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Reference: Deligne’s “Formes Modulaires et representations de GLy(A)” in Antwerp II,
Springer Lecture Notes in Mathematics 239; and, pages 18 and 19 from Taylors long ICM text
“Galois Representations” (available from his homepage). It is just 21 lines, but there is a lot to
say. ..

Aim: To understand the 21 lines by Taylor.

1. THE HARISH-CHANDRA ISOMORPHISM FOR gl,
Recall that gl, := Lie(GL2(C)) is the Lie algebra Mz (C) with Lie-brackets
[X,Y]:=XY -YX, VXY e€MyC).
We pick the following C-basis of gly:
c=(59), h=("), ar=(5) a =01

The universal enveloping algebra U(gly) of gl is

0):

T(gly)/(a®@b—-b®a—[a,b]:a,be gly),

where T(gly) = @, cn 015" is the tensor algebra. The algebra gl, maps into T(gl,) by map-
ping gl, into gI¥' C T(gl,) via the identity map, and then to U(gly) via the quotient map
T(gly) — U(gly).
The algebra U(gl,) satisfies the following properties
(1) the map gl, — U(gl,) transforms Lie-brackets into commutators;
(2) the algebra U(gl,) is associative;

(3) the algebra U(gl,) has a unit element,
1



2 BAS EDIXHOVEN

and U(gl,) is universal among all such algebras. In particular there is an isomorphism of cate-
gories
{gly-modules} — {U(gl,)-modules},

because for every C-vector space A
HomLie-algebras/C (9[27 EHd(A)) = HomC—algebras(U(g[Q)a End(A))

Therefore the center 32 of U(gl,) is the endomorphism ring of the functor idgr,-modules-

The Harish-Chandra isomorphism is an isomorphism of C-algebras
Yre: 32 — Clxy, 12)%2  (Ss-acts by interchanging 2, and z),
characterized as follows. We need the concept “Highest Weight Representations”. Let
B={(5:)} T={G\}1=G, W=Ng/T=5,.
Under the action of T on gl, it holds t - ay = t1t; 'ay, so (1, —1) is the positive root. It holds
X(T) = Hom(T, G,) = Z?,
and the positive part is {a € Z?|a; > a2} C Z2.

Theorem 1.1. For all positive roots a € Z* there exists a unique (up to isomorphism,) irreducible

algebraic representation p, of GLe ¢ such that a is the highest weight of pg|r.

Explicitly one may take p, = Sym® ~?2(C?) ® det®?.
The subgroup Tc C GL,, c acts on the space of p, via a character, and this character is given
by
t=(ty,tg) > (F1702 401702 gy oo g01 T2 0202
Note Sym?(C?) = Sym?(Cz @ Cy) = Clz, yla.
Now a characterisation of ygc. For all a € Z2, positive, the diagram

32 — 5 Clay, 22] 52 f

S ]
C

flar+ 3,02 — 1),
commutes. The subset )
{a + 5(17 —1)|a positive in Z?} c C?

is Zariski dense, and so there can only be one isomorphism vy fitting in the diagram above.

But this doesn’t tell us what vy or 32 is. Of course we have ¢ = (§9) € gl, C U(gly). As
Lie(Center(GL3(C))) = C - ¢ it holds ¢ € 33. We need 1 more element in 3o.

Some generalities. Let G a complex affine algebraic group, A := Og(G) the ring of global
functions, m € Spec(A4) the maximal ideal corresponding to e € G(C). Then

U(Lie(@)) = {left invariant differential operators on G}

= “point distributions at €” = lim(A/m™)",
—
n
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with multiplication on lii>nn(A/m”)V coming from the multiplication map u: G x G — G on
G in the following way. Let pu*: A — A ® A be the comultiplication (obtained from u by
applying the global sections functor to p). The map A ® A — A/m"™ ® A/m™ factors over
A® A/(A®m+m® A)2". [To see this, the ideal (A®@m +m® A)?>" C A® A is generated by
elements t = ZZ—H:% xly) withx € A®@m and y € m® A. All the terms in the sum ¢ have
either ¢ > n or j > n.] The maximal ideal of A ® A corresponding to (e,e) ism® A+ A ® m,
and p maps (e, e) to e, so p*(m.) C m® A+ A ®m. We thus have the commutative diagram

A AR A

| |

Am? —— (AR A)/(m® A+ A@m)?"

T

A/m" ® A/m™.

Take duals to find maps (A/m™)Y @ (A/m")Y — (A/m?")V; they define the multiplication on
lim (A/m™)V.
—n i

Anyway U(LieG) is a filtered ring, and Fil; U(LieG)/Fil;11 U(LieG) = Sym‘(LieG) for all
1€ N.

By construction,

Z(U(Lie@)) = U(Lie(G))“¢ = U(Lie(G))%" .
For G = GL,, = GL(V), with V = C™:
Lie(G) =End(V)=VY oV = (VY V)" =End(V)",
and
Sym(End(V)¥)®E = {conjugation invariant polynomials on End(V)}
= Clcoefficients of characteristic polynomial].

In particular, in case n = 2, there is an element C in degree < 2 such that ¢ and C' generate 35.

Recipe for the Casimir operator C: Take the Killing form (-,-) on sly given by

(a,b) = tr((ada), (adb)); take any basis (e;)ies of slz, then C' =3, e/ ® e;, where (e} )icr is
the dual basis with respect to the Killing form. We use slo = C-h® C- a4 & C-a_. We have:

[h7a‘+] = 2a+7 [h7a*] =—2a-, [G’Jraa*] = hv

and the matrix of (-, -) is

8 00
0 0 4{,
0 4 0
" 1 1 1
hY = gh, ai = 79— a’ = 10+
1

So the Casismir operator is $C, with C' = $h? + aja_ +a_ay. We have 35 = C[c, C].
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For a € Z? positive, V, = C[z,Y]a;—a, ® (C -2 Ay)®%2, gl, acts

on Clz,yl as  c: 20, +y0y, h:x0, —ydy, ay:x0y, a_ :yod,
on C-x Ay as c:2, h:0 a4 : 0, a_:0,

c acts on V, as a; + ao, and C acts on V, as

1 1
(5(303:,3 +y0y)(x0y +y0y +2))®1 = (a1 —ag)(a; —az +2) = =(ay — az)* + a1 — az.

2

Now we can make the Harish Chandra isomorphism explicit. For all positive roots a € Z? the
map p, sends ¢ to a; + az and C to %(al —ag)(a; — as + 2). Hence vy is given by

Cr— T+ X2

C— %(I1 —xo— 1)(x1 —a20+1) = %((xl — 29)2 — 1).

2. VERY CLASSICAL PICTURE

Remember H is the space of z € C with I(z) > 0, equipped with the induced topology.

Definition 2.1. Let I' C SLy(Z) a congruence subgrouﬂ and k € Z. The space of cuspidal
modular forms of weight k, notation Si(T'), is the C vectorspace of complex valued functions
f+ H — C satisfying:

(1) f is holomorphic;

(2) V(ab)eT,VrcH: f (g;ig) = (et + d)* £(7);

(3) f vanishes at the cusps: V(% %) € SLy(Z):

<T|—>(CT—|—d kf<a7—+b>)—>0 as (1) — oo.
_l’_

What does the condition “f (g;tdb) = (et

d)*f(1)” mean? (We want something more

conceptual). On H we have
Z’xH—CxH—E

LA

H

The group SLo(Z) acts on the left.  To find the action, consider 7 € H, and
v =(2%) € SLy(Z). Then

E. = C/(Zr +Z) = C/(Z(at +b) + Z(cT + d)) (z,7)
E,, —-c/ (zg;if; + Z) (CT1+ 2, ZZIS) .

1Congruence subgroup means that it contains the subgroup T'(N) for some N € Zsi, where
I'(N) := ker(SL2(Z) — SL2(Z/NZ))
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zzt;)w%mm(;)‘(i)(W-<:1>>‘v-<i><~’t-<:1>>t(z:2>~
o (1)) (e ().

This gives an invariant Og-module w = 0*Qg yu With an SLo(Z)-action. We have a global
section: dz (coming from the standard coordinate z on C), and

(v)*dz=d((y)"z) =d <c7'j— d) = (cr +d)"tdz.

Then we have, for f: H — C:
()7 (£ @) 7= ()7 1) () (em + )7+ (a2)",
for k€ Z, 7 € H, v € SLy(Z). Hence
(1) (d2)* = f(d2)** <= V7 € H: f(ym)(er +d) ™% = (7).
So condition (2) for f € Sj(I') means that f(dz)®* is a T-invariant global section of w®*:
F(d2)%* € (@O H)".

If T acts freely on H, then the quotient of E/H by T" together with the 0-section,

is the universial elliptic curve with I'-level structure. And it holds:

Sp(T) ={f¢€ wg(lfr)/y(r)(Y(F)ﬂf extends over the cusps, and vanishes there}.

3. FUNCTIONS OF LATTICES

The formulas in the preceding section are ugly! After Deligne, consider:
G := {¢: Z* — Cl|p is Z-linear, ¢(Z?) = lattice} C C?,
as an open 2-dimensional C-submanifold of C2. It holds:
G 5 TsomR.mod (R?, C) = GLy(R).
The group GL3(Z) x C* acts on G. The action of C* on G is free with quotient
q: G —H", o (pe1: pea) = per/pes.

The quotient ¢ has a section: 7 +— (7,1).
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Note:

G = {(L,9)|L C C lattice ,¢: Z*> — L}
= (V,L,p, )|V 1-dim. C-v.sp.,a: C == V,L C V lattice, p: Z? = L}/ =
GL2(Z)\G/C* ={(V, L)}/ =2 {E/C elliptic curve}/ = .
Then, for k € Z, I’ C GL3(Z) the space

fler)=flp) VYpeG,Vye P}

{f: ¢ —C |f<Aso> =xFf(p) VpeGrect

is identified with the space

{f: H* —C ‘v(gg) eT.VreH: f (‘ZIZ) = (c¢+d)kf(7)},
h f (foq) (o ¢lez))F
I ﬁ
(T f(r.1)) f,

4. THE SHIMURA DATUM PICTURE
For K C GL3(A®) a compact open subgroup, we define:
Y = GLy(Q)\(H® x GLy(A®)/K).
Ezxample 4.1.
Yar,z) = GLa(Q)\(H* x GLy(A®)/GLy(2))
= GLy(Z)\H* = SLy(Z)\H = {E/C}/ =
To see the equality marked * note that GLy(Q) acts transitively on the set of Z-lattices in (A>)2.

We want to interpret the Yx as moduli spaces. First analytically. Fix an R-basis of C, either
(4,1), or (1,7) to get an isomorphism GLa(R) 2 Isomg.vsp(C, R?). Hence:

GLy(A) ——> Tsomp.ysp(C, R2) x GLy(A™) <2 {(V.L,a,B.0)}/ =,

where the space on the right is the set of isomorphism classes of tuples (V, L, «, 3, ¢), where

e V is a 1-dimensional C-vector space;
e [ C V is a 2-dimensional Q-vector space, such that RL =V

e a: C — V an isomorphism;

B8: Q% — L an isomorphism;

¢: (A®)? - A>® ®@q L an isomorphism.
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An isomorphism of two tuples (V, L,a, 8, ¢) and (V', L', o/, 3, ¢’) is two commutative dia-
grams:

L——V

L/( > V/

Id® f
A® @ L = A® @ L/

S~

(1)1: (9007900) = (Cvgo_o1Q27idC7.go_ol|Q2> (ldAOQ ®go_01|Q2) Ogoo)u
(I)Q: (‘/7 L,OZ,B, SD) = ((ldR ®B)_1 o «, (ldA°° ®6)_1 o %0) .

Consequence: Y is the set of isomorphism classes of triples (V, L, ), where V is a 1-dimensional

The maps ®; are given by

C-vector space, L C V is a 2-dimensional Q-vector space such that RL = V, and where
¢ € Isom((A>®)2, A ® L)/K.

What kind of category do the (V, L) give us?? Answer complex elliptic curves “up to isogeny”:
Q ® El(C), i.e. the category whose objects are elliptic curves and the Hom-sets are tensorred
with Q.

The category Ell(C) is equivalent with the category of pairs (V, Lg), where V' is a 1-dimensional
C-vector space and Ly C V is a lattice. We have

Hom((V,Q ® Lo), (V',Q® Lj) = Q ® Hom((V, Lo), (V', Lg))-
Now algebraically:
Yi(Q) = {(E,¢)|E € Ob(Q ® EI(Q)), ¢ € Isom((A%)?,V(E))/K}/ =
We have
El(Q) — Q®EI(Q)
l \ |
T %
R Y
Z-mod —> A°°-mod
For K C GLy(Z), ¢ € Isom((A>)2,V(E))/K the space Z? C V(E) is a Z-lattice and gives a
genuine elliptic curve E’ such that
T(E') = ¢Z°,
in V(E).

Now modular forms in this perspective. For k € Z and K C GL3(A) the space Si(T") is the
set of functions f: GLa(A) — C such that
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(1) f is holomorphic;

(2) For all A € C* we have f o (-\) = A\¥f;
(3) f is GL2(Q)-invariant on the left;

(4) f is right K-invariant;

(5) f is of moderate growth and zero in the cusps.

To see this last property, f extends over the cusps of Y, and vanishes there.
For n € Z>4, let K, be defined by the Cartesian diagram

GLy(Z) —> GL2(Z/nZ)

I

Kin —={(5 1)}
Then Yk, , = Y(I'1(n)). Hence for k € Z we have S;(I'1(n)) = Sk(K1,,) and we have

Sk(l'1(n)) = lIm Sk (K) =: S = {f: GL2(A) — C : above list}.
K
Important point: GL2(A) acts on Sj.
For K C GL2(A™) open compact subgroup: Si(K) equals (Si)%; the GLa(A)-action gives
Hecke operators on the S;(K) (via C[K1\GLy(A>)/K3]).
Suppose now that f is a normalised weight k newform of level n: a1(f) = 1, and its system
of eigenvalues does not occur in a level < n form. Then f generates an irreducible GLa(A>)-

submodule of Sk,

Vi© = ({gflg € GL2(A™)}),
Ve =®,'Vy,p, where Vy, C e ara(q,) SHE X K 1.n) is the subrepresentation of GLx(Qp)
generated by f.

5. GLy AND MODULAR FORMS

Extra reference: S. Kudla, From modular forms to automorphic representations in a book “An
introduction to the Langlands program”. But it only gives formulas. ..

Let G be the set Isomg.ysp(C, R?). The group GLa(R) acts on the left on this set, and the
group GLg(C) acts on the right on this set. Note that GLg(C) contains the group C*, so the
group C* has a right action on G.

The quotient for the C*-action on G is given by

((-1)) q: G —HE o ler /o e,

where H := {z € C|S(z) # 0}.

We can give a moduli interpretation of this map in the following manner. The set G is also
the set of isomorphism classes of tuples (V, L, %, ), where V is a one-dimensional C-vectorspace,
L C V a Z-lattice, ¥ an isomorphism from Z2? to L, and a: C = V an isomorphism of C-

vectorspaces.
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The set H* is the set of isomorphism classes of tuples (V,L,¢) (same definitions as above).
And under this interpretation the quotient map ¢ in|(.1)|is the map sending a tuple (V, L, 9, @)
to (V, L,v).

Remark 5.1. On H* we have the line bundle w := O"QlE/Hi7 which is GLg(R)-equivariant,
but it has no invariant trivialisation (stabilisers act non-trivially). But, on G, « gives us a
GL2(R)-invairant trivilisation of w. It is this that makes it possible to describe modular forms

as functions, and not as sections of a line bundle.

Concretely, let f € Si(I'), where I' C SLy(Z) is a congruence subgroup. Important: Here
we view f as a modular form on the double half plane H* c C. Let v € G, let wy =@ ey,
wy 1= @ teg, T := wy/wy and L := Zw; @ Zw, C C.

We have the commutative diagram

C/L C/(Zr +Z)
b T
C C

F(©)(d2)®* = fra(wi fwa)wy *(d2)®F <—— fra(dz)®*

((2)  {f: G — ClvyeT¥p € GIf () = J(9). VA € C* W € G 1 flpd) = A (9)}
is in bijection with the set

ar +b
ct+b

((.3)) {fH: H* — C|v(%}) eI, vr e H* : fH( ) = (CT+d)ka(T)}.

This bijection given as follows. Let f be an element of the set then
fu:HE — C, 70— f(r—e3,1—e1)),

is the corresponding element of the set Inversely, if fg is an element of the set |(.3), then
the corresponding element of the set |(.2)|is given by
f= (" frws®).

We use i € HT as base point and (hence) ¢o: C = R? with ¢oter =i and @g tes = 1 as base

point in G. In particular,
GL:(R) — G, g+ gyo.
Then, for g € GLy(R) we have
wi(gpo) = ai+b, w2(gpo) = ci+d,

when g— 1t = (‘Cl g). Hence:

flapo) = f <ZZIZ> (ci+d)~*.
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And let me say it in yet another way how f € Spx C HO(Yg,w®*) gives f. Let
f(V,L,a,3,¢) € (VV)®*. Then « is an isomorphism C = V., and it induces an isomorphism

(V\/)®k -~ (C\/)®k - Q.

(o)
Via this isomorphism, we get f(V, L, a, 3,¢) € C. Clearly,
VA€ CX: f(V.L,ao (M), B,0) = A f(V.L,a, 5,¢).

Let us compute the action of the center A* on C - f. Let gf: 7% — C* be the character of
f.

Consider the commutative diagram

AX <—<Q
/ \ Amap

Q*\AX/RZ,

where v is a place of Q. We denote with 1., , the composition
QY — A — Q"\A¥/R, — C~.

Note ef(—1) = (—=1)%, hence ., (A) = (l—f\“)k We claim that R* C A acts via
A= A = [NM), o and QF via |- [Fy., . Hence A* acts as || - ||*., and indeed Q*
acts trivially.

Here is the proof. Let f(V,L,¢) € (VV)®F f(V,L,pp) € (VV)®*, so

(p)*: (VV)&F — (VV)®F, F(V,L,pp) — f(V,L,¢),

SO

[Leri)- F(ViLpp- ) = F(V.Lip- ) = p* F(V, L, p).
L#£p
So

FV,Lppe) = Iply - [ ere0)  F(Vi L, ).
t#p
Now comes a strange thing. I thought that f would be in Ags,43(GL2(Q)\GL2(A)) for suitable
s and ¢. But computing s and ¢ gives (s,t) = (k — 3, 1): not integers.
Here’s the computation. Recall Lie(Gl2(R)); ¢, h,aq,a_ and C = 3h? + aja_ +a_ay,

YHC: § — C[$1,$2]62

c—— T+ X9
1
C 5((x1 —x2)2 -1

Let 6, +): Clx1,22]? be the morphism which evaluates a polynomial P € Clz1, x2]%2 at 1 = s
and xo = t.

Now hf = kf and ¢f = kf as fo () = Mef for all A € C*. Moreover a_f = 0 as f is
holomorphic, and ag consists of anti-holomorphic derivation (see Deligne, or compute it).
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Then cfz k;f, and
~ 1 ~ 1 - 1 ~
OF = (317~ (ara- —a_a,))f = (34>~ W)f = (K —2k)F.
So, for f we have s+t = k and (s —t)* = (s —t)) = 3(k® — 2k). Therefore, s+t =k and
s—t=k—1. WeconlcudethatSZk—%andt: %
So this means that we should consider f = fl|det()||"%. Then, for f we have s = k — 1 and
t=0,s0 f € A?k—l,v)'
I'm glad to see this (k — 1,0) as the HS ~ f is of type {(k — 1,0),(0,k — 1)} , or also, the
Hodge-Tate weights of the Galois representation corresponding to f are k — 1 and 0.
The automorphic representation corresponding to f: The function f generates a (gl5,0(2))-
module Vo, with basis
{a fln > 0} TT{a" (§ 21 fIn > 0},
and Vf = Vf,oo ® Vfoo.
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