(D1+D2)/S(l) = NormD1/S(l)⊗NormD2/S(l). (6.2.6)

Proof. Let D1 and D2 be as stated. If V ⊂X is open and fi generates IDi
|V , then f1f2

generates (ID1
ID2

)|V , and this element of OX(V ) is not a zero-divisor because f1 and f2
are not. To show that D1+D2 is finite over S, we replace S by an affine open of it and

then reduce to the noetherian case, using the assumption that f is of finite presentation.

Then (D1+D2)red is the image of D1,red

∐
D2,red → X, and therefore is proper. Hence
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18 B. Edixhoven and G. Lido

D1 +D2 is proper over S and quasi-finite over S, hence finite over S. The short exact
sequence

ID2
/ID1+D2

OD1+D2
OD2

(ID2
)|D1

(6.2.7)

shows that OD1+D2
is locally free as an OS-module, whose rank is the sum of the ranks

of the ODi
. So D1+D2 is a finite effective relative Cartier divisor on X → S.

We prove equation (6.2.5) by proving the required statement about sheaves of groups.

The diagram

O
×

D1+D2
O

×

D1
×O

×

D2
O

×

S ×O
×

S O
×

S ,

u NormD1/S(u)NormD2/S(u),

Norm(D1+D2)/S

NormD1/S×NormD2/S ·

(6.2.8)

commutes, because multiplication by u on OD1+D2
preserves the short exact

sequence (6.2.7), multiplying on the sub and quotient by its images in O×
D1

and in

O×
D2

; note that the sub is an invertible OD1
-module.

6.3. Explicit description of the Poincaré torsor of a smooth curve

Let g be in Z≥1, S be a scheme and π : C → S be a proper smooth curve, with

geometrically connected fibres of genus g, with a section b ∈ C(S). Let J → S be its

Jacobian. On C×S J we have Luniv, the universal invertible O-module of degree 0 on C,
rigidified at b.

Let d ≥ 0 and C(d) be the dth symmetric power of C → S (we note that the quotient

Cd → C(d) is finite and locally free of rank d!, and commutes with base change on S).
Then on C ×S C(d) we have D, the universal effective relative Cartier divisor on C of

degree d. Hence on C×S J ×S C
(d) we have their pullbacks DJ and Luniv

C(d) , giving

Nd := NormDJ/(J×SC(d))
(
Luniv
C(d)

)
. (6.3.1)

This invertible O-module Nd on J ×S C
(d), rigidified at the zero-section of J , gives a

morphism of S-schemes C(d) to PicJ/S . The point db (the divisor d times the base point b)
in C(d)(S) is mapped to 0, precisely because Luniv is rigidified at b, and equation (6.2.5).

Hence there is a unique morphism ✷ : C(d) → J∨ = Pic0J/S such that the pullback of the

Poincaré bundle P on J×J∨ by (id,✷) : J×C(d) → J×J∨, with its rigidifications, is the
same as Nd. The following proposition tells us what the morphism ✷ is, and the next
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section tells us what the induced isomorphism is between the fibres of Nd at points of
J ×C(d) with the same image in J ×S J :

Proposition 6.3.2. The pullback of P by
(
jb,j

∗,−1
b

)
: C×S J → J ×S J∨ together with

its rigidifications at b and 0 is equal to Luniv.

Let d be in Z≥0. The morphism ✷ : C(d) → J∨ = Pic0J/S is the composition of first

Σ: C(d) → J , sending, for every S-scheme T , each point D ∈ C(d)(T ) to the class

of OCT
(D− db) twisted by the pullback from T that makes it rigidified at b, followed

by j∗,−1
b : J → J∨. Summarised in a diagram, with M :=

(
id× j∗,−1

b

)∗
P , this is:

Luniv P M Nd,

C×S J J ×S J
∨ J ×S J J ×S C

(d).

ĩd×Σ

jb×j
∗,−1
b id×j∗,−1

b id×Σ

(6.3.3)

Then M, with its rigidifications at {0}×S J and J ×S {0}, is symmetric. For T → S, x
in J(T ) given by an invertible O-module L on CT rigidified at b and y = Σ(D) in J(T )

given by an effective relative divisor D of degree d on CT , we have

P
(
x,j∗,−1

b (y)
)
=M(x,y) = NormD/T (L). (6.3.4)

For c1 and c2 in C(S), we have

M(jb(c1),jb(c2)) = c∗2 (OC(c1− b))⊗ b
∗ (OC(b− c1)), (6.3.5)

and as invertible O-modules on C×S C, with ∆ the diagonal and pr∅ : C×S C → S the

structure morphism, we have

(jb× jb)
∗M=O(∆)⊗pr∗1O(−b)⊗pr∗2O(−b)⊗pr∗∅b

∗TC/S . (6.3.6)

For d > 2g−2, ĩd×Σ gives Nd a descent datum along id×Σ that gives M on J×S J . For
T an S-scheme, x ∈ J(S) given by L on CT (rigidified at b) and D1 and D2 in C(d1)(S)

and C(d2)(S), the isomorphism

M(x,Σ(D1+D2)) =M(x,Σ(D1))⊗M(x,Σ(D2)) (6.3.7)

corresponds via ĩd×Σ to

Nd1+d2(x,D1+D2) = Norm(D1+D2)/T (L) = NormD1/T (L)⊗NormD2/T (L)

=Nd1(x,D1)⊗Nd2(x,D2),
(6.3.8)

using Lemma 6.2.2.

For T an S-scheme and x1 and x2 in J(T ) given by O-modules L1 and L2 on CT ,

rigidified at b, and D in C(d)(T ), the isomorphism

M(x1+x2,Σ(D)) =M(x1,Σ(D))⊗M(x2,Σ(D)) (6.3.9)
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20 B. Edixhoven and G. Lido

corresponds via ĩd×Σ to

Nd(x1+x2,D) = NormD/T (L1⊗L2) = NormD/T (L1)⊗NormD/T (L2)

=Nd(x1,D)⊗Nd(x2,D),
(6.3.10)

using Lemma 6.2.2.

Proof. Let T be an S-scheme and x be in J(T ). Then x corresponds to the invertible O-

module (id×x)∗Luniv on CT , rigidified at b. Define z := j∗,−1
b (x) in J∨(T ). Then j∗b (z) = x,

meaning that the pullback of (id× z)∗P on JT rigidified at 0 by jb equals (id×x)
∗Luniv

on CT rigidified at b. Taking T := J and x the tautological point gives the first claim of

the proposition.

The symmetry of M with its rigidifications follows from [25, Equation 2.7.1,
Lemma 2.7.5 and Equation 2.7.7], using equation (2.9).

Now we prove equation (6.3.4). Let T and x be as before, and y =Σ(D) in J(T ) given

by a relative divisor D of degree d on CT . As C
d→C(d) is finite and locally free of rank d!,

we may and do suppose that D is a sum of sections, say D =
∑d
i=1(ci), with ci ∈ C(T ).

Then we have, functorially,

P
(
x,j∗,−1

b (y)
)
= P

(
y,j∗,−1

b (x)
)
= P

(
Σ(D),j∗,−1

b (x)
)

= P

(
∑

i

jb(ci),j
∗,−1
b (x)

)
=
⊗

i

P
(
jb(ci),j

∗,−1
b (x)

)

=
⊗

i

Luniv(ci,x) =
⊗

i

L(ci) = NormD/T (L).

(6.3.11)

Identities (6.3.5) and (6.3.6) follow directly from equation (6.3.4).
Now we prove the claimed compatibility between the isomorphisms in equations (6.3.9)

and (6.3.10). We do this by considering the case where L is universal – that is, base-

changing to JT and x the universal point. Then on JT we have two isomorphisms from
Norm(D1+D2)/JT (L) to NormD1/JT (L)⊗NormD2/JT (L). These differ by an element of

O(JT )
× =O(T )×. Hence it suffices to check that this element equals 1 at 0 ∈ J(T ). This

amounts to checking that the two isomorphisms are equal for L=OCT
with the standard

rigidification at b. Then both isomorphisms are the multiplication map OT ⊗OT
OT →OT .

The compatibility between the isomorphisms in equations (6.3.7) and (6.3.8) is proved

analogously.

Remark 6.3.12. From Proposition 6.3.2 one easily deduces in that situation – for T an
S-scheme, x in J(T ) given by an invertible O-module L on CT and D1 and D2 effective

relative Cartier divisors on CT , of the same degree – a canonical isomorphism

M(x,Σ(D1)−Σ(D2)) = NormD1/T (L)⊗NormD2/T (L)
−1, (6.3.13)

satisfying the analogous compatibilities as in Proposition 6.3.2. No rigidification of L at b
is needed. In fact, for L0 an invertibleOT -module, we have NormD1/T (π

∗L0)=L⊗d
0 , where

π : CT → T is the structure morphism and d is the degree of D1. Hence the right-hand

side of equation (6.3.13) is independent of the choice of L, given x.
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6.4. Explicit isomorphism for norms along equivalent divisors

Let g be in Z≥1, S be a scheme and p : C→S be a proper smooth curve, with geometrically

connected fibres of genus g, with a section b ∈ C(S). Let D1,D2 be effective relative

Cartier divisors of degree d on C, which we also view as elements of C(d)(S). Recall

from Proposition 6.3.2 the morphism Σ: C(d) → J . Then Σ(D1) = Σ(D2) if and only if
D1,D2 are linearly equivalent in the following sense: locally on S, there exists an f in

OC(U)×, with U := C \ (D1 ∪D2), such that f · : OU → OU extends to an isomorphism

f · : OC(D1)→OC(D2). In this case, we define div(f) =D2−D1. Proposition 6.3.2 gives
us, for each invertible O-module L of degree 0 on C rigidified at b (viewed as an element

of J(S)), specific isomorphisms

NormD1/S(L) =Nd(L,D1) =M(L,Σ(D1)) =M(L,Σ(D2)) =Nd(L,D2)

= NormD2/S(L).
(6.4.1)

Now we describe explicitly this isomorphism NormD1/S(L)→NormD2/S(L). To do so we

first describe an isomorphism

ϕL,D1,D2
: NormD1/S(L)−→NormD2/S(L) (6.4.2)

that is functorial for cartesian diagrams (C ′ → S′,L′,D′
1,D

′
2) → (C → S,L,D1,D2), and

then we prove that this isomorphism is the one in equation (6.4.1).

We construct ϕL,D1,D2
locally on S, and the functoriality of the construction takes

care of making it global. So suppose that f is as before: f ∈ OC(U)× and f · : OU →OU

extends to an isomorphism f · : OC(D1)→OC(D2). Set n ∈ Z with n > 2g−2+2d. Then

p∗(L(nb))→ p∗L(nb)|D1+D2
and p∗(OC(nb))→ p∗OC(nb)|D1+D2

are surjective, and (still
localising on S) p∗(L(nb)) and p∗(OC(nb)) are free OS-modules and L(nb)|D1+D2

and

OC(nb)|D1+D2
are free OD1+D2

-modules of rank 1. Then we have l0 in (L(nb))(C) and l1
in (OC(nb))(C) restricting to generators on D1+D2. Define D− := div(l1), D

+ := div(l0)
and V := C \ (D++D−). Note that V contains D1+D2 and that U contains D++D−.

Then on V , l := l0/l1 is in L(V ) and generates L|D1+D2
, and multiplication by l is an

isomorphism ·l : OC (D+−D−)→L – that is, div(l) =D+−D−. Let

f(div(l)) = f
(
D+−D−

)
:= NormD+/S (f |D+) ·NormD−/S (f |D−)

−1 ∈ OS(S)
×, (6.4.3)

and let ϕL,l,f be the isomorphism

ϕL,l,f : NormD1/S(L)−→NormD2/S(L),

NormD1/S(l) 7−→ f(div(l))−1 ·NormD2/S(l),
(6.4.4)

given in terms of generators. Now suppose that we made other choices n′, l′0, l
′
1. Then

we get D−′
, D+′

, V ′, l′ and ϕL,l′,f , and there is a unique function g ∈OC(V ∩V ′)× such
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22 B. Edixhoven and G. Lido

that l′ = gl in L(V ∩V ′). Then

ϕL,l′,f (NormD1/S(l)) = ϕL,l′,f

(
NormD1/S

(
g−1l′

))

= ϕL,l′,f

(
g−1(D1)NormD1/S(l

′)
)

= g−1(D1)·ϕL,l′,f

(
NormD1/S(l

′)
)

= g−1(D1)·f(div(l
′))−1·NormD2/S(l

′)

= g−1(D1)·f(div(gl))
−1·NormD2/S(gl)

= g−1(D1)·f(div(g)+div(l))−1·g(D2)·NormD2/S(l)

= g−1(D1)·f(div(g))
−1·g(D2)·f(div(l))

−1·NormD2/S(l)

= g(div(f))·f(div(g))−1·ϕL,l,f

(
NormD1/S(l)

)

= ϕL,l,f

(
NormD1/S(l)

)
,

(6.4.5)

where in the last step we used Weil reciprocity, in a generality for which we do not know
a reference. The truth in this generality is clear from the classical case by reduction to

the universal case, in which the base scheme is integral: take a suitable level structure

on J , then consider the universal curve with this level structure and the universal 4-tuple
of effective divisors with the necessary conditions. We conclude that ϕL,l,f = ϕL,l′,f .

Now suppose that f ′ is in OC(U)× with div(f ′) = div(f). Then there is a unique

u ∈ OS(S)
× such that f ′ = u·f , and since L has degree 0 on C,

ϕL,l,f ′

(
NormD1/S(l)

)
= (u·f)(div(l))−1·NormD2/S(l)

= u−deg(div(l))f(div(l))−1·NormD2/S(l)

= f(div(l))−1·NormD2/S(l) = ϕL,l,f

(
NormD1/S(l)

)
.

(6.4.6)

Hence ϕL,l,f ′ = ϕL,l,f . We define

ϕD1,D2,L : NormD1/S(L)−→NormD2/S(L) (6.4.7)

as the isomorphism ϕL,l,f in formula (6.4.4) for any local choice of f and l.

Lemma 6.4.8. With the assumptions as in the beginning of §6.4, the isomorphism

ϕL,D1,D2
in formula (6.4.7) is equal to the isomorphism in equation (6.4.1).

Proof. We do this, as in the proof of Proposition 6.3.2, by considering the case of the

universal L – that is, we base-change via J → S – and then restricting to 0 ∈ J(S).

This amounts to checking that the two isomorphisms are equal for L = OC with the

standard rigidification at b. In this case, NormDi/S(OC) = OS , with NormDi/S(1) = 1.
Hence ϕD1,D2,OC

= ϕOC,1,f is the identity on OS (use definition (6.4.4)). The other

isomorphism is the identity on OS because of the rigidifications of M and Nd on 0×J
and 0×C(d).

6.5. Symmetry of the norm for divisors on smooth curves

Let C → S be a proper and smooth curve with geometrically connected fibres. For D1,
D2 effective relative Cartier divisors on C we define an isomorphism

ϕD1,D2
: NormD1/S(OC(D2))−→NormD2/S(OC(D1)) (6.5.1)

that is functorial for cartesian diagrams (C ′/S′,D′
1,D

′
2)→ (C/S,D1,D2).
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If suffices to define this isomorphism in the universal case – that is, over the scheme
that parametrises all D1 and D2. Let d1 and d2 be in Z≥0, define U := C(d1) ×S C(d2)

and let D1 and D2 be the universal divisors on CU . Then we have the invertible OU -

modules NormD1/U (OC(D2)) and NormD2/U (OC(D1)). The image of D1 ∩D2 in U is
closed; let U0 be its complement. Then over U0, D1 and D2 are disjoint, the restrictions

of NormD1/U (OC(D2)) and NormD2/U (OC(D1)) are generated by NormD1/U (1) and

NormD2/U (1) and there is a unique isomorphism (ϕD1,D2
)U0 that sends NormD1/U (1)

to NormD2/U (1).
We claim that this isomorphism extends to an isomorphism over U . To see it, we

base-change by U ′ → U , where U ′ = Cd1 ×S C
d2 ; then U ′ → U is finite and locally free

of rank d1!·d2!. Then D1 = P1+ · · ·+Pd1 and D2 = Q1+ · · ·+Qd2 , with the Pi and Qj
in C(U ′). The complement of the inverse image U ′0 in U ′ of U0 is the union of the

pullbacksDi,j under pri,j : U
′ →C×SC of the diagonal – that is, the locus where Pi=Qj .

Each Di,j is an effective relative Cartier divisor on U ′, isomorphic as an S-scheme to
Cd1+d2−1 and hence smooth over S. Now

NormD1/U ′(O(D2)) =
⊗

i,j

P ∗
i O (Qj), NormD2/U ′(O(D1)) =

⊗

i,j

Q∗
jO(Pi), (6.5.2)

and on U ′0,

NormD1/U ′(1) =
⊗

i,j

1, NormD2/U ′(1) =
⊗

i,j

1, in O
(
U ′0
)
. (6.5.3)

The divisor on U ′ of the tensor-factor 1 at (i,j), both in NormD1/U ′(1) and in

NormD2/U ′(1), is Di,j . Therefore the isomorphism (ϕD1,D2
)U0 extends uniquely to an

isomorphism ϕD1,D2
over U ′, which descends uniquely to U .

Our description of ϕD1,D2
allows us to compute it in the trivial case where D1 and D2

are disjoint. One should be a bit careful in other cases. For example, when d1 = d2 = 1

and P =Q, we have that P ∗OC(Q) = P ∗OC(P ) is the tangent space of C→ S at P , and
hence also at Q, but ϕP,Q is multiplication by −1 on that tangent space. The reason for

that is that the switch automorphism on C×SC induces −1 on the normal bundle of the

diagonal.

Lemma 6.5.4. Let b be an S-point on C. Because of the symmetry in Proposition 6.3.2,

using equation (6.3.13)), we have for D1, D2 relative effective divisors on C of degree
d1,d2 over S the following diagram of isomorphisms defining ψD1,D2

:

M(Σ(D2),Σ(D1)) NormD1/S(OC(D2−d2b))⊗ b∗OC(D2−d2b)−d1

M(Σ(D1),Σ(D2)) NormD2/S(OC(D1−d1b))⊗ b
∗OC(D1−d1b)

−d2 .

ψD1,D2

Then

ψD1,D2
= ϕD1,D2

⊗ϕ−1
D1,d2b

⊗ϕ−1
d1b,D2

⊗ϕd1b,d2b. (6.5.5)
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Moreover, the isomorphisms ϕD1,D2
and consequently ψD1,D2

are compatible with addition
of divisors – that is, under equations (6.3.10) and (6.3.8), we have for every triple

D1,D2,D3 of relative Cartier divisors on C

ϕD1+D2,D3
= ϕD1,D3

⊗ϕD2,D3
, ϕD1,D2+D3

= ϕD1,D2
⊗ϕD1,D3

. (6.5.6)

Proof. It is enough to prove the lemma in the universal case – that is, when D1 and D2

are the universal divisors on CU – and there we know that there exists a u in OU (U)× =

OS(S)
× such that

u ·ψD1,D2
= ϕD1,D2

⊗ϕ−1
D1,d2b

⊗ϕ−1
d1b,D2

⊗ϕd1b,d2b. (6.5.7)

Since the symmetry in Proposition 6.3.2 is compatible with the rigidification at

(0,0) ∈ (J × J)(S), ψd1b,d2b is the identity on OU , as well as the right-hand side of

equation (6.5.5) when Di = dib. Hence u= u(d1b,d2b) = 1, proving equation (6.5.5).
Now we prove equation (6.5.6). As with equation (6.5.5), it is enough to prove it in

the universal case, and then we can reduce to the case where D1 = d1b, D2 = d2b and

D3 = d3b for di positive integers, where we have

ϕd1b+d2b,d3b = ϕd1b,d3b⊗ϕd2b,d3b = (−1)(d1+d2)d3,

ϕd1b,d2b+d3b = ϕd1b,d2b⊗ϕd1b,d3b = (−1)d1(d2+d3).
(6.5.8)

6.6. Explicit residue disks and partial group laws

Let C be a smooth, proper, geometrically connected curve over Z/p2, with a b∈C(Z/p2),
g the genus and M be as in Proposition 6.3.2. Let D = D+ −D− and E = E+ −E−

be relative Cartier divisors of degree 0 on C. For each α in M× (Fp) whose image in

(J ×J)(Fp) is given by (D,E), we parametrise M×
(
Z/p2

)
α
, under the assumption that

there exists a nonspecial split reduced divisor of degree g on CFp
.

Let b1, . . . ,bg in C
(
Z/p2

)
have distinct images bi in C (Fp) such that h0(CFp

,

b1+ · · ·+ bg) = 1 and let bg+1, . . . ,b2g in C
(
Z/p2

)
be such that the bg+i are distinct and

h0(CFp
,bg+1+ · · ·+ b2g) = 1. Then the maps

f1 : C
g −→ J, (c1, . . . ,cg) 7−→ [OC (c1+ · · ·+ cg− (b1+ · · ·+ bg)+D)],

f2 : C
g −→ J, (c1, . . . ,cg) 7−→ [OC (c1+ · · ·+ cg− (bg+1+ · · ·+ b2g)+E)],

(6.6.1)

are étale respectively in the points
(
b1, . . . ,bg

)
∈Cg (Fp) and

(
bg+1, . . . ,b2g

)
∈Cg (Fp), and

consequently give bijections Cg
(
Z/p2

)
(b1,...,bg)

→ J
(
Z/p2

)
D
and Cg

(
Z/p2

)
(bg+1,...,b2g)

→

J
(
Z/p2

)
E
. For each point c ∈ C (Fp) we choose

xD,c ∈ OC(−D)c a generator and xc ∈ OC,c (6.6.2)

such that p and xc generate the maximal ideal of OC,c.
For each i = 1, . . . ,2g we choose xbi so that xbi(bi) = 0. For each

(
Z/p2

)
-point c ∈

C
(
Z/p2

)
with image c in C (Fp) and for each λ ∈ Fp, let cλ be the unique point in

C
(
Z/p2

)
c
with xc(cλ) = λp. Then the map λ 7→ cλ is a bijection Fp → C

(
Z/p2

)
c
, and
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hence the maps f1,f2 induce bijections

Fgp −→ J
(
Z/p2

)
D
, λ 7−→Dλ :=D+(b1,λ1

− b1)+ · · ·+
(
bg,λg

− bg
)
,

Fgp −→ J
(
Z/p2

)
E
, µ 7−→ Eµ := E+(bg+1,µ1

− bg+1)+ · · ·+
(
b2g,µg

− b2g
)
.

(6.6.3)

Hence M×
(
Z/p2

)
D,E

is the union of M× (Dλ,Eµ) as λ and µ vary in Fgp, and by
Proposition 6.3.2 and Remark 6.3.12 we have

M(Dλ,Eµ) = NormE+/(Z/p2)(OC(Dλ))⊗NormE−/(Z/p2)(OC(Dλ))
−1

⊗

g⊗

i=1

(
b∗g+i,µi

OC(Dλ)⊗ b
∗
g+iOC(Dλ)

−1
)
.

(6.6.4)

For each i ∈ {1, . . . ,g}, c ∈ C
(
Z/p2

)
and λ ∈ Fp, we define xi(c,λ) := 1 if c 6= bi and

xi(c,λ) := xbi − λp if c = bi, so that c∗xi(c,λ)
−1 generates c∗O(bi,λ). Then for each

c ∈ C
(
Z/p2

)
and each λ ∈ Fgp,

c∗

(
x−1
D,c ·

g∏

i=1

xi(c,0)

xi(c,λi)

)
generates c∗OC(Dλ). (6.6.5)

We write E± = E0,± + · · ·+Eg,± so that E0,± is disjoint from
{
b1, . . . ,bg

}
and Ei,±,

restricted to CFp
, is supported on bi. Let xD,E be a generator of OC(−D) in a

neighbourhood of E+∪E−. Then for each λ in Fgp,

NormE0,±/(Z/p2)

(
x−1
D,E

)
⊗

g⊗

i=1

NormEi,±/(Z/p2)

(
x−1
D,E ·

xbi
xbi −λip

)
(6.6.6)

generates NormE±/(Z/p2)(OC(Dλ)). By expressions (6.6.4)–(6.6.6), we see that for λ and
µ in Fgp,

sD,E(λ,µ) := NormE0,+/(Z/p2)

(
x−1
D,E

)
⊗

g⊗

i=1

NormEi,+/(Z/p2)

(
x−1
D,E ·

xbi
xbi −λip

)

⊗NormE0,−/(Z/p2)

(
x−1
D,E

)−1

⊗

g⊗

i=1

NormEi,−/(Z/p2)

(
x−1
D,E ·

xbi
xbi −λip

)−1

⊗

g⊗

i=1


b∗g+i,µi


x−1

D,bg+i
·

g∏

j=1

xj (bg+i,µi
,0)

xj (bg+i,µi
,λj)




⊗b∗g+i


x−1

D,bg+i
·

g∏

j=1

xj (bg+i,0)

xj (bg+i,λj)




−1



(6.6.7)

generates the free rank 1 Z/p2-module M(Dλ,Eµ). The fibre M×
(
D,E

)
over

(
D,E

)

in (J ×J)(Fp) is an F×
p -torsor containing sD,E(0,0) and hence in bijection with F×

p by
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sending ξ in F×
p to ξ·sD,E(0,0). Using the fact that

(
Z/p2

)×
= F×

p ×(1+pFp), we conclude
the following lemma:

Lemma 6.6.8. With the assumptions and definitions from the start of §6.6, we have for

each ξ ∈ F×
p a parametrisation of the mod p2 residue polydisk of M× at ξ·sD,E(0,0) by

the bijection

Fgp×Fgp×Fp −→M×
(
Z/p2

)
ξ·sD,E(0,0)

, (λ,µ,τ) 7−→ (1+pτ)·ξ·sD,E(λ,µ).

Using this parametrisation, it easy to describe the two partial group laws onM×
(
Z/p2

)

when one of the two points we are summing lies over
(
D,E

)
and the other lies over

(
D,0

)

or
(
0,E

)
. To compute the group law in J

(
Z/p2

)
, we notice that for each c ∈ C

(
Z/p2

)

such that xc(c) = 0 and for each λ,µ ∈ Fp, we have

x2c
(xc−λp)(xc−µp)

=
x2c

x2c−λpxc−µpxc
=

xc
xc− (λ+µ)p

; (6.6.9)

and since these rational functions generate OC (cλ− c+ cµ− c) and OC (cλ+µ− c) in a
neighbourhood of c, we have the equality of relative Cartier divisors on C

(cλ− c)+(cµ− c) = cλ+µ− c. (6.6.10)

Hence, under the definition for λ ∈ Fgp of

D0
λ := (b1,λ1

− b1)+ · · ·+
(
bg,λg

− bg
)
,

E0
λ := (bg+1,λ1

− bg+1)+ · · ·+
(
b2g,λg

− b2g
)
, (6.6.11)

we have for all λ,µ ∈ Fgp that Dλ+D
0
µ =Dλ+µ and Eλ+E

0
µ = Eλ+µ. Definition (6.6.7),

applied with (D,0) and (0,E), x0,E = 1 and, for every c ∈ C (Fp), x0,c = 1, gives for all

λ,µ in Fgp the elements

sD,0(λ,µ) ∈M×
(
Dλ,E

0
µ

)
, s0,E(λ,µ) ∈M×

(
D0
λ,Eµ

)
. (6.6.12)

With these definitions, we have the following lemma for the partial group laws of M:

Lemma 6.6.13. With the assumptions and definitions from the start of §6.6, we have,

for all λ,λ1,λ2,µ,µ1,µ2 in Fgp,

sD,0(λ,µ1)+2 sD,E(λ,µ2) = sD,0(λ,µ1)⊗sD,E(λ,µ2) = sD,E(λ,µ1+µ2),

s0,E(λ1,µ)+1 sD,E(λ2,µ) = sD,0(λ1,µ)⊗sD,E(λ2,µ) = sD,E(λ1+λ2,µ).

Consequently, for all τ1,τ2 ∈ Fp and ξ1,ξ2 ∈ F×
p , we have

ξ1(1+τ1p)·sD,0(λ,µ1)+2 ξ2(1+τ2p)·sD,E(λ,µ2) = ξ1(1+τ1p)ξ2(1+τ2p)·sD,E(λ,µ1+µ2)

= ξ1ξ2(1+(τ1+τ2)p)·sD,E(λ,µ1+µ2),

ξ1(1+τ1p)·s0,E(λ1,µ)+1 ξ2(1+τ2p)·sD,E(λ2,µ) = ξ1ξ2(1+(τ1+τ2)p)·sD,E(λ1+λ2,µ).
(6.6.14)

Proof. This follows from equations (6.6.9) and (6.6.10), together with the equiv-

alence of equations (6.3.7) and (6.3.8) and of equations (6.3.9) and (6.3.10) (in

Proposition 6.3.2).
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We end this section with one more lemma:

Lemma 6.6.15. The parametrisation in Lemma 6.6.8 is the inverse of a bijection given
by parameters on M× analogously to definition (3.1).

Proof. Let Q be the pullback of M by f1×f2, with f1 and f2 as in formula (6.6.1). Then

the lift f̃1×f2 : Q× → M× is étale at any point β ∈ Q(Fp) lying over b = (b1, . . . ,b2g)

in
(
C2g

)
(Fp) and induces a bijection between Q×

(
Z/p2

)
b
and M×

(
Z/p2

)
(D,E). In

particular, we can interpret sD,E(λ,µ) as a section of Q
(
b1,λ1

, . . . b2g,µg

)
and interpret the

parametrisation in Lemma 6.6.8 as a parametrisation of Q×
(
Z/p2

)
ξsD,E(0,0)

. It is then

enough to prove that the parametrisation in Lemma 6.6.8 is the inverse of a bijection

given by parameters on Q×. From the definition of cν for c ∈ C
(
Z/p2

)
and ν ∈ Fp, the

maps λiµi : C
2g
(
Z/p2

)
b
→ Fp are given by parameters in OC2g,b divided by p. In order to

see that the coordinate τ : Q×
(
Z/p2

)
ξsD,E(0,0)

→ Fp is also given by a parameter divided

by p, it is enough to prove that there is an open subset U ⊂ C2g containing b and a

section s trivialising Q|U such that sD,E(λ,µ) = s
(
b1,λ1

, . . . ,b2g,µg

)
. Remark 6.3.12 and

formula (6.5.1) give

Q=

g⊗

i,j=1

(
(πi,πg+j)

∗OC×C(∆)
)

⊗

g⊗

i=1

(
π∗
iOC (E− (bg+1+ · · ·+ b2g))⊗π

∗
g+iOC (D− (b1+ · · ·+ bg))

)

⊗NormE/Z/p2 (OC (D− (b1+ · · ·+ bg)))⊗

g⊗

i=1

b∗g+iOC (D− (b1+ · · ·+ bg))
−1
,

(6.6.16)
where ∆ ⊂ C×C is the diagonal and πi is the ith projection Cg ×Cg → C. We can

prove that there is an open subset U ⊂ Cg×Cg containing b and a section s trivialising

Q|U such that sD,E(λ,µ) = s
(
b1,λ1

, . . . ,b2g,µg

)
by trivialising each factor of the tensor

product in a neighbourhood of b. Let us see it, for example, for the pieces of the form

(πi,πg+j)
∗OC×C(∆). Let π1,π2 be the two projections C×C→C and let us consider the

divisor ∆: for each pair of points c1,c2 ∈ C (Fp), the invertible O-module OC×C(−∆) is
generated by the section x∆,c1,c2 := 1 in a neighbourhood of (c1,c2) if c1 6= c2, or by the

section x∆,c1,c2 := π∗
1xc1 −π

∗
2xc2 in a neighbourhood of (c1,c2) if c1 = c2. If we now take

c1 = bi,c2 = bg+j ∈ C (Fp), we deduce that there is a neighbourhood U of (bi,bg+j) such

that x−1
∆,bi,bg+j

generates OC×C(∆)|U . For each λ,µ ∈ Fgp, the point
(
bi,λi

,bg+j,µj

)
lies

in U
(
Z/p2

)
and the canonical isomorphism

(
bi,λi

,bg+j,µj

)∗
OC×C(∆) = b∗g+j,µj

O (bi,λi
)

sends the generating section
(
bi,λi

,bj,µj

)∗
x−1
∆,c1,c2

to b∗j,µj
xi (bg+j,λi)

−1
, which is a factor

in definition (6.6.7). This gives a section si,j trivialising
(
(πi,πg+j)

∗OC×C(∆)
)
in a

neighbourhood of b. With similar choices we can find sections trivialising the other factors

in equation (6.6.16) in a neighbourhood of b, and tensoring all such sections we get a

section s such that sD,E(λ,µ) = s
(
b1,λ1

, . . . ,b2g,µg

)
.
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6.7. Extension of the Poincaré biextension over Néron models

Let C over Z be a curve as in §2 and let q be a prime number that divides n. We also write

C for CZq
. Let J be the Néron model over Zq of Pic0C/Qq

, and J0 its fibrewise connected

component of 0. On
(
J ×Zq

J
)
Qq

we have M as in Proposition 6.3.2, rigidified at 0×JQq

and at JQq
×0.

Proposition 6.7.1. The invertible O-module M on
(
J ×Zq

J
)
Qq
, with its rigidifications,

extends uniquely to an invertible O-module M̃ with rigidifications on J ×Zq
J0. The

biextension structure on M× extends uniquely to a biextension structure on M̃×.

Proof. First of all, J ×Zq
J0 is regular, hence Weil divisors and Cartier divisors are the

same and every invertible O-module on
(
J ×Zq

J0
)
Qq

has an extension to an invertible

O-module on J ×Zq
J0. So let M′ be an extension of M. Any extension M′′ of M is

then of the form M′(D), with D a divisor on J ×Zq
J0 with support in

(
J ×Zq

J0
)
Fq
.

Such D are Z-linear combinations of the irreducible components of the Di×Fq
J0
Fq
, where

the Di are the irreducible components of JFq
. Now M′|J×0 extends M|JQq×0, and hence

the rigidification of M|JQq×0 is a rational section of M′|J×0 whose divisor is a Z-linear
combination of the Di. It follows that there is exactly one D such that the rigidification
of M extends to a rigidification of M′(D) on J×0. That rigidification is compatible with

a unique rigidification of M′(D) on 0×J0. We denote this extension M′(D) of M to

J ×Zq
J0 by M̃.

Let us now prove that the Gm-torsor M̃× on J ×Zq
J0 has a unique biextension

structure, extending that of M×. Over J×Zq
J×Zq

J0 we have the invertible O-modules

whose fibres at a point (x,y,z) (with values in some Zq-scheme) are M̃(x+ y,z) and

M̃(x,z)⊗M̃(y,z). The biextension structure of M× gives an isomorphism between the

restrictions of these over Qq, which differs from an isomorphism over Zq by a divisor with

support over Fq. The compatibility with the rigidification of M̃ over J×Zq
0 proves that

this divisor is zero. The other partial group law and its required properties follow in the
same way. We have now shown that M̃× extends the biextension M×.

6.8. Explicit description of the extended Poincaré bundle

Let C over Z be a curve as in §2 and let q be a prime number that divides n. We also
write C for CZq

. By [22, Corollary 9.1.24], C is cohomologically flat over Zq, which means

that for all Zq-algebras A, O(CA) =A (another reference for this is [28, Equations (6.1.4),

(6.1.6) and (7.2.1)]).
The relative Picard functor PicC/Zq

sends a Zq-scheme T to the set of isomorphism

classes of (L,rig), with L an invertible O-module on CT and rig a rigidification at b. By

cohomological flatness, such objects are rigid. But if the action of Gal
(
Fq/Fq

)
on the

set of irreducible components of CFq
is nontrivial, then PicC/Zq

is not representable by a

Zq-scheme, only by an algebraic space over Zq [28, Proposition 5.5]. Therefore, in order

not to be annoyed by such inconveniences, we pass to S := Spec
(
Zunr
q

)
, the maximal

unramified extension of Zq. Then PicC/S is represented by a smooth S-scheme, and on
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C×S PicC/S there is a universal pair
(
Luniv,rig

)
[28, Proposition 5.5 and §8.0]. We note

that PicC/S → S is separated if and only if CFq
is irreducible.

Let Pic
[0]
C/S be the open part of PicC/S where Luniv is of total degree 0 on the fibres

of C → S. It contains the open part Pic0C/S where Luniv has degree 0 on all irreducible

components of CFq
.

Let E be the closure of the 0-section of PicC/S , as in [28]. It is contained in Pic
[0]
C/S .

By [28, Proposition 5.2], E is represented by an étale S-group scheme.

By [28, Theorem 8.1.4] or [9, Theorem 9.5.4], the tautological morphism Pic
[0]
C/S → J

is surjective (for the étale topology) and its kernel is E, and so J = Pic
[0]
C/S/E. Also, the

composition Pic0C/S → Pic
[0]
C/S → J induces an isomorphism Pic0C/S → J0.

Let Ci, i ∈ I, be the irreducible components of CFq
. Then as divisors on C we have

CFq
=
∑

i∈I

miCi. (6.8.1)

The multidegree of L an invertible O-module on CFq
is defined as

mdeg(L) : I → Z, i 7→ degCi
(L|Ci

), (6.8.2)

and the total degree is then

deg(L) =
∑

i∈I

midegCi
(L|Ci

) . (6.8.3)

The multidegree induces a surjective morphism of groups

mdeg : PicC/S(S)→ ZI . (6.8.4)

Now let d ∈ ZI be a sufficiently large multidegree so that every invertible O-module L

on CFq
with mdeg(L) = d satisfies H1

(
CFq

,L
)
= 0 and has a global section whose divisor

is finite. Let L0 be an invertible O-module on C, rigidified at b, with mdeg(L0) = d.

Then over C×S J
0 we have the invertible O-module Luniv ⊗L0 and its push-forward E

to J0. Then E is a locally free O-module on J0. Let E be the geometric vector bundle
over J0 corresponding to E . Then over E, E has its universal section. Let U ⊂ E be

the open subscheme where the divisor of this universal section is finite over J0. The J0-

group scheme Gm acts freely on U . We define V := U/Gm. As the Gm-action preserves
the invertible O-module and its rigidification, the morphism U → J0 factors through

U → V and gives a morphism ΣL0
: V → J0. Then on C ×S V we have the universal

effective relative Cartier divisor Duniv on C ×S V → V of multidegree d, and Luniv ⊗
L0 together with its rigidification at b is (uniquely) isomorphic to OC×SV

(
Duniv

)
⊗OV

b∗OC×SV

(
−Duniv

)
with its tautological rigidification at b; in a diagram,

Luniv⊗L0 OC×SV

(
Duniv

)
⊗OV

b∗OC×SV

(
−Duniv

)
. (6.8.5)
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Then for T an S-scheme, ΣL0
sends a T -point D on CT to OCT

(D) ⊗OT

b∗OCT
(−D)⊗OC

L−1
0 with its rigidification at b. Let s0 be in L0(C) such that its

divisor D0 is finite over S, and let v0 ∈ V (S) be the corresponding point.

On Pic
[0]
C/S×S V ×S C we have the universal Luniv from Pic

[0]
C/S with rigidification at b

and the universal divisor Duniv. Then on Pic
[0]
C/S ×S V we have the invertible O-module

Nq,d whose fibre at a T -point (L,rig,D) is NormD/T (L)⊗OT
NormD0/T (L)

−1, canonically

trivial on Pic
[0]
C/S×S v0:

Nq,d :
(
Pic

[0]
C/S×S V

)
(T ) ∋ (L,rig,D) NormD/T (L)⊗OT

NormD0/T (L)
−1.

(6.8.6)

Any global regular function on the integral scheme Pic
[0]
C/S×S V is constant on the generic

fibre and hence in Qunr
q , and restricting it to (0,v0) shows that it is in Zunr

q ; and if it is 1 on

Pic
[0]
C/S×S v0, it is equal to 1. Therefore trivialisations on Pic

[0]
C/S×S v0 rigidify invertible

O-modules on Pic
[0]
C/S×S V .

The next proposition generalises [25, Corollary 2.8.6 and Lemma 2.7.11.2]: there, C→S

is nodal (but not necessarily regular), and the restriction of M to J0×S J
0 is described:

Proposition 6.8.7. In the situation of §6.8, the pullback of the invertible O-module M
on J×Zunr

q
J0 to Pic

[0]
C/Zunr

q
×Zunr

q
V by the product of the quotient map quot : Pic

[0]
C/Zunr

q
→ J

and the map ΣL0
: V → J0 is Nq,d, compatible with their rigidifications at J × 0 and

Pic
[0]
C/Zunr

q
×v0. In a diagram:

P× M× N×
q,d

J ×Zunr
q
J∨,0 J ×Zunr

q
J0 Pic

[0]
C/Zunr

q
×Zunr

q
V.

id×j∗,−1
b

quot×ΣL0

(6.8.8)

For T any Zunr
q -scheme, x in J(T ) given by an invertible O-module L on CT rigidified

at b and y in J0(T ) = Pic0C/Zunr
q

(T ) given by the difference D = D+ −D− of effective

relative Cartier divisors on CT of the same multidegree, we have

P
(
x,j∗,−1

b (y)
)
=M(x,y) = NormD+/T (L)⊗OT

NormD−/T (L)
−1.

Proof. The scheme Pic
[0]
C/Zunr

q
×Zunr

q
V is smooth over Zunr

q and hence regular, and

connected and hence integral; and since VFq
is irreducible, the irreducible compo-

nents of
(
Pic

[0]
C/Zunr

q
×Zunr

q
V
)
Fq

are the P i×Fq
VFq

, with P i the irreducible components

of
(
Pic

[0]
C/Zunr

q

)
Fq

, with i in π0

((
Pic

[0]
C/Zunr

q

)
Fq

)
– which, by the way, equals the kernel of

ZI → Z, x 7→
∑
j∈Imjxj .
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We prove the first claim. Both Nq,d and the pullback of M are rigidified on Pic
[0]
C/Zunr

q
×

v0. After inverting q, we will give an isomorphism α from Nq,d to the pullback ofM that is

compatible with the rigidifications. Then there is a unique divisorDα on Pic
[0]
C/Zunr

q
×Zunr

q
V ,

supported on
(
Pic

[0]
C/Zunr

q
×Zunr

q
V
)
Fq

, such that α is an isomorphism from Nq,d(Dα) to

the pullback of M. Let i be in π0

((
Pic

[0]
C/Zunr

q

)
Fq

)
and let x be in Pic

[0]
C/Zunr

q

(
Zunr
q

)

specialising to an Fq-point of P i; then restricting α to (xi,v0) and using the compatibility

of α (over Qunr
q ) with the rigidifications gives that the multiplicity of P i×VFq

in Dα is
0. Hence Dα is 0.

Let us now give, over
(
Pic

[0]
C/Zunr

q
×Zunr

q
V
)
Qunr

q

, an isomorphism α from Nq,d to the

pullback of M. Note that
(
Pic

[0]
C/Zunr

q

)
Qunr

q

= JQunr
q

and that VQunr
q

= C
(|d|)
Qunr

q
, where |d| =

∑
imidi is the total degree given by the multidgree d. For T a Qunr

q -scheme, x ∈ J(T )
given by L an invertible OCT

-module rigidified at b and v ∈ V (T ) given by a relative

Cartier divisor D of degree |d| on CT , using Proposition 6.3.2 and definition (6.8.6) we

have the following isomorphisms (functorial in T ), respecting the rigidifications at v = v0:

M(x,ΣL0
(v)) =M(x,Σ(v)−Σ(v0)) =M(x,Σ(v))⊗M(x,Σ(v0))

−1

=NormD/T (L)⊗OT
NormD0/T (L)

−1 =Nq,d(x,v).
(6.8.9)

This finishes the proof of the first claim of the proposition. The second claim follows
directly from the definition of Nq,d, plus the compatibility at the end of Proposition

6.3.2.

6.9. Integral points of the extended Poincaré torsor

Let C over Z be a curve as in §2. Given a point (x,y) ∈
(
J ×J0

)
(Z), we want to describe

explicitly the free Z-module M(x,y) when x is given by an invertible O-module L of

total degree 0 on C rigidified at b and y is given as a relative Cartier divisor D on C of
total degree 0 with the property that there exists a unique divisor V whose support is

disjoint from b and contained in the bad fibres of C → Spec(Z) such that O(D+V ) has

degree 0 when restricted to every irreducible component of any fibre of C → Spec(Z).
Since M(x,y) is a free Z-module of rank 1, it is a submodule of M(x,y)[1/n]; and writing

D =D+−D− as a difference of relative effective Cartier divisors, Proposition 6.3.2 with

S = Spec(Z[1/n]) gives

M(x,y)[1/n] =
(
NormD+/Z(L)⊗ZNormD−/Z(L)

−1
)
[1/n], (6.9.1)

and consequently there exist unique integers eq, for q varying among the primes dividing n,

such that as submodules of
(
NormD+/Z(L)⊗ZNormD−/Z(L)

−1
)
[1/n],

M(x,y) =


∏

q|n

qeq


 ·
(
NormD+/Z(L)⊗ZNormD−/Z(L)

−1
)
. (6.9.2)
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We write V =
∑
q|nVq, where Vq is a divisor supported on CFq

. For every prime q dividing

n, let Ci,q (i ∈ Iq) be the irreducible components of CFq
with multiplicity mi,q and let

Vi,q be the integers so that Vq =
∑
i∈Iq

Vi,qCi,q.

Proposition 6.9.3. The integers in equation (6.9.2) are given by

eq =−
∑

i∈Iq

Vi,q degFq

(
L|Ci,q

)
.

Proof. For every q dividing n, let Hq be an effective relative Cartier divisor on CZq

whose complement Uq is affine (recall that C is projective over Z and take a high-degree
embedding and a hyperplane section that avoids chosen closed points ci,q on the Ci,q).

The Chinese remainder theorem applied to the OC (Uq)-module (OC(D+V ))(Uq) and the

(distinct) closed points ci,q provides an element fq of (OC(D+V ))(Uq) that generates
OC(D+ V ) at all ci,q. Let Dq = D+

q −D−
q be the divisor of fq as a rational section

of OC(D+V ). Then D+
q and D−

q are finite over Zq and fq is a rational function on CZq

with

div(fq) =
(
D+
q −D−

q

)
− (D+V ) =

(
D+
q +D−

)
−
(
D++D−

q

)
−V. (6.9.4)

This linear equivalence, restricted to Qq, gives, via the definition in (6.4.7), the
isomorphism

ϕ : Norm(D++D−
q )/Qq

(L)−→Norm(D+
q +D−)/Qq

(L) . (6.9.5)

Tensoring with Norm(D−+D−
q )/Qq

(L)−1, we obtain the isomorphism

ϕ⊗ id : NormD+/Qq
(L)⊗NormD−/Qq

(L)−1 NormD+
q /Qq

(L)⊗NormD−
q /Qq

(L)−1

(6.9.6)

using the identifications

NormD+/Qq
(L)⊗NormD−/Qq

(L)−1 =Norm(D++D−
q )/Qq

(L)⊗Norm(D−+D−
q )/Qq

(L)−1,

NormD+
q /Qq

(L)⊗NormD−
q /Qq

(L)−1 =Norm(D+
q +D−)/Qq

(L)⊗Norm(D−+D−
q )/Qq

(L)−1.

(6.9.7)

Using the same method as we used to get the rational section fq of OC(D+ V ), we

get a rational section l of L with the support of div(l) finite over Zq and disjoint from
the supports of D and Dq and from the intersections of different Ci,q and Cj,q. By

Proposition 6.8.7 and the choice of l,

M(x,y)Zq
=NormD+

q /Zq
(L)⊗NormD−

q /Zq
(L)−1 = Zq·NormD+

q /Zq
(l)⊗NormD−

q /Zq
(l)−1

(6.9.8)

and

NormD+/Zq
(L)⊗NormD−/Zq

(L)−1 = Zq·NormD+/Zq
(l)⊗NormD−/Zq

(l)−1. (6.9.9)

By definition (6.4.4), we have that ϕ⊗ id maps

NormD+/Qq
(l)⊗NormD−/Qq

(l)−1
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to

fq(div(l))
−1 ·NormD+

q /Qq
(l)⊗NormD−

q /Qq
(l)−1. (6.9.10)

Comparing with equation (6.9.2), we conclude that

eq = vq (fq(div(l))) . (6.9.11)

We write div(l) =
∑
j njDj as a sum of prime divisors. These Dj are finite over Zq and

disjoint from the support of the horizontal part of div (fq) – that is, of Dq−D – and each
of them meets only one of the Ci,q, say Cs(j),q. Then for each j, both f

ms(j),q
q and q−Vs(j),q

have the same multiplicity along Cs(j),q, and consequently they differ multiplicatively by

a unit on a neighbourhood of Dj . Then we have

vq (fq (Dj)) =
vq
(
f
ms(j),q
q (Dj)

)

ms(j),q
=
vq
(
q−Vs(j),q (Dj)

)

ms(j),q
=
vq
(
NormDj/Zq

(
q−Vs(j),q

))

ms(j),q

=
−Vs(j),q degZq

(Dj)

ms(j),q
=

−Vs(j),q·
(
Dj ·CFq

)

ms(j),q
=

−Vs(j),q·
(
Dj ·ms(j),qCs(j),q

)

ms(j),q

=−Vs(j),q
(
Dj ·Cs(j)

)
=−Vq ·Dj .

(6.9.12)
We get

eq = vq (fq(div(l))) =−Vq ·div(l) =−
∑

i∈Iq

Vi,q(Ci ·div(l))

=−
∑

i∈Iq

Vi,q degFq

(
L|Ci,q

)
.

(6.9.13)

7. Description of the map from the curve to the torsor

The situation is as in §2. The aim of this section is to give descriptions of all the morphisms

in diagram (2.12) in terms of invertible O-modules on (C×C)Q and extensions of them

over C×U , to be used for making computations when applying Theorem 4.12. The main
point is that each trci ◦ fi is described in diagram (7.4) as a morphism (of schemes)

αLi
: JQ → JQ, with Li an invertible O-module on C ×U , and that Proposition 7.8

describes
(
j̃b

)
i
: CZ[1/n] → Ti. For finding the required line bundles, see [12].

We describe the morphism j̃b : U → T in terms of invertible O-modules on C ×Csm.

Since T is the product over J of the Gm-torsors Ti := (id,m· ◦ trci ◦fi)
∗
P×, this amounts

to describing for each i the morphism (j̃b)i : U → Ti. Note that trci ◦ fi : JQ → JQ is a
morphism of group schemes composed with a translation, and that all morphisms of

schemes α : JQ → JQ are of this form. From now on we fix one such i and omit it from

our notation.
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Let α : JQ → JQ be a morphism of schemes and Lα be the pullback of M (see

diagram (6.3.3)) to CQ×CQ via jb× (α◦ jb), and define Tα := (id,α)∗M× on JQ:

Tα M×

CQ JQ (J ×J)Q

(C×C)Q (C×J)Q (C×J)Q

L×
α Luniv,×.

jb

diag

(id,α)

id×jb id×α

jb×id (7.1)

Then (b,id)∗Lα =OCQ
, Lα is of degree 0 on the fibres of pr2 : (C×C)Q → CQ and: j∗bTα

is trivial if and only if diag∗Lα is trivial. Note that diagram (7.1) without the Gm-torsors
is commutative.

Conversely, let L be an invertible O-module on (C×C)Q, rigidified on {b}×CQ and

of degree 0 on the fibres of pr2 : (C×C)Q → CQ. The universal property of Luniv gives a

unique βL : CQ → JQ such that (id×βL)
∗Luniv = L (compatible with rigidification at b).

The Albanese property of jb : CQ → JQ then gives that βL extends to a unique αL : JQ →
JQ such that αL ◦ jb = βL. Then j

∗
bTαL

is trivial if and only if diag∗L is trivial. We have

proved the following proposition:

Proposition 7.2. In the situation of Section 2, the above maps α 7→ Lα and L 7→ αL are

inverse maps between the sets

{scheme morphisms α : JQ → JQ such that j∗b (id,α)
∗M is trivial}

and

{invertible O-modules L on (C×C)Q, rigidified on {b}×CQ, of degree 0 on the fibres of

pr2 : (C×C)Q → CQ and such that diag∗L is trivial}.

Now let L be in the second set of Proposition 7.2. Then diag∗L=OCQ
, compatible with

rigidifications at b. Let

ℓ ∈
(
diag∗L×

)
(CQ) (7.3)

correspond to 1. Then m· ◦αL extends over Z to m· ◦αL : J → J0, and the restriction of
j∗b (m· ◦αL)

∗M on Csm to U is trivial, giving a lift j̃b unique up to sign:

Tm·◦αL
M×

U Csm J J ×J0.

j̃b

jb (id,m·◦αL)

(7.4)

The invertible O-module L on (C×C)Q with its rigidification of (b,id)∗L extends uniquely
to an invertible O-module on (C×C)Z[1/n], still denoted L.
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Proposition 7.5. Let S be a Z[1/n]-scheme, let d and e be in Z≥0, and set D ∈C(d)(S)
and E ∈ C(e)(S). Then we have

M(Σ(D),αL(Σ(E))) =
(
NormD/S(id,b)

∗L
)⊗(1−e)

⊗Norm(D×E)/S(L).

For x ∈ C(S) we have

Tm·◦αL
(jb(x)) =M×(jb(x),m·αL(jb(x))) = L⊗m(x,x)× = (Gm)S .

Proof. We may (and do) assume, through a finite locally free base change on S, that we

have xi and yj in C(S) such that D =
∑
ixi and E =

∑
j yj . Recall that for c ∈ C(S),

βL(c) in J(S) is (id,c)
∗L on CS , with its rigidification at b. Then we have

M(Σ(D),αL(Σ(E))) =M(αL(Σ(E)),Σ(D))

=M


βL(b)+

∑

j

(βL (yj)−βL(b)),
∑

i

jb(xi)




=

(
⊗

i

L(xi,b)
⊗(1−e)

)
⊗
⊗

i,j

L(xi,yj),

(7.5.1)

from which the desired equality follows.

Now we prove the second claim. Let x be in C(S). The first equality holds by definition.

Taking D =E = x in what we just proved gives the second equality, and the third comes
from the rigidification at b.

Now let L be any extension of L with its rigidification of (b,id)∗L from (C×C)Z[1/n]
to C×U . For q dividing n, let Wq be the valuation along UFq

of the rational section ℓ of
diag∗L on U . Then multiplying ℓ by the product, over the primes q dividing n, of q−Wq

generates diag∗L on U :

∏

q|n

q−Wq


 ·ℓ ∈

(
diag∗L×

)
(U). (7.6)

There is a unique divisor V on C×U with support disjoint from (b,id)U and contained

in the (C×U)Fq
with q dividing n such that

Lm := L⊗m(V ) on C×U (7.7)

has multidegree 0 on the fibres of pr2 : C ×U → U . Then Lm is the pullback of Luniv

via id× (m· ◦αL ◦ jb) : C ×U → C × J0. Its restriction Lm|Csm×U is then the pullback
of M via jb× (m· ◦αL ◦ jb) : Csm×U → J ×J0, because on Csm×J0 the restriction of

Luniv and (jb× id)∗M are equal (both are rigidified after (b,id)∗ and equal over Z[1/n];
here we use the fact that J0

Fq
is geometrically connected for all q | n). Hence on U we

have j∗bTm·◦αL
= diag∗ (L⊗m(V )×), compatible with rigidifications at b ∈ U(Z[1/n]). Our

trivialisation j̃b on U of Tm·◦αL
is therefore a generating section of L⊗m, multiplied by

the product, over the q dividing n, of the factors q−Vq , where Vq is the multiplicity
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in V of the prime divisor (U ×U)Fq
. This means that we have proved the following

proposition:

Proposition 7.8. For x and S as in Proposition 7.5, we have the following description
of j̃b:

j̃b(x) =


∏

q|n

q−mWq−Vq


 ·ℓ⊗m in (Tm·◦αL

(jb(x)))(S) = L⊗m(x,x)×(S).

8. An example with genus 2, rank 2 and 14 points

The example that we are going to treat is the quotient of the modular curve X0(129) by

the action of the group of order 4 generated by the Atkin–Lehner involutions w3 and w43.
An equation for this quotient is given in the table in [18], and computions in Magma

show that that equation and the equations later give isomorphic curves over Q.

Let C0 be the curve over Z obtained from the closed subschemes of A2
Z

V1 : y
2+y = x6−3x5+x4+3x3−x2−x,

V2 : w
2+ z3w = 1−3z+ z2+3z3− z4− z5,

by gluing the open subset of V1 where x is invertible with the open subset of V2
where z is invertible using the identifications z = 1/x, w = y/x3. The scheme C0 can
also be described as a subscheme of the line bundle L3 associated to the invertible O-

module OP1
Z
(3) on P1

Z with homogeneous coordinates X,Z: the map OP1
Z
(3) → OP1

Z
(6)

sending a section Y to Y ⊗ Y +Z3 ⊗ Y induces a map ϕ from L3 to the line bundle

L6 associated to O(6); then C0 is isomorphic to the inverse image by ϕ of the section
s := X6−3X5Z+X4Z2+3X3Z3−X2Z4−XZ5 of L6, and since the map ϕ is finite of

degree 2, C0 is finite of degree 2 over P1
Z. Hence C0 is proper over Z and is moreover

smooth over Z[1/n] with n = 3 · 43. The generic fibre of C0 is a curve of genus g = 2,

labeled 5547.b.16641.1 on www.lmfdb.org. The only point where C0 is not regular is
P0 = (3,x−2,y−1) contained in V1, and the blowup C of C0 in P0 is regular.

In the rest of this section we apply our geometric method to the curve C and prove

that C(Z) contains exactly 14 elements. We use the same notation as in §§2 and 4.
The fibre CF43

is absolutely irreducible, whereas CF3
is the union of two geometrically

irreducible curves, a curve of genus 0 lying above the point P0 that we call K0 and

a curve of genus 1 that we call K1. We define U0 := C \K1 and U1 := C \K0 so that
C(Z) = Csm(Z) = U0(Z)∪U1(Z) and both U0 and U1 satisfy the hypothesis on U in §2.

We have K0 ·K1 = 2, and consequently the self-intersections of K0 and K1 are both equal

to −2. We deduce that all the fibres of J over Z are connected except for JF3
, which has

group of connected components equal to Z/2Z. Hence

m= 2. (8.1)

The automorphism group of C is isomorphic to (Z/2Z)2, generated by the automorphisms

ι and η lifting the extension to C0 of

ι,η : V1 −→ V1, ι : (x,y) 7−→ (x,−1−y), η : (x,y) 7−→ (1−x,−1−y).
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The quotients E1 := CQ/η and E2 := CQ/(ι ◦ η) are curves of genus 1, and the two

projections C → Ei induce an isogeny J → Pic0(E1)× Pic0(E2). The elliptic curves

Pic0(Ei) are not isogenous, and ρ= 2.

8.2. The torsor on the Jacobian

Let ∞,∞− ∈ C(Z) be the lifts of (0,1),(0,− 1) ∈ V2(Z) ⊂ C0(Z), and fix the base point

b=∞ in C(Z). Following §7 we describe a Gm-torsor T → J and maps j̃b,i : Ui→ T using

invertible O-modules on C×Csm. The torsor T = (id,m· ◦α)∗M× depends only on the

scheme morphism α : JQ → JQ, which by Proposition 7.2 is uniquely determined by an
invertible O-module L on (C×C)Q, rigidified on {b}×CQ, of degree 0 on the fibres of

pr2 : (C×C)Q → CQ and such that diag∗L is trivial.

We now look for a nontrivial O-module L with these properties using the homo-
morphism η∗ : JQ → JQ, which does not belong to Z ⊂ End(JQ). We can take α of

the form trc ◦ (n1·η
∗ + n2·id), where id : JQ → JQ is the identity map, ni are integers

and c lies in J(Q). Using the map α 7→ Lα := (jb × (jb◦α))
∗M in Proposition 7.2,

the O-module Ltrc is isomorphic to OCQ×CQ
(pr∗1D), the O-module Lη∗ is isomor-

phic to OCQ×CQ
(Γη,Q−pr∗1η

∗(b)−pr∗2η(b)) and the O-module Lid is isomorphic to

OCQ×CQ
(diag(CQ)−pr∗1(b)−pr∗2(b)), where D is a divisor on CQ representing c, the maps

pri are the projections CQ×CQ →CQ and Γη is the graph of the map η : C→C. Hence we
can take L of the form OCQ×CQ

(n1Γη,Q+n2diag(CQ)+pr∗1D1+pr∗2D2) for some integers

ni and some divisors Di on CQ. Among the O-modules of this form satisfying the needed

properties, we choose

L :=OCQ×CQ
(Γη,Q−pr∗1(∞−)−pr∗2(∞)) =OCQ×CQ

(Γη,Q−∞−×CQ−CQ×∞),

trivialised on b×CQ through the section

lb := 2 in ((b,id)∗L)(CQ) =OCQ
(η(b)− b)(CQ) =OCQ

(CQ) .

For every Q-point Q on CQ, the invertible OC
Q
-module (id,Q)∗L is isomorphic to

OC
Q
(η(Q)−∞−), and hence

αL = trc ◦f , f = η∗, c= [D0], D0 :=∞−∞−.

When restricted to the diagonal, L is trivial, since – compatibly with the trivialisation

at (b,b) –

diag∗L=OCQ
(∞−+∞−∞−−∞) =OCQ

.

In particular, the global section l := 1 of OCQ
gives a rigidification of diag∗L that we

write as

diag∗L= l ·OCQ
.

Following Proposition 7.8 and the discussion preceding it, we choose the extension of L
over C×Csm

L :=O (Γη|C×Csm −∞−×Csm−C×∞),
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trivialised along b×Csm through the section lb = 2 (the points ∞− and b have a simple

intersection over the prime 2). By Proposition 7.5, the torsor T := Tm·◦αL
on J , for S a

Z[1/n]-scheme and x in C(S), using the trivialisation given by l and lb and with m = 2
as explained before equation (8.1), satisfies

T (jb(x)) =M×(jb(x),m·αL(jb(x))) =M×
(
jb(x),(id,x)

∗L⊗m
)

= x∗(id,x)∗L⊗m,×⊗ b∗(id,x)∗L⊗−m,×

= L⊗m,×(x,x)⊗L⊗m,×(b,x)−1 = L⊗m,×(x,x) =O×
S .

(8.2.1)

Using Proposition 7.8, we now compute j̃b,0 and j̃b,1. Since l generates diag∗(L) on the
whole Csm, we have W3 =W43 = 0. The invertible O-module L⊗m has multidegree 0

over all the fibres C×U1 → U1, hence in order to compute j̃b,1 we must take V = 0 in

definition (7.7), giving V3 = V43 = 0. Hence for S and x as in equation (8.2.1), assuming

moreover that 2 is invertible on S,

j̃b,1(x) = l2⊗ l−2
b =

1

4
(x∗1)⊗ (b∗1)−1 in (8.2.2)

T (jb(x)) = x∗(id,x)∗L⊗m,×⊗ b∗(id,x)∗L⊗−m,×

= x∗OCS
(η(x)−∞−)

×⊗ b∗OCS
(η(x)−∞−)

×,

where the last equality makes sense if the image of x is disjoint from ∞,∞− in CS .

The restriction L⊗m to C ×U0 has multidegree 0 over all the fibres C ×U0 → U0 of

characteristic not 3; a fibre of characteristic 3 has degree 2 over K0 and degree −2 over
K1. Hence to compute j̃b,0 we take V =K0× (K0∩U0) in definition (7.7), giving V43 = 0,

V3 = 1. Hence for S and x as in equation (8.2.1), assuming moreover that 2 is invertible

on S,

j̃b,0(x) =
1

3
l
2
⊗ l

−2

b =
1

12
(x∗1)⊗ (b∗1)−1 in

T (jb(x)) = x
∗(id,x)∗L⊗m,×

⊗ b
∗(id,x)∗L⊗−m,×

= x
∗
OCS (η(x)−∞−)

×
⊗ b

∗
OCS (η(x)−∞−)

×
,

(8.2.3)

where the last equality makes sense if the image of x is disjoint from ∞,∞− in CS .

8.3. Some integral points on the biextension

On C0 we have the following integral points that lift uniquely to elements of C(Z):

∞= (0,1), ∞− := (0,−1) in V2(Z),

α := (1,0), β := η(α) = (0,−1), γ := (2,1), δ := η(γ) = (−1,−2) in V1(Z).

Computations in Magma confirm that J(Z) is a free Z-module of rank r= 2 generated by

G1 := γ−α, G2 := α+∞−−2∞.

The points in T (Z) are a subset of points of M×(Z) that can be constructed, using

the two group laws, from the points in M× (Gi,m·f (Gj))(Z) and M×(Gi,m·D0)(Z)
for i,j ∈ {1,2}. Let us compute in detail M×(G1,m · f(G1))(Z). As explained in
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Proposition 6.9.3, we have

M(G1,m·f(G1))
× =M×(γ−α,2δ−2β)

= 3e343e43 ·Norm(2δ)/Z(OC(γ−α))⊗Norm(2β)/Z(O(γ−α))−1

= 3e343e43 · (2δ−2β)∗OC(γ−α),

where given a scheme S, an invertible O-module L on CS and a divisorD+−D− =
∑
iniPi

on CS that is sum of S-points, we define the invertible OS-module
(
∑

i

niPi

)∗

L :=
⊗

i

P ∗
i L

ni =NormD+/S(L)⊗NormD−/S(L)
−1.

Since CF43
is irreducible, 2f(G1) already has multidegree 0 over 43, so e43 = 0. If we look

at CF3
, 2f(G1) does not have multidegree 0, while 2f(G1)+K0 has multidegree 0; hence,

by Proposition 6.9.3,

e3 =−degF3
OC(γ−α)|K0

=−1.

Notice that over Z
[
1
2

]
the divisor G1 is disjoint from β and δ (to see that it is disjoint

from δ= (−1,−2,1) over the prime 3, one needs to look at local equations of the blowup),

and thus β∗OC(γ−α) and δ
∗OC(γ−α) are generated by β∗1 and δ∗1 over Z

[
1
2

]
. Thus

there are integers eβ,eδ such that β∗OC(γ−α) and δ
∗OC(γ−α) are generated by β∗2eβ

and δ∗2eδ over Z. Looking at the intersections between β,γ,α and δ, we compute that

eβ =−1 and eδ = 1, hence

M(G1,m ·f(G1)) = 3−1·(δ∗2)2⊗
(
β∗2−1

)−2
·Z= 24·3−1·(δ∗1)2⊗ (β∗1) ·Z,

Q1,1 :=±24·3−1·(δ∗1)2⊗ (β∗1)−2 generates MG1,m·f(G1).

With analogous computations, we see that

Q2,1 := 2−2·(δ∗1)2⊗(β∗1)−2 generates MG2,m·f(G1),

Q1,2 := 2−2·(β∗1)2⊗(∞∗
−1)

2⊗(∞∗1)−4 generates MG1,m·f(G2),

Q2,2 := 218·(β∗1)2⊗(∞∗
−x)

2⊗
(
∞∗z2

)−4
generates MG2,m·f(G2),

Q1,2 := (∞∗1)2⊗(∞∗
−1)

−2 generates MG1,m·D0
,

Q2,0 := 2−12·(∞∗z2)2⊗(∞∗
−x)

−2 generates MG2,m·D0
.

8.4. Some residue disks of the biextension

Let p be a prime of good reduction for C. Given the divisors

D := α−∞, E := 2β−2∞− = (m· ◦ trc ◦η∗)(D) in Div
(
CZ/p2

)
,

we use Lemma 6.6.8 to give parameters on the residue disks in M×
(
Z/p2

)
D,E

and

T
(
Z/p2

)
D
, with D,E the images of D,E in Div

(
CFp

)
.

We choose the ‘base points’ b1 = α,b2 =∞, b3 = β,b4 =∞, so that b1 6= b2, b3 6= b4 and

h0
(
CFp

,b1+ b2
)
= h0

(
CFp

,b3+ b4
)
=1. As in formula (6.6.2), we define xα = x−1, x∞ = z,

xβ = x, xD,β = xD,∞−
= 1 and xD,∞ = z−1. For Q in {∞,β,α} and a ∈ Fp, let Qa be the
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unique Z/p2-point of C that is congruent to Q mod p and such that xQ(Qa) = ap ∈ Z/p2.
We have the bijections

F2
p −→ J

(
Z/p2

)
D
, λ 7−→Dλ :=D+αλ1

−α+∞λ2
−∞= αλ1

+∞λ2
−2∞,

F2
p −→ J

(
Z/p2

)
E
, µ 7−→ Eµ := E+βµ1

−β+∞µ2
−∞= β+βµ1

+∞µ2
−∞−2∞−.

Following definition (6.6.7), for λ,µ ∈ F2
p we define

sD,E(λ,µ) := (β∗1)⊗
(
β∗
µ1
1
)
⊗

(
∞∗
µ2

z2

z−λ2p

)
⊗

(
∞∗ z2

z−λ2p

)−1

⊗ (∞∗
−1)

−2,

which – by Proposition 6.3.2 and Remark 6.3.12 – generates E∗
µOC

Z/p2
(Dλ) =MDλ,Eµ

.

The points in M×(Fp) projecting to (D,E) are in bijection with the elements ξ in F×
p

and are exactly the points ξ ·sD,E(0,0). Using
(
Z/p2

)×
= F×

p × (1+pFp), for each ξ ∈ F×
p

we parametrise the residue disk of ξ ·sD,E(0,0) using the bijection in Lemma 6.6.8:

F5
p −→M×

(
Z/p2

)
ξ·sD,E(0,0)

, (λ1,λ2,µ1,µ2,τ) 7−→ (1+pτ)ξ·sD,E((λ1,λ2),(µ1,µ2)).

Since (m· ◦ trc ◦f)(Dλ) = E−2λ, we have

T
(
Z/p2

)
D
=
⋃

λ∈F2
p

TDλ

(
Z/p2

)
=
⋃

λ∈F2
p

M×
Dλ,E−2λ

(
Z/p2

)
.

As ξ varies in F×
p , the point ξ·sD,E(0,0) varies in all the points in M× (Fp) projecting to(

D,E
)
, and we have the following bijection induced by parameters in ξ·sD,E(0,0):

F3
p−→T (Zp)ξsD,E(0,0) , (λ1,λ2,τ) 7−→ (1+τp)·ξ·sD,E((λ1,λ2),(−2λ1,−2λ2)). (8.4.1)

If we apply equations (8.2.2) and (8.2.3) to Q= αλ and use the symmetry of the Poincaré

torsor explained in Proposition 6.3.2 and made explicit in Lemma 6.5.4, we obtain the

following description of j̃b,i on C
(
Z/p2

)
αFp

when p 6= 2:

j̃b,1(αλ) = (1/4) ·sD,E((λ,0),(−2λ,0)), j̃b,0(Q) = (1/12) ·sD,E((λ,0),(−2λ,0)).

If p=5, then 18 and −1 are (p−1)th roots of unity in
(
Z/p2

)×
, and thus 1/4= (−1)(1+p)

and 1/12 = 3(1+2p) in
(
Z/p2

)×
= F×

p × (1+pFp); hence

j̃b,1(αλ) =−(1+p) ·sD,E((λ,0),(−2λ,0)), j̃b,0(Q) = 18 · (1+2p) ·sD,E((λ,0),(−2λ,0)).

(8.4.2)

Since it is useful for computing the map κZ in the residue disks of T
(
Z/p2

)
projecting

to D, we also apply Lemma 6.6.8 to the residue disks of M×
(
Z/p2

)
lying over

(
D,0

)
,(

0,E
)
and (0,0). Hence for λ,µ ∈ F2

p we define the divisors on CZ/p2

D0
λ := αλ1

−α+∞λ2
−∞, E0

µ := βµ1
−β+∞µ2

−∞,
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and the sections

sD,0(λ,µ) :=
(
β∗
µ1
1
)
⊗

(
∞∗
µ2

z2

z−λ2p

)
⊗(β∗1)−1⊗

(
∞∗ z2

z−λ2p

)−1

in M×
(
Dλ,E

0
µ

)(
Z/p2

)
,

s0,E(λ,µ) := (β∗1)⊗
(
β∗
µ1
1
)
⊗

(
∞∗
µ2

z

z−λ2p

)
⊗

(
∞∗ z

z−λ2p

)−1

⊗(∞∗
−1)

−2

in M×
(
D0
λ,Eµ

)(
Z/p2

)
,

s0,0(λ,µ) :=
(
β∗
µ1
1
)
⊗

(
∞∗
µ2

z

z−λ2p

)
⊗(β∗1)−1⊗

(
∞∗ z

z−λ2p

)−1

in M×
(
D0
λ,E

0
µ

)(
Z/p2

)
.

8.5. Geometry mod p2 of integral points

From now on, p = 5. Let α ∈ C
(
Z/p2

)
be the image of α ∈ C(Z). In this subsection

we compute the composition κ : Z2 → T
(
Z/p2

)
j̃b,1(α)

of the map κZ : Z2 → T (Zp)j̃b,1(α)
in formula (4.9) and the reduction map T (Zp)j̃b,1(α) → T

(
Z/p2

)
j̃b,1(α)

. With a suitable

choice of parameters in OT,j̃b,1(α)
, the map κZ is described by integral convergent power

series κ1,κ2,κ3 ∈ Zp〈z1,z2〉, and κ, composed with the inverse of parametrisation (8.4.1),
is given by the images κ1,κ2,κ3 of κ1,κ2,κ3 in Fp[z1,z2].
The divisor jb(α) is equal to the image of

G̃t := e0,1G1+ e0,2G2, e0,1 := 6, e0,2 := 3,

in J (Fp), and

t̃ :=Q
6

1,0
⊗Q

3

2,0
⊗Q

6·6

1,1
⊗Q

6·3

1,2
⊗Q

3·6

2,1
⊗Q

3·3

2,2
in M×

(
D̃1,m·

(
D0+η∗G̃t

))
(Z)

is a lift of j̃b,1(α). The kernel of J(Z)→ J (Fp) is a free Z-module generated by

G̃1 := e1,1G1+e1,2G2, G̃2 := e2,1G1+e2,2G2, e1,1 := 16, e1,2 := 2, e2,1 := 0, e2,2 := 5.

Let G̃t,2 be the divisorm
(
D0+η∗

(
G̃t

))
representing (m·◦trc◦f)

(
G̃t

)
∈ J0(Z). Following

formula (4.1) for i,j ∈ {1,2}, we define

Pi,j :=

2⊗

m,l=1

Q
ei,l·ej,m

l,m
Ri,t̃ :=

2⊗

l=1

Q
ei,l

l,0
⊗

2⊗

m,l=1

Q
ei,l·e0,m

l,m
St̃,j :=

2⊗

m,l=1

Q
e0,l·ej,m

l,m

(
G̃i,f

(
mG̃j

))
,

(
G̃i,G̃t,2

)
,

(
G̃t,f

(
mG̃j

))
.

Computations in CZ/p2 show the following linear equivalences of divisors:

G̃t ∼D0,3, G̃1 ∼D0
4,0, G̃2 ∼D0

0,3.
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Applying Lemma 6.4.8 and the functoriality of the norm, we compute the following:

P1,1 = (1+4p)·s0,0((4,0),(2,0)) in M×
(
G̃1,G̃1

)(
Z/p2

)
=M×

(
D0

4,0,E
0
2,0

)(
Z/p2

)
,

P1,2 = (1+4p)·s0,0((4,0),(0,4)) in M×
(
G̃1,G̃2

)(
Z/p2

)
=M×

(
D0

4,0,E
0
0,4

)(
Z/p2

)
,

P2,1 = (1+4p)·s0,0((0,3),(2,0)) in M×
(
G̃2,G̃1

)(
Z/p2

)
=M×

(
D0

0,3,E
0
2,0

)(
Z/p2

)
,

P2,2 = (−1)·(1+2p)·s0,0((0,3),(0,4)) in M×
(
G̃2,G̃2

)(
Z/p2

)
=M×

(
D0

0,3,E
0
0,4

)(
Z/p2

)
,

R1,t̃ = s0,E((4,0),(0,4)) in M×
(
G̃1,G̃t,2

)(
Z/p2

)
=M×

(
D0

4,0,E0,4

)(
Z/p2

)
,

R2,t̃ = (1+4p)·s0,E((0,3),(0,4)) in M×
(
G̃2,G̃t,2

)(
Z/p2

)
=M×

(
D0

0,3,E0,4

)(
Z/p2

)
,

St̃,1 = sD,0((0,3),(2,0)) in M×
(
G̃t,G̃1

)(
Z/p2

)
=M×

(
D0,3,E

0
2,0

)(
Z/p2

)
,

St̃,2 = (−1)(1+4p)·sD,0((0,3),(0,4)) in M×
(
G̃t,G̃2

)(
Z/p2

)
=M×

(
D0,3,E

0
0,4

)(
Z/p2

)
,

t̃= (−1)·(1+2p)·sD,E((0,3),(0,4)) in M×
(
G̃t,G̃t,2

)
(Z/p2)=M×(D0,3,E0,4)(Z/p

2).
(8.5.1)

We now show these computations in the cases of G̃t and t̃. The Riemann–Roch space

relative to the divisor G̃t+∞+α−D on CZ/p2 is generated by the inverse of the rational

function

h1 :=
x9−5x8−2x7+7x6−9x5−5x4+14x3+7x2+13x+1+(x6+9x5−5x4+15x3−5x2+4x+14)y

15x5−x4+4x3+19x2+4x+9 ,

and indeed,

div(h1) = G̃t−D0,3 = (6γ+3∞−−3α−6∞)− (α+∞3−2∞) in Div
(
CZ/p2

)
.

Hence multiplication by h1 gives an isomorphism OC
Z/p2

(
G̃t

)
→ OC

Z/p2
(D0,3), and by

functoriality of the norm we get the following:

δ∗OC

(
G̃t

)
→ δ∗OC

Z/p2
(D0,3), δ∗1 7→ δ∗(h1) = h1(δ)·δ

∗1 = 12·δ∗1,

β∗OC

(
G̃t

)
→ β∗OC

Z/p2
(D0,3), β∗1 7→ β∗(h1) = h1(β)·β

∗1 = 18·β∗1,

∞∗OC

(
G̃t

)
→∞∗OC

Z/p2
(D0,3), ∞∗z6 7→∞∗

(
z6h1

)
= 13·∞∗ z2

z−3p
,

∞∗
−OC

(
G̃t

)
→∞∗

−OC
Z/p2

(D0,3), ∞∗
−z

−3 7→∞∗
−

(
z−3h1

)

=
(
z−3h1

)
(∞−)·∞

∗
−1 = 6·∞∗

−1.

Since G̃t,2 =12δ+4∞−−6β−10∞, these isomorphisms tensored with the exponents give

the canonical isomorphism
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M
(
G̃t,G̃t,2

)
= G̃t,2

∗
OC

Z/p2

(
G̃t

)
→ G̃t,2

∗
OC

Z/p2
(D0,3) =M

(
D0,3,G̃t,2

)
, (8.5.2)

t̃= 14·(δ∗1)12⊗(β∗1)−6⊗
(
∞∗z6

)−10
⊗
(
∞∗

−z
−3
)4

7→ 14·(δ∗1)12⊗(β∗1)−6⊗

(
∞∗ z2

z−3p

)−10

⊗(∞∗
−1)

4.

The Riemann–Roch space relative to the divisor G̃t,2+∞+α−E on CZ/p2 is generated

by the inverse of the rational function

h2 :=
x17−8x16+x15−4x14+7x13+4x12+12x11+x10+2x9−5x8+x7+3x6+12x5−6x4−6x3+4x2−6

20x8−6x7

+
10x2+(x15+6x14−5x13−x12−2x11+14x10−4x9+14x8+3x7+8x6−6x5−3x4+4x3+13x2−x−7)y

20x9−6x8 ,

and indeed,

div(h2) = G̃t,2−E0,4 = (12δ+4∞−−6β−10∞)− (2β+∞4−∞−∞−) in Div
(
CZ/p2

)
.

Following the recipe in §6.4 that describes map (6.4.4), we consider the rational section

of OC
Z/p2

(D0,3)

l :=
10x4+x3+17x+14+(15x+9)y

10x4+16x3+7x2+7x+10
,

since it generates OC
Z/p2

(D0,3) in a neighbourhood of the supports of G̃t,2 and E0,4. Then

div(l) = 3·(−1,1)+(17,23)+(15,10)−2·(12,23)−2·(5,20)− (0,1)

in Div
(
V1,Z/p2

)
⊂Div

(
CZ/p2

)
.

Hence by Lemma 6.4.8, the canonical isomorphism

M
(
D0,3,G̃t,2

)
= G̃t,2

∗
OC

Z/p2
(D0,3)−→ E∗

0,4OC
Z/p2

(D0,3) =M(D0,3,E0,4)

described in equation (6.4.1) sends

G̃t,2
∗
l 7−→ h2(div(l)) ·E

∗
0,4l = 14 ·E∗

0,4l, (8.5.3)

where

G̃t,2
∗
l := (δ∗l)12⊗(β∗l)−6⊗(∞∗l)−10⊗(∞∗

−l)
4

=−(δ∗1)12⊗(β∗1)−6⊗

(
∞∗ z2

z−3p

)−10

⊗(∞∗
−1)

4,

E∗
0,4l := (β∗l)2⊗(∞∗

4l)⊗(∞∗l)−1⊗(∞∗
−l)

−2

= 16·(β∗1)2⊗

(
∞∗

4

z2

z−3p

)
⊗

(
∞∗ z2

z−3p

)−1

⊗(∞∗
−1)

−2.

Formulas (8.5.2) and (8.5.3) imply that t̃=−(1+2p)·sD,E((0,3),(0,4)).
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Let At̃,Bt̃,C and Dt̃ be the compositions of the reduction map M× (Zp)→M
(
Z/p2

)

and, respectively, At̃,Bt̃,C andDt̃ defined in formulas (4.2)–(4.4). Using equations (6.6.14)

and (8.5.1) we get the following for n in Z2:

At̃(n) = (−1)n2(1+(4n2)t) ·sD,0((0,3),(2n1,4n2)),

Bt̃(n) = (1+(4n2)p)s0,E((4n1,3n2),(0,4)),

C(n) = (−1)n
2
2
(
1+
(
4n21+(4+4)n1n2+2n22

)
p
)
·s0,0((4n1,3n2),(2n1,4n2)),

Dt̃(n) =−
(
1+
(
4n21+3n1n2+2n22+3n2+2

)
p
)
·sD,E((4n1,3+3n2),(2n1,4+4n2)),

κ(n) =−
(
1+
(
4n21+3n1n2+2n22+2n2+2

)
p
)
·sD,E((n1,3+2n2),(3n1,4+n2)).

(8.5.4)

Hence, using bijection (8.4.1),

κ1 = z1, κ2 = 3+2z2, κ3 = 4z21 +3z1z2+2z22 +2z2+2. (8.5.5)

8.6. The rational points with a specific image mod 5

By equation (8.5.4), the image in T (Fp) of a point ±Dt̃(n) for n ∈ Z2 is always of the
form ±sD,E(0,0); hence, looking at equation (8.2.3) we see that there is no point T (Z)

with reduction j̃b,0(α) ∈ T (Fp). Therefore C(Z)α = U1(Z)α.

Let f1,f2 ∈ O(T̃ pt )
∧p be generators of the kernel of j̃b,1

∗
: O(T̃ pt )

∧p → O(Ũpu)
∧p , as in

§4. The bijection (8.4.1) gives an isomorphism Fp⊗O(T̃ pt ) = Fp[λ1,λ2,τ ], and since the

kernel of j̃b,1
∗
: Fp⊗O(T̃ pt )

∧p → Fp⊗O(Ũpu)
∧p is generated by the images of f1,f2 of f1,f2

in Fp⊗O(T̃ pt ), we can suppose that

f1 = λ2, f2 = τ −1.

By equation (8.5.5) we have

κ∗f1 = κ2 = 3+2z2, κ∗f2 = κ3−1 = 4z21 +3z1z2+2z22 +2z2+1.

Let A be Zp〈z1,z2〉/(κ∗f1,κ∗f2). Then the ring

A :=A/pA= Fp[z1,z2]/
(
κ∗f1,κ

∗f2
)
= Fp[z1,z2]/

(
z2−1,4z21 +3z1

)
(8.6.1)

has dimension 2 over Fp, and hence by Theorem 4.12 U(Z)α contains at most two points.

Since both

α and (12/7,20/7) ∈ V1(Z[1/7])

reduce to α, we deduce that C(Z)α = U1(Z)α is made of these two points.

8.7. Determination of all rational points

Denoting (3,−1) ∈ V1 (Fp)⊂ C (Fp) as ε, we have

C (Fp) = {∞,∞−,α,ι(α),η(α),(ι◦η)(α),γ,ι(γ),η(γ),(ι◦η)(γ),ε,ι(ε)}.
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Using the fact that for any point Q in C (Fp) the condition T (Z)j̃b,i(Q) = ∅ implies

Ui(Z)Q = ∅, we get

U0(Z)∞ = U0(Z)∞−
= U1(Z)ε = U1(Z)ι(ε) = U1(Z)γ = U1(Z)η(γ)

= U1(Z)η(γ) = U1(Z)ιη(γ) = ∅.

Applying our method to ∞, we discover that U1(Z)∞ contains at most two points, and
the same holds for U1(Z)∞−

. Moreover, the action of 〈η,ι〉 on C(Z) tells that U1(Z)ι(α),
U1(Z)η(α) and U1(Z)ηι(α) are sets containing exactly two elements. Hence

U1(Z) = U1(Z)α∪U1(Z)ι(α)∪U1(Z)η(α)∪U1(Z)ηι(α)∪U1(Z)∞−
∪U1(Z)∞

contains at most 12 elements. Looking at the orbits of the action of 〈η,ι〉 on U1(Z), we
see that #U1(Z) ≡ 2 (mod 4), hence #U1(Z) ≤ 10. Since U1(Z) contains ∞,∞− and all
the images by 〈η,ι〉 of U1(Z)α, we conclude that #U1(Z) = 10.

Applying our method to the point γ, we see that U0(Z)γ contains at most two points,

one of them being γ. Moreover, solving the equations κ∗fi = 0 we see that if there is
another point γ′ in U0(Z)γ , then there exist n1,n2 ∈ Z such that

jb(γ
′) = 39G1+17G2+5n1G̃1+5n2G̃2.

Using the Mordell–Weil sieve [27], we derive a contradiction: for all integers n1,n2, the

image in J(F7) of 39G1+17G2+5n1G̃1+5n2G̃2 is not contained in jb(C(F7)). We deduce
that

U0(Z)γ = {γ}.

Applying our method to to ε, we see that U0(Z)ε contains at most two points

corresponding to two different solutions to the equations κ∗fi = 0. We can see that one
of the two solutions does not lift to a point in U0(Z)ε, in the same way that we excluded

the existence of γ′ ∈ U0(Z)γ . Hence U0(Z)ε has cardinality at most 1. Using the fact that

for every Q ∈ C (Fp) and every automorphism ω of C we have #U0(Z)Q =#U0(Z)ω(Q),
we deduce that

U0(Z) = U0(Z)γ ∪U0(Z)ι(γ)∪U0(Z)η(γ)∪U0(Z)ηι(γ)∪U0(Z)ε∪U0(Z)ι(ε)

contains at most six points. Looking at the orbits of the action of 〈η,ι〉 on U0(Z), we see

that #U0(Z) ≡ 0 (mod 4), hence #U4(Z) ≤ 4, and since U0(Z) contains the orbit of γ,

we conclude that #U0(Z) = 4. Finally,

#C(Z) = #U0(Z)+#U1(Z) = 4+10 = 14.

9. Some further remarks

9.1. Complex uniformisations of some of the objects involved

Let C be a projective curve over Q, smooth and geometrically irreducible, and let g be

its genus. The universal cover of P×(C) is described in [6, Propositions 4.5 and 4.6].

The covering space, denoted Dτ , is M1,g(C)×Mg,1(C)×C, hence a C-vector space of
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dimension 2g+1. The biextension structure on M1,g(C)×Mg,1(C)×C is trivial – that is,

for all x, x1, x2 in M1,g(C), all y, y1, y2 in Mg,1(C) and all z1, z2 in C, we have

(x1,y,z1)+1 (x2,y,z2) = (x1+x2,y,z1+ z2),

(x,y1,z1)+2 (x,y2,z2) = (x,y1+y2,z1+ z2).
(9.1.1)

The fundamental group π1(P
×(C),1) is

Qu(Z) :=







1 x z

0 12g y
0 0 1


 : x ∈M1,2g(Z),y ∈M2g,1(Z),z ∈ Z



, (9.1.2)

also known as a Heisenberg group. Its action on Dτ is given in [6, (4.5.3)].
Now recall the definition of T in diagram (2.12). As M2g,1(Z) is the lattice of J(C)

and M1,2g(Z) the lattice of J∨(C), each fi is given by an antisymmetric matrix fi,Z in

M2g,2g(Z) such that for all y in M2g,1(Z) we have fi(y) = yt·fi,Z, and by a complex matrix

fi,C in Mg,g(C) such that for all v in Mg,1(C) and each i we have fi(v) = vt·fi,C in M1,g(C).
For more details about this description of the fi, see the beginning of [6, §4.7]. Then we

have

π1(T (C)) =







1ρ−1 m·f(y) z
0 12g y

0 0 1


 : y ∈M2g,1(Z),z ∈Mρ−1,1(Z)



, (9.1.3)

with m·f(y) ∈Mρ−1,2g(Z) with rows the m·yt·fi,Z. So π1(T (C)) is a central extension of
M2g,1(Z) by Mρ−1,1(Z), with commutator pairing sending (y,y′) to (2myt·fi,Z·y′)i.

The universal covering T̃ (C) is given by

T̃ (C) = {(m·(c+f(v)),v,w) : v ∈Mg,1(C),w ∈Mρ−1,1(C)}

⊂Mρ−1,g(C)×M1,g(C)×Mρ−1,1(C),
(9.1.4)

with m·(c+f(v))∈Mρ−1,g(C) with rows the m·(c̃i+v
t·fi,C) and c̃i a lift of ci in M1,g(C).

The action of π1(T (C),1) on T̃ (C) is given again, with the necessary changes, by [6,

(4.5.3)].

Now that we know π1(T (C),1), we investigate which quotient of π1(C(C),b) it is, via

j̃b : C(C)→ T (C). We consider the long exact sequence of homotopy groups induced by
the C×,ρ−1-torsor T (C)→ J(C), taking into account that C×,ρ−1 is connected and that

π2(J(C)) = 0:

π1
(
C×,ρ−1,1

)
π1(T (C),1) π1(J(C),0). (9.1.5)

Again π1(T (C),1) is a central extension of the free abelian group π1(J(C),0) by Zρ−1,

and from the matrix description we know that the ith coordinate of the commutator

pairing is given by mfi : H1(J(C),Z) → H1 (J
∨(C),Z) = H1(J(C),Z)∨. The Z-module of
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antisymmetric Z-valued pairings on H1 (J
∨(C),Z) is

∧2
H1(J(C),Z) = H2(J(C),Z), and

mfi is the cohomology class (first Chern class) of the C×-torsor Ti:

mfi = c1(Ti) in H2(J(C),Z). (9.1.6)

There is a central extension

H2(J(C),Z) E π1(J(C),0) (9.1.7)

that is universal in the sense that every central extension of π1(J(C),0) by a free abelian

group arises by pushout from H2(J(C),Z). We denote

G := π1(C(C),b). (9.1.8)

The map jb : C→ J gives G→ π1(J(C),0), and this is the maximal abelian quotient. The

second quotient in the descending central series of G gives the central extension:

[G,G]/[G,[G,G]] G/[G,[G,G]] G/[G,G] =Gab = π1(J(C),0). (9.1.9)

This extension arises from formula (9.1.7) by pushout via a morphism from H2(J(C),Z)
to [G,G]/[G,[G,G]]:

H2(J(C),Z) E Gab

[G,G]/[G,[G,G]] G/[G,[G,G]] Gab.

(9.1.10)

The left vertical arrow is surjective because commutators of lifts in E of elements of

Gab are mapped to the commutators of lifts in G/[G,[G,G]], and so give generators of
[G,G]/[G,[G,G]].

From the usual presentation of G with generators α1,β1, . . . ,αg,βg, with the only relation

[α1,β1] · · · [αg,βg] = 1, we see that the obstruction in lifting G→Gab to G→E in the top
row of diagram (9.1.10) is the image of [α1,β1] · · · [αg,βg] in H2(J(C),Z). This image is

a generator of the image of H2(C(C),Z) under jb. So the pushout in diagram (9.1.10)

factors through the pushout by the quotient of H2(J(C),Z) by H2(C(C),Z):

H2(J(C),Z)/H2(C(C),Z) E′ Gab

[G,G]/[G,[G,G]] G/[G,[G,G]] Gab.

(9.1.11)

Using again the presentation of G, we can split this morphism of extensions and – using
the fact that H2(J(C),Z)/H2(C(C),Z) is generated by commutators of lifts of elements

of Gab – conclude that all vertical arrows in diagram (9.1.11) are isomorphisms.

In particular, we have that [G,G]/[G,[G,G]] is the same as H2(J(C),Z)/H2(C(C),Z).
From equation (9.1.6) we see that the sub-Z-module of H2(J(C),Z(1)) (note the Tate

twist; now we take the Hodge structures into account) spanned by the mfi is obtained

in four steps: take the kernel of H2(J(C),Z(1)) → H2(C(C),Z(1)). Take the (0,0)-part
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(then we are dealing with Hom(J(C),J∨(C))+), and then Gal
(
Q/Q

)
acts (because

Hom(J(C),J∨(C))+ and Hom
(
JQ,J

∨
Q

)+
are equal) through the Galois group of a finite

extension of Q. Take the invariants (because we only use morphisms fi defined over Q).
Then take the image of the multiplication by m on that.

Dually, this means that π1(T (C),1) arises as the pushout

H2(J(C),Z(−1))/H2(C(C),Z(−1)) G/[G,[G,G]] Gab

(
(H2(J(C),Z(−1))/H2(C(C),Z(−1)))(0,0)

)
Gal(Q/Q) π1(T (C),1) Gab,

(9.1.12)
where the subscript (0,0) means the largest quotient of type (0,0), the subscript Gal

(
Q/Q

)

means coinvariants modulo torsion and the left vertical map is m times the quotient map.

We repeat that the morphism from π1(C(C)) = G to π1(T (C),1) given by the middle
vertical map is induced by j̃b : C(C)→ T (C).

9.2. Finiteness of rational points

In this section we re-prove Faltings’ finiteness result [16] in the special case where the

base field is Q and r < g+ ρ− 1. This was already done in [4, Lemma 3.2] (where the

base field is either Q or imaginary quadratic). We begin by collecting some ingredients
on good formal coordinates of the Gm-biextension P

×,ρ−1 → J ×J∨,ρ−1 over Q, and on

what C looks like in such coordinates.

9.2.1. Formal trivialisations. Let A, B and G be connected smooth commutative

group schemes over a field k ⊃ Q, and let E → A×B be a commutative G-biextension.

Let a be in A(k), b ∈ B(k) and e ∈ E(k). For n ∈ N, let Aa,n be the nth infinitesimal
neighbourhood of a in A, and hence its coordinate ring is OA,a/m

n+1
a . We use similar

notation for B with b and E with e, and also for the points 0 of A, B and E; similarly,

the formal completion of A at a is denoted by Aa,∞, and so on. We also use such notation
in a relative context – for example, for the group schemes E → B and E → A. We view

completions such as Aa,∞ as set-valued functors on the category of local k-algebras with

residue field k such that every element of the maximal ideal is nilpotent. For such a

k-algebra R, Aa,∞(R) is the inverse image of a under A(R) → A(k). Then A0,∞ is the
formal group of A.

We now want to show that the formal G0,∞-biextension E0,∞ → A0,∞ ×B0,∞ is

isomorphic to the trivial biextension (the object G0,∞ ×A0,∞ ×B0,∞ with +1 given
by addition on the first and second coordinates and +2 by addition on the first and third

coordinates). As exp for A0,∞ gives a functorial isomorphism TA/k(0)⊗kGa
0,∞
k →A0,∞,

and similarly for B and G, it suffices to prove this triviality for G0,∞
a -biextensions of

G0,∞
a ×G0,∞

a over k. One easily checks that the group of automorphisms of the trivial

G0,∞
a -biextension of G0,∞

a ×G0,∞
a over k that induce the identity on all three G0,∞

a s

is (k,+), with c∈ k acting as (g,a,b) 7→ (g+cab,a,b). As this group is commutative, it then
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follows that the group of automorphisms of the G0,∞-biextension E0,∞ → A0,∞×B0,∞

that induce identity on G0,∞, A0,∞ and B0,∞ is equal to the k-vector space of k-bilinear
maps TA/k(0)×TB/k(0)→ TG/k(0). This indicates how to trivialise E0,∞. We choose a

section ẽ of the G-torsor E→A×B over the closed subscheme A0,1×B0,1 of A×B:

E

A0,1×B0,1 A×B,

ẽ

with ẽ(0,0) = e in E(k). Note that

O
(
A0,1×B0,1

)
= (k⊕mA0,1)⊗ (k⊕mB0,1) = k⊕mA0,1 ⊕mB0,1 ⊕ (mA0,1 ⊗mB0,1).

Hence two such ẽ differ by a k-algebra morphism from k⊕mG0,2 = k⊕mG0,1 ⊕Sym2mG0,1

(use the exponential map) to k⊕mA0,1 ⊕mB0,1 ⊕ (mA0,1 ⊗mB0,1), hence by a triple of

k-linear maps from mG0,1 to mA0,1 , mB0,1 and mA0,1 ⊗mB0,1 . The linear maps mG0,1 →
mA0,1 and mG0,1 →mB0,1 correspond to the differences on A0,1×B0,0 and A0,0×B0,1,

respectively. There are unique such linear maps such that the adjusted ẽ is compatible with

the given trivialisations of E→A×B over A0,1×B0,0 and A0,0×B0,1. In geometric terms,

ẽ (which we assume to be adjusted) is then a splitting of TG(0)B →֒ TE/B(0)։ TA(0)B
over B0,1 that is compatible with the already-given splitting over 0 ∈ B(k), and it is

also a splitting of TG(0)A →֒ TE/A(0) ։ TB(0)A over A0,1 that is compatible with the

already-given splitting over 0 ∈A(k). The splitting over B0,1 gives an isomorphism from
(TG(0)⊕TA(0))B0,1 to (TE/B)B0,1 . So the exponential map for +1 for the pullback to

B0,1 of E→B gives an isomorphism of formal groups over B0,1:

(
(TG(0)⊕TA(0))⊗kG0,∞

a

)
B0,1 E0,∞

B0,1 .

Viewing E0,∞
B0,1 as the tangent space at the zero section of the pullback to A0,∞ of E →

A, this isomorphism gives a splitting of TG(0)A →֒ TE/A(0) ։ TB(0)A over A0,∞. The

exponential map for +2 for the pullback to A0,∞ of E→A then gives an isomorphism of

formal groups over A0,∞:

G0,∞×B0,∞×A0,∞
(
G0,∞×B0,∞

)
A0,∞ E0,∞

A0,∞/A0,∞ E0,∞,

where E0,∞
A0,∞/A0,∞ denotes the completion along the zero section of the pullback via

A0,∞ → A of E → A. The compatibility between +1 and +2 on E ensures that this

isomorphism is an isomorphism of biextensions, with the trivial biextension structure on

the left.
Now that we know what good formal coordinates at 0 in E(k) are, we look at the point

e in E(k), over (a,b) in (A×B)(k). We produce an isomorphism E0,∞ →Ee,∞, using the

partial group laws. Let Eb be the fibre over b of E→B. We choose a section
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Eb

Aa,1×{b} A×{b},

ẽ1

with ẽ1(a,b) = e in E(k). The exponentials for the group laws of Eb and A then give a

section

Eb

Aa,∞×{b} A×{b},

ẽ∞1

which we view as an Aa,∞-valued point of Eb and as a section of the group scheme

EAa,∞ →Aa,∞, with group law +2. The translation by ẽ∞1 on this group scheme induces

translation by b on BAa,∞ , and maps (a,0), the 0 element of Ea, to e. Hence it induces
an isomorphism of formal schemes E(a,0),∞ → Ee,∞. In order to get an isomorphism

E0,∞ → E(a,0),∞, we repeat the process but with the roles of A and B exchanged. We

choose a section 0̃2 : {a}×B0,1 → Ea of Ea → {a}×B. Then the exponential for +2

gives us a section 0̃∞2 : {a}×B0,∞ → Ea of Ea → {a}×B. This 0̃∞2 is a section of the

group scheme EB0,∞ → B0,∞, and the translation on it by 0̃∞2 sends 0 in E(k) to (a,0),

giving an isomorphism of formal schemes E0,∞ →E(a,0),∞. Composition then gives us an
isomorphism E0,∞ →Ee,∞, and the good formal coordinates on E at 0 ∈E(k) give what

we call good formal coordinates at e. Similarly, we get a section 0̃∞1 of EA0,∞ →A0,∞ and a

section ẽ∞2 of EBb,∞ →Bb,∞ giving isomorphisms E0,∞ →E(0,b),∞ and E(0,b),∞ →Ee,∞,

and hence by composition a second isomorphism E0,∞ →Ee,∞. These isomorphisms are
equal for a unique choice of 0̃1 and ẽ2 (given the choices of 0̃2 and ẽ1).

In §9.2.3 we will use the fact that these isomorphisms transport all additions that occur

in definition (4.4) to additions in E0,∞ and therefore to additions in the trivial formal
biextension.

9.2.2. Zariski density of the curve in formally trivial coordinates. Let C be

as in the beginning of §2 and let C̃(C) be the inverse image of C(C) under the universal

cover T̃ (C) → T (C). Then C̃(C) is connected, since j̃b : C → T gives a surjection on

complex fundamental groups. Now we consider the complex analytic variety T̃ (C) as a

complex algebraic variety via the bijection T̃ (C) = Cg+ρ−1 as given in equation (9.1.4).

The analytic subset C̃(C) contains the orbit of 0 under π1(T (C),1). This orbit surjects to
the lattice of J(C) in Mg,1(C), and over each lattice point its fibre in Mρ−1,1(C) contains a
translate of 2πiMρ−1,1(Z). Hence this orbit is Zariski dense in Cg+ρ−1. It follows that the

formal completion of C̃(C) at any of its points is Zariski dense in Cg+ρ−1: if a polynomial

function on Cg+ρ−1 is zero on such a completion, then it vanishes on the connected

component of C̃(C) of that point, hence on C̃(C) and consequently on T̃ (C).
We express our conclusion in more algebraic terms: for c ∈C(C), with images t ∈ T (C)

and in P×,ρ−1(C), each polynomial in good formal coordinates at t of the biextension
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P×,ρ−1 → J × J∨ over C that vanishes on j̃b (C
c,∞
C ) vanishes on T t,∞C . This statement

then also holds with C replaced by any subfield, or even any subring of the form Z(p)

with p a prime number, or the localisation of Z (the integral closure of Z in C) at a

maximal ideal.

9.2.3. The p-adic closure in good formal coordinates. We stay in the situation of

§2, but we denote G :=Gρ−1
m , A := J , B := J∨,0ρ−1 and E := P×,ρ−1. Let dG, dA and dB

be their dimensions: dG = ρ−1, dA = g and dB = (ρ−1)g.
Let p > 2 be a prime number. From §9.2.1 and Lemma 5.1.1, we conclude that we can

choose formal parameters for E at 0, over Z(p), such that they converge on the residue

polydisk E (Zp)0 and such that they induce the trivial biextension structure on ZdGp ×
ZdAp ×ZdBp . We keep the notation of §9.2.1 for e in E (Zp) lying over (a,b) in (A×B)(Zp).

This e plays the role that t̃ has at the beginning of §4. As explained at the end of §9.2.1,

we may (and do) assume that e is in E (Zp)0, and hence a ∈A(Zp)0 and b ∈B (Zp)0.
Assume now, as in §4, that for i,j ∈ {1, . . . ,r} we have xi in A(Zp)0, yj in B (Zp)0, ei,j

in E (Zp)0 over (xi,yj), ri in E (Zp)0 over (xi,b) and sj in E (Zp)0 over (a,yj). We denote

the images of all these elements under the bijection

E (Zp)0 −→ ZdGp ×ZdAp ×ZdBp

as follows:

xi 7→ (0,xi,0), yj 7→ (0,0,yj), ei,j 7→ (gi,j,xi,yj),

ri 7→ (r′i,xi,b), sj 7→
(
s′j,a,yj

)
, e 7→ (e′,a,b).

Then a straightforward computation shows that the image of D(n) as defined in

definition (4.4) is

e′+

∑

i

nir
′
i+
∑

j

njs
′
j+
∑

i,j

ninjgi,j, a+
∑

i

nixi, b+
∑

j

njyj


 in ZdGp ×ZdAp ×ZdBp .

The conclusion is that in these coordinates, the map

κ : Zrp −→ ZdGp ×ZdAp ×ZdBp

is a polynomial map, hence the Zariski closure of its image is an algebraic variety of

dimension at most r.

9.2.4. Proof of finiteness. The proof is by contradiction. So assume that r < g+ρ−1,

and that C(Q) is infinite. Let p > 2 be a prime number. Then there is a u ∈ C (Fp) such
that the residue disk C (Zp)u contains infinitely many elements of C(Q), hence infinitely
many elements in the image of κ of §4.10. By construction, κ

(
Zrp
)
is contained in T (Zp)t.

The image of T (Zp)t in ZdGp ×ZdAp ×ZdBp is Zρ−1
p ×Zgp, with Zgp embedded in ZdAp ×ZdBp as

a sub-Zp-module. By the previous section, the Zariski closure of κ
(
Zrp
)
in ZdGp ×ZdAp ×ZdBp

is of dimension at most r. Hence there are nonzero polynomial functions on Zρ−1
p ×Zgp

that are zero on infinitely many points of C (Zp)u, and therefore zero on a nonempty open

smaller disk. Via a ring morphism Zp → C, this contradicts the conclusion of §9.2.2.
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9.3. The relation with p-adic heights

We want to compare the approach to quadratic Chabauty in this article to the one in [4]

by answering the question: Which local analytic coordinates on T (Zp) and C (Qp) lead to

the equations, in terms of p-adic heights, for the quadratic Chabauty set C (Qp)2 in [4]?

Before we do this, we note that the Poincaré biextension has played a role in Arakelov
theory and the theory of p-adic heights for a long time [23, 25, 32]. Moreover, [8] gives

a detailed description of how Kim’s cohomological approach relates to p-adic heights in

the context of Gm-torsors on abelian varieties.
Let p > 2 be a prime number of good reduction for C. We consider the Poincaré

torsor M× on (J×J)Qp
via diagram (6.3.3), and we use the description of M× given in

equation (6.3.13).
Let D be the subset Div0

(
CQp

)
×Div0

(
CQp

)
made of pairs of divisors (D1,D2) having

disjoint support. Let log : Q×
p →Qp be a group morphism extending the formal logarithm

on 1+pZp and letW be an isotropic complement of Ω1
CQp/Qp

(
CQp

)
in H1

dR(CQp
/Qp). With

these choices made, Coleman and Gross [11, (5.1)] define the function (there denoted 〈·,·〉)

hp : D →Qp,

the p-part of the p-adic height pairing. We define the function

ψ : M× (Qp)−→Qp

by demanding that for every effective D1 and D2 in Div
(
CQp

)
of the same degree, every

E in Div0
(
CQp

)
and every λ in Q×

p , the element

λ·NormD1/Qp
(1)⊗NormD2/Qp

(1)−1

in

M×
(
OCQp

(E),Σ(D1)−Σ(D2)
)
=
(
NormD1/Qp

OCQp
(E)⊗NormD2/Qp

OCQp
(−E)

)×

be sent to

ψ
(
λ·NormD1/Qp

(1)⊗NormD2/Qp
(1)−1

)
:= hp(D1−D2,E)+ logλ.

That this depends only on the linear equivalence classes of D1−D2 and E follows from

formula (6.4.4), plus (see [11, Proposition 5.2]) the facts that hp is biadditive and
symmetric and that, for any nonzero rational function f on CQp

and any D in Div0
(
CQp

)

with support disjoint from that of div(f), we have hp(D,div(f)) = log(f(D)). Moreover,

expressing hp in terms of a Green function G as in [7, Theorem 7.3], we deduce that in
each residue disk of M× (Zp), ψ is given by a power series. Let ω1, . . . ,ωg be a basis of

Ω1
CQp/Qp

(
CQp

)
. This basis gives a unique morphism of groups logJ : J (Qp) → Qgp that

extends the logarithm of Lemma 5.1.1. We define

Ψ :=
(
logJ ◦prJ,1, logJ ◦prJ,2,ψ

)
: M× (Qp)−→Qgp×Qgp×Qp.
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By the biadditivity of hp, Ψ is a morphism of biextensions, with the trivial biextension
structure on Qgp×Qgp×Qp as in equation (9.1.1). As p > 2, Ψ induces a homeomorphism,

given by power series, from each residue polydisk to its image. Pulling back the coordinate

functions on Q2g+1
p gives, for every x ∈M× (Fp), coordinates on M× (Zp)x.

We describe j̃b and κ in these coordinates. It suffices to describe, for each i
in {1, . . . ,ρ−1}, j̃b,i : C → Ti, and from now on we omit the dependence on i. For each

c ∈ C (Fp) on T (Zp)j̃b(x) we use the coordinates x1 := f∗t1, . . . ,xg := f∗tg, z := f∗t2g+1,

where f is the map T → M× and t1, . . . ,t2g+1 are the coordinates on M× (Zp)j̃b(c) we

just defined. Since the map Ψ is a morphism of biextensions, for j in {1, . . . ,g}, xj ◦κ is a
polynomial of degree at most 1 and z ◦κ is a polynomial of degree at most 2. As explained

in §7, over Zp, j̃b is given by a line bundle L over (C×C)Zp
rigidified along (C×{b})Zp

and along the diagonal with two sections lb and l. Choosing a section that trivialises L
on an open subset of (C×C)Zp

containing (b,b), (c,b) and (c,c) in (C×C)(Fp), we get a

divisor D on (C×C)Zp
whose support is disjoint from (c,b) and (c,c) and an isomorphism

between L and O(D) on (C×C)Zp
. After modifying D with a principal horizontal divisor

and a principal vertical divisor, D|C×{b} and diag∗D are both equal to the zero divisor
on CZp

, and hence lb and l are the extensions of elements of Qp, interpreted as rational

sections of O(D) on (C×C)Zp
. By Propositions 7.5 and 7.8, there exists a unique λ∈Q×

p

such that for each d ∈ C (Zp)c,

j̃b(d) = λ ·Normd/Zp
(1)⊗Normb/Zp

(1)−1 ∈M×
(
jb(d),D|{d}×C

)
.

Since xj is the jth coordinate of logJ and z is the pullback of ψ, we deduce that

x1

(
j̃b(d)

)
=

∫ d

b

ω1, . . . ,xg

(
j̃b(d)

)
=

∫ d

b

ωg, z
(
j̃b(d)

)
= hp

(
d− b,D|{d}×C

)
+logλ,

and by [4, Proof of Theorem 1.2] and [5, Lemma 5.5], the function d 7→ hp
(
d− b,D|{d}×C

)

is a sum of double Coleman integrals.

It should now be easy to exactly interpret the cohomological approach geometrically,
showing that in the coordinates used here, the equations for C (Qp)2 are precisely

equations for the intersection of C (Qp) and the p-adic closure of T (Z). Computations

can be made in the geometric context of this article or, as in [5], in terms of the étale
fundamental group of C. The connection between these is then given by p-adic local

systems on T .
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[28] M. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. Inst. Hautes Études Sci.

38 (1970), 27–76.
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