GL_2 . MODULAR FORMS, CLASSICALLY, AND $GL_2(A)$

BAS EDIXHOVEN

Contents

1.	The Harish-Chandra Isomorphism for \mathfrak{gl}_2	1
2.	Very Classical Picture	4
3.	Functions of Lattices	5
4.	The Shimura Datum Picture	6
5.	GL_2 and modular forms	8

Reference: Deligne's "Formes Modulaires et representations de $GL_2(\mathbf{A})$ " in Antwerp II, Springer Lecture Notes in Mathematics 239; and, pages 18 and 19 from Taylors long ICM text "Galois Representations" (available from his homepage). It is just 21 lines, but there is a lot to say...

Aim: To understand the 21 lines by Taylor.

1. The Harish-Chandra Isomorphism for \mathfrak{gl}_2

Recall that $\mathfrak{gl}_2 := \operatorname{Lie}(\operatorname{GL}_2(\mathbf{C}))$ is the Lie algebra $\operatorname{M}_2(\mathbf{C})$ with Lie-brackets

$$[X,Y] := XY - YX, \quad \forall X, Y \in \mathcal{M}_2(\mathbf{C}).$$

We pick the following C-basis of \mathfrak{gl}_2 :

$$c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad a_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad a_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

The universal enveloping algebra $U(\mathfrak{gl}_2)$ of \mathfrak{gl}_2 is

$$T(\mathfrak{gl}_2)/\langle a \otimes b - b \otimes a - [a, b] : a, b \in \mathfrak{gl}_2 \rangle,$$

where $T(\mathfrak{gl}_2) = \bigoplus_{n \in \mathbb{N}} \mathfrak{gl}_2^{\otimes n}$ is the tensor algebra. The algebra \mathfrak{gl}_2 maps into $T(\mathfrak{gl}_2)$ by mapping \mathfrak{gl}_2 into $\mathfrak{gl}_2^{\otimes 1} \subset T(\mathfrak{gl}_2)$ via the identity map, and then to $U(\mathfrak{gl}_2)$ via the quotient map $T(\mathfrak{gl}_2) \to U(\mathfrak{gl}_2)$.

The algebra $U(\mathfrak{gl}_2)$ satisfies the following properties

- (1) the map $\mathfrak{gl}_2 \to U(\mathfrak{gl}_2)$ transforms Lie-brackets into commutators;
- (2) the algebra $U(\mathfrak{gl}_2)$ is associative;
- (3) the algebra $U(\mathfrak{gl}_2)$ has a unit element,

and $U(\mathfrak{gl}_2)$ is universal among all such algebras. In particular there is an isomorphism of categories

$$\{\mathfrak{gl}_2\text{-modules}\} \xrightarrow{\sim} \{\mathrm{U}(\mathfrak{gl}_2)\text{-modules}\},\$$

because for every C-vector space A

$$\operatorname{Hom}_{\operatorname{Lie-algebras}/\mathbf{C}}(\mathfrak{gl}_2, \operatorname{End}(A)) = \operatorname{Hom}_{\mathbf{C}\operatorname{-algebras}}(\operatorname{U}(\mathfrak{gl}_2), \operatorname{End}(A)).$$

Therefore the center \mathfrak{z}_2 of $U(\mathfrak{gl}_2)$ is the endomorphism ring of the functor $\mathrm{id}_{\mathfrak{gl}_2-\mathrm{modules}}$. The Harish-Chandra isomorphism is an isomorphism of **C**-algebras

 $\gamma_{HC}: \mathfrak{z}_2 \xrightarrow{\sim} \mathbf{C}[x_1, x_2]^{S_2}$ (S₂-acts by interchanging x_1 and x_2),

characterized as follows. We need the concept "Highest Weight Representations". Let

$$B = \{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \quad T = \{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \} \cong \mathbf{G}_m^2, \quad W = N_T / T = S_2.$$

Under the action of T on \mathfrak{gl}_2 it holds $t \cdot a_+ = t_1 t_2^{-1} a_+$, so (1, -1) is the positive root. It holds

$$X(T) = \operatorname{Hom}(T, \mathbf{G}_m) = \mathbf{Z}^2,$$

and the positive part is $\{a \in \mathbf{Z}^2 | a_1 \ge a_2\} \subset \mathbf{Z}^2$.

Theorem 1.1. For all positive roots $a \in \mathbb{Z}^2$ there exists a unique (up to isomorphism) irreducible algebraic representation ρ_a of $\operatorname{GL}_{2,\mathbb{C}}$ such that a is the highest weight of $\rho_a|_T$.

Explicitly one may take $\rho_a = \text{Sym}^{a_1 - a_2}(\mathbf{C}^2) \otimes \det^{a_2}$.

The subgroup $T_{\mathbf{C}} \subset \operatorname{GL}_{n,\mathbf{C}}$ acts on the space of ρ_a via a character, and this character is given by

$$t = (t_1, t_2) \mapsto (t_1^{a_1 - a_2} + t_1^{a_1 - a_2 - 1} t_2 + \dots + t_2^{a_1 - a_2}) \cdot t_1^{a_2} t_2^{a_2}$$

Note $\operatorname{Sym}^{d}(\mathbf{C}^{2}) = \operatorname{Sym}^{d}(\mathbf{C}x \oplus \mathbf{C}y) = \mathbf{C}[x, y]_{d}.$

Now a characterisation of γ_{HC} . For all $a \in \mathbb{Z}^2$, positive, the diagram

commutes. The subset

$$\{a+\frac{1}{2}(1,-1)|a \text{ positive in } \mathbf{Z}^2\} \subset \mathbf{C}^2$$

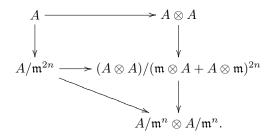
is Zariski dense, and so there can only be one isomorphism γ_{HC} fitting in the diagram above.

But this doesn't tell us what γ_{HC} or \mathfrak{z}_2 is. Of course we have $c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathfrak{gl}_2 \subset U(\mathfrak{gl}_2)$. As $\operatorname{Lie}(\operatorname{Center}(\operatorname{GL}_2(\mathbf{C}))) = \mathbf{C} \cdot c$ it holds $c \in \mathfrak{z}_2$. We need 1 more element in \mathfrak{z}_2 .

Some generalities. Let G a complex affine algebraic group, $A := \mathcal{O}_G(G)$ the ring of global functions, $\mathfrak{m} \in \operatorname{Spec}(A)$ the maximal ideal corresponding to $e \in G(\mathbf{C})$. Then

$$U(\text{Lie}(G)) = \{\text{left invariant differential operators on } G\}$$
$$= \text{"point distributions at } e^{"} = \lim_{\substack{n \\ n \end{pmatrix}} (A/\mathfrak{m}^{n})^{\vee},$$

with multiplication on $\varinjlim_n (A/\mathfrak{m}^n)^{\vee}$ coming from the multiplication map $\mu: G \times G \to G$ on G in the following way. Let $\mu^*: A \to A \otimes A$ be the comultiplication (obtained from μ by applying the global sections functor to μ). The map $A \otimes A \to A/\mathfrak{m}^n \otimes A/\mathfrak{m}^n$ factors over $A \otimes A/(A \otimes \mathfrak{m} + \mathfrak{m} \otimes A)^{2n}$. [To see this, the ideal $(A \otimes \mathfrak{m} + \mathfrak{m} \otimes A)^{2n} \subset A \otimes A$ is generated by elements $t = \sum_{i+j=2n} x^i y^j$ with $x \in A \otimes \mathfrak{m}$ and $y \in \mathfrak{m} \otimes A$. All the terms in the sum t have either $i \geq n$ or $j \geq n$.] The maximal ideal of $A \otimes A$ corresponding to (e, e) is $\mathfrak{m} \otimes A + A \otimes \mathfrak{m}$, and μ maps (e, e) to e, so $\mu^*(\mathfrak{m}_e) \subset \mathfrak{m} \otimes A + A \otimes \mathfrak{m}$. We thus have the commutative diagram



Take duals to find maps $(A/\mathfrak{m}^n)^{\vee} \otimes (A/\mathfrak{m}^n)^{\vee} \to (A/\mathfrak{m}^{2n})^{\vee}$; they define the multiplication on $\varinjlim_n (A/\mathfrak{m}^n)^{\vee}$.

Anyway U(LieG) is a filtered ring, and $\operatorname{Fil}_i \operatorname{U}(\operatorname{Lie}G)/\operatorname{Fil}_{i+1} \operatorname{U}(\operatorname{Lie}G) = \operatorname{Sym}^i(\operatorname{Lie}G)$ for all $i \in \mathbb{N}$.

By construction,

$$Z(\mathrm{U}(\mathrm{Lie}G)) = \mathrm{U}(\mathrm{Lie}(G))^{\mathrm{Lie}G} = \mathrm{U}(\mathrm{Lie}(G))^{G^{\circ}}.$$

For $G = \operatorname{GL}_n = \operatorname{GL}(V)$, with $V = \mathbb{C}^n$:

$$\operatorname{Lie}(G) = \operatorname{End}(V) = V^{\vee} \otimes V = (V^{\vee} \otimes V)^{\vee} = \operatorname{End}(V)^{\vee},$$

and

 $\operatorname{Sym}(\operatorname{End}(V)^{\vee})^{\operatorname{GL}_n} = \{\operatorname{conjugation invariant polynomials on } \operatorname{End}(V)\} = \mathbf{C}[\operatorname{coefficients of characteristic polynomial}].$

In particular, in case n = 2, there is an element C in degree ≤ 2 such that c and C generate \mathfrak{z}_2 .

Recipe for the Casimir operator C: Take the Killing form $\langle \cdot, \cdot \rangle$ on \mathfrak{sl}_2 given by $\langle a, b \rangle = \operatorname{tr}((\operatorname{ad} a), (\operatorname{ad} b))$; take any basis $(e_i)_{i \in I}$ of \mathfrak{sl}_2 , then $C = \sum_{i \in I} e_i^{\vee} \otimes e_i$, where $(e_i^{\vee})_{i \in I}$ is the dual basis with respect to the Killing form. We use $\mathfrak{sl}_2 = \mathbf{C} \cdot h \oplus \mathbf{C} \cdot a_+ \oplus \mathbf{C} \cdot a_-$. We have:

$$[h, a_+] = 2a_+, \quad [h, a_-] = -2a_-, \quad [a_+, a_-] = h,$$

and the matrix of $\langle \cdot, \cdot \rangle$ is

$$\begin{pmatrix} 8 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 0 \end{pmatrix},$$

 \mathbf{so}

$$h^{\vee} = \frac{1}{8}h, \quad a^{\vee}_{+} = \frac{1}{4}a_{-}, \quad a^{\vee}_{-} = \frac{1}{4}a_{+}.$$

So the Casismir operator is $\frac{1}{4}C$, with $C = \frac{1}{2}h^2 + a_+a_- + a_-a_+$. We have $\mathfrak{z}_2 = \mathbf{C}[c, C]$.

For $a \in \mathbf{Z}^2$ positive, $V_a = \mathbf{C}[x, y]_{a_1 - a_2} \otimes (\mathbf{C} \cdot x \wedge y)^{\otimes a_2}$, \mathfrak{gl}_2 acts

on
$$\mathbf{C}[x, y]$$
 as $c: x\partial_x + y\partial_y$, $h: x\partial_x - y\partial_y$, $a_+: x\partial_y$, $a_-: y\partial_x$
on $\mathbf{C} \cdot x \wedge y$ as $c: 2$, $h: 0$, $a_+: 0$, $a_-: 0$,

c acts on V_a as $a_1 + a_2$, and C acts on V_a as

$$\left(\frac{1}{2}(x\partial_x + y\partial_y)(x\partial_x + y\partial_y + 2)\right) \otimes 1 = \frac{1}{2}(a_1 - a_2)(a_1 - a_2 + 2) = \frac{1}{2}(a_1 - a_2)^2 + a_1 - a_2.$$

Now we can make the Harish Chandra isomorphism explicit. For all positive roots $a \in \mathbb{Z}^2$ the map ρ_a sends c to $a_1 + a_2$ and C to $\frac{1}{2}(a_1 - a_2)(a_1 - a_2 + 2)$. Hence γ_{HC} is given by

$$\begin{cases} c \mapsto x_1 + x_2 \\ C \mapsto \frac{1}{2}(x_1 - x_2 - 1)(x_1 - x_2 + 1) = \frac{1}{2}((x_1 - x_2)^2 - 1). \end{cases}$$

2. Very Classical Picture

Remember **H** is the space of $z \in \mathbf{C}$ with $\Im(z) > 0$, equipped with the induced topology.

Definition 2.1. Let $\Gamma \subset SL_2(\mathbf{Z})$ a congruence subgroup¹, and $k \in \mathbf{Z}$. The space of cuspidal modular forms of weight k, notation $S_k(\Gamma)$, is the **C** vectorspace of complex valued functions $f: \mathbf{H} \to \mathbf{C}$ satisfying:

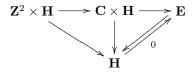
(1) f is holomorphic;

(2)
$$\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \forall \tau \in \mathbf{H} : f \begin{pmatrix} a\tau + b \\ c\tau + d \end{pmatrix} = (c\tau + d)^k f(\tau);$$

(3) f vanishes at the cusps: $\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$:

$$\left(\tau \mapsto (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right)\right) \longrightarrow 0 \text{ as } \Im(\tau) \longrightarrow \infty.$$

What does the condition " $f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$ " mean? (We want something more conceptual). On **H** we have



The group $\operatorname{SL}_2(\mathbf{Z})$ acts on the left. To find the action, consider $\tau \in \mathbf{H}$, and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z})$. Then

$$\begin{aligned} \mathbf{E}_{\tau} &= \mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z}) = \mathbf{C}/(\mathbf{Z}(a\tau + b) + \mathbf{Z}(c\tau + d)) & (z,\tau) \\ \downarrow \cong & & \downarrow \\ \mathbf{E}_{\gamma\tau} &= \mathbf{C}/\left(\mathbf{Z}\frac{a\tau + b}{c\tau + d} + \mathbf{Z}\right) & \left(\frac{1}{c\tau + d}z, \frac{a\tau + b}{c\tau + d}\right). \end{aligned}$$

¹Congruence subgroup means that it contains the subgroup $\Gamma(N)$ for some $N \in \mathbb{Z}_{>1}$, where $\Gamma(N) := \ker(\mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{Z}/\mathrm{N}\mathbb{Z}))$

Note:

$$\left(\binom{n}{m},\tau\right)\mapsto n\tau+m=\binom{n}{m}^t\cdot\binom{\tau}{1}=\left(\gamma^{-1,t}\cdot\binom{n}{m}\right)^t\cdot\gamma\cdot\binom{\tau}{1}=\left(\gamma^{-1,t}\cdot\binom{n}{m}\right)^t\binom{a\tau+b}{c\tau+d}$$

One finds:

$$\left(\binom{n}{m}, \tau\right) \stackrel{\gamma \cdot}{\mapsto} \left(\gamma^{-1, t} \binom{n}{m}, \gamma \tau\right).$$

This gives an invariant $\mathcal{O}_{\mathbf{H}}$ -module $\omega = 0^* \Omega^1_{\mathbf{E}/\mathbf{H}}$ with an $\mathrm{SL}_2(\mathbf{Z})$ -action. We have a global section: dz (coming from the standard coordinate z on \mathbf{C}), and

$$(\gamma \cdot)^* \mathrm{d}z = \mathrm{d}((\gamma \cdot)^* z) = \mathrm{d}\left(\frac{z}{c\tau + d}\right) = (c\tau + d)^{-1} \mathrm{d}z.$$

Then we have, for $f: \mathbf{H} \to \mathbf{C}$:

$$\left((\gamma \cdot)^* \left(f \left(\mathrm{d} z \right)^{\otimes k} \right) \right) \tau = \left((\gamma \cdot)^* f \right) (\tau) \left(c\tau + d \right)^{-k} \cdot \left(\mathrm{d} z \right)^{\otimes k},$$

for $k \in \mathbf{Z}, \tau \in \mathbf{H}, \gamma \in \mathrm{SL}_2(\mathbf{Z})$. Hence

$$(\gamma \cdot)^* f(\mathrm{d}z)^{\otimes k} = f(\mathrm{d}z)^{\otimes k} \iff \forall \tau \in \mathbf{H} : f(\gamma \tau)(c\tau + d)^{-k} = f(\tau).$$

So condition (2) for $f \in S_k(\Gamma)$ means that $f(dz)^{\otimes k}$ is a Γ -invariant global section of $\omega^{\otimes k}$:

$$f(\mathrm{d} z)^{\otimes k} \in (\omega^{\otimes k}(\mathbf{H}))^{\Gamma}.$$

If Γ acts freely on **H**, then the quotient of \mathbf{E}/\mathbf{H} by Γ together with the 0-section,

$$\mathbf{E}(\Gamma) \\
 \downarrow^{\uparrow}_{0} \\
 Y(\Gamma),$$

is the universial elliptic curve with Γ -level structure. And it holds:

 $S_k(\Gamma) = \{ f \in \omega_{\mathbf{E}(\Gamma)/Y(\Gamma)}^{\otimes k}(Y(\Gamma)) | f \text{ extends over the cusps, and vanishes there} \}.$

3. Functions of Lattices

The formulas in the preceding section are ugly! After Deligne, consider:

 $G := \{ \varphi \colon \mathbf{Z}^2 \longrightarrow \mathbf{C} | \varphi \text{ is } \mathbf{Z} \text{-linear}, \varphi(\mathbf{Z}^2) = \text{lattice} \} \subset \mathbf{C}^2,$

as an open 2-dimensional ${\bf C}\mbox{-submanifold}$ of ${\bf C}^2.$ It holds:

$$G \xrightarrow{\sim} \operatorname{Isom}_{\mathbf{R}\text{-}\operatorname{mod}}(\mathbf{R}^2, \mathbf{C}) \xrightarrow{\sim} \operatorname{GL}_2(\mathbf{R}).$$

The group $\operatorname{GL}_2(\mathbf{Z}) \times \mathbf{C}^*$ acts on G. The action of \mathbf{C}^* on G is free with quotient

$$q: G \longrightarrow \mathbf{H}^{\pm}, \quad \varphi \mapsto (\varphi e_1 : \varphi e_2) = \varphi e_1 / \varphi e_2.$$

The quotient q has a section: $\tau \mapsto (\tau, 1)$.

Note:

$$\begin{split} G &= \{ (L, \varphi) | L \subset \mathbf{C} \text{ lattice }, \varphi \colon \mathbf{Z}^2 \xrightarrow{\sim} L \} \\ &= (V, L, \varphi, \alpha) | V \text{ 1-dim. } \mathbf{C}\text{-v.sp.}, \alpha \colon \mathbf{C} \xrightarrow{\sim} V, L \subset V \text{ lattice, } \varphi \colon \mathbf{Z}^2 \xrightarrow{\sim} L \} / \cong \\ \mathrm{GL}_2(\mathbf{Z}) \backslash G / \mathbf{C}^* &= \{ (V, L) \} / \cong \{ E / \mathbf{C} \text{ elliptic curve} \} / \cong . \end{split}$$

Then, for $k \in \mathbf{Z}$, $\Gamma \subset \mathrm{GL}_2(\mathbf{Z})$ the space

$$\left\{ f \colon G \longrightarrow \mathbf{C} \middle| \begin{array}{ll} f(\varphi \gamma^t) = f(\varphi) & \forall \varphi \in G, \forall \gamma \in \Gamma \\ f(\lambda \varphi) = \lambda^{-k} f(\varphi) & \forall \varphi \in G, \lambda \in \mathbf{C}^* \end{array} \right\},$$

is identified with the space

$$\left\{ f \colon \mathbf{H}^{\pm} \longrightarrow \mathbf{C} \left| \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \forall \tau \in \mathbf{H} : f \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k f(\tau) \right\},\right.$$

via

$$\begin{array}{ccc}
f & (f \circ q) \cdot (\phi \mapsto \phi(e_2))^{-k} \\
\downarrow & & \uparrow \\
(\tau \mapsto f(\tau, 1)) & & f,
\end{array}$$

4. The Shimura Datum Picture

For $K \subset \operatorname{GL}_2(\mathbf{A}^{\infty})$ a compact open subgroup, we define:

$$Y_K := \operatorname{GL}_2(\mathbf{Q}) \setminus (\mathbf{H}^{\pm} \times \operatorname{GL}_2(\mathbf{A}^{\infty})/K).$$

Example 4.1.

$$\begin{split} Y_{\mathrm{GL}_{2}(\hat{\mathbf{Z}})} &= \mathrm{GL}_{2}(\mathbf{Q}) \backslash (\mathbf{H}^{\pm} \times \mathrm{GL}_{2}(\mathbf{A}^{\infty})/\mathrm{GL}_{2}(\hat{\mathbf{Z}})) \\ &\stackrel{*}{=} \mathrm{GL}_{2}(\mathbf{Z}) \backslash \mathbf{H}^{\pm} = \mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathbf{H} = \{ \mathrm{E}/\mathbf{C} \} / \cong \end{split}$$

To see the equality marked * note that $\operatorname{GL}_2(\mathbf{Q})$ acts transitively on the set of $\hat{\mathbf{Z}}$ -lattices in $(\mathbf{A}^{\infty})^2$.

We want to interpret the Y_K as moduli spaces. First analytically. Fix an **R**-basis of **C**, either (i, 1), or (1, i) to get an isomorphism $\operatorname{GL}_2(\mathbf{R}) \cong \operatorname{Isom}_{\mathbf{R}\text{-vsp}}(\mathbf{C}, \mathbf{R}^2)$. Hence:

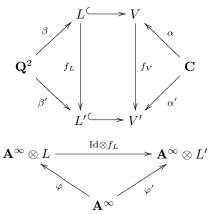
$$\operatorname{GL}_2(\mathbf{A}) \xrightarrow{\cong} \operatorname{Isom}_{\mathbf{R}\text{-vsp}}(\mathbf{C}, \mathbf{R}^2) \times \operatorname{GL}_2(\mathbf{A}^\infty) \underbrace{\underline{\leftarrow \Phi_2}}_{\Phi_1} \{(V, L, \alpha, \beta, \varphi)\} / \cong,$$

where the space on the right is the set of isomorphism classes of tuples $(V, L, \alpha, \beta, \varphi)$, where

- V is a 1-dimensional C-vector space;
- $L \subset V$ is a 2-dimensional **Q**-vector space, such that $\mathbf{R}L = V$;
- $\alpha : \mathbf{C} \to V$ an isomorphism;
- $\beta: \mathbf{Q}^2 \to L$ an isomorphism;
- $\varphi \colon (\mathbf{A}^{\infty})^2 \to \mathbf{A}^{\infty} \otimes_{\mathbf{Q}} L$ an isomorphism.

6

An isomorphism of two tuples $(V, L, \alpha, \beta, \varphi)$ and $(V', L', \alpha', \beta', \varphi')$ is two commutative diagrams:



The maps Φ_i are given by

$$\Phi_1 \colon (g_{\infty}, g^{\infty}) \mapsto (\mathbf{C}, g_{\infty}^{-1} \mathbf{Q}^2, \mathrm{id}_{\mathbf{C}}, g_{\infty}^{-1} |_{\mathbf{Q}^2}, (\mathrm{id}_{\mathbf{A}^{\infty}} \otimes g_{\infty}^{-1} |_{\mathbf{Q}^2}) \circ g^{\infty}),$$

$$\Phi_2 \colon (V, L, \alpha, \beta, \varphi) \mapsto \left((\mathrm{id}_{\mathbf{R}} \otimes \beta)^{-1} \circ \alpha, (\mathrm{id}_{\mathbf{A}^{\infty}} \otimes \beta)^{-1} \circ \varphi \right).$$

Consequence: Y_K is the set of isomorphism classes of triples (V, L, φ) , where V is a 1-dimensional **C**-vector space, $L \subset V$ is a 2-dimensional **Q**-vector space such that $\mathbf{R}L = V$, and where $\varphi \in \text{Isom}((\mathbf{A}^{\infty})^2, \mathbf{A}^{\infty} \otimes L)/K$.

What kind of category do the (V, L) give us?? Answer complex elliptic curves "up to isogeny": $\mathbf{Q} \otimes \text{Ell}(\mathbf{C})$, i.e. the category whose objects are elliptic curves and the Hom-sets are tensorred with \mathbf{Q} .

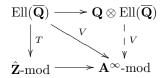
The category $\text{Ell}(\mathbf{C})$ is equivalent with the category of pairs (V, L_0) , where V is a 1-dimensional **C**-vector space and $L_0 \subset V$ is a lattice. We have

$$\operatorname{Hom}((V, \mathbf{Q} \otimes L_0), (V', \mathbf{Q} \otimes L'_0) = \mathbf{Q} \otimes \operatorname{Hom}((V, L_0), (V', L'_0)).$$

Now algebraically:

$$Y_K(\overline{\mathbf{Q}}) = \{(E,\varphi) | E \in \mathrm{Ob}(\mathbf{Q} \otimes \mathrm{Ell}(\overline{\mathbf{Q}})), \varphi \in \mathrm{Isom}((\mathbf{A}^{\infty})^2, V(E))/K\} / \cong$$

We have



For $K \subset \operatorname{GL}_2(\hat{\mathbf{Z}}), \varphi \in \operatorname{Isom}((\mathbf{A}^{\infty})^2, V(E))/K$ the space $\varphi \hat{\mathbf{Z}}^2 \subset V(E)$ is a $\hat{\mathbf{Z}}$ -lattice and gives a genuine elliptic curve E' such that

$$T(E') = \varphi \mathbf{\tilde{Z}}^2,$$

in V(E).

Now modular forms in this perspective. For $k \in \mathbb{Z}$ and $K \subset \operatorname{GL}_2(\mathbf{A}^{\infty})$ the space $\mathcal{S}_k(\Gamma)$ is the set of functions $f: \operatorname{GL}_2(\mathbf{A}) \to \mathbb{C}$ such that

- (1) f is holomorphic;
- (2) For all $\lambda \in \mathbf{C}^{\times}$ we have $f \circ (\cdot \lambda) = \lambda^k f$;
- (3) f is $GL_2(\mathbf{Q})$ -invariant on the left;
- (4) f is right K-invariant;
- (5) f is of moderate growth and zero in the cusps.

To see this last property, f extends over the cusps of $Y_{\mathbf{C}}$, and vanishes there.

For $n \in \mathbb{Z}_{\geq 1}$, let $K_{1,n}$ be defined by the Cartesian diagram

Then $Y_{K_{1,n}} = Y(\Gamma_1(n))$. Hence for $k \in \mathbb{Z}$ we have $\mathcal{S}_k(\Gamma_1(n)) = \mathcal{S}_k(K_{1,n})$ and we have

$$\mathcal{S}_k(\Gamma_1(n)) \hookrightarrow \varinjlim_K \mathcal{S}_k(K) =: \mathcal{S}_k = \{f : \operatorname{GL}_2(\mathbf{A}) \longrightarrow \mathbf{C} : \text{above list}\}$$

Important point: $\operatorname{GL}_2(\mathbf{A}^{\infty})$ acts on \mathcal{S}_k .

For $K \subset \operatorname{GL}_2(\mathbf{A}^{\infty})$ open compact subgroup: $\mathcal{S}_k(K)$ equals $(\mathcal{S}_k)^K$; the $\operatorname{GL}_2(\mathbf{A}^{\infty})$ -action gives Hecke operators on the $\mathcal{S}_k(K)$ (via $\mathbf{C}[K_1 \setminus \operatorname{GL}_2(\mathbf{A}^{\infty})/K_2]$).

Suppose now that f is a normalised weight k newform of level n: $a_1(f) = 1$, and its system of eigenvalues does not occur in a level < n form. Then f generates an irreducible $\operatorname{GL}_2(\mathbf{A}^{\infty})$ submodule of \mathcal{S}_k ,

$$V_f^{\infty} := \langle \{gf | g \in \mathrm{GL}_2(\mathbf{A}^{\infty})\} \rangle,$$

 $V_f^{\infty} = \bigotimes_p V_f, p$, where $V_{f,p} \subset \varinjlim_{K \subset \operatorname{GL}_2(\mathbf{Q}_p)} \mathcal{S}_k(K \times K_{1,n}^p)$ is the subrepresentation of $\operatorname{GL}_2(\mathbf{Q}_p)$ generated by f.

5. GL_2 and modular forms

Extra reference: S. Kudla, From modular forms to automorphic representations in a book "An introduction to the Langlands program". But it only gives formulas...

Let G be the set $\text{Isom}_{\mathbf{R}\text{-vsp}}(\mathbf{C}, \mathbf{R}^2)$. The group $\text{GL}_2(\mathbf{R})$ acts on the left on this set, and the group $\text{GL}_{\mathbf{R}}(\mathbf{C})$ acts on the right on this set. Note that $\text{GL}_{\mathbf{R}}(\mathbf{C})$ contains the group \mathbf{C}^{\times} , so the group \mathbf{C}^{\times} has a right action on G.

The quotient for the \mathbf{C}^{\times} -action on G is given by

$$((.1)) q: G \longrightarrow \mathbf{H}^{\pm}, \quad \varphi \mapsto \varphi^{-1} e_1 / \varphi^{-1} e_2,$$

where $\mathbf{H}^{\pm} := \{ z \in \mathbf{C} | \Im(z) \neq 0 \}.$

We can give a moduli interpretation of this map in the following manner. The set G is also the set of isomorphism classes of tuples (V, L, ψ, α) , where V is a one-dimensional **C**-vectorspace, $L \subset V$ a **Z**-lattice, ψ an isomorphism from \mathbf{Z}^2 to L, and $\alpha \colon \mathbf{C} \xrightarrow{\sim} V$ an isomorphism of **C**vectorspaces.

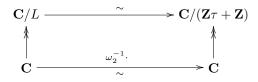
8

The set \mathbf{H}^{\pm} is the set of isomorphism classes of tuples (V, L, ψ) (same definitions as above). And under this interpretation the quotient map q in (.1) is the map sending a tuple (V, L, ψ, α) to (V, L, ψ) .

Remark 5.1. On \mathbf{H}^{\pm} we have the line bundle $\omega := 0^* \Omega^1_{\mathbf{E}/\mathbf{H}^{\pm}}$, which is $\mathrm{GL}_2(\mathbf{R})$ -equivariant, but it has no invariant trivialisation (stabilisers act non-trivially). But, on G, α gives us a $\mathrm{GL}_2(\mathbf{R})$ -invairant trivilisation of ω . It is this that makes it possible to describe modular forms as functions, and not as sections of a line bundle.

Concretely, let $f \in \mathcal{S}_k(\Gamma)$, where $\Gamma \subset \mathrm{SL}_2(\mathbf{Z})$ is a congruence subgroup. Important: Here we view f as a modular form on the double half plane $\mathbf{H}^{\pm} \subset \mathbf{C}$. Let $\varphi \in G$, let $w_1 := \varphi^{-1}e_1$, $w_2 := \varphi^{-1}e_2, \tau := w_1/w_2$ and $L := \mathbf{Z}w_1 \oplus \mathbf{Z}w_2 \subset \mathbf{C}$.

We have the commutative diagram



$$\tilde{f}(\varphi)(\mathrm{d}z)^{\otimes k} := f_{\mathbf{H}}(w_1/w_2)w_2^{-k}(\mathrm{d}z))^{\otimes k} \longleftrightarrow f_{\mathbf{H}}(\mathrm{d}z)^{\otimes k}$$

The set

$$((.2)) \qquad \left\{ \tilde{f} \colon G \longrightarrow \mathbf{C} | \forall \gamma \in \Gamma \forall \varphi \in G | \tilde{f}(\gamma \varphi) = \tilde{f}(\varphi), \forall \lambda \in \mathbf{C}^{\times}, \forall \varphi \in G : \tilde{f}(\varphi \lambda) = \lambda^{k} \tilde{f}(\varphi) \right\},$$

is in bijection with the set

$$((.3)) \qquad \left\{ f_{\mathbf{H}} \colon \mathbf{H}^{\pm} \longrightarrow \mathbf{C} | \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \forall \tau \in \mathbf{H}^{\pm} \colon f_{\mathbf{H}} \begin{pmatrix} a\tau + b \\ c\tau + b \end{pmatrix} = (c\tau + d)^{k} f_{\mathbf{H}}(\tau) \right\}.$$

This bijection given as follows. Let \tilde{f} be an element of the set (.2), then

 $f_{\mathbf{H}} \colon \mathbf{H}^{\pm} \longrightarrow \mathbf{C}, \quad \tau \mapsto \tilde{f}(\tau \mapsto e_2, 1 \mapsto e_1)),$

is the corresponding element of the set (.3). Inversely, if $f_{\mathbf{H}}$ is an element of the set (.3), then the corresponding element of the set (.2) is given by

$$\tilde{f} := (q^* f_\mathbf{H}) w_2^{-k}).$$

We use $i \in \mathbf{H}^{\pm}$ as base point and (hence) $\varphi_0 \colon \mathbf{C} \xrightarrow{\sim} \mathbf{R}^2$ with $\varphi_0^{-1} e_1 = i$ and $\varphi_0^{-1} e_2 = 1$ as base point in G. In particular,

$$\operatorname{GL}_2(\mathbf{R}) \xrightarrow{\sim} G, \quad g \mapsto g\varphi_0.$$

Then, for $g \in GL_2(\mathbf{R})$ we have

$$w_1(g\varphi_0) = ai + b, \quad w_2(g\varphi_0) = ci + d,$$

when $g^{-1,t} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Hence:

$$\tilde{f}(g\varphi_0) = f\left(\frac{ai+b}{ci+d}\right)(ci+d)^{-k}.$$

And let me say it in yet another way how $f \in S_{k,K} \subset H^0(Y_K, \omega^{\otimes k})$ gives \tilde{f} . Let $f(V, L, \alpha, \beta, \varphi) \in (V^{\vee})^{\otimes k}$. Then α is an isomorphism $\mathbf{C} \xrightarrow{\sim} V$, and it induces an isomorphism

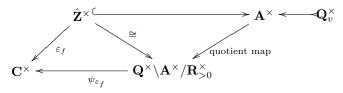
$$(V^{\vee})^{\otimes k} \xrightarrow[(\alpha^{\vee})^{\otimes k}]{\sim} (\mathbf{C}^{\vee})^{\otimes k} = \mathbf{C}.$$

Via this isomorphism, we get $\tilde{f}(V, L, \alpha, \beta, \varphi) \in \mathbf{C}$. Clearly,

$$\forall \lambda \in \mathbf{C}^{\times} : \tilde{f}(V, L, \alpha \circ (\lambda \cdot), \beta, \varphi) = \lambda^k f(V, L, \alpha, \beta, \varphi).$$

Let us compute the action of the center \mathbf{A}^{\times} on $\mathbf{C} \cdot \tilde{f}$. Let $\varepsilon_f : \hat{\mathbf{Z}}^{\times} \to \mathbf{C}^{\times}$ be the character of f.

Consider the commutative diagram



where v is a place of **Q**. We denote with $\psi_{\varepsilon_f,v}$ the composition

$$\mathbf{Q}_v^{\times} \longrightarrow \mathbf{A}^{\times} \longrightarrow \mathbf{Q}^{\times} \backslash \mathbf{A}^{\times} / \mathbf{R}_{>0}^{\times} \longrightarrow \mathbf{C}^{\times}.$$

Note $\varepsilon_f(-1) = (-1)^k$, hence $\psi_{\varepsilon_f,\infty}(\lambda) = \left(\frac{\lambda}{|\lambda|}\right)^k$. We claim that $\mathbf{R}^{\times} \subset \mathbf{A}^{\times}$ acts via $\lambda \mapsto \lambda^k = |\lambda|^k \psi_{\varepsilon_f,\infty}$ and \mathbf{Q}_p^{\times} via $|\cdot|_p^k \psi_{\varepsilon_f,p}$. Hence \mathbf{A}^{\times} acts as $||\cdot||^k \psi_{\varepsilon_f}$ and indeed \mathbf{Q}^{\times} acts trivially.

Here is the proof. Let $f(V,L,\varphi) \in (V^{\vee})^{\otimes k}, f(V,L,p\varphi) \in (V^{\vee})^{\otimes k}$, so

$$(p\cdot)^* \colon (V^{\vee})^{\otimes k} \longrightarrow (V^{\vee})^{\otimes k}, \quad f(V,L,p\varphi) \mapsto f(V,L,\varphi),$$

 \mathbf{SO}

$$\prod_{\ell \neq p} \varepsilon_{f,\ell}(p) \cdot f(V,L,p_p \cdot \varphi) = f(V,L,p \cdot \varphi) = p^{-k} f(V,L,\varphi)$$

 So

$$f(V, L, p_p \varphi) = |p|_p^k \cdot \prod_{\ell \neq p} \varepsilon_{f,\ell}(p)^{-1} f(V, L, \varphi)$$

Now comes a strange thing. I thought that \tilde{f} would be in $\mathcal{A}_{\{s,t\}}(\mathrm{GL}_2(\mathbf{Q})\setminus\mathrm{GL}_2(\mathbf{A}))$ for suitable s and t. But computing s and t gives $(s,t) = (k - \frac{1}{2}, \frac{1}{2})$: not integers.

Here's the computation. Recall Lie($Gl_2(\mathbf{R})$); c, h, a_+, a_- and $C = \frac{1}{2}h^2 + a_+a_- + a_-a_+$,

$$\gamma_{\mathrm{HC}} \colon \mathfrak{z} \xrightarrow{\sim} \mathbf{C}[x_1, x_2]^{\mathfrak{S}_2}$$
$$c \longmapsto x_1 + x_2$$
$$C \mapsto \frac{1}{2}((x_1 - x_2)^2 - 1)$$

Let $\theta_{(s,t)}$: $\mathbf{C}[x_1, x_2]^{\mathfrak{S}_2}$ be the morphism which evaluates a polynomial $P \in \mathbf{C}[x_1, x_2]^{\mathfrak{S}_2}$ at $x_1 = s$ and $x_2 = t$.

Now $h\tilde{f} = k\tilde{f}$ and $c\tilde{f} = k\tilde{f}$ as $\tilde{f} \circ (\lambda \cdot) = \lambda^k \tilde{f}$ for all $\lambda \in \mathbb{C}^{\times}$. Moreover $a_-\tilde{f} = 0$ as \tilde{f} is holomorphic, and a_0 consists of anti-holomorphic derivation (see Deligne, or compute it).

10

Then $c\tilde{f} = k\tilde{f}$, and

$$C\tilde{f} = (\frac{1}{2}h^2 - (a_+a_- - a_-a_+))\tilde{f} = (\frac{1}{2}h^2 - h)\tilde{f} = \frac{1}{2}(k^2 - 2k)\tilde{f}$$

So, for \tilde{f} we have s + t = k and $\frac{1}{2}((s - t)^2 - (s - t)) = \frac{1}{2}(k^2 - 2k)$. Therefore, s + t = k and s - t = k - 1. We conlude that $s = k - \frac{1}{2}$ and $t = \frac{1}{2}$.

So this means that we should consider $\tilde{\tilde{f}} := \tilde{f} ||\det(\cdot)||^{-\frac{1}{2}}$. Then, for $\tilde{\tilde{f}}$ we have s = k - 1 and t = 0, so $\tilde{\tilde{f}} \in \mathcal{A}^{\circ}_{(k-1,v)}$.

I'm glad to see this (k - 1, 0) as the HS ~ f is of type $\{(k - 1, 0), (0, k - 1)\}$, or also, the Hodge-Tate weights of the Galois representation corresponding to f are k - 1 and 0.

The automorphic representation corresponding to f: The function \tilde{f} generates a $(\mathfrak{gl}_2, O(2))$ module $V_{f,\infty}$, with basis

$$\{a_{+}^{n}\tilde{\tilde{f}}|n\geq 0\} \coprod \{a_{-}^{n} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tilde{\tilde{f}}|n\geq 0\},\$$

and $V_f = V_{f,\infty} \otimes V_f^{\infty}$.