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Abstract. We complete the description of semistable models for
modular curves associated with maximal subgroups of GL2(Fp) (for p
any prime, p > 5). That is, in the new cases of non-split Cartan modu-
lar curves and exceptional subgroups, we identify the irreducible com-
ponents and singularities of the reduction mod p, and the complete
local rings at the singularities. We review the case of split Cartan
modular curves. This description suffices for computing the group of
connected components of the fibre at p of the Néron model of the
Jacobian.
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1 Introduction

Let p be a prime number. The picture given in Figure 1 of the geometric special
fiber of the stable model of X0(p) over Zp now looks familiar to many number-
theorists1. It has been described in the work [8] of Deligne and Rapoport,
and was actually known, in a slightly different guise, by Kronecker. Having
such a model at hand has proven crucial in many questions – not only for
direct applications such as the computation of semistable Néron models of the
jacobian J0(p) but also in diophantine issues, such as the determination of the
non-cuspidal rational points of X0(p) in Mazur’s famous works [20] and [22].

1To be completely correct, when p ≤ 19 that model is only semistable.
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Figure 1: X0(p)/Fp

It is actually under similar motivations that we describe here a semistable
model, over a suitable extension of Zp, of the modular curve X+

ns(p) attached
to the normaliser of a non-split Cartan subgroup in GL2(Fp). Recently indeed
J. Balakrishnan and her coauthors managed to elaborate on the Chabauty-
Kim method and prove that the modular curve X+

ns(13) had only the expected
trivial rational points (see [1]). That constituted a tour-de-force, as the latter
curve had so far resisted all known methods on Earth. Their strategy needs at
some point a bit of knowledge of the reduction type of the curve under study,
and that knowledge was available because X+

ns(13) is isomorphic to X+
s (13),

attached to the normaliser of a split Cartan, see [2], and for that latter curve
the necessary information was already available from [10]. For p > 13, there
is no isomorphism between split and non-split Cartan curves, so our models
for X+

ns(p) shall prove necessary for applying the quadratic Chabauty method
of [1] to the latter curves.

A bit more generally, we describe stable models of modular curves associated
with all maximal subgroups of GL2(Fp). One classically knows (see e.g. [20])
that those subgroups (up to conjugation) are the Borel, the normalizer of split
and non-split Cartan (defining the curves denoted by X+

s (p) and X+
ns(p) re-

spectively) and some exceptional subgroups, which are lifts of the permutation
groups A4, S4 or A5 in PGL2(Fp). Among those, note that the curve X+

s (p) is
isomorphic to X0(p

2)/wp2 , and that the case X0(p
2) had already been treated
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in the article [10] by the first-named author of the present work (see also [11]
and [12]). Nevertheless we do our own computations in Section 4 below, and
we treat the case of X+

s (p).

The newest part of the present study however is a complete description of fibre
at p of the stable model for the non-split Cartan curve X+

ns(p) and the thickness
of its singularities (cf. Section 3). (Recall the thickness of a semi-stable curve
over a complete discrete valuation ring R with uniformiser π and with separably
closed residue field k, at a singular point of the special fibre, is the unique
natural number n ≥ 1 such that the completed local ring is isomorphic to
R[[x, y]]/(xy − πn) (cf. Definition 10.3.23 of [19]). That n is equal to 1 plus
the number of projective lines over k that appear in the minimal resolution of
the singularity. In the terminology of rigid geometry, the meaning of n is that
the tube of the singular point is the open annulus with inner radius |π|n and
outer radius |1|.)
The case of exceptional groups is probably of lesser interest. From the diophan-
tine point of view, for instance, Serre remarked that a simple argument on the
action of inertia at p in the mod p Galois representations attached to elliptic
curves shows that the modular curves associated with exceptional groups have
no local points with values in (not too ramified) p-adic fields, as soon as p is
large enough, cf. [21], p. 118. We however compute semistable models for those
modular curves in Section 5.

Our method is first to describe stable models for the curvesM(Γ(p),P) associ-
ated with the full level-p structure, enhanced by some additional (finite, étale,
representable) moduli problem P over Zp. This is what we do in Section 2,
essentially following the unpublished [12]. We then take quotients by relevant
subgroups of GL2(Fp), starting with the normalizer of non-split Cartan. The
fact that we added a level structure P allows us to keep working with a fine
moduli space. Finally we assume P is Galois with group G, and taking the
quotient by G yields a stable model for the coarse curve X+

ns(p). We repeat
that process for the split-Cartan curve and the exceptional subgroups.

We must mention that this approach is not well-suited to deal with cases of
level divisible by powers pr of p, when r ≥ 2, because of algebro-geometric
reasons recalled in Remark 2.4. In that situation, probably, one can apply
J. Weinstein’s results (see [25]). It is however not clear to us if those techniques
will provide the thicknesses of the singularities of the stable models, and how
difficult it would be to find the graphs.

A last word about stability versus semistability: as for the model of X0(p)
recalled in Figure 1, our semistable models will actually be stable, for large
enough p, in many cases but not all. The curves X+

s (p) and X+
ns(p), for any p

which is −1 mod 4, are indeed not stable, as explained in Theorems 3.5, 4.4,
and Remark 3.6. In all cases however it is easy to spot what projective lines
need to be contracted in order to obtain a stable model. About that issue, see
Remark 4.5.
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2 Stable model for full level p structure

2.1 Katz-Mazur’s model M(P ,Γ(p))
Our starting point will be the modular model over Z[ζp], as given by Katz and
Mazur ([16]; Chapter 13), for modular curves with full level p structure plus
some additional level structure P with nice properties at p. Let us very briefly
recall Katz-Mazur “Drinfeldian approach” to moduli problems. We will not
discuss stable models for the curves X(p)Q with no additional level structure.

We let P be a representable finite étale moduli problem over (Ell)Zp
. One can

take for instance P = [Γ1(N)] for N ≥ 4 a prime-to-p integer. Later, when we
want to get rid of P , we will assume moreover that P is Galois over (Ell)Zp

.

There was a time when for N any positive integer, Γ(N) denoted the kernel
of the reduction morphism SL2(Z) → SL2(Z/NZ). But since [8] it became
clear that it was better to attach modular curves to compact open subgroups
of the finite adèle group GL2(Q ⊗ Ẑ). So, we let Γ(N) denote the kernel of

the surjective morphism GL2(Ẑ) → GL2(Z/NZ). Following [16], if E/S is
an elliptic curve over an arbitrary scheme S, we say that a group morphism
φ : (Z/NZ)2 → E(S) is a Γ(N)-structure (or “full level-N structure”) if the
effective Cartier divisor

DN :=
∑

a∈(Z/NZ)2

[φ(a)]

is a group scheme which is equal to E[N ]. The ordered pair (P,Q) with
P := φ(1, 0) and Q := φ(0, 1) is then said to be a Drinfeld basis of E[N ].
The set of Γ(N)-structures on E/S is denoted [Γ(N)](E/S).

Of course when N is invertible on S, this notion of level-N structure brings
nothing new to the naive usual definition. On the other hand, over a field k
of positive characteristic p, a Drinfeld basis of E[p] is easily seen to be a pair
(P,Q) such that at least one of the two points has order p, in the usual sense, in
E(k), at least if E is ordinary (and the only possible (0, 0) if E is supersingular).

Let us fix from now on some prime number p. If S is an Fp-scheme, and n any
non-negative integer, let Fn

E/S : E → E(pn) denote the nth-power of the relative

Frobenius, and V n
E/S : E

(pn) → E the nth-power of the Verschiebung, that is,
the dual isogeny to Fn

E/S .

One knows that Fn
E/S is purely radicial, and V n

E/S is étale exactly when E/S
is ordinary. In any case both isogenies are cyclic with order pn, that is, after
a suitable surjective finite locally free base change, there is a group morphism
φ : (Z/pnZ)→ E(S) such that their kernel is equal, as effective Cartier divisor,
to

∑
a∈(Z/pnZ)[φ(a)]. An Igusa structure of level pn on E/S is the datum of

some point P in E(pn)[pn](S) such that the equality

Ker(V n
E/S) =

∑

a∈(Z/pnZ)

[aP ]
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between effective Cartier divisors holds. The associated moduli problem on the
elliptic stack (Ell)Fp

is denoted by [Ig(pn)]. Igusa proved that [Ig(pn)] is rela-

tively representable: there is a complete smooth curveM(P , [Ig(pn)]) over Fp

such that the complement of the cuspsM(P , [Ig(pn)]) represents (P , [Ig(pn)]).
To state Katz-Mazur’s central result in the simplest way, we shall actually work
with so-called exotic Igusa structures. So - restricting ourselves to level p - we
define the moduli problem [ExIg(p, 1)] that sends (E/S/Fp) to:

[ExIg(p, 1)](E/S) := {P ∈ E(S), (0, P ) is a Drinfeld p−basis of E/S}

and we then can check there is an (exotic) isomorphism

[Ig(p)]
∼−→ [ExIg(p, 1)] , (E/S, P ∈ [Ig(p)](E/S)) 7→ (E(p)/S, (0, P )) .

The moduli problem (P , [Γ(p)]) classifies triples (E/S, α, φ) for S a Zp-scheme,
E/S an elliptic curve, α ∈ P(E/S), and φ ∈ [Γ(p)](E/S). Katz-Mazur’s theo-
rems about Γ(p)-structures ([16], Theorems 3.6.0, 5.1.1 and 10.9.1) then assert
that (P , [Γ(p)]) is representable by a regular Zp-schemeM(P , [Γ(p)]), that has
a compactificationM(P , [Γ(p)]) which enjoys the following properties. Weil’s
pairing ep(·, ·) shows that the morphism M(P , [Γ(p)]) → Spec(Zp) factorizes
through Spec(Zp[ζp]), with Zp[ζp] := Zp[x]/(x

p−1+ · · ·+x+1). For all integers
i in {1, . . . , p− 1}, set

Xi :=M(P , [Γ(p)ζi
p−can])

for the sub-moduli problem over (Ell)Zp[ζp] representing triples

(E/S/Zp[ζp], α, φ) such that ep(φ(1, 0), φ(0, 1)) = ζip .

The obvious morphism:
∐

i

Xi →M(P , [Γ(p)])Zp[ζp]

induces, by normalization, an isomorphism of schemes over Zp[ζp]:

∐

i

Xi
∼−→M(P , [Γ(p)])∼Zp[ζp]

, (1)

with M(P , [Γ(p)])∼Zp[ζp]
→ M(P , [Γ(p)])Zp[ζp] the normalization. The trivial-

ity of pth-roots of unity in characteristic p shows that, after the base change
Zp[ζp]→ Fp, the Xi,Fp

are not only isomorphic to each other but actually equal.
Moreover, the modular interpretation of a Γ(p)-structure φ : (Z/pZ)2 → E(k),
in the generic case of an ordinary elliptic curve E over a field k of charac-
teristic p, amounts to choosing some line L in (Z/pZ)2 that plays the role of
Ker(φ), then some point P in E(k) which defines the induced isomorphism
(Z/pZ)2/L

∼−→ E[p](k). Making that into a proof, Katz and Mazur give the
following theorem.
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Figure 2: Katz-Mazur and stable fibers of Xi

Theorem 2.1. (Katz-Mazur [16], 13.7.6). Each curve Xi,Fp
obtained from

Xi over Zp[ζp] via Zp[ζp] → Fp, is the disjoint union, with crossings at the
supersingular points, of p + 1 copies of the M(P)-scheme M(P , [ExIg(p, 1)])
(cf. Figure 2). We label those Igusa schemes as Igi,L for (i, L) running through
F×
p × P1(Fp).

Remark 2.2. One would like to think of the copies of M(P , [ExIg(p, 1)]) as
the “components” of Xi,Fp

, which is morally true - note however that they

may not be geometrically irreducible (being such exactly whenM(P) is). The
same administrative issue will show up in our subsequent models. It of course
vanishes when we eventually get rid of the auxiliary level-P structure, as in the
coarse curves Xns(p), X

+
ns(p), and so on below.

The situation at the supersingular points can be described as follows. Let x be
a point of Xi,Fp

whose underlying elliptic curve E0 is supersingular, and let k
be the residue field of x. Then x is a triple (E0/k, α0, φ0) with α0 ∈ P(E0/k)
and φ0 ∈ [Γ(p)can](E0/k); note that φ0(1, 0) and φ0(0, 1) are both 0, as E0 is
supersingular. Let R be the completion of the local ring of Xi,Fp

at x.

By construction, R is the universal formal deformation ring of (E0, α0, φ0) to
Artin local k-algebras. That is, restricting fromM(P ,Γ(p)can)k the universal
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triple to R gives the Cartesian diagram

(E0,k, α0, φ0) (ER, α
univ, φuniv)

Spec(k) Spec(R) .

�

This diagram has the property that for every Artin local k-algebra A with
residue field k, every (E/A, α, φ), and every Cartesian diagram

(E0,k, α0, φ0) (E,α, φ)

Spec(k) Spec(A)

�

there are unique dashed maps

(E0,k, α0, φ0) (E,α, φ) (ER, α
univ, φuniv)

Spec(k) Spec(A) Spec(R)

�

that make the diagram commutative, and the right square Cartesian.
In order to get a useful description of R, let E/k[[t]] be a universal deformation
of E0 to Artin local k-algebras with residue field k (see Section 2.2.2 for some
explicit ones). As ER is a deformation of E0 over R, we have a unique Cartesian
diagram

E0,k E ER

Spec(k) Spec(k[[t]]) Spec(R) .

�

As P is étale over (Ell)Zp
, α0 lifts uniquely to every deformation of E0. There-

fore, the connected component of (P , [Γ(p)can])E/k[[t]] containing x is equal to
the base change of [Γ(p)can]E/k[[t]] via k→ k′, and hence

Spec(R) = [Γ(p)can]E/k[[t]] ×Spec(k) Spec(k
′) ,
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that is, Spec(R) is the k′[[t]]-scheme representing all Γ(p)can-structures on the
elliptic curve Ek′[[t]] over k′[[t]]. Being this, R is a k′[[t]]-algebra, free of rank
#SL2(Fp) as k

′[[t]]-module.
Let Z be a parameter of the formal group of E/k[[t]]. Then, as E/k is supersin-
gular, φuniv(1, 0) and φuniv(0, 1) in E(R) are two points of that formal group.
We write

x = Z(φ(1, 0)) ∈ R, y = Z(φ(0, 1)) ∈ R

for their respective parameters. Katz and Mazur prove in [16, §5.4] that x and
y generate the maximal ideal of R, hence that R is a quotient of the formal
power series ring k′[[x, y]] whose x and y map to x, resp. y in R. The fact that
Xi,Fp

is the union of the Igi,L for L running through P1(Fp) means that the
kernel of k′[[x, y]] → R is generated by the product of equations of the Igi,L.

Now the condition that φuniv defines a point on Igi,L is

{
φuniv(1, 0) = a · φuniv(0, 1) if L = Fp · (1,−a)
φuniv(0, 1) = 0 if L = Fp · (0, 1)

which translates on the formal group, for ã ∈ Zp any lift of a ∈ Fp, as

{
x = [ã](y) = ay + higher degree terms in y if L = Fp · (1,−a)
y = 0 if L = Fp · (0, 1).

Hence the equation f in k′[[x, y]] mod (x, y)p+2 is y
∏

a∈Fp
(x−ay) = xpy−xyp.

The regularity of Xi at x, plus [16, Thm. 13.8.4] give the following.

Theorem 2.3 (Katz-Mazur). The complete local ring of the arithmetic surface
Xi at a supersingular point x is isomorphic to

W (k′)[ζp][[x, y]]/(x
py − xyp + g + (1− ζp)f1) ,

with k′ the residue field at x, W (k′) its ring of Witt vectors, g belongs to the
ideal (x, y)p+2 and f1 is a unit of W (k′)[ζp][[x, y]].

2.2 The stable model

We can now describe how to compute the (semi)stable model ofM(P , [Γ(p)])
over “the” completely ramified degree-(p2 − 1) extension of Zur

p . (Here and in
all what follows, Zur

p denotes the ring of integers of the maximal unramified
extension of Qur

p of Qp.)
First we recall a general tool for explicitly computing semistable models of
curves in tame situations, starting from a regular model. Let S be the spec-
trum of some discrete valuation ring, whose generic and closed point we denote
by η and s respectively. Let C → S be a curve, that is, a S-scheme purely of
relative dimension 1. Assume C is proper and flat over S, that C is regular,
and Cη := C → Sη is smooth. By [19, Thm 2.26], (and [19, Rem.2.27]), after
sufficiently many blow-ups in closed singular points of C we can assume Cs is a
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Cartier divisor on C with normal crossings. Write n for the least common mul-

tiple of the multiplicities of irreducible components of C and set T := S[π
1/n
0 ],

for π0 some uniformizer on S. Let C̃T be the normalization of the base change
C ×S T → T . Then, assuming n is prime to p, one knows that C̃T /T is a
semistable curve: the only singularities of the geometric special fibre are ordi-
nary double points, that is, with complete local ring isomorphic to that of the
union of the 2 coordinate axes in the affine plane, at the origin. In the case
of complex surfaces, this knowledge comes from the resolution of Hirzebruch–
Jung singularities ([14] and [15]), see [3, III.§5] and the historical remarks at
the end of [3, III]. See [7, §2.1] for the case we use in this article. For the case
where one starts with a curve C → S with C not necessarily regular, see [19, 8]
and [7, §2.1] for resolution of singularities.

Remark 2.4. • From our semistable model it is not hard to obtain a stable
one via appropriate contractions.

• In the case of modular curves, the hypothesis that n be prime to p is
typically not satisfied when the level is divisible by p2. For those more
difficult cases rigid analytic methods are more succesful, as shown in the
work of Weinstein ([25]; see also references in the Introduction of loc.
cit.).

We apply the above to compute a semistable model forM(P , [Γ(p)]). Actually,
for p not too small, that model will happen to be even stable. Starting from the
regular curveM(P , [Γ(p)])∼Zp[ζp]

over Zp[ζp], equal to
∐

iXi by (1), we sum-up

the algorithm we follow:

(a) blow-up singular points in the closed fiber until having normal crossings;

(b) provided the l.c.m. n of multiplicities of components is prime to p (which
will be the case for us), base-change to “the” purely ramified-at-p exten-
sion of Qp of degree n and

(c) normalize; we denote the result byM(P , [Γ(p)])st.

It is clear from that construction and Theorem 2.1 that the special fiber of our
semistable model M(P , [Γ(p)])st over Z[(1 − ζp)

1/p+1] will have two types of
irreducible components: the “vertical ones”, obtain by simple base change from
the components of Katz-Mazur model, and the “horizontal ones”, which con-
tract to supersingular points in that model. The former vertical components,
which are copies of theM(P , [ExIg(p, 1)]), will be called Igusa parts. The lat-
ter horizontal ones will be referred to as Drinfeld components and computed in
the next section.

2.2.1 Drinfeld components

We know from Theorem 2.3 that the complete local ring of Xi at some
singular point s is W (k)[ζp][[x, y]]/(f), for k the residue field of s, and
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f = xpy − xyp + g + (1 − ζp)f1, with g in the ideal (x, y)p+2 and f1 a unit of
W (k)[ζp][[x, y]]. The completion along the exceptional divisor of the blow up
of Xi in s is therefore covered by two affine open Spf(A1) and Spf(A2), with
A1 = W (k)[ζp][v][[x]]/f(x, vx) and A2 = W (k)[ζp][u][[y]]/f(uy, y) (see [10],
1.3.1). So here

A1 = W (k)[ζp][v][[x]]/(x
p+1v(1 − vp−1) + g + (1− ζp)f1(x, xv))

which shows that the exceptional divisor in Spf(A1) has multiplicity p+1, and
same with A2. So we extend the base ring W (k)[ζp] to W (k)[π] with

π := (1− ζp)
1/(p+1) (2)

so that, writing g(x, vx) = xp+2h,

A1 ⊗W (k)[ζp] W (k)[π] =

W (k)[π][v][[x]]/(xp+1v(1 − vp−1) + xp+2h+ πp+1f1(x, xv))

and, to normalize it, we blow up at (x, π). This means we set π = xw and

A1⊗̃W (k)[ζp]W (k)[π] =

W (k)[π][v][[x]][w]/(π − xw, (v − vp) + xh+ wp+1f1(x, xv)).

The corresponding affine part of the exceptional divisor Di,s above s is given
by x = 0, so that Di,s has an affine model with equation

awp+1 = vp − v (3)

for a ∈ k∗ the image of f1(0, 0). One could possibly determine that a but we
will content ourselves in that paper with geometric models so we will henceforth
assume a = −1. Putting α = 1/w and β = v/w gives the other model

αpβ − αβp = 1. (4)

Note the singularities of our model have thickness 1.
Keeping track of our parameters, we register that

α = w−1 = π−1x and β = w−1v = π−1vx = π−1y. (5)

Remark 2.5. The above Drinfed components are supersingular (i.e. have su-
persingular jacobians), which means that their quotients showing-up in the
models below are, too. Indeed, from (4) we know they have geometric projec-
tive equation XpY −XY p = Zp+1 (a so-called “Hermitian equation”). Hurwitz
formula shows their genus is g = 1

2p(p− 1). Considering the form Hs given by
the equation XpY −XY p = aZp+1, for a ∈ Fp2 some non-trivial square root of
an element in Fp, one checks that the number #Hs(Fp2) of points of Hs with
values in Fp2 is (p3 + 1). That therefore means that Hs is maximal over Fp2 :

#Hs(Fp2) = 1 + p2 + 2pg
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is the maximum allowed by Weil’s bound. Now if (ai)1≤i≤2g is the set
of eigenvalues of the Frobenius endomorphism of Jac(Hs) over Fp, we have

#Hs(Fp2) = 1 + p2 −∑2g
i=1 a

2
i , and Riemann’s hypothesis |ai| ≤

√
p implies

that a2i = −p, so that Frobenius has characteristic polynomial (X2 + p)g. The
latter is the characteristic polynomial of Frobenius on Eg, for E a supersingular
elliptic curve over Fp.

2.2.2 Points with exceptional automorphisms

In order to compute stable models for level structures defining non-rigid moduli
problems, that is, to compute stable models for coarse moduli spaces, we shall
consider quotients of the above stable models M(P , [Γ(p)])st by relevant sub-
groups H ⊆ GL2(Fp), such as H = Γs(p), Γns(p), Γ

+
s (p) or Γ

+
ns(p), that is, the

split or non-split Cartan subgroup, or their respective normalizers. Then to get
rid of the rigidifying level structure P , we shall assume it is representable, finite
étale over (Ell)Zp

, and Galois of group G; finally we take the quotient of our

M(P , [H ])st by the action of G. To describe the local situation above singular
points ofM(P , Hζp−can)Zp[ζp] with extra automorphisms, we however need to
describe the action of those automorphisms on the relevant deformation rings.
So let E0 be a supersingular elliptic curve over k := Fp2 , such that Autk(E0)
is cyclic of order 4 (j = 1728) or 6 (j = 0). Let x be a point ofM(P ,Γ(p)can)k
whose underlying elliptic curve is E0, and let k′ be its residue field. Then x
is a triple (E0,k′ , α0, φ0) with α0 in P(E0,k′/k′) and φ0 the unique (trivial)
element of [Γ(p)can](E0,k′/k′). Let R be the completion of the local ring of
M(P ,Γ(p)can)k at x. In order to get a useful description of R, we first give a
universal deformation of E0 to Artin local k-algebras with residue field k.
If j = 1728, one can check (cf. [10], 1.3.2) that the elliptic curve E over k[[t]]
given by the Weierstrass equation

Y 2 = X3 −X + t (6)

is universal. (Indeed, it is well-known that one can choose for E0 an equation
of shape Y 2 = X3 −X . Any deformation of E0 to an Artinian local k-algebra
A with residue field k and maximal ideal m can then be given an equation
Y 2 = X3 + aX + b, with a+ 1 and b in m. (Recall that p > 3.) Now one can
write a = −c4 for c ∈ A congruent to 1 mod m. Replacing the variables X and
Y by c−2X and c−3Y respectively gives the desired model for E.) The action
of a generator i of µ4(k) = Autk(E0) (via action on tangent space at 0) is given
by:

[i] : X 7→ −X, Y 7→ iY, t 7→ −t.
In the case j = 0 one similarly sees that a model for E over k[[t]] is given by
the Weierstrass equation

Y 2 = X3 + tX − 1 (7)

with automorphism action given by:

[ζ] : X 7→ ζ−2X, Y 7→ −Y, t 7→ ζ2t
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for ζ some generator of µ6(k) = Autk(E0) (again, identification via the action
on the tangent space at 0).
As P is étale over (Ell)Zp

, α0 lifts uniquely to every deformation of E0. There-
fore,

Spec(R) = [Γ(p)can]E/k[[t]] ×Spec(k) Spec(k
′) .

To arrive at the description of R by Katz-Mazur in Theorem 2.3, we choose
X/Y as parameter Z of the formal group of E/k[[t]], with X and Y the
functions of the Weierstrass model above. Our description of the action of
[i] and [ζ] shows that [i] : Z 7→ iZ, and [ζ] : Z 7→ ζZ. Therefore as φ(1, 0)
and φ(0, 1) constitute our Drinfeld basis of E[p], we have x = Z(φ(1, 0)) and
y = Z(φ(0, 1)) ∈ R for their respective parameters as in Theorem 2.3 so that [i]
maps them to ix and iy respectively, and [ζ] maps them to ζx and ζy. It means
the parameters α and β of equations (5) are mapped to iα and iβ respectively,
and similarly to ζα and ζβ. (One immediately checks that equation (4) is
preserved because p+ 1 is divisible by the order of the automorphism.)

2.2.3 The action of GL2(Fp)

The action of GL2(Fp) onM(P ,Γ(p)) from the right has the obvious modular
interpretation:

r(g) : (E/S, α, φ) 7→ (E/S, α, φ ◦ g).
By construction, that extends uniquely to an action on our semistable
model M(P ,Γ(p))st, and we want to describe this on the special fiber.
As ep(φ ◦ g(1, 0), φ ◦ g(0, 1)) = ep(φ(1, 0), φ(0, 1))

det(g), the action of g on∐
iXi ⊗Z[ζp] Fp is

(
(E/S/Fp, α, φ), i

)
7→

(
(E/S/Fp, α, φ ◦ g), i det(g)

)
.

The action of GL2(Fp) on the Igi,P goes therefore as follows. Each g induces
an isomorphism

r(g) : Igi,P
∼−→ Igi det(g),g−1P

so that the stabilizer of Igi,P is the Borel subgroup BP of SL2(Fp) that fixes
the line P . As for the Drinfeld components, g induces an isomorphism

r(g) : Di,s
∼−→ Di det(g),s

and the stabilizer of Di,s is SL2(Fp). Recalling the notation we have intro-
duced before Theorem 2.3 we denote by Z a parameter of the formal group of
the universal deformation E/Fp[[t]], so that our universal p-torsion basis have

parameters x = Z(φ(1, 0)) and y = Z(φ(0, 1)). Writing g =

(
a b
c d

)
in

SL2(Fp), we see that g acts from the left on W (k′)[ζp][[x, y]]/(f) by:

r(g)#x = r(g)#Z(φ(1, 0)) = Z(φ ◦ g(1, 0)) = Z(φ(a, c))

≡ aZ(φ(1, 0)) + bZ(φ(0, 1)) ≡ ax+ cy mod (x, y)2 (8)

r(g)#y ≡ bx+ dy mod (x, y)2. (9)
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It therefore follows from (5) that g acts on our model (4) by

r(g)#α = aα+ cβ and r(g)#β = bα+ dβ ; (10)

one readily checks that equations (4) are preserved by the action of SL2(Fp).

2.2.4 Galois action

Let GQ be the absolute Galois group of Q, and Gp its decomposition group
at a maximal ideal of Z over p, which we identify with the absolute Galois
group GQp

of Qp. If Qur
p and Qt

p are the usual notations for the maximal
unramified and tame extension of Qp respectively, the sequence of inclusions
Qp ⊂ Qur

p ⊂ Qt
p ⊂ Qp induces the sequence of Galois subgroups

Ip ⊳ I ⊳ Gp ⊳ GQ

where correspondingly I is the inertia subgroup, and Ip its wild inertia sub-
group. The tame inertia group It := I/Ip ≃ Gal(Qt

p/Q
ur
p ) can be identified

with lim←−p∤n
µn(Fp) (where µn stands for the nth-roots of unity) by

σ 7→ (σ(p1/n)/p1/n))p ∤n (11)

(so that the transition morphisms µnm → µn are given by ζnm 7→ ζmnm), and
that is still isomorphic to lim←−F∗

pn (in which transition morphisms are now given
by the norm): this is Serre’s theory of “caractères fondamentaux”, cf. [24],
paragraph 1.3. Any σ in GQ induces an automorphism

γ(σ) := id× Spec(σ) of M(P ,Γ(p))×Q Spec(Q)

with π = (1 − ζp)
1

p+1 as in (2). The above fiber product is equal to

M(P ,Γ(p))Q(π) ×Spec(Q(π)) Spec(Q)

and γ(σ) extends uniquely to an automorphism of

M(P ,Γ(p))stZ[π] ×Spec(Z[π]) Spec(Z)

that we still denote by γ(σ). It follows that any σ in GQp
induces an automor-

phism of the special fiber M(P ,Γ(p))stp := M(P ,Γ(p))stZ[π] ×Spec(Z[π]) Fp, and

if σ actually belongs to I then γ(σ) is an Fp-automorphism.
The extension Z → Z[π] having degree p2 − 1 and being totally ramified
at p, the inertia action just defined factorizes through an antihomomorphism
γ : F∗

p2 → AutFp
(M(P ,Γ(p))stp ). The action of I on µp(Fp) factorizes through

I → F∗
p2

N−→ F∗
p, for N the norm map x 7→ xp+1. This means that the action

of inertia on the left-hand side
∐

i∈F∗

p
Xi of (1) has the modular interpretation:

(E/S
f−→ Spec(Z[ζp]), φ)i

γ(u)7−→ (E/S
f ′

−→ Spec(Z[ζp]), φ)iu−p−1
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for f ′ = Spec(up+1) ◦ f . It follows that u ∈ F∗
p2 induces isomorphisms:

γ(u) :

{
Igi,P

∼−→ Igiu−p−1,P

Di,P
∼−→ Diu−p−1,P .

(12)

The stabilizer in F∗
p2 of both types of components is equal to the kernel

µp+1(Fp2) = (F∗
p2)p−1 of the norm map. Because the Igi,P are already com-

ponents of the special fiber of some Z[ζp]-scheme, µp+1(Fp2) acts trivially on
each of them. As for the Di,s, we see from (11) that γ(u)(π) = uπ mod π2, so
that (5) implies that u ∈ µp+1(Fp2) induces the automorphism

γ(u)# : α 7→ u−1α and β 7→ u−1β (13)

on the model (4) of Di,s.

3 Non-split Cartan structures

3.1 Stable model for M(P ,Γns(p))

We compute the stable model for modular curves associated with a non-split
Cartan group Γns(p) ⊆ GL2(Fp) (but not its normalizer), endowed with some
additional level structure P .
Theorem 3.1. Let p > 3 be a prime, and let [Γns(p)] be the moduli problem
over Z[1/p] associated with Γns(p). Let P be a representable moduli problem,
which is finite étale over (Ell)/Zp

(take for instance P = [Γ(N)] for some N ≥ 3

not divisible by p). Let M(P ,Γns(p)) = M(P ,Γ(p))/Γns(p) be the associated
compactified fine moduli space. Let W be a totally ramified extension of Zur

p

of degree (p2 − 1)/2 (for instance W := Zur
p [(1 − ζp)

2/(p+1)]. Recall that Zur
p

denotes the ring of integers of the maximal unramified extension Qur
p of Qp).

Then M(P ,Γns(p)) has a semistable model over W whose special fiber is
made of two vertical Igusa parts, which are linked by horizontal Drin-
feld components above each supersingular point of M(P) via the projection
M(P ,Γns(p))→M(P).
Both vertical parts, call them Ig(p,P)1 and Ig(p,P)d (for d ∈ F∗

p a non-square),

are isomorphic to the enhanced Igusa curveM(P , Ig(p)/{±1})Fp .

If SP is the number of supersingular points of M(P)(Fp), the SP horizontal
(Drinfeld) components are all copies of some hyperelliptic smooth curve D for
which an affine model is given by

U2 = V p+1 +Ans (14)

for some Ans in F
∗

p.

With π0 a uniformizer of W (e.g. π0 = (1−ζp)2/(p+1)), the completed local rings
of the singular points in the special fiber are isomorphic to W [[x, y]]/(xy− π0).
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Remark 3.2. Recall, as in Remark 2.2, that we would have liked to call “ver-
tical components” our “vertical parts” Ig(p,P)1 and Ig(p,P)d above, but were
formally prevented from doing so becauseM(P) may not be irreducible itself.
Finally, the constant terms Ans in equations (14) could obviously been taken
as 1, as we here are only interested in geometric models; the same holds for
similar terms in the forthcoming parallel statements about split Cartan curves,
etc. We leave that presentation as a reminder that a more precise determination
could possibly be computed some day.

For a picture of the curve we refer to Figure 3: it actually represents the coarse
quotient Xns(p), but that does not affect the general shape.

Proof. Let W ′ be the ramified quadratic extension Zur
p [(1 − ζp)

1/(p+1)] of W .

One starts with the semistable model ofM(P ,Γ(p)) of over W ′ as described in
Section 2, and takes the quotient by the non-split torus Γns(p) in GL2(Fp) fixed
above. This quotient is a semistable model ofM(P ,Γns(p)) over W

′, with an
action by F∗

p2 as described in Section 2.2.4 (note that the GL2(Fp)-action of

Section 2.2.3 and the Galois action in Section 2.2.4 commute with each other).
The Galois group ofW ′ overW is the subgroup {±1} of F∗

p2 . We will check that

{±1} acts trivially on the special fibre of our semistable model over W ′. Then
the quotient of that model over W ′ by {±1} is the promised model over W ,
and its pullback to W ′ is our semistable model over W ′.
Recall (Section 2.2) that the vertical Igusa parts Igi,P are indexed by
F∗
p × P1(Fp), and the action of GL2(Fp) on the latter set is given by

(i, (a : b))
g7→ (i det(g), g−1·(a : b)).

If D ≃ F∗
p denotes the subgroup of scalar matrices, the action of Γns(p) on

P1(Fp) factorizes via the quotient Γns(p)/D ≃ Z/(p + 1)Z and that action is
free and transitive. (Indeed the orbits on P1(Fp2), say, have size p+1 or 1, and
P1(Fp) is preserved.) One can therefore choose as representatives for the cosets
(F∗

p × P1(Fp))/Γns(p) the two elements (1, (1 : 0)) and (d, (1 : 0)) for d some
non-square in F∗

p. Each Igusa component Igi,P has stabilizer ±1 in Γns(p), so

the two vertical parts are isomorphic toM(P , Ig(p)/{±1})Fp
. And indeed, the

Galois group of W ′ over W acts trivially on each of these two parts because, as
noted at the end of Section 2.2.4, the group µp+1(Fp2) acts trivially on the Igi,P .
That is for the first part of the Theorem.
Let us deal with the Drinfeld components. Recall that an equation for them in
the bad fiber ofM(P ,Γ(p)) is given by

−a = αβp − αpβ (15)

for some a in F
∗

p (cf. Section 2, (4)). Equations (10) and (13) show that the el-
ements denoted −1 in Γns(p) and in F∗

p2 both act as α 7→ −α and β 7→ −β. So,
indeed, the Galois group of W ′ over W acts trivially on the quotient by Γns(p).
To be completely explicit we choose some multiplicative generator κ of F∗

p2
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and pick λ := κp−1 as a generator of the cyclic subgroup of elements with
norm 1 within F∗

p2 . That subgroup is precisely the stabilizer in Γns(p) of
any Drinfeld component Di,s by Section 2.2.3. Set now P1 := λe1 + λpe2,
P2 := λpe1 + λe2, for (e1, e2) the canonical basis, say, of F2

p. We can choose
Γns(p) so that it acts diagonally on this basis (P1, P2), that is, Γns(p) can be

written as {
(

ap 0
0 a

)
, a ∈ F∗

p2} with respect to (P1, P2). We perform the

change of coordinates

α̃ := λα+ λpβ and β̃ := λpα+ λβ. (16)

Then if N := (λ−2 − λ2) one has

α =
1

N
(−λα̃+ λpβ̃) and β =

1

N
(λpα̃− λβ̃) (17)

from which equation (15) becomes

aN = α̃p+1 − β̃p+1. (18)

Now coordinates for the quotient curve Ds := Di,s/(Γns(p) ∩ SL2(Fp)) are

{
u1 := α̃p+1

v1 := α̃β̃
(19)

(they are indeed stable under the action of Γns(p) ∩ SL2(Fp), and the corre-
sponding morphism of curves has degree p+ 1) so an equation for Ds is

u2
1 − vp+1

1 − aNu1 = 0 (20)

or, setting U := u1 − aN
2 and V := v1,

U2 = V p+1 +

(
aN

2

)2

(21)

which gives our hyperelliptic model for Ds.

Finally, the assertion on the completed local rings at the singularities in the
special fiber follows for instance from [19], Chapter 10.3, Proposition 3.48,
combined with the fact that the semistable model ofM(P ,Γns(p)) over W

′ is
the pullback of the semistable model over W .

3.2 Stable model for M(P ,Γ+
ns(p))

Now for curves associated with the normalizer Γ+
ns(p) of Γns(p).

Theorem 3.3. Let p > 3 be a prime, and let [Γ+
ns(p)] be the moduli prob-

lem over Z[1/p] associated with Γ+
ns(p)). Let P be as in Theorem 3.1, and

let M(P ,Γ+
ns(p)) =M(P ,Γ(p))/Γ+

ns(p) be the corresponding compactified fine
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moduli space. We denote, as in Theorem 3.1, by SP the number of supersingu-
lar points ofM(P)(Fp), and by W a totally ramified extension of Zur

p of degree
(p2 − 1)/2.

If p ≡ 1 mod 4, then M(P ,Γ+
ns(p)) has a semistable model over W whose

special fiber is made of two vertical parts, which are both isomorphic to the
Igusa curve M(P , Ig(p)/C4)Fp

, where C4 denotes the cyclic subgroup of order

4 in F∗
p. Those two parts are linked above each supersingular points of M(P)

by horizontal Drinfeld components.

If p ≡ −1 mod 4, then M(P ,Γ+
ns(p)) has a semistable model over W whose

special fiber is made of only one vertical part, which is isomorphic to the en-
hanced Igusa curve M(P , Ig(p)/{±1})Fp

. That vertical part is crossed at all
SP supersingular points by a horizontal component.

Wether p is 1 or −1 mod 4, the SP horizontal components of the special fiber
are copies of some hyperelliptic curve D+ for which an affine model is given by

Y 2 = X(X
p+1
2 +Ans) (22)

for Ans in F
∗

p.

The singular points in the special fiber have local equations either

W [[x, y]]/(xy − π0) , if p ≡ −1 mod 4,

or
W [[x, y]]/(xy − π2

0) , if p ≡ 1 mod 4,

for π0 a uniformizer of W .

The same caveat as in Remark 3.2 (regarding irreducibility of the vertical Igusa
parts) is in order here.

As before, for a picture of the curve we refer to Figure 4, representing the
coarse quotient Xns(p)

+.

Proof. Use notations as in the above proof of Theorem 3.1: our basis (P1, P2)
of F2

p2 made of two Fp2/Fp-conjugate vectors is such that

Γns(p) = {
(

ap 0
0 a

)
, a ∈ F∗

p2}

with respect to the basis (P1, P2). Then the normalizer of Γns(p) deprived from
Γns(p) is made of all elements

wr :=

(
0 r
rp 0

)

for r running through F∗
p2 . The element w1 leaves stable the Fp-line spanned by

(P1+P2). Up to changing choices, one can assume that is the line (1 : 0) chosen
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in our representative of (F∗
p × P1(Fp))/Γns(p). Therefore w1 maps (x, (1 : 0))

to (−x, (1 : 0)), so that it exchanges the two orbits corresponding to our Igusa
parts if and only if −1 is a non-square in F∗

p.

Now for the Drinfeld components. One needs to compute the action of wr for r
satisfying rp+1 = −1. With notations as in (19), one checks that, independently
of r and because of (20):

{
u1 · wr = α̃p+1 · wr = r(p+1)pβ̃p+1 = −β̃p+1 = − vp+1

1

u1
= −u1 + aN,

v1 · wr = (rpβ̃)(rα̃) = −α̃β̃ = −v1

so that U = (u1 − aN
2 ) and V = v1 are mapped to their opposite. Therefore

{
X := v21 = V 2 and
Y := (u1 − aN

2 )× v1 = U × V
(23)

give coordinates for the image of any Drinfeld component in our model
M(P ,Γ+

ns(p))
st
Fp
. From (20) we then check that a singular model for any Drin-

feld component can now be given the equation

Y 2 = X(X
p+1
2 +Ans).

The proof of the equations of singularities in the special fiber are straightfor-
ward and similar to that of Theorem 3.1.

3.3 Stable model for Xns(p)Q

Now we deal with the case of pure level p non-split Cartan. We therefore
assume the additional level structure P is Galois, and take the quotient of our
fine modular curves by its Galois group to produce the desired coarse moduli
spaces.

Theorem 3.4. For p > 3 a prime, let Xns(p) be the modular curve associated
with a non-split Cartan subgroup in level p. Let S = g(X0(p))+1 be the number
of supersingular j-invariants in Fp2 , where g(X0(p)) is the genus of X0(p). Let
W be a totally ramified extension of Zur

p of degree (p2−1)/2, as in Theorem 3.1.
Then Xns(p) has a semistable model over W whose special fiber is made of two
vertical irreducible components, which are linked at supersingular points by S
horizontal components, cf. Figure 3. The toric part of its jacobian therefore
has dimension S − 1 = g(X0(p)).

Both vertical irreducible components, call them Ig(p)1 and Ig(p)d, are isomor-
phic to the coarse Igusa curve M(Ig(p)/{±1})Fp).

The S horizontal (Drinfeld) components are all hyperelliptic smooth curve Ds

for which an affine model is given by

U2 = V
p+1
e(s) +Ans (24)
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Ds

Ds

Ds

Ig(p)1 Ig(p)d

·

·

·

·

·

·

·

· g(X0(p)) + 1

copies

❇
❇
❇
❇
❇
❇❇▼

❆
❆
❆❆❑

✡
✡

✡✡✢

Figure 3: Special fiber of Xns(p)
st
Fp

for some Ans in F
∗

p, and e(s) is the order of the geometric automorphism group
AutFp

(s)/{±1} (which we recall to be 1 except when the j -invariant at s is

j ≡ 1728 or 0 mod p, where e = 2 or 3 respectively).

The singular points have local equations W [[x, y]]/(xy − π
e(s)
0 ), for π0 a uni-

formizer of W .

Proof. After Theorem 3.1, what remains to do is, assuming P is Galois with
Galois group G, to take the quotient ofM(P ,Γns)(p)

st by G. The stabilizers
in G have order 1, 2, 3, 4 or 6, hence are prime to p, so the only thing to
watch out is what happens on the locus of extra-automorphisms, that is, on
Drinfeld components associated with supersingular j invariants equal to 1728
or 0. It then follows from Section 2.2.2 that the exceptional automorphism [i]
(respectively, [ζ]) maps the parameters α and β to iα and iβ (respectively, ζα
and ζβ). Keeping track of those transformations through the computations of
equations (15) to (21) shows that equations for the relevant quotients Drinfeld
components have shape as given in (24).

3.4 Semistable model for X+
ns(p)Q

Theorem 3.5. Let p > 3 be a prime, and keep same notations as in Theo-
rem 3.4. Let w be the involution of the curve Xns(p) associated with the quo-
tient of the normalizer of the non-split Cartan subgroup by the Cartan itself,
and X+

ns(p) := Xns(p)/w the quotient curve.
Then in the special fiber of the stable model Xns(p)

st given in Theorem 3.4, w
fixes horizontal components, and it switches the two vertical ones if and only if
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D+
s

D+
s

D+
s

p ≡ 1 mod 4

·

·

·

·

·

·

·

· g(X0(p)) + 1

copies

❇
❇
❇
❇
❇
❇❇▼

❆
❆

❆
❆❑

✡
✡

✡✡✢

✄
✄
✄
✄
✄
✄
✄✄✗

✂
✂
✂
✂
✂
✂✍

❍❍❥

D+
s

D+
s

D+
s

·

·

·

·

p ≡ −1 mod 4

Figure 4: Special fiber on Fp of the semistable model X+
ns(p), depending on

p ≡ ±1 mod 4

p ≡ −1 mod 4. The dual graph of its special fiber is therefore topologically the
same as that of Xns(p) if p ≡ 1 mod 4, or has trivial homology if p ≡ −1 mod 4,
cf. Figure 4. The vertical components are either both isomorphic to the Igusa
curve M(Ig(p)/C4)Fp

(where C4 denotes the cyclic subgroup of order 4 in F∗
p),

in case p ≡ 1 mod 4, or, if p ≡ −1 mod 4, is isomorphic to M(Ig(p)/{±1})Fp .
The toric rank is precisely

• t = p−13
12 if p ≡ 1 mod 12;

• t = p−5
12 if p ≡ 5 mod 12;

• else t = 0.

The S = g(X0(p)) + 1 horizontal components are hyperelliptic curve D+
s for

which an affine model is given, if the supersingular j-invariant attached to D+
s

is neither 0 or 1728, by

Y 2 = X(X
p+1
2 +Ans) (25)

for some Ans in F
∗

p. In the case the j-invariant is 0, D+
0 has a model

Y 2 = X(X
p+1
6 +Ans). (26)

If the supersingular j-invariant is 1728, D+
1728 is just a projective line P1

Fp
.

The singular points in the special fiber have local rings W [[x, y]]/(xy − π
e(s)
0 )

if p ≡ −1 mod 4, else they are W [[x, y]]/(xy − π
2e(s)
0 ), where e(s) denotes as

usual the order of the geometric automorphism group AutFp
(s)/{±1}, and π0

is a uniformizer of W (e.g. (1− ζp)
2/(p+1)).
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Remark 3.6. Note that in the cases where projective lines are showing-up
as Drinfeld components, the model we obtain is only semistable, and needs
contracting the only rational curve in order to become stable.

Proof. We use Theorem 3.3, applying similar arguments as in the proof of
Theorem 3.4. Again the only delicate point is to follow the effect of excep-
tional automorphisms on relevant Drinfeld components, associated with some
supersingular elliptic curve E0. So write ζn (n = 4 or 6) for our generator
of µn(Fp2) = AutF

p2
(E0). Keeping track of the action of ζn on parameters

α, β as given in Section 2.2.2, and the subsequent parameters given in (23),
one sees that [ζn] maps X to ζ4nX and Y to ζ2nY . (One readily checks that
equations (22) are preserved.) In the case n = 6, parameters for the quotient
Drinfeld component by the action of [ζ6] are clearly X := X3 and Y := XY ,
so one deduces from equation (22): Y 2 = X(X(p+1)/2 +Ans) that a model for
that quotient Drinfeld component is Y2 = X (X (p+1)/6 + Ans). When n = 4
however, parameters for the quotient Drinfeld component by the action of [i]
are X := X and Y := Y 2. From (22) we therefore see that taking quotient by
the action of [i] gives the projective line, [i] being the hyperelliptic involution
of D1728.

Corollary 3.7. Let p = 11 or p > 13, and let J = Jac(X+
ns(p)) be the

jacobian of X+
ns(p) over the fraction field of a totally ramified extension W of

Zur
p of degree (p2−1)/2. Set n := num((p−1)/12) and let S := g(X0(p))+1 be

the number of supersingular points in characteristic p. Then the Néron model
of J over W has a component group at the special fiber which is isomorphic to

(Z/4nZ)× (Z/4Z)
S−2

if p ≡ 1 mod 4, and is trivial if p ≡ −1 mod 4.

Proof. This follows from Theorem 3.5 together with classical results of Ray-
naud (which describe the component group of the Jacobian in terms of the
intersection matrix of the special fiber of the curve, see Theorem 9.6.1 of [4]).
Notice that for p ≡ 1 mod 4 our theorem shows that the metrized dual graph
of X+

ns(p) above p is exactly the same as that of X0(p) at the special fiber
of some totally ramified extension of Qp with degree 4; then one can use for
instance [18], Proposition 2.11. Of course one could similarly write the compo-
nent group over any (ramified) extension of Frac(W ).

Remark 3.8. As a safety check one can compute that, assuming p ≡ 5
mod 12 to fix ideas, the genus of the Igusa components M(Ig(p)/C4)Fp

is

(p − 5)(p − 17)/96, that of the (p + 7)/12 Drinfeld components is (p − 1)/4
for all but the j = 0 one, for which it is (p − 5)/12, and the toric rank is
(p− 5)/12 too. The total genus therefore sums up to

2
(p− 5)(p− 17)

96
+ (

p+ 7

12
− 1) · p− 1

4
+

p− 5

12
+

p− 5

12
=

(p− 5)2

24
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which indeed is the known genus of X+
ns(p) as a Riemann surface (check for

instance [21] p. 117).

Over Z[1/p], a nice modular interpretation of X+
ns(p) has been given in [23]. It

is however hard to see what survives of it here above p.

We remark that when p ≡ −1 mod 4, the Néron model of the jacobian of X+
ns(p)

over W gives an example of an abelian scheme which yet has “bad reduction”
above p as a polarized abelian variety, in the sense that it decomposes as the
product of abelian varieties with the induced (reducible) product polarization.

Note also that we could have derived the mere toric (and abelian) dimensions
of stable models for X+

ns(p) from the corresponding description for X+
s (p) as

recalled in next section, using Chen isogeny between Jac(X+
s (p))p−new and

Jac(X+
ns(p)) (cf. [9], [5]). We come-back to that point in Remark 4.5 below.

4 Split Cartan structures

In this section we describe the bad fibers of Xs(p) and X+
s (p), following the

same paths as for the non-split Cartan cases. Recall that those models (at
least for the split Cartan curves Xs(p), if not their Fricke quotient X

+
s (p)) had

already been described in the first author’s thesis ([10], [11]).

4.1 Stable model for M(P ,Γs(p))

Theorem 4.1. Let p > 3 be a prime, and let [Γs(p)] be the moduli problem
over Z[1/p] associated with a split Cartan subgroup Γs(p) in level p (not its
normalizer). Let P be a representable moduli problem, which is finite étale over
(Ell)/Zp

. Let M(P ,Γs(p)) =M(P ,Γ(p))/Γs(p) be the associated compactified
fine moduli space. We denote by W a totally ramified extension of Zur

p of degree
(p2 − 1)/2, as in Theorem 3.1.

Then M(P ,Γs(p)) has a semistable model over W whose special fiber is made
of four vertical Igusa parts, which are linked by horizontal Drinfeld components
above each supersingular points via the projection M(P ,Γs(p))→M(P).

The two central parts are isomorphic to enhanced quotients of Igusa curves
M(P , Ig(p)/{±1})Fp

). We call them Ig(p)1 and Ig(p)d (for d some non-square

in F∗
p). The two outer vertical parts are simply copies ofM(P).

If SP is the number of supersingular points inM(P), the SP horizontal (Drin-
feld) components are all copies of some hyperelliptic curves for which an affine
model is

U2 = V p+1 +As (27)

for some non-zero As in F
∗

p.
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The double points of the central Igusa components have completed local rings
W [[x, y]]/(xy − π0), and those on the two rational outer vertical components,

have completed local rings W [[x, y]]/(xy−π
(p−1)/2
0 ), for π0 a uniformizer of W .

Proof. This is very akin to the proof of Theorem 3.1. We compute the quotient
of the vertical Igusa parts Igi,P indexed by F∗

p × P1(Fp). Fixing a split torus

Γs(p) = {
(

a 0
0 b

)
, a, b ∈ F∗

p}

and writing again D ≃ F∗
p for the subgroup of diagonal matrices, Γs(p)

acts on P1(Fp) via its quotient Γs(p)/D ≃ Z/(p − 1)Z. That action has
two fixed points say (1 : 0) and (0 : 1), and one orbit of size p − 1. One
chooses as representatives for the coset (F∗

p × P1(Fp))/Γs(p) the four ele-
ments (1, (1 : 0)), (1, (0 : 1)), (1, (1 : 1)) and (d, (1 : 1)) for d some non-square
in F∗

p. The Igusa parts attached with the first two representatives, have stabi-

lizer Γs(p) ∩ SL2(Fp) = {
(

t 0
0 t−1

)
, t ∈ F∗

p}. The stabilizer of the other

two parts is {±1}. So two vertical parts are isomorphic to the quotient
M(P , Ig(p)/F∗

p)Fp
≃M(P)Fp

, and two are isomorphic toM(P , Ig(p)/{±1})Fp
.

This is for the first part of the Theorem.
Let us deal with the Drinfeld components. Recall (cf. (4)) that an equation for
them in the bad fiber of the semistable modelM(Γ(p))st is given by

−a = αβp − αpβ (28)

for some a in F
∗

p. The stabilizer in Γs(p) of any component Di,s is
Γs(p)∩SL2(Fp), its action on coordinates ofDi,s is given by (α, β) 7→ (tα, t−1β),
so coordinates on Di,s/Γs(p) ∩ SL2(Fp) can be chosen as (u, v) = (αp−1, αβ).
From that, equation (28) becomes

vp − u2v + a · u = 0 (29)

and the change of variables (U, V ) := (uv − a/2, v) yields:

U2 = V p+1 +
a2

4

as a hyperelliptic model for Ds. The assertion about the thickness of singular-
ities follows from similar arguments as those in the proof of Theorem 3.1.

4.2 Stable model for M(P ,Γ+
s (p))

Theorem 4.2. Let p > 3 be a prime, and let [Γ+
s (p)] be the moduli prob-

lem over Z[1/p] associated with the normalizer Γ+
s (p) of a split Cartan sub-

group in level p. Let P a moduli problem as in Theorem 3.1, and let
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M(P ,Γ+
s (p)) =M(P ,Γ(p))/Γ+

s (p) be the corresponding compactified fine mod-
uli space. Let W be a totally ramified extension of Zur

p of degree (p2−1)/2, and

SP be the number of supersingular points ofM(P)(Fp).

If p ≡ 1 mod 4, then M(P ,Γ+
s (p)) has a semistable model over W whose

special fiber is made of three vertical parts. Two neighbor vertical parts are
isomorphic to the enhanced Igusa curve M(P , Ig(p)/C4)Fp

, where C4 denotes

the cyclic subgroup of order 4 in F∗
p. One outer part is a copy ofM(P). Those

three parts are linked above supersingular points of M(P) by SP horizontal
components, cf. first case of Figure 6.

If p ≡ −1 mod 4, then M(P ,Γ+
s (p)) has a semistable model over W whose

special fiber is made of only two vertical parts. One is isomorphic to the Igusa
curveM(P , Ig(p)/{±1})Fp . The second vertical part is again a copy ofM(P).
Those components are linked above supersingular points of M(P) by SP hori-
zontal components, cf. second case of Figure 6.

Wether p is 1 or −1 mod 4, the SP horizontal components D+
s of the special

fiber are copies of some hyperelliptic curve for which an affine model is given
by

Y 2 = X(X
p+1
2 +As) (30)

for some As in F
∗

p.

Double points on the trivial vertical part (which is a copy of M(P)) in the

special fiber have local rings W [[x, y]]/(xy − π
(p−1)/2
0 ), where π0 is some uni-

formizer of W . As for the genuine Igusa components, singularities have rings
W [[x, y]]/(xy − π2

0), if p ≡ 1 mod 4, or W [[x, y]]/(xy − π0) if p ≡ −1 mod 4.

Proof. This is again also very similar to the proof of Theorem 3.3. We take the
further quotient of the curve M(P ,Γs(p)) by the normalizer Γs(p)

+. Fricke’s

involution w is here given by the set {wa,b :=

(
0 a
b 0

)
, a, b ∈ F∗

p}. Therefore
w switches the two outer vertical parts. As for the central ones, their represen-
tatives (1, (1 : 1)) and (d, (1 : 1)) are mapped to (−1, (1 : 1)) and (−d, (1 : 1))
respectively, by w. It follows that the components Ig(p)1 and Ig(p)d of Theo-
rem 4.1 are switched if and only if −1 is a non-square in F∗

p.
With notations as in (29) one checks that, for wt,−t−1 in SL2(Fp):

(u, v) · wt,−t−1 = (αp−1, αβ) · wt,−t−1

= ((tβ)p−1,−αβ) = (
vp−1

u
,−v) = (u− a

v
,−v)

so the coordinates U := uv− a/2 and V := v and mapped to their opposite by
wt,−t−1 . Therefore

{
X := V 2

Y := UV
(31)
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are coordinates for the image of any Drinfeld component in our X+
s (p)Fp

, and
we conclude as in the proof of Theorem 3.3.

4.3 Stable model for Xs(p)Q

Now for the coarse case.

Theorem 4.3. For p > 3 a prime, let Xs(p) be the modular curve associ-
ated with a split Cartan subgroup Γs(p) in level p. Let S = g(X0(p)) + 1 be
the number of supersingular j-invariants in characteristic p, where g(X0(p))
is the genus of X0(p). Let W = Zur

p [(1 − ζp)
2/(p+1)] be as in Theorem 3.1.

Then Xs(p) has a semistable model over W whose special fiber is made of four
vertical irreducible components, which are linked in S points by S horizontal
components, cf. Figure 5. The toric part of its jacobian has therefore dimension
3(S − 1) = 3g(X0(p)).

The two central vertical components, call them Ig(p)1 and Ig(p)d, are isomor-
phic to the quotient coarse Igusa curve M(Ig(p)/{±1})Fp

. The two outer ver-
tical components are projective lines.

The S horizontal Drinfeld components are all hyperelliptic smooth curves for
which an affine model is given by

U2 = V
p+1
e(s) +As (32)

for some As in F
∗

p, and e(s) = Card(AutFp
(s)/{±1}).

Singular points on the rational vertical components have completed local

rings W [[x, y]]/(xy − π
e(s)(p−1)/2
0 ) and those on Igusa components have rings

W [[x, y]]/(xy − π
e(s)
0 ), for π0 a uniformizer of W .

(Note that, abusing a bit notations, we have used the same labels Ig(p)1 and
Ig(p)d as in Theorem 4.1. Note also that equations (32) define genuinely hy-
perelliptic curves only when p is not to small.)

Proof. Here we parallel the proof of Theorem 3.4. Indeed Theorem 4.1 shows
that we only need assume P is Galois with group G, and take the quotient of
our semistable model M(P ,Γs(p))

st by G. Then we check what happens on
the locus of extra-automorphisms, that is, on Drinfeld components associated
with supersingular j invariants equal to 1728 or 0. Section 2.2.2 shows that the
exceptional automorphism [ζn] (for n = 4 or 6) maps the parameters α and β
to ζnα and ζnβ respectively. Keeping track of those transformations through
the computations of equations (29) and around, and doing the math, shows
that the relevant quotients Drinfeld components are indeed given by (32).
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·
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❆❆❑

✡
✡

✡✡✢

Figure 5: Special fiber of Xs(p)

4.4 Stable model for X+
s (p)Q

Theorem 4.4. Let p > 3 be a prime, and use the same notations as in Theo-
rem 4.1 above. Let w be the involution of the curve Xs(p) defined by the action
of the normalizer Γ+

s (p), and let X+
s (p) := Xs(p)/w be the quotient curve. Let

W = Zur
p [(1− ζp)

2/(p+1)] as in Theorem 3.1.
Then in the special fiber over W , w leaves the horizontal components of Xs(p)
stable and exchanges the two outer vertical (rational) components. It switches
the two central vertical ones if p ≡ −1 mod 4, else it leaves them stable. The
special fiber of X+

s (p)st over W therefore has a dual graph as in Figure 6. Its
toric rank is explicitely

• t = p−13
6 if p ≡ 1 mod 12;

• t = p−5
6 if p ≡ 5 mod 12;

• t = p−7
12 if p ≡ 7 mod 12;

• t = p+1
12 , if p ≡ 11 mod 12.

One vertical component of X+
s (p)st is therefore a projective line. Each of the

two other vertical components, in the case p ≡ 1 mod 4, is isomorphic to
the quotient coarse Igusa curve M(Ig(p)/C4)Fp

, for C4 the scalar subgroup of
order 4. When p ≡ −1 mod 4, the remaining non-rational vertical component
is M(Ig(p)/{±1})Fp

.

The S Drinfeld horizontal components, above supersingular invariants different
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D+
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·
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·

·

p ≡ −1 mod 4

Figure 6: Special fiber of X+
s (p), depending on p ≡ ±1 mod 4

from 0 and 1728, are hyperelliptic curves for which an affine model is given by

Y 2 = X(X
p+1
2 +As) (33)

for some As in F
∗

p. If the supersingular invariant is 0, D+
0 has a model

Y 2 = X(X
p+1
6 +As). (34)

If the supersingular invariant is 1728, then D+
1728 is just a projective line P1

Fp
.

Double points on the rational vertical component have completed local rings

W [[x, y]]/(xy − π
e(s)(p−1)/2
0 ), for e(s) = Card(AutFp

(s)/{±1}) and π0 a uni-
formizer of W . As for Igusa components, singularities in the special fiber have
completed local rings

W [[x, y]]/(xy − π
2e(s)
0 ) if p ≡ 1 mod 4,

and
W [[x, y]]/(xy − π

e(s)
0 ) if p ≡ −1 mod 4.

Proof. This time what we mimic is Theorem 3.5: use Theorem 4.2, applying
similar arguments as in the proof of Theorem 4.3.

Remark 4.5. It follows from Chen-Edixhoven-de Smit’s theorem ([5], [9]) that

Jac(X+
s (p)) ∼ Jac(X+

ns(p))× Jac(X0(p))

so for p = 13 the split and non-split Cartan curves curves X+
s (13) and X+

ns(13)
have isogenous jacobians. But in [2], Burcu Baran computed models showing
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that they even are isomorphic (for some isomorphism which does not seem to
have any natural modular interpretation - for instance, the packet of six Q-
valued CM points and the rational cusp on the former curve are mapped to
seven rational CM points on the latter (and those sets are proven in [1] to be
the full X+

s (13)(Q) and X+
ns(13)(Q) respectively)). Our two models however

look like having different bad fibers: both have one horizontal component, but
X+

s (13)F13 has three vertical ones, whereas X+
ns(13)F13 has only two.

A closer look however shows that the all vertical components are rational.
After contracting the P1s only the horizontal component of each model therefore
survives, and both happen to be geometrically isomorphic to the genus-3 curves
with affine model Y 2 = X8+X . This finally shows that our isomorphic modular
curves have potentially good reduction everywhere.

5 Exceptional subgroups

We finally do the computations for modular curves in prime level p, associated
with linear groups ΓA4(p), ΓS4(p) and ΓA5(p) having projective image the
permutation groups A4, S4 or A5 respectively (see [17], Chapter XI, and more
specifically [13], for general facts on those).

Things go essentially the same way as for the Cartan cases, to the only exception
that equations for the Drinfeld components are more delicate to write down
explicitly. It seems in particular that writing them as quotients, as we did for
the Cartan subgroups, is hardly doable with bare hands. So instead of giving
closed expressions we describe in next paragraph an algorithmic method to
obtain them. Then we review the other features of special fibers (topology of
the dual graph, vertical components...) for the three exceptional cases, and
each time display some numerical examples of those Drinfeld equations.

5.1 Computation of Drinfeld components

Starting from the affine equation (4) for the generic Drinfeld component D on
X(p), or better the smooth projective model

xpy − xyp = zp+1 (35)

we see that the projection (x, y, z) 7→ (x, y) presents it as a µp+1-covering
of the projective line, for µp+1 the group of p + 1st roots of unity, which is
ramified precisely above P1(Fp). We also see that D is endowed with an action
of G := SL2(Fp)× µp+1 defined as

((
a b
c d

)
, α

)
· (x, y, z) = (ax+ cy, bx+ dy, αz) (36)

(recall the “transposed” action of SL2(Fp) as described in (10)). Clearly the
two actions of SL2(Fp) and µp+1 commute. The groupG does not act faithfully,

Documenta Mathematica 26 (2021) 231–269



Semistable Reduction of Modular Curves 259

but its quotient by {±1} = µ2(Fp) (embedded diagonally), does. Therefore ifH
is any subgroup of SL2(Fp) (containing −1) we have the commutative diagram

D/µ2 P1
Fp

D/H (P1
Fp
)/H

π

q

where the (smooth) curves D/µ2 and (D/µ2)/H = D/H on the left-hand
side are endowed with an action of µp+1/µ2 ≃ µ p+1

2
, the quotients by which

are precisely the projective lines on the right-hand side. This diagram is co-
cartesian by the universal properties of the quotient morphisms, and cartesian
exactly away from the locus in (P1

Fp
)/H where both maps are ramified (above

such points the fibered product has a 2-dimensional tangent space).
Let us first make the quotient (P1

Fp
)/H explicit by giving a rational function

φ : P1
Fp
→ P1

Fp
that realises it. We can take

φ(t) =

∏
P∈O1

(t− t(P ))#H1

∏
P∈O2

(t− t(P ))#H2
, (37)

where the Oi are two distinct H-orbits of elements of P1(Fp), not containing∞,
and the Hi are their respective isotropy groups. The diagram above now has
become

D/µ2 P1
Fp

D/H P1
Fp

π

q φ

π

Via π, D/H is a µ p+1
2
-covering of P1

Fp
, hence it can be given a (singular)

equation of shape u(p+1)/2 = f(t), with ζ ∈ µ p+1
2

sending u to ζu, say, and we

need to spot such an f . We can multiply f by arbitrary non-zero (p + 1)/2th
powers, so we just need to determine div(f) with coefficients modulo (p+1)/2.
For that, we observe that, at each fixed point, ζ ∈ µp+1 acts on the cotangent
space of D by ζ (use equation (36)). Therefore, at each fixed point of D/µ2,
ζ ∈ µ(p+1)/2 acts on the cotangent space by ζ. Now let P ∈ D/µ2 be a fixed
point for µ(p+1)/2, let Q := q(P ) and let e = #HP be the ramification index
of q at P . Then ζ ∈ µ(p+1)/2 acts on the cotangent space at Q by ζe. We
note that #HP = #Hπ(P ), the ramification index of φ at π(P ), and that
vπ(Q)(f)·(p + 1)/2 = vQ(π

∗f) = vQ(u)·(p + 1)/2, hence vπ(Q)(f) = vQ(u). It

follows that ζ ∈ µ(p+1)/2 sends u to ζvQ(u)e·u, which we know to be ζu itself.
Hence:

vπ(Q)(f) = vQ(u) = e−1 = (#Hπ(P ))
−1 in Z/((p+ 1)/2)Z .
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We finally obtain for our Drinfeld component D/H over Fp the equation

u
p+1
2 =

∏

R∈H\P1(Fp), φ(R) 6=∞

(t− φ(R))1/#HR , (38)

where the product is over a set of representatives R with φ(R) 6= ∞ for the
H-orbits of P1(Fp), and where 1/#HR is lift in Z of the inverse of #HR

in (Z/((p+ 1)/2)Z)×.
(Notice that in all cases below, HR is the isotropy group of the intersection of
our exceptional groups with SL2(Fp). In particular, the cases p ≡ 11 or 19 mod
12 in Section 5.3 below (group S4) should cause no worries with respect to the
condition that #HR is invertible mod (p+ 1)/2.)
In next sections we illustrate this method by providing a few numerical exam-
ples, constructing explicitly some φ and equations (38) for each case H = A4,
S4 or A5.

5.2 A4

We first notice that the fact A4 has no subgroup of index 2 implies A4 in fact
belongs to the subgroup SL2(Fp)/{±1} of GL2(Fp)/F

∗
p. The smallest number

field over which the corresponding modular curve has a geometrically connected
model is therefore the quadratic subfield of Q(µp).
It follows from [17], proof of Theorem 2.3 on p. 186 of Chapter XI, that there
are three orbits of elements in P1(Fp2) with non-trivial isotropy subgroups for
the action of A4 in PGL2(Fp2). Those isotropy subgroups have order 2, 3 and 3
(cf. case (iii) of the Lemma after Theorem 2.3 quoted above); we call them G2,
G3,1 and G3,2. In P1(Fp2), there is therefore one orbit of size 6 (call it O2),
two of size 4 (call them O3,1 and O3,2), and (p2 − 13)/12 orbits of size 12
(homogeneous spaces under action of A4). Restricting that combinatorics to
P1(Fp) sums-up as:

p mod 12 exceptional orbits in P1(Fp) total number Np of A4-orbits

1 O2 , O3,1, O3,2 (p+ 23)/12
5 O2 (p+ 7)/12
7 O3,1, O3,2 (p+ 17)/12
11 none (p+ 1)/12

.

Theorem 5.1. Let p > 3 be a prime, and let [ΓA4(p)] be the moduli problem
over Z[1/p] associated with ΓA4(p). Let P be a representable moduli problem,
which is finite étale over (Ell)/Zp

. Let M(P ,ΓA4(p)) = M(P ,Γ(p))/ΓA4(p)
be the associated compactified fine moduli space. Let W be a totally ramified
extension of Zur

p of degree (p2 − 1)/2 (e.g. W = Zur
p [(1 − ζp)

2/(p+1)]) as in
Theorem 3.1.

ThenM(P ,ΓA4(p)) has a semistable model over W whose special fiber is made
of 2Np vertical Igusa parts (for Np ∼ p/12 as in the above array) which are
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linked by horizontal Drinfeld components above each supersingular points of
M(P) via the projectionM(P ,ΓA4(p))→M(P). The geometric vertical parts
are almost all copies of quotient enhanced Igusa curves M(P , Ig(p)/{±1})Fp ,
except that:

• if p ≡ 1 mod 12, two of them are M(P , Ig(p)/C4)Fp
, and four are

M(P , Ig(p)/C6)Fp
, for C∗ a cyclic automorphism group of order ∗;

• if p ≡ 5 mod 12, there are two exceptional Igusa parts, which are
M(P , Ig(p)/C4)Fp

;

• if p ≡ 7 mod 12, there are four exceptional Igusa parts, copies of
M(P , Ig(p)/C6)Fp

.

Singular points located on components of shape M(P , Ig(p)/Cr)Fp
have local

equations
W [[x, y]]/(xy − πr

0), r = 1, 2 or 3

for π0 as usual a uniformizer of W (e.g. π0 = (1 − ζp)
2/(p+1)).

Proof. As already remarked, A4 has no subgroup of index 2 so that A4 in
fact belongs to SL2(Fp)/{±1}, and the image under the determinant of the
full group ΓA4(p) consists of all the squares of F∗

p. Therefore vertical parts of
our quotient curve can be indexed by the set of pairs {(O, d)}, where O runs
through the set of orbits of P1(Fp) under the action of A4, and d runs through
F∗
p modulo squares.

Igusa parts associated with orbits having the generic trivial isotropy group
have stabilizer ±1 in ΓA4(p), so they are isomorphic to M(P , Ig(p)/{±1})Fp

.
As for the Igusa components associated with G2 and G3,i, they are isomorphic
to someM(P , Ig(p)/C4)Fp

andM(P , Ig(p)/C6)Fp
respectively, for Cr a cyclic

automorphism group of oder r. The rest goes as in the proof of the previous
theorems.

Now for equations of Drinfeld components. It follows from Theorem 6.1 of [6]
that a system of generators for the image of A4 in SL2(Fp)/{±1} can be taken
as any (S, T ) with S of (projective) order 3, T of order 4, and ST has order 3,
that is, S, T and ST are matrices with determinant 1 and trace ±1, 0 and ±1
respectively. One readily checks with that numerical criterion that A4 has a
model in SL2(Fp)/{±1} (although not in SL2(Z)/{±1}). When p ≡ 1 mod 3,
one can for instance take

S =

(
ζ3 0
−1 ζ23

)
; T =

(
0 −1
1 0

)

for ζ3 some primitive third root of unity. In order to write-down a function φ as
in equation (37) it is enough to find representatives a1 and a2 of two different
A4-orbits in P1(Fp) and take

φ(t) =
∏

g∈A4

(t− g·a1)(t− g·a2)−1
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from which can write explicit forms of equation (38). As for numerical examples
with p = 13 or p = 103 we compute that:

if p = 13, the set P1(F13) decomposes in three orbits: O3,1 = {0,∞, 9, 10},
O3,2 = {1, 2, 6, 12} and O2 = {3, 4, 5, 7, 8, 11} under our action of A4, whence,
as in (37), for instance a function φ:

φ(t) =
[(t− 1)(t− 2)(t− 6)(t− 12)]3

[(t− 3)(t− 4)(t− 5)(t− 7)(t− 8)(t− 11)]2

for which φ(P1(Fp)) = {0, 1,∞} (the images of the orbits of 1, ∞ and 3), with
ramification indices 3, 3 and 2, respectively. The inverses in Z/7Z of these
are 5, 5 and 4, respectively. We therefore obtain from (38) the affine singular
model:

u7 = t5(t− 1)5

for A4-exceptional Drinfeld components in level 13 (with suitable rigidification).

If p = 103, we consider for instance the orbits of 0 and 1 to obtain

φ(t) =
[t(t− 56)(t− 57)]3

[(t− 1)(t− 10)(t+ 1)(t− 72)]3

whence
φ(P1(Fp)) = {0,∞, 3,−3,−1, 22, 39,−14,−39, 10}

with respective ramification indices 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 having inverses
35, 35, 1, 1, 1, 1, 1, 1, 1, 1 mod 52, and an equation for A4-Drinfeld components
in characteristic 103 which is

u52 = t35(t− 3)(t+ 3)(t+ 1)(t− 22)(t− 39)(t+ 14)(t+ 39)(t− 10) .

5.3 S4

Notice that S4 belongs to SL2(Fp)/{±1} if (and only) if p ≡ ±1 mod 8, cf. The-
orems 1 & 2 of Feit’s appendix in [17], pp. 201 & 202). If p ≡ 3 or 5 mod 8
then S4 ∩ SL2(Fp)/{±1} = A4, so the relevant curve XS4(p) is a form of the
curve XA4(p) studied in paragraph 5.2 above, and the former curve does have
a geometrically integral model over Q.
Now [17], proof of Theorem 2.3 on p. 187 of Chapter XI, gives that there
are three orbits of elements in P1(Fp2) with non-trivial isotropy subgroups for
the action of S4 in PGL2(Fp2), and those isotropy subgroups have order 2, 3
and 4 (cf. case (iv) of the Lemma after Theorem 2.3 quoted above): we shall
denote them by G2, G3 and G4 respectively. In P1(Fp2), there is therefore
one orbit of size 12, one of size 8, one of size 6, and (p2 − 25)/24 of size 24
(which are homogeneous spaces under action of S4). We denote by O2, O3 and
O4 the exceptional orbits of order 12, 8 and 6 respectively. Restricting that
combinatorics to P1(Fp) gives
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p mod 24 exceptional orbits in P1(Fp) total number Np of S4-orbits

1 O2 , O3, O4 (p+ 47)/24
5 O4 (p+ 19)/24
7 O3 (p+ 17)/24
11 O2 (p+ 13)/24
13 O3, O4 (p+ 35)/24
17 O2, O4 (p+ 31)/24
19 O2, O3 (p+ 5)/24
23 none (p+ 1)/24

.

Theorem 5.2. Let p > 3 be a prime which is congruent to ±1 mod 8, and
let [ΓS4(p)] be the moduli problem over Z[1/p] associated with ΓS4(p). Let
P be a representable moduli problem, which is finite étale over (Ell)/Zp

. Let

M(P ,ΓS4(p)) =M(P ,Γ(p))/ΓS4(p) be the associated compactified fine moduli
space. Let W be a totally ramified extension of Zur

p of degree (p2 − 1)/2, with
uniformizer π0, as in Theorem 3.1.

ThenM(P ,ΓS4(p)) has a semistable model over W whose special fiber is made
of vertical Igusa parts, which are linked by horizontal Drinfeld components above
each supersingular points ofM(P) via the projectionM(P ,ΓS4(p))→M(P).
Almost all vertical parts are isomorphic to quotient enhanced Igusa curves
M(P , Ig(p)/{±1})Fp

, except that:

• if p ≡ 1 mod 24, there are six exceptional Igusa part; two are copies
ofM(P , Ig(p)/C4)Fp

, two are isomorphic toM(P , Ig(p)/C6)Fp
, and two

are M(P , Ig(p)/C8)Fp
, where C∗ denotes a cyclic automorphism group

of order ∗. The total number of Igusa parts is 2Np (for Np ≃ p/24 the
number of orbits as indicated in the array before our theorem);

• if p ≡ 5 mod 24, there is only one exceptional Igusa part, which is
M(P , Ig(p)/C4)Fp

. The total number of Igusa parts is 2Np − 1;

• if p ≡ 7 mod 24, there are two exceptional Igusa parts, which are a copies
ofM(P , Ig(p)/C6)Fp

. The total number of Igusa parts is 2Np;

• if p ≡ 11 mod 24, there is no exceptional Igusa part. The total number
of Igusa parts is 2Np − 1;

• if p ≡ 13 mod 24, there are three exceptional Igusa parts, of which two are
copies ofM(P , Ig(p)/C6)Fp

, and one is isomorphic toM(P , Ig(p)/C4)Fp
.

The total number of Igusa parts is 2Np − 1;

• if p ≡ 17 mod 24, there are four exceptional Igusa parts, of which two are
copies of M(P , Ig(p)/C4)Fp

and two are M(P , Ig(p)/C8)Fp
. The total

number of Igusa parts is 2Np;

• if p ≡ 19 mod 24, there are two exceptional Igusa parts, which are copies
ofM(P , Ig(p)/C6)Fp

. The total number of Igusa parts is 2Np − 1;

Documenta Mathematica 26 (2021) 231–269



264 B. Edixhoven, P. Parent

• if p ≡ 23 mod 24, the total number of Igusa parts is 2Np, and none is
exceptional.

Singular points located on components of shape M(P , Ig(p)/Cr)Fp
have local

equations
W [[x, y]]/(xy − πr

0), r = 1, 2, 3 or 4.

Proof. One first readily checks that the isotropy groups Gn, n = 2, 3 or 4, are

all cyclic, with order n. So a generator for Gn can be taken as
(

ζn
0

0
1

)
, for ζn

some primitive nth-root of unity in Fp.
For p ≡ 1, 7, 17 mod 24, one computes at hand that the determinant of those
generators are squares in Fp. (This again could also have been derived from
the fact that S4 belongs to SL2(Fp)/{±1} if (and only) if p ≡ ±1 mod 8,
cf. Theorems 1 & 2 in [17], pp. 201 & 202). Whence the vertical components,
for primes in those congruences classes (and p ≡ 23 mod 24) in our theorem.
For the remaining classes we proceed with case-by-case examinations.
If p ≡ 5 mod 24, a generator for the non-trivial isotropy group G4 in S4 can

be taken as
(

ζ4
0

0
1

)
, whose determinant is not a square in Fp. So there is one

exceptional Igusa part, which is a copy ofM(P , Ig(p)/C4)Fp
.

If p ≡ 11 mod 24, a generator for the non-trivial isotropy group G2 in S4 can be
taken as

(
−1
0

0
1

)
, whose determinant is not a square in Fp. So the corresponding

Igusa part is just a plain copy ofM(P , Ig(p)/{±1})Fp .
If p ≡ 13 mod 24, the elements of G3 in S4 have square determinant, so the
corresponding orbits give rise to two exceptional Igusa parts which are copies

ofM(P , Ig(p)/C6)Fp
. On the other hand, the determinant of

(
ζ4
0

0
1

)
is a non-

square in Fp. So G4 gives rise to a unique exceptional Igusa part, isomorphic
toM(P , Ig(p)/C4)Fp

.
If p ≡ 19 mod 24, the group G3, in a similar fashion to the previous case,
gives rise to two exceptional Igusa parts which are copies ofM(P , Ig(p)/C6)Fp

.
Similarly to the case p ≡ 13 mod 24, on the other hand, G2 gives rise to one
plain Igusa partM(P , Ig(p)/{±1})Fp

.

The shape of singularities easily follows from our description of local isotropy
groups.

We compute equations of Drinfeld components. Using Theorem 6.1 of [6], we
can take as a system of generators for the image of S4 in SL2(C)/{±1} any set
(S, T ) whose traces satisfy

t2S + t2T + t2ST − tStT tST = 3 and tS , tT , tST ∈ {0,±1,±
√
2}.

One readily checks with that numerical criterion that S4 has for instance a
model in SL2(Z)/{±1} with generators:

S =

( √
2 1
−1 0

)
and T =

(
1 i
i 0

)
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which when p ≡ 1 mod 8 gives by reduction an easy model in SL2(Fp)/{±1}.
If p = 73, we can compute the orbit of 0 and that of 1, which respectively are

A := S4 · 0 = {0, 5, 16, 17, 26, 32, 39, 46, 52, 61, 62,∞}

and

B := S4 · 1 = {1, 4, 6, 13, 18, 19, 23, 27, 28, 31, 33, 34, 36, 42, 44, 45, 47, 50,
51, 55, 59, 60, 65, 72}

so that, setting φ(t) =
∏

a∈A\{∞}(t − a)2
∏

a∈B(t − b)−1, we have that

φ(P1(Fp)) = {48, 14, 0, 58,∞}, whose elements have respective ramification
indices 4, 3, 2, 1 and 1. The inverse of the latter mod 37 are respectively
28, 25, 19, 1 and 1, whence the explicit forms

u37 = (t+ 25)28(t− 14)25t19(t+ 15)

of equation (38) for the S4-Drinfeld components in level 73.

5.4 A5

One knows that, for any prime-power q, whenever A5 can be realized as a
subgroup of some GL2(Fq)/F

∗
q then it belongs to SL2(Fq)/{±1}, and that is

the case if and only if q is ±1 mod 5 (cf. [13], Theorem 1 on p. 201). Let
us henceforth assume for that subsection 5.4 that q = p is a prime satisfying
that congruence condition. (We therefore remark that the smallest number
field over which the corresponding modular curve has a geometrically integral
model is the quadratic subfield of Q(µp)). Again [17] (proof of Theorem 2.3 on
p. 186 of Chapter XI) gives that there are three orbits of elements in P1(Fp2)
with non-trivial isotropy subgroups for the action of A5 in GL2(Fp2)/F∗

p2 , and

those isotropy subgroups have order 2, 3 and 5 (cf. case (v) of the Lemma after
Theorem 2.3 quoted above): call them G2, G3 and G5. In P1(Fp2), there is
therefore one orbit of size 30, one of size 20, one of size 12, and (p2 − 61)/60
orbits of size 60. We denote by O2, O3 andO5 the exceptional orbits of order 30,
20 and 12 respectively. The combinatorics implies that, restricting to P1(Fp):

p mod 60 exceptional orbits in P1(Fp) total number Np of A5-orbits

1 O2 , O3, O5 (p+ 119)/60
11 O5 (p+ 49)/60
19 O3 (p+ 41)/60
29 O2 (p+ 31)/60
31 O3 , O5 (p+ 89)/60
41 O2, O5 (p+ 79)/60
49 O2, O3 (p+ 71)/60
59 none (p+ 1)/60

.
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Theorem 5.3. Let p > 3 be a prime, and let [ΓA5(p)] be the moduli problem
over Z[1/p] associated with ΓA5(p). Let P be a representable moduli problem,
which is finite étale over (Ell)/Zp

. Let M(P ,ΓA5(p)) = M(P ,Γ(p))/ΓA5(p)
be the associated compactified fine moduli space. Let W be a totally ramified
extension of Zur

p of degree (p2 − 1)/2 with uniformizer π0, as in Theorem 3.1.

Then M(P ,ΓA5(p)) has a semistable model over W whose special fiber is
made of 2Np vertical Igusa parts (for Np ∼ p/60 as in the above array),
which are linked by horizontal Drinfeld components above each supersingu-
lar points of M(P) via the projection M(P ,ΓA5(p)) → M(P). Almost all
vertical parts are geometrically isomorphic to quotient enhanced Igusa curves
M(P , Ig(p)/{±1})Fp

, except that:

• If p ≡ 1 mod 60, two exceptional Igusa parts areM(P , Ig(p)/C4)Fp
, two

are M(P , Ig(p)/C6)Fp
, and two are M(P , Ig(p)/C10)Fp

, for C∗ a cyclic
automorphism group of order ∗.

• If p ≡ 11 mod 60, there are two exceptional Igusa parts, which are
M(P , Ig(p)/C10)Fp

;

• If p ≡ 19 mod 60, two exceptional Igusa parts are copies of the curve
M(P , Ig(p)/C6)Fp

;

• If p ≡ 29 mod 60, two Igusa parts are copies ofM(P , Ig(p)/C4)Fp
;

• If p ≡ 31 mod 60, two Igusa parts are M(P , Ig(p)/C6)Fp
and two are

M(P , Ig(p)/C10)Fp
;

• If p ≡ 41 mod 60, two Igusa parts are M(P , Ig(p)/C4)Fp
and two are

M(P , Ig(p)/C10)Fp
;

• If p ≡ 49 mod 60, two Igusa parts are M(P , Ig(p)/C4)Fp
and two are

M(P , Ig(p)/C6)Fp
.

Singular points located on components of shape M(P , Ig(p)/Cr)Fp
have local

equations
W [[x, y]]/(xy − πr

0), r = 1, 2, 3 or 5.

Proof. As A5 in fact belongs to SL2(Fp)/{±1}, the image under the determi-
nant of the full group ΓA5(p) consists in all the squares of F∗

p. The quotient
of the set of vertical Igusa components, indexed by F∗

p × P1(Fp), therefore has
twice the number of elements as indicated in the list above, depending on the
class of p mod 60.
Igusa components associated with orbits of size n = 60, 30, 20 or 12, have
stabilizer C(120/n) in ΓA5(p) so they are isomorphic toM(P , Ig(p)/C(120/n))Fp

.
The rest goes as in the proof of the previous theorems.
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As for Drinfeld components: using Theorem 6.1 of [6], we can take as a system
of generators for the image of A5 in SL2(Z)/{±1} any set (S, T ) whose traces
satisfy

t2S + t2T + t2ST − tStT tST ∈ {2 + µ, 3, 2− µ−1}
and

tS , tT , tST ∈ {0,±µ,±1,±µ−1},
for

µ =
1 +
√
5

2
.

Taking p = 421, we can choose S and T as the reduction of the generators
displayed in the introduction to [6], that is

S =

(
211 196
316 100

)
and T =

(
100 70
306 210

)

in SL2(F421)/{±1}. Drawing the graph of the homographic action of S and T
on the elements 0 and 1 in P1(F421) yields the respective orbits

A := A5 · 0 = {0, 2, 3, 14, 17, 20, 29, 50, 51, 55, 72, 83, 94, 101, 146, 152, 153,
156, 163, 166, 177, 182, 190, 191, 192, 203, 206, 209, 210, 211, 212, 215, 218,
220, 222, 225, 230, 234, 236, 242, 250, 257, 264, 266, 279, 284, 293, 319, 326,
335, 343, 352, 355, 357, 359, 392, 396, 418, 419, ∞}

and

B := A5 · 1 = {1, 5, 23, 25, 26, 27, 35, 40, 60, 61, 81, 92, 93, 105, 107, 115, 127,
128, 137, 143, 154, 159, 160, 164, 172, 173, 189, 193, 195, 202, 223, 227, 233,
235, 243, 246, 252, 256, 259, 273, 274, 289, 294, 306, 323, 324, 325, 327, 348,
350, 361, 363, 370, 373, 374, 379, 382, 388, 389, 409}.
Setting φ(t) =

∏
a∈A\{∞}(t− a)2

∏
a∈B(t− b)−1 one computes

φ(P1(F421)) = {0, 23, 47, 144, 161, 228, 292, 317,∞}

with ramification indices: 1, 2, 1, 3, 1, 1, 1, 5 and 1 respectively. The list of their
inverse mod 211 is 1, 106, 1, 141, 1, 1, 1, 169 and 1, so that an equation as in (38)
for the generic A5-Drinfeld component in level 421 is finally

u211 = t(t− 23)106(t− 47)(t− 144)141(t− 161)(t− 228)(t− 292)(t− 317)169.
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