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Parallel to these four lectures, there were four lectures by Joseph Oesterlé giving an introduc-
tion on abelian varieties and the statement of the Birch and Swinnerton-Dyer conjecture.

1 Modular parametrisations I (1 hour)

At this conference/Summer school, modular parametrisations (whatever they are) are used to
study the arithmetic of elliptic curves, and, more generally, of abelian varieties of GL2-type,
over Q. In particular, one does not ask too much where these modular parametrisations come
from. Let me nevertheless say a few words about this.

elliptic curves over Q E/Q
Galois representations lim←−

n

E(Q)[ln]

L-functions L(E, s) =
∑

n≥1 ann
−s (<(s) > 3/2)

modular forms fE =
∑

n≥1 anq
n (Wiles et al.)

elliptic curves Z⊗T J0(NE) ∼ E (Eichler-Shimura-Faltings)

With all this, the morphism:

X0(NE) // J0(NE) // // Z⊗T J0(NE) // // E

P � // [P ]− [∞]

is a modular parametrisation of E, unique up to sign if we ask the kernel of Z⊗T J0(NE)→ E

to be cyclic. The morphism from X0(NE) to Z⊗T J0(NE) is called a strong modular parametri-
sation.

In this lecture, I want to explain the construction of the strong modular parametrisation, first
over C, then over Q.
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ForN ≥ 1, we let Γ0(N) be the subgroup SL2(Z) consisting of the elements ( a bc d ) with c ≡ 0

modulo N . We recall that GL2(C) acts on P1(C), hence GL2(R) on P1(C) − P1(R), which is
the same as C − R and hence the union of the upper and lower half planes. Hence GL2(R)+

acts on the upper half plane H, hence its subgroup SL2(Z) too. We let Y0(N)(C) be the quotient
Γ0(N)\H, as a complex analytic curve (which is not compact). We let X0(N)(C) be the union
of Y0(N)(C) with the (finite) set Γ0(N)\P1(Z) of cusps. Then X0(N)(C) is a compact non-
singular complex analytic curve, and we let X0(N)C be the corresponding complex algebraic
projective curve (by GAGA).

As an example we mention the j-map from H to C, sending τ to 1/q+ 744 + 196884q+ · · ·
(with q = exp(2πiτ)) which identifies C with Y0(1)(C). It induces an isomorphism
X0(N)C → P1

C. The ramification of X0(N)C → X0(1)C is not hard to compute, and leads
to a formula for the genus of X0(N)C.

The next item in our list of things to explain is the jacobian J0(N)(C) associated
to X0(N)(C). We have:

J0(N)(C) := H0(X0(N)C,Ω
1)∨/H1(X0(N)(C),Z),

where γ in H1(X0(N)(C),Z) is sent to the map ω 7→
∫
γ
ω. This quotient is a complex torus, and

even an abelian variety. The corresponding complex algebraic variety is denoted J0(N)C.
We will refer to H0(X0(N)C,Ω

1) as the space of complex cusp forms of weight 2 on Γ0(N),
and denote it by S(Γ0(N), 2)C (in order to relate this with forms of other weights one needs the
Kodaira-Spencer morphism). One can view S(Γ0(N), 2)C as a space of certain functions

∑
anq

n

on H: pullback via the morphism H→ X0(N)(C) gives a map

ω 7→

(∑
n≥1

an(ω)qn

)
dq

q
,

which is called the q-expansion map at the standard cusp∞.
This cusp∞ is also used to define the following map:

X0(N)(C) −→ J0(N)(C), P 7→
[
ω 7→

∫ P

∞
ω

]
.

Now the Hecke algebra. It comes from the action of GL2(Q)+ on H. For Γ1 and Γ2 of finite
index in SL2(Z), and g in GL2(Q)+, one has (with Γ3 := Γ1 ∩ g−1Γ2g):

H

Γ1

��
Γ3

,,
∼
g· //

�� $$

H

Γ2

��

��
Γ1\H Γ2\H

Γ3\H

~~   
Γ1\H Γ2\H

X(Γ3)C
sg

{{ tg ##
X(Γ1)C X(Γ2)C
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The last of these three diagrams is refered to as the Hecke correspondence Tg. It induces maps,
called Hecke operators:

T ∗g : H0(X(Γ2)C,Ω
1) −→ H0(X(Γ1)C,Ω

1), sg∗ ◦ t∗g
Tg,∗ : J(Γ1)C −→ J(Γ2)C, tg∗ ◦ s∗g

A study of Γ0(N)\GL2(Q)+/Γ0(N) leads to Hecke operators Tn : J0(N)C → J0(N)C, for all
n ≥ 1. To describe these, it is convenient to use the moduli interpretation of Y0(N)(C): it is the
set of isomorphism classes of pairs (E/C, G), with E a complex elliptic curve and G ⊂ E(C) a
cyclic subgroup of order N . To be precise, a point τ of H is sent to the pair (C/(Zτ + Z), µN).
With this description, the correspondence Tn (say on the level of divisors) is given by:

Tn : [(E,G)] 7→
∑
H

[(E/H,G)],

where H runs through the set of subgroups of order n of E(C) (not necessarily cyclic) such that
H ∩ G = {0}, and G denotes the image of G under E 7→ E/H . These correspondences Tn
commute with each other, and satisfy the relations (as correspondences; no equivalence relation
is necessary) encoded in the following equality of formal Dirichlet series:∑

n≥1

Tnn
−s =

∏
p|N

(1− Tpp−s)−1
∏
p-N

(1− Tpp−s + p1−2s)−1.

In terms of q-expansion at∞ one has the identities:

an(Tm(ω)) =
∑

d|(n,m)

(d,N)=1

d anm/d2(ω).

We let TN be the subring of End(J0(N)C) generated by the Tn. This ring TN is called the Hecke
algebra of level N ; it is a commutative ring, free as Z-module of rank g(X0(N)C). In fact, if we
define:

S(Γ0(N), 2)Z := {ω ∈ S(Γ0(N), 2)C | an(ω) ∈ Z for all n},

then:
Tn × S(Γ0(N), 2)Z −→ Z, (t, ω) 7→ a1(tω)

is a perfect pairing of Z-modules, in the usual sense that each side is identified with the dual of
the other.

Eigenforms. Suppose that ω in §(Γ0(N), 2)C is a common eigenform for the Tn:

Tnω = λnω
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for all n, with suitable λn in C. Then one has:

an(ω) = λn a1(ω)

for all n; hence an eigenform is determined by the eigenvalues and its first Fourier coefficient. An
eigenform form ω is called normalized if a1(ω) = 1. We also note that the non-zero qcommon
eigenspaces for TN acting on S(Γ0(N), 2)C are one-dimensional (and generated by the normal-
ized form that they contain). We note that for a normalized eigenform ω the subring Z[{an(ω)}]
of C is an order in a number field, as it is the image of TN under a morphism of rings TN → C.
We remark that S(Γ0(N), 2)C can be seen as the C-vector space Hom(TN ,C) of Z-module mor-
phisms from TTN to C, and that the eigenforms correspond exactly to the morphisms of rings.

A normalized eigenform ω in S(Γ0(N), 2)C is called a newform if its system of eigenvalues
ap(ω) for p - N does not occur in any S(Γ0(M), 2)C with M a proper divisor of N .

Let now ω be a newform of level N , and let Oω be the subring Z[{an(ω)}] of C. Then we
define:

Aω := Oω ⊗TN
J0(N)C = J0(N)C/IωJ0(N)C,

where Iω is the kernel of the morphism of rings TN → C corresponding to ω. (By definition,
IωJ0(N)C is the smallest abelian subvariety of J0(N)C containing the images of all elements
of Iω.) The quotient J0(N)C → Aω is called the optimal quotient associated to ω (or more
precisely, to the Galois orbit of ω, as it depends only on Iω). The reason to call it optimal is that its
kernel is connected, which is equivalent to the condition that the dual morphism: A∨ω → JJ0(N)C

be injective. Yet another way equivalent condition for a quotient of complex abelian varieties
A→ B to be optimal is that the induced map H1(A,Z)→ H1(B,Z) be surjective.

Of course, Aω is an elliptic curve if and only if Oω = Z. More generally, the dimension
of Aω is that of the Z-module Oω. We remark that the theory of newforms by Atkin-Lehner
gives a description of J0(N)C up to isogeny as product of Aω’s where ω runs through the set of
newforms of level dividing N .

We note the following analytic description of Aω:

Aω =
S(Γ0(N), 2)∨C/IωS(Γ0(N), 2)∨C

H1(X0(N)(C),Z)/IωH1(X0(N)(C),Z)
=
S(Γ0(N), 2)C[Iω]∨

H1(X0(N)(C),Z)
,

and S(Γ0(N), 2)C[Iω] has as C-basis the set of Galois conjugates of ω.
Now over Q. Up to now, everything has been done over C. We want to have everything

over Q. For that, we use the moduli interpretation. The complex curve X0(N)C has a natural
model X0(N)Q over Q, (i.e., a Q-scheme that gives X0(N)C after base change from Q to C),
namely, the compactified coarse moduli scheme associated to the (contravariant) functor:

Γ0(N) : Sch/Q −→ Sets, S 7→ {(E/S,G)}/ ∼=,
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where E/S is an elliptic curve over a Q-scheme, and where G is a closed finite subgroup scheme
of E locally free of rank N , such that for every geometric point x of S the group G(x) is
cyclic. This means: in the category of contravariant functors Sch/Q → Sets, the morphism
Γ0(N) → Y0(N)Q is universal for morphisms to representable functors. Classically, one also
demands the map Γ0(N)(Q) → Y0(N)Q(Q) to be bijective, but this is automatically true. We
remark that for the congruence subgroups Γ1(N) with N ≥ 5 the situation is much simpler: the
corresponding functor (pairs (E/S, i) with i : µN,S ↪→ E) is representable, say by X1(N)Q.

It follows that we have a model over Q for J0(N)C:

J0(N)Q := Pic0
X0(N)Q/Q, Aω,Q := Oω ⊗TN

J0(N)Q.

Galois representations. Vω,l := Q⊗ lim←−
n

Aω(Q)[ln] is free of rank 2 over Ql⊗Oω, hence this

gives:
ρω,l : GQ −→ GL2(Ql ⊗Oω).

For every σ : Oω → C we get an L-function:

Lσ(ρω,l) :=
∏
p

det
(
1− p−s Frobp |(Vω,l)Ip

)−1
,

where one chooses for each factor a prime number l 6= p (the subscript Ip stands for “co-
invariants for the inertia at p”). It is not so hard to show that:

Lσ(ρω,l) =
∑
n≥1

σ(an(ω))n−s,

because at the places where ρω is much ramified, the Euler factor is trivial. In particular, one has:

L(Aω,Q, s) =
∏

σ : Oω→C

∑
n≥1

σ(an(ω))n−s.

It is a difficult theorem by Eichler-Shimura-Langlands-Deligne-Carayol (simplified by Nyssen)
that ρω,l|Dp corresponds by a suitable normalized local Langlands correspondence to πω,p, the
Euler factor at p of the automorphic representation associated to ω (πω,p is a smooth irreducible
representation of GL2(Qp)). In particular, local ε-factors match. A consequence of this is that
the conductor of ρω is N .
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2 Modular parametrisations II (1 hour)

2.1 Strong parametrisations; Stevens’s conjecture

Let E/Q be an elliptic curve, N its conductor. As E is modular, there exists a unique
E ′ ↪→ J0(N)Q with E ′ isogeneous to E. Equivalently, we have:

X0(N)Q −→ J0(N)Q −→
optimal−→ E ′ −→ E,

where the last isogeny can be chosen such that its kernel is cyclic (and then it is unique up to
sign).

Question: how to characterise E ′ in the isogeny class of E?
Answer: I don’t know.
Example. There are three elliptic curves of conductor 11: 11A = X1(11)Q, covering

11B = X0(11)Q (quotient for the action of (Z/11Z)∗/{1,−1}), covering 11C (quotient by
the cuspidal group). Among these three, 11A has the smallest Faltings height. Also note that the
isogenies are of degree 5 and that their kernels are constant group schemes over Q, so that they
extend to etale morphisms between Néron models over Z.

The main point of this section is to say that Glenn Stevens, in his article in Invent.
math. 98 (1989) has formulated a better question. Instead of parametrising with the modular
curves X0(N), one should seriously consider parametrisations by arbitrary modular curves, i.e.,
corresponding to arbitrary congruence subgroups. Stevens has shown that “stabilisation takes
place at Γ1(N)”, so that it makes better sense to replace X0(N)Q by X1(N)Q. We recall that
in these lectures X1(N)Q classifies elliptic curves with embeddings of µN (i.e., not of Z/NZ);
this is necessary for example for the cusp ∞ to be Q-rational. In view of what follows, one is
tempted to say that considering parametrisations by X0(N)Q is somehow an historical error.

Better question (Stevens): what is the unique E ′′ inside J1(N)Q isogeneous to E?
Conjectural answer (Stevens): E ′′ is the one with the smallest Faltings height in the isogeny

class of E.

2.1.1 Theorem. (Stevens) Each isogeny class of elliptic curves over Q contains a unique curve
of smallest Faltings height, and that one admits étale isogenies to all others (one Néron models
over Z).

Some explanation is in order here. Let A/Q be an abelian variety, and AZ its Néron model
over Z. One puts:

ωAZ/Z :=

dim(A)∧
0∗Ω1

AZ/Z;
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it is a free Z-module of rank 1. Integration over A(C) equips ωAZ/Z with a hermitian metric, and
one defines the Faltings height of A to be the Arakelov degree:

h(A) := degAr(ωAZ/Z) = −1

2
log

((
i

2

)d ∫
A(C)

ω1ω1 · · ·ωdωd

)
,

where (ω1, . . . , ωd) is a Z-basis of 0∗Ω1
AZ/Z. In words: the Faltings height of A is minus one half

of the logarithm of the covolume of the period lattice of A(C) with respect to a basis of Néron
differentials.

For E/Q an elliptic curve, one has 0∗Ω1
EZ/Z = Z·ωE , with ωE unique up to sign; these are

called the Néron differentials of E. If y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 is a globally

minimal Weierstrass equation for E, then:

ωE = ± dx

2y + a1x
.

An isogeny φ : E → E ′ of elliptic curves over Q is étale if φ∗ωE′ = ±ωE .

2.1.2 Theorem. (Vatsal, preprint Febr. 2002) If E is semistable, then Stevens’s conjecture is
true up to an isogeny of degree a power of 2.

Let us mention the ingredients of his proof: geometric class field theory, a theorem of Ihara (that
we recall in a moment), Heegner points of conductor pn with n → ∞, work of Rubin and Hida
involving special values of L-functions.

Ihara’s result alluded to is the following. For N ≥ 1, we let ΣN be the kernel of
J0(NQ) → J1(N)Q; it is called the Shimura subgroup of J0(N)Q. Equivalently, the Cartier
dual ΣD

N is the Galois group of the largest unramified cover of X1(N)Q in X1(N)Q → X0(N)Q

(which is Galois with group (Z/NZ)∗/1,−1). Then Ihara shows that the sequence (obtained by
reducing modulo a prime p that does not divide N ):

Z[X0(N)(Fp2)s.s.]0 −→ Pic(X0(N)Fp2
) −→ ΣD

N −→ 0

is exact. The superscript “s.s.” stands for “supersingular”, and the subscript zero for the kernel
of the sum map to Z.

In the same preprint, Vatsal proves the following theorem, generalising work of Mazur for N
prime (using very different methods).

2.1.3 Theorem. (Vatsal) For N square free, 2∞ΣN is the largest µ-type subgroup of J0(N)Q.

The recent results mentioned in this talk show perhaps that the use of L-functions (and especially
p-adic ones) looks very promising.
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2.2 Manin constants

Let φ : X0(N)Q → E be a strong modular parametrisation, fE dq/q the normalized newform
on X0(N)Q corresponding to E, and ωE a Néron differential on E. Then φ∗ωE = cE·fE dq/q
with ce in Q∗ (use multiplicity one). The number cE , defined up to sign, is called the Manin
constant of E. It is of interest for the Birch and Swinnerton-Dyer conjecture, because ωE plays
a rôle in it, but in practice one has to work with fE , so that it is important to know the relation
between the two. (This is especially so for optimal quotients of higher dimension.)

2.2.1 Conjecture. (Manin) cE = ±1.

Question. What does this conjecture mean? Geometrically, say.
Answer. I don’t know. The parametrisation φ being strong means that from the point of

view of etale cohomology one has taken φ to be optimal (sujective on H1, even with torsion
coefficients). Then one would ask: is φ optimal for de Rham cohomology (over Z)? But, first
of all, it is not that easy to make sense out of this, because of bad reduction, and, secondly, the
conjecture asks if φ∗ωE is a generator of Ω1

X0(N)/Z at a given point, namely the cusp ∞. So
even if one knows quite a lot about this conjecture, and that there seems little doubt that it is
true, I claim not to understand what the conjecture really means. Anyway, the Stevens version of
Manin’s conjecture (same article as mentioned above) that we will state in a moment is a cleaner
one, but suffers from the same problem.

2.2.2 Conjecture. (Stevens) Every elliptic curve E/Q admits a parametrisation
φ : X1(NE)Q → E such that φ∗ωE = ±fE dq/q.

Let us mention the results about these conjectures obtained so far (in a non-chronological order).

1. For all parametrisations φ (of elliptic curves over Q), by any X1(N)Q or X0(N)Q, the
corresponding Manin constant is in Z. The proof of this just uses that the completion of the
modular curves X0(N)Z and X1(N)Z over Z (defined by extending the moduli problems
to arbitrary schemes) along the cusp∞ correspond to Z[[q]], via the Tate curve, and that φ
extends to a neighborhood of∞ because to the Néron property of EZ. Proofs of this can
be found Stevens’s article and in an article by Edixhoven in the 1989 Texel proceedings.

A nice consequence of this result is as follows. Let f be a newform in S(Γ0(N), 2)Q. Then
one has the elliptic curve C moduly the period lattice of f dq/q. The standard Weierstrass
equation of this elliptic curve (associated to the differential dz and the period lattice in C)
gives coefficients c4 and c6 that are in Z. They correspond to the c4 and c6 of a minimal
Weierstrass equation if and only if Manin’s conjecture is true for the strong curve isoge-
neous to E. The same type of result is true for newforms in S(Γ1(N), 2)Q. In particular,
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this makes it possible first to compute the elliptic curve Z⊗TX0(N), and secondly to ver-
ify the conjecture about the Manin constant for that curve. All curves in Cremona’s tables
satisfy Manin’s conjecture. Stevens also verified his version in some cases.

Now that we know that Manin constants are integers, the question becomes: what primes
can divide them?

2. The two conjectures are related:

J1(NE)Q E ′oooo

J0(NE)Q

OO

E

OO

oooo

ΣNE

OO

OO

E ∩ ΣNE

OO

OO

oooo

Now (E ∩ ΣNE
)D is a constant group scheme over Q, in E, and hence, by Mazur’s work,

of the form Z/2Z × Z/2nZ with 1 ≤ n ≤ 4, or Z/nZ with 1 ≤ n ≤ 10 or n = 12.
We conclude that the two conjectures on Manin constants are equivalent as far as primes
numbers p > 7 are concerned.

3. Now consider a strong parametrisation φ : X0(NE)Q → E. Then we have the following
results.

(a) p - NE implies that p - cE (Mazur for p > 2, Abbes-Ullmo plus Raynaud for p = 2).

(b) p2 - NE together with p > 2 imply that p - cE (Mazur).

(c) 22 - NE implies that 22 - cE (Raynaud, see Abbes-Ullmo).

(d) p > 7 implies that p - cE (Edixhoven (1992), details still not yet published (shame on
me!)).

The tools used for these results: geometry over Zp, plus everything else if necessary. The
last result also uses that Stevens has shown that if his conjecture holds for E, then it also
holds for twists of E over quadratic extensions of Q that are unramified at all p whose
square divide NE .

For example, let us prove, after Mazur, that p2 - NE together with p > 2 imply that p - cE . Then
J0(NE)Q has semistable reduction at p. We have an exact sequence:

0 −→ A −→ J0(NE)Q −→ E −→ 0,
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which induces a complex of Néron models:

0 −→ AZp −→ J0(NE)Zp −→ EZp −→ 0.

This complex is exact at all terms except possibly EZp . The induced complex on cotangent
spaces:

0←− Cot0(AFp)←− Cot0(J0(NE)Fp)←− Cot0(EFp)←− 0

is exact (this uses that p > 2 because of the usual condition “e < p−1”). It follows that φ∗ωE|EFp

is not zero, etc.. . .
Other tools that are used.

1. More complicated geometry (pass to finite extensions of Qp over which one has stable
reduction).

2. Analytic tools: deg(φ) Vol(E(C), ω) = ‖fE‖2c2
E , and:

‖fE‖2 = C[SL2(Z) : Γ0(NE)]Res2

∑
n≥1

|an(fE)|2n−s

from an article by Zagier on degrees of modular paramatrisations, and:

L(Sym2E, 2)

πiΩ
=

deg(φ)

Nc2
E

∏
p2|N

Up(2)

by Shimura (1976) (used by Flach, see recent work by Mark Watkins from Penn State for
computational issues). The factor Up reflects the difference between the two symmetric
square L-functions that one may define: the usual one from the symmetric square of the
l-adic representation, the other one (more naively) purely in terms of the local factors
of L(E, s).

It is interesting to note that the Euler factors at p ofL(Sym2E, 2) gets a geometrical interpretation
using reduction mod p: the factors p are powers of Frobenius, etc.

3 Non-triviality of Heegner points I; André-Oort conjecture
(1 hour)

Let E/C be an elliptic curve. Then End(E) = Z or End(E) ∼= OK,c = Z + cOK (c ≥ 1) with
Q → K an imaginary quadratic extension. In the second case we say that E has no complex
multiplications (CM), by the order OK,c of conductor c. Just to show that there are many (but
only countably) elliptic curves with CM: for τ in H, C/Zτ +Z has CM if and only if Q→ Q(τ)

is a quadratic extension.
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3.1 Galois action

CM elliptic curves are defined over Q, for the simple reason that if E/C has CM, then for every
automorphism σ of C, the conjugate Eσ has CM, and we have just seen that there are only
countably many.

Let K ⊂ Q quadratic imaginary, and c ≥ 1. Then we define a set:

SK,c := {(E/Q, α) | α : OK,c
∼→ End(E) inducing K → Q via Lie(E)}

The group GK = Gal(Q/K) acts on SK,c. But also the group Pic(OK,c):

(L,E) 7→ L⊗OK,c
E,

where L ⊗OK,c
E is the representable functor on K-schemes that sends a K-scheme S

to L ⊗OK,c
E(S). Indeed, one can realise L as the kernel of an idempotent p in M2(OK,c)

(choose two generators of L, and a splitting of O2
K,c → L), which shows that L ⊗OK,c

E is the
same as ker(p : E2 → E2). For E = C/Λ and α : OK,c

∼→ End(E), one sees that Λ is an invert-
ible OK,c-module (use that OK,c is of the form Z[x]/(g), hence is Gorenstein). This implies the
following important fact:

SK,c is a Pic(OK,c)-torsor.

The actions of Pic(OK,c) and GK commute, which means that GK acts on SK,c as Pic(OK,c)-
torsor. But, as Pic(OK,c) is commutative, the automorphism group of a Pic(OK,c)-torsor is
just Pic(OK,c) itself (it acts by right-translations, after one identifies SK,c with Pic(OK,c)). It
follows that GK acts on SK,c via a morphism GK → Pic(OK,c). The main result of complex
multiplication theory for elliptic curves says:

GK acts on SK,c via a morphism GK → Pic(OK,c); this morphism is unramified
outside c; for m ⊂ OK a maximal ideal not containing m, the morphism sends
Frobm to the class [m]−1 of Pic(OK,c).

In order to formulate the conjecture of André-Oort in the context of elliptic curves, we need to
define (or rather make explicit) the notion of special subvariety of products of modular curves.

3.2 Definition. Let n ≥ 0, and Γi (1 ≤ i ≤ n) be congruence subgroups of SL2(Z). Let
Xi := Γi\H be the (affine) complex modular curve associated to Γi, and X :=

∏
iXi. Let

Z ⊂ X be a closed irreducible subvariety ofX . Then Z is called special if there exists a partition
of {1, . . . , n} into subsets S1, . . . , Sr such that Z =

∏
1≤j≤r Zj with each Zj ⊂

∏
i∈Sj

Xi of one
of the forms:

11



1. |Sj| = 1 and Zi is a CM-point;

2. the image of H→
∏

i∈Sj
Xi under τ 7→ (i 7→ [gi·τ ]) for certain gi in GL2(Q)+.

3.3 Conjecture. (Special case of André-Oort) Let Σ be a set of CM-points in X (notation as
above). Then all irreducible components of the Zariski closure of Σ are special.

3.4 Theorem. The conjecture is true, if one accepts the generalised Riemann hypothesis for
imaginary quadratic fields (Edixhoven, 1999, not yet published). For n = 2 is has been proved
unconditionally by Yves André (Crelle), and conditionally by Edixhoven (published! (Compo-
sitio)).

We remark that Florian Breuer has proven analogous statements for rank two Drinfel’d modules
(see his thesis). For the next lecture we want to give a relatively simple proof of the following
weaker version.

3.5 Theorem. Let K be imaginary quadratic, and c ≥ 1. Let Σ ⊂ X be a set of CM-points such
that for every x in Σ, and for every i, one has End(Exi) = Z + cx,iOK with cx,i|c∞. Then all
irreducible components of ΣZar are special.

This case follows from a much more general result by Ben Moonen (Compositio, 1998), but
in this simpler case we can give a much simpler proof. Actually, my intention was to adapt
Moonen’s proof for this lecture, but it still stays quite technical in this situation (and one has to
consider base changes from the p-adic numbers to the complex numbers, for instance, with all
kinds of different notions of convergence).

Proof. Let Z be an irreducible component of ΣZar. We replace Σ by Σ ∩ Z. Consider the
projections pri : X → Xi. If priZ is a point, then it is a CM-point, and we can replace X by the
product of the Xj with j 6= i. So we may (and do) assume that all pri are dominant. Suppose
now that i 6= j and pri,j : Z → Xi ×Xj is not dominant. Then, admitting the theorem for n = 2

for the moment, the closure of pri,jZ is the graph of a Hecke correspondence in Xi × Xj , call
it T , itself of the form Γ\H for some Γ. So we can replace the factor Xi ×Xj by T . So we may
(and do) assume that all pri,j (with i 6= j) are dominant, and we have to prove that Z = X .

Now consider the map X → Cn, where we view C as SL2(Z)\H. We must show that the
image of Z is Cn, so we replace Σ by its image in Cn, and must show that Z = Cn.

We use induction on n: we may suppose that all prI : Cn → Cn−1 are dominant. As Σ

consists of Q-points, Z is defined over Q, hence over a finite extension F of Q. Take l a prime
number such that l ≥ 13, l ≥ deg(prI) for all I , l split in OK,c and in F .

12



3.5.1 Lemma. TlZ ⊂ Z.

Proof. For all x in Σ, and for all σ in GF , we have σ(x) ∈ Z. Now take σ = Frobm, with m a
maximal ideal of OF containing l. Then we see: σ(x) ∈ Tlx, hence σ(x) ∈ TlZ, hence x ∈ TlZ.
�

3.5.2 Lemma. TlZ is absolutely irreducible if n ≥ 3.

Proof. We work over C. Let Γl be the kernel of the (surjective) morphism of groups
SL2(Z) → SL2(Fl), and let X denote Γl\H. Then X → C is Galois, with group
SL2(Fl)/{1,−1}. We consider the following diagram:

Xn

Gn

��

πn
��

�

π−1
n Z

Gn

		
oooo

��
Cn Zoooo

As TlZ is an image of π−1
n Z, it suffices to show that π−1

n Z is irreducible. Let V be an irreducible
component of π−1

n Z, and H its stabilizer in Gn. All that we have to show is that H = Gn. Now
consider:

V

H

��
// // π−1

n Z

Gn

		

��

// // Xn

Gn

�� prI //

��

Xn−1

Gn−1

		

��
Z // // Cn prI // Cn−1

PI

Gn−1

��
//

�
��

Xn−1

Gn−1

		

��
Z // Cn−1

Because of the hypotheses l ≥ deg(prI) and l ≥ 13 the fibered product PI is irreducible. It
follows that the projection V → PI is dominant, hence that prIH = Gn−1. The next wel known
lemma (proof left as exercise) finishes the proof of the lemma. �

3.5.3 Lemma. (Kolchin?) Let G be a non-commutative simple group, n ≥ 2, H ⊂ Gn a sub-
group such that prIH = G2 for all I ⊂ {1, . . . , n} with |I| = 2. Then H = Gn.

So we have:
Z = TlZ.

But all Tl-orbits in Cn are dense (even for the archimedian topology): the subgroup of
GL2(Z[1/l]) generated by SL2(Z) and ( l 0

0 1 ) contains SL2(Z[1/l]), and this last group is dense
in SL2(R) (as SL2 is generated by additive groups).

It only remains to prove the theorem for n = 2. The reader is refered to my article in
Compositio Math. 114 (1998) for that. �
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4 Non-triviality of Heegner points II (1 hour)

Reference: C. Cornut, “Non-trivialité des points de Heegner”, CRAS, 2002.
Let E/Q be an elliptic curve, N its conductor, π : X0(N)Q → E a modular parametrisa-

tion, Q → K a quadratic extension such that OK/NOK is isomorphic to (Z/NZ)2 (as rings),
N ⊂ OK an ideal such that OK/N = Z/NZ. We note that there are 2r choices for N if N is
composed of r distinct primes. For c ≥ 1 we put:

Nc := N ∩OK,c, xc := [C/OK → C/Nc] ∈ X0(N)(C).

The point xc is called a Heegner point of conductor c. In fact, xc is in X0(N)(K[c]), where
K → K[c] is the abelian extension unramfied outside c that corresponds by class field theory to
the quotient Pic(OK,c) of (K ⊗ Ẑ)∗. As K is fixed in this talk, we drop it from the notation from
now on. We are going to take a somewhat closer look at this group Pic(Oc).

The first thing we note is how to understand Oc “geometrically”:

O // //

�

O/cO

Oc
// //

OO

OO

Z/cZ
OO

OO
.

This means that Xc := Spec(Oc) is obtained from X := Spec(O) by “pinching” the closed
subscheme O/cO into Z/cZ. Let f denote the morphism X → Xc. Then we have a short exact
sequence:

0 −→ O∗Xc
−→ f∗O∗X −→ Qc −→ 0,

with Qc a skyscraper sheaf supported on Z/cZ. The long exact cohomology sequence reads:

0 −→ O∗c −→ O∗ −→ (O/cO)∗

(Z/cZ)∗
−→ Pic(Oc) −→ Pic(O) −→ 0.

Now we fix a prime number p that does not divide N , and we define K[p∞] := ∪n≥0K[pn], and
xn will denote the previously defined xpn . We let G := Gal(Kp∞/K), and we have:

0 −→ Z∗ −→ O∗ −→ (Zp ⊗O)∗

Z∗p
−→ G −→ Pic(O) −→ 0.

Using this, one sees that Hom(G,Zp) is isomorphic to Zp. It follows that there is a unique
Zp-extension:

K[p∞]

H∞

G0=Gtors

cc

K

G

OO

∼=Zp

::
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with G0 a finite group.

4.1 Theorem. (Cornut) For almost all n ≥ 0 the Heegner point traceG0(π(xn)) in E(H∞) is of
infinite order.

Before giving the proof, we want to mention that a previous proof was given, first in the case
where Q→ K is ramified at only one prime by Vatsal, and in the general case by Cornut, using a
theorem in ergodic theory by Marina Ratner. That tool has been replaced in this proof (following
Cornut) by the special case of the conjecture of André and Oort of the previous talk. In any
case, the proof uses some miraculous properties of the extension K → K[p∞]: it has certain
finite residue fields, the Galois group G has certain elements of order 2. These properties follow
immediately from the description as inverse limit of the Pic(Opn) that we have given above.

4.2 Lemma. E(H∞)tors is finite.

Proof. For q prime, different from p and inert in K, K → K[p
∞] is completely decomposed

at q: Frobq in Gal(K[pn]/K) = Pic(Opn) corresponds to the class of the ideal qOpn , hence is
trivial. So we have morphisms Op∞ → Fq2 for all such q. As prime-to-q torsion specializes
injectively, and the image is in the finite group E(Fq2), it suffices to take two different q’s. �

To prove the thereom, it is enough to prove that the fibres of the following map f are finite:

X0(N)G0
π

// E
∑

// E

n � // (σ 7→ σ(xn)) � // traceG0(π(xn))

N
f

// E(H∞)

Now the idea is to distinguish in G0 the “geometric part” and the “chaotic part”. Let q1, . . . , qg

be the primes that are ramified inK, other than p, and letQ1, . . . , Qg be the maximal ideal ofOK

over the qi. Then FrobQi
has order 2 in G, because its image in each Pic(OK,pn) corresponds to

the class of Qi, and we have Q2
i = qiOK,pn . We let G1 be the subgroup of G0 that is generated

by the FrobQi
. We have:

G ⊃ G1 = ⊕iF2·FrobQi
.

This subgroup G1 accounts for the “geometric part” of the action of G0. We define:

N ′ := Nq1 · · · qg, N ′ := NQ1 · · ·Qg, x′n := [C/Opn → C/N ′pn ] ∈ X0(N ′)(K[pn]).
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We note that N ′ is square free and prime to p.
For 1 ≤ i ≤ g, we have the Atkin-Lehner involution Wqi of X0(N ′); it sends (F,G,H)

(with F an elliptic curve, G a subgroup of order qi and H a cyclic subgroup of order N ′/qi) to
(F/G, F [qi]/G,H). This gives 2g degeneracy maps from X0(N ′) to X0(N), indexed by G1.
We let δ denote their product: δ : X0(N ′) → X0(N)G1 . We define a new parametrisation
π′ : X0(N ′)→ E by:

π′ : X0(N ′)
δ
// X0(N)G1

π
// EG1

∑
// E

x′n
� // (σ 7→ σ(xn)) � // traceG1(π(xn))

We note that π′ is dominant because its derivative at∞ is non-zero (all degeneracy maps making
up δ are ramified at∞ except one)1.

Let now R be a set of representatives for G1 ⊂ G0, and consider:

X0(N ′)R π′ // ER σ // E

n � // H(n) := (σ 7→ σ(x′n)) � // traceG0(π(xn))

4.3 Proposition. For I ⊂ N infinite, H(I) is Zariski dense in X0(N ′)R.

Of course, this proves that f has finite fibers, hence proves the theorem.

Proof. Because of the theorem of the previous lecture, if suffices to prve:

Suppose σ1, σ2 are in G0, M ≥ 1, such that (j(σ1(x′n)), j(σ2(x′n))) is in X0(M) for
infinitely many n, then σ−1

1 σ2 is in G1.

4.4 Lemma. Let E1 and E2 have CM by K: End(Ei) = Oci . Let f : E1 → E2 be a cyclic
isogeny, d := deg(f). Then f factors as follows:

E1

f
//

f1
��

E2

Oc′ ⊗Oc1
E1

f ′
// Oc′ ⊗Oc2

E2

f∨2

OO c′ =
c1

deg(f1)
=

c2

deg(f2)
, (c′, deg(f ′)) = 1.

1I thank Florian Breuer for pointing out to me that one has to verify that π′ is not constant; the answer that I gave
to his question during the lecture was nonsense
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Proof. The problem can be analyzed prime by prime, as it is a question about Z-lattices in K.
For every prime l, think of the tree of lattices up to Q∗l in Vl(E) ∼= Ql ⊗ K, with E chosen
such that End(E) = O. To each lattice one associates the exponent of l in the conductor of the
endomorphism ring. Then one gets the following pictures.

l inert There is one point with label 0, and the labels at all points are the distance to this one
point.

l split The is a unique path, infinite in two directions, and the labels are the distance to this path.

l ramified There are two neighboring points such that the labels are the distance to these two
points.

This shows that cyclic isogenies behave with respect to conductors of endomorphism rings as the
lemma claims. �

Now we finish the proof of the proposition. Suppose that σ1, σ2 and M are as in that proposition.
Then we have infinitely many fn : En → σ−1

1 σ2En of degree M , with End(En) = Opn . The
last lemma gives us infinitely many f ′n : E ′n → σ−1

1 σ2E
′
n of fixed degree M ′ prime to p, with

End(E ′n) = Opn−a (a fixed), and ideals mn ⊂ O of index M ′, such that:

E ′n //

can

((

σ−1
1 σ2E

′
n

(mn ∩Opn−a)−1 ⊗On−a
p

E ′n

There are only finitely many possibilities for mn, so we may assume that mn = m, independent
of n. Then in G = lim←−

n

Pic(Opn) we have:

[m] = σ1σ
−2
2 ∈ G0 = Gtors.

This means that for some e ≥ 1 the intersectionm∩Opn is principal for all n ≥ 0. Some thinking
gives that m is then of the form Qe1

1 · · ·Q
eg
g , hence that σ1σ

−1
2 is in G1, as we had to prove. �
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