GL_{2}. MODULAR FORMS, CLASSICALLY, AND $\mathrm{GL}_{2}(\mathbf{A})$

BAS EDIXHOVEN

Contents

1. The Harish-Chandra Isomorphism for $\mathfrak{g l}_{2}$ 1
2. Very Classical Picture 4
3. Functions of Lattices 5
4. The Shimura Datum Picture 6
5. GL_{2} and modular forms 8

Reference: Deligne's "Formes Modulaires et representations de $\mathrm{GL}_{2}(\mathbf{A})$ " in Antwerp II, Springer Lecture Notes in Mathematics 239; and, pages 18 and 19 from Taylors long ICM text "Galois Representations" (available from his homepage). It is just 21 lines, but there is a lot to say...

Aim: To understand the 21 lines by Taylor.

1. The Harish-Chandra Isomorphism for $\mathfrak{g l}_{2}$

Recall that $\mathfrak{g l}_{2}:=\operatorname{Lie}\left(\mathrm{GL}_{2}(\mathbf{C})\right)$ is the Lie algebra $\mathrm{M}_{2}(\mathbf{C})$ with Lie-brackets

$$
[X, Y]:=X Y-Y X, \quad \forall X, Y \in \mathrm{M}_{2}(\mathbf{C})
$$

We pick the following \mathbf{C}-basis of $\mathfrak{g l}_{2}$:

$$
c=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad a_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad a_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

The universal enveloping algebra $U\left(\mathfrak{g l}_{2}\right)$ of $\mathfrak{g l} l_{2}$ is

$$
T\left(\mathfrak{g l}_{2}\right) /\left\langle a \otimes b-b \otimes a-[a, b]: a, b \in \mathfrak{g l}_{2}\right\rangle
$$

where $\mathrm{T}\left(\mathfrak{g l}_{2}\right)=\bigoplus_{\mathrm{n} \in \mathrm{N}} \mathfrak{g l}_{2}^{\otimes \mathrm{n}}$ is the tensor algebra. The algebra $\mathfrak{g l}_{2}$ maps into $\mathrm{T}\left(\mathfrak{g l}_{2}\right)$ by mapping $\mathfrak{g l}_{2}$ into $\mathfrak{g l}_{2}^{\otimes 1} \subset T\left(\mathfrak{g l}_{2}\right)$ via the identity map, and then to $\mathrm{U}\left(\mathfrak{g l}_{2}\right)$ via the quotient map $T\left(\mathfrak{g l}_{2}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{2}\right)$.

The algebra $U\left(\mathfrak{g l}_{2}\right)$ satisfies the following properties
(1) the map $\mathfrak{g l}_{2} \rightarrow \mathrm{U}\left(\mathfrak{g l}_{2}\right)$ transforms Lie-brackets into commutators;
(2) the algebra $\mathrm{U}\left(\mathfrak{g l}_{2}\right)$ is associative;
(3) the algebra $\mathrm{U}\left(\mathfrak{g l}_{2}\right)$ has a unit element,
and $U\left(\mathfrak{g l}_{2}\right)$ is universal among all such algebras. In particular there is an isomorphism of categories

$$
\left\{\mathfrak{g l}_{2} \text {-modules }\right\} \xrightarrow{\sim}\left\{\mathrm{U}\left(\mathfrak{g l}_{2}\right) \text {-modules }\right\},
$$

because for every \mathbf{C}-vector space A

$$
\operatorname{Hom}_{\text {Lie-algebras } / \mathbf{C}}\left(\mathfrak{g l}_{2}, \operatorname{End}(A)\right)=\operatorname{Hom}_{\mathbf{C}-\text { algebras }}\left(\mathrm{U}\left(\mathfrak{g l}_{2}\right), \operatorname{End}(A)\right) .
$$

Therefore the center \mathfrak{z}_{2} of $U\left(\mathfrak{g l}_{2}\right)$ is the endomorphism ring of the functor $\operatorname{id}_{\mathfrak{g l}_{2} \text {-modules }}$.
The Harish-Chandra isomorphism is an isomorphism of \mathbf{C}-algebras

$$
\gamma_{H C}: \mathfrak{z}_{2} \xrightarrow{\sim} \mathbf{C}\left[x_{1}, x_{2}\right]^{S_{2}} \quad\left(S_{2} \text {-acts by interchanging } x_{1} \text { and } x_{2}\right),
$$

characterized as follows. We need the concept "Highest Weight Representations". Let

$$
B=\left\{\left(\begin{array}{c}
* * \\
0
\end{array} *\right)\right\} \quad T=\left\{\left(\begin{array}{cc}
* \\
0 & *
\end{array}\right)\right\} \cong \mathbf{G}_{m}^{2}, \quad W=N_{T} / T=S_{2} .
$$

Under the action of T on $\mathfrak{g l}_{2}$ it holds $t \cdot a_{+}=t_{1} t_{2}^{-1} a_{+}$, so $(1,-1)$ is the positive root. It holds

$$
X(T)=\operatorname{Hom}\left(T, \mathbf{G}_{m}\right)=\mathbf{Z}^{2},
$$

and the positive part is $\left\{a \in \mathbf{Z}^{2} \mid a_{1} \geq a_{2}\right\} \subset \mathbf{Z}^{2}$.
Theorem 1.1. For all positive roots $a \in \mathbf{Z}^{2}$ there exists a unique (up to isomorphism) irreducible algebraic representation ρ_{a} of $\mathrm{GL}_{2, \mathbf{C}}$ such that a is the highest weight of $\left.\rho_{a}\right|_{T}$.

Explicitly one may take $\rho_{a}=\operatorname{Sym}^{a_{1}-a_{2}}\left(\mathbf{C}^{2}\right) \otimes \operatorname{det}^{a_{2}}$.
The subgroup $T_{\mathbf{C}} \subset \mathrm{GL}_{n, \mathbf{C}}$ acts on the space of ρ_{a} via a character, and this character is given by

$$
t=\left(t_{1}, t_{2}\right) \mapsto\left(t_{1}^{a_{1}-a_{2}}+t_{1}^{a_{1}-a_{2}-1} t_{2}+\cdots+t_{2}^{a_{1}-a_{2}}\right) \cdot t_{1}^{a_{2}} t_{2}^{a_{2}} .
$$

Note $\operatorname{Sym}^{d}\left(\mathbf{C}^{2}\right)=\operatorname{Sym}^{d}(\mathbf{C} x \oplus \mathbf{C} y)=\mathbf{C}[x, y]_{d}$.
Now a characterisation of $\gamma_{H C}$. For all $a \in \mathbf{Z}^{2}$, positive, the diagram

commutes. The subset

$$
\left\{\left.a+\frac{1}{2}(1,-1) \right\rvert\, a \text { positive in } \mathbf{Z}^{2}\right\} \subset \mathbf{C}^{2}
$$

is Zariski dense, and so there can only be one isomorphism $\gamma_{H C}$ fitting in the diagram above.
But this doesn't tell us what $\gamma_{H C}$ or \mathfrak{z}_{2} is. Of course we have $c=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in \mathfrak{g l}_{2} \subset \mathrm{U}\left(\mathfrak{g l}_{2}\right)$. As $\operatorname{Lie}\left(\operatorname{Center}\left(\mathrm{GL}_{2}(\mathbf{C})\right)\right)=\mathbf{C} \cdot c$ it holds $c \in \mathfrak{z}_{2}$. We need 1 more element in \mathfrak{z}_{2}.

Some generalities. Let G a complex affine algebraic group, $A:=\mathcal{O}_{G}(G)$ the ring of global functions, $\mathfrak{m} \in \operatorname{Spec}(A)$ the maximal ideal corresponding to $e \in G(\mathbf{C})$. Then

$$
\begin{aligned}
\mathrm{U}(\operatorname{Lie}(G)) & =\{\text { left invariant differential operators on } G\} \\
& =\text { "point distributions at } e "=\underset{n}{\lim }\left(A / \mathfrak{m}^{n}\right)^{\vee},
\end{aligned}
$$

with multiplication on $\lim _{\rightarrow n}\left(A / \mathfrak{m}^{n}\right)^{\vee}$ coming from the multiplication map $\mu: G \times G \rightarrow G$ on G in the following way. Let $\mu^{*}: A \rightarrow A \otimes A$ be the comultiplication (obtained from μ by applying the global sections functor to μ). The map $A \otimes A \rightarrow A / \mathfrak{m}^{n} \otimes A / \mathfrak{m}^{n}$ factors over $A \otimes A /(A \otimes \mathfrak{m}+\mathfrak{m} \otimes A)^{2 n}$. [To see this, the ideal $(A \otimes \mathfrak{m}+\mathfrak{m} \otimes A)^{2 n} \subset A \otimes A$ is generated by elements $t=\sum_{i+j=2 n} x^{i} y^{j}$ with $x \in A \otimes \mathfrak{m}$ and $y \in \mathfrak{m} \otimes A$. All the terms in the sum t have either $i \geq n$ or $j \geq n$.] The maximal ideal of $A \otimes A$ corresponding to (e, e) is $\mathfrak{m} \otimes A+A \otimes \mathfrak{m}$, and μ maps (e, e) to e, so $\mu^{*}\left(\mathfrak{m}_{e}\right) \subset \mathfrak{m} \otimes A+A \otimes \mathfrak{m}$. We thus have the commutative diagram

Take duals to find maps $\left(A / \mathfrak{m}^{n}\right)^{\vee} \otimes\left(A / \mathfrak{m}^{n}\right)^{\vee} \rightarrow\left(A / \mathfrak{m}^{2 n}\right)^{\vee}$; they define the multiplication on $\underline{\lim }_{n}\left(A / \mathfrak{m}^{n}\right)^{\vee}$.

Anyway $\mathrm{U}(\operatorname{Lie} G)$ is a filtered ring, and $\operatorname{Fil}_{i} \mathrm{U}(\operatorname{Lie} G) / \operatorname{Fil}_{i+1} \mathrm{U}(\operatorname{Lie} G)=\operatorname{Sym}^{i}(\operatorname{Lie} G)$ for all $i \in \mathbf{N}$.

By construction,

$$
Z(\mathrm{U}(\operatorname{Lie} G))=\mathrm{U}(\operatorname{Lie}(G))^{\operatorname{Lie} G}=\mathrm{U}(\operatorname{Lie}(G))^{G^{\circ}}
$$

For $G=\mathrm{GL}_{n}=\mathrm{GL}(V)$, with $V=\mathbf{C}^{n}$:

$$
\operatorname{Lie}(G)=\operatorname{End}(V)=V^{\vee} \otimes V=\left(V^{\vee} \otimes V\right)^{\vee}=\operatorname{End}(V)^{\vee}
$$

and

$$
\begin{aligned}
\operatorname{Sym}\left(\operatorname{End}(V)^{\vee}\right)^{\mathrm{GL}_{n}} & =\{\text { conjugation invariant polynomials on } \operatorname{End}(V)\} \\
& =\mathbf{C}[\text { coefficients of characteristic polynomial }] .
\end{aligned}
$$

In particular, in case $n=2$, there is an element C in degree ≤ 2 such that c and C generate \mathfrak{z}_{2}.
Recipe for the Casimir operator C : Take the Killing form $\langle\cdot, \cdot\rangle$ on $\mathfrak{s l}_{2}$ given by $\langle a, b\rangle=\operatorname{tr}((\operatorname{ad} a),(\operatorname{ad} b))$; take any basis $\left(e_{i}\right)_{i \in I}$ of $\mathfrak{s l} l_{2}$, then $C=\sum_{i \in I} e_{i}^{\vee} \otimes e_{i}$, where $\left(e_{i}^{\vee}\right)_{i \in I}$ is the dual basis with respect to the Killing form. We use $\mathfrak{s l} l_{2}=\mathbf{C} \cdot h \oplus \mathbf{C} \cdot a_{+} \oplus \mathbf{C} \cdot a_{-}$. We have:

$$
\left[h, a_{+}\right]=2 a_{+}, \quad\left[h, a_{-}\right]=-2 a_{-}, \quad\left[a_{+}, a_{-}\right]=h
$$

and the matrix of $\langle\cdot, \cdot\rangle$ is

$$
\left(\begin{array}{lll}
8 & 0 & 0 \\
0 & 0 & 4 \\
0 & 4 & 0
\end{array}\right)
$$

so

$$
h^{\vee}=\frac{1}{8} h, \quad a_{+}^{\vee}=\frac{1}{4} a_{-}, \quad a_{-}^{\vee}=\frac{1}{4} a_{+} .
$$

So the Casismir operator is $\frac{1}{4} C$, with $C=\frac{1}{2} h^{2}+a_{+} a_{-}+a_{-} a_{+}$. We have $\mathfrak{z}_{2}=\mathbf{C}[c, C]$.

For $a \in \mathbf{Z}^{2}$ positive, $V_{a}=\mathbf{C}[x, y]_{a_{1}-a_{2}} \otimes(\mathbf{C} \cdot x \wedge y)^{\otimes a_{2}}, \mathfrak{g l}_{2}$ acts

$$
\begin{array}{ccccc}
\text { on } \mathbf{C}[x, y] \text { as } & c: x \partial_{x}+y \partial_{y}, & h: x \partial_{x}-y \partial_{y}, & a_{+}: x \partial_{y}, & a_{-}: y \partial_{x} \\
\text { on } \mathbf{C} \cdot x \wedge y \text { as } & c: 2, & h: 0, & a_{+}: 0, & a_{-}: 0,
\end{array}
$$

c acts on V_{a} as $a_{1}+a_{2}$, and C acts on V_{a} as

$$
\left(\frac{1}{2}\left(x \partial_{x}+y \partial_{y}\right)\left(x \partial_{x}+y \partial_{y}+2\right)\right) \otimes 1=\frac{1}{2}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{2}+2\right)=\frac{1}{2}\left(a_{1}-a_{2}\right)^{2}+a_{1}-a_{2}
$$

Now we can make the Harish Chandra isomorphism explicit. For all positive roots $a \in \mathbf{Z}^{2}$ the map ρ_{a} sends c to $a_{1}+a_{2}$ and C to $\frac{1}{2}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{2}+2\right)$. Hence $\gamma_{H C}$ is given by

$$
\left\{\begin{array}{l}
c \mapsto x_{1}+x_{2} \\
C \mapsto \frac{1}{2}\left(x_{1}-x_{2}-1\right)\left(x_{1}-x_{2}+1\right)=\frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}-1\right)
\end{array}\right.
$$

2. Very Classical Picture

Remember \mathbf{H} is the space of $z \in \mathbf{C}$ with $\Im(z)>0$, equipped with the induced topology.
Definition 2.1. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbf{Z})$ a congruence subgrour ${ }^{1}$, and $k \in \mathbf{Z}$. The space of cuspidal modular forms of weight k, notation $S_{k}(\Gamma)$, is the \mathbf{C} vectorspace of complex valued functions $f: \mathbf{H} \rightarrow \mathbf{C}$ satisfying:
(1) f is holomorphic;
(2) $\forall\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma, \forall \tau \in \mathbf{H}: f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$;
(3) f vanishes at the cusps: $\forall\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$:

$$
\left(\tau \mapsto(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)\right) \longrightarrow 0 \quad \text { as } \Im(\tau) \longrightarrow \infty .
$$

What does the condition " $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$ " mean? (We want something more conceptual). On H we have

The group $\mathrm{SL}_{2}(\mathbf{Z})$ acts on the left. To find the action, consider $\tau \in \mathbf{H}$, and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbf{Z})$. Then

[^0]Note:

$$
\left(\binom{n}{m}, \tau\right) \mapsto n \tau+m=\binom{n}{m}^{t} \cdot\binom{\tau}{1}=\left(\gamma^{-1, t} \cdot\binom{n}{m}\right)^{t} \cdot \gamma \cdot\binom{\tau}{1}=\left(\gamma^{-1, t} \cdot\binom{n}{m}\right)^{t}\binom{a \tau+b}{c \tau+d}
$$

One finds:

$$
\left(\binom{n}{m}, \tau\right) \stackrel{\gamma \cdot}{\mapsto}\left(\gamma^{-1, t}\binom{n}{m}, \gamma \tau\right) .
$$

This gives an invariant $\mathcal{O}_{\mathbf{H}}$-module $\omega=0^{*} \Omega_{\mathbf{E} / \mathbf{H}}^{1}$ with an $\mathrm{SL}_{2}(\mathbf{Z})$-action. We have a global section: $\mathrm{d} z$ (coming from the standard coordinate z on \mathbf{C}), and

$$
(\gamma \cdot)^{*} \mathrm{~d} z=\mathrm{d}\left((\gamma \cdot)^{*} z\right)=\mathrm{d}\left(\frac{z}{c \tau+d}\right)=(c \tau+d)^{-1} \mathrm{~d} z
$$

Then we have, for $f: \mathbf{H} \rightarrow \mathbf{C}$:

$$
\left((\gamma \cdot)^{*}\left(f(\mathrm{~d} z)^{\otimes k}\right)\right) \tau=\left((\gamma \cdot)^{*} f\right)(\tau)(c \tau+d)^{-k} \cdot(\mathrm{~d} z)^{\otimes k}
$$

for $k \in \mathbf{Z}, \tau \in \mathbf{H}, \gamma \in \mathrm{SL}_{2}(\mathbf{Z})$. Hence

$$
(\gamma \cdot)^{*} f(\mathrm{~d} z)^{\otimes k}=f(\mathrm{~d} z)^{\otimes k} \Longleftrightarrow \forall \tau \in \mathbf{H}: f(\gamma \tau)(c \tau+d)^{-k}=f(\tau)
$$

So condition (2) for $f \in S_{k}(\Gamma)$ means that $f(\mathrm{~d} z)^{\otimes k}$ is a Γ-invariant global section of $\omega^{\otimes k}$:

$$
f(\mathrm{~d} z)^{\otimes k} \in\left(\omega^{\otimes k}(\mathbf{H})\right)^{\Gamma} .
$$

If Γ acts freely on \mathbf{H}, then the quotient of \mathbf{E} / \mathbf{H} by Γ together with the 0 -section,

is the universial elliptic curve with Γ-level structure. And it holds:

$$
S_{k}(\Gamma)=\left\{f \in \omega_{\mathbf{E}(\Gamma) / Y(\Gamma)}^{\otimes k}(Y(\Gamma)) \mid f \text { extends over the cusps, and vanishes there }\right\}
$$

3. Functions of Lattices

The formulas in the preceding section are ugly! After Deligne, consider:

$$
G:=\left\{\varphi: \mathbf{Z}^{2} \longrightarrow \mathbf{C} \mid \varphi \text { is } \mathbf{Z} \text {-linear, } \varphi\left(\mathbf{Z}^{2}\right)=\text { lattice }\right\} \subset \mathbf{C}^{2}
$$

as an open 2-dimensional \mathbf{C}-submanifold of \mathbf{C}^{2}. It holds:

$$
G \xrightarrow{\sim} \operatorname{Isom}_{\mathbf{R - m o d}}\left(\mathbf{R}^{2}, \mathbf{C}\right) \xrightarrow{\sim} \mathrm{GL}_{2}(\mathbf{R}) .
$$

The group $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathbf{C}^{*}$ acts on G. The action of \mathbf{C}^{*} on G is free with quotient

$$
q: G \longrightarrow \mathbf{H}^{ \pm}, \quad \varphi \mapsto\left(\varphi e_{1}: \varphi e_{2}\right)=\varphi e_{1} / \varphi e_{2} .
$$

The quotient q has a section: $\tau \mapsto(\tau, 1)$.

Note:

$$
\begin{aligned}
G & =\left\{(L, \varphi) \mid L \subset \mathbf{C} \text { lattice }, \varphi: \mathbf{Z}^{2} \xrightarrow{\sim} L\right\} \\
& \left.=(V, L, \varphi, \alpha) \mid V \text { 1-dim. } \mathbf{C} \text {-v.sp., } \alpha: \mathbf{C} \xrightarrow{\sim} V, L \subset V \text { lattice, } \varphi: \mathbf{Z}^{2} \xrightarrow{\sim} L\right\} / \cong
\end{aligned}
$$

$$
\mathrm{GL}_{2}(\mathbf{Z}) \backslash G / \mathbf{C}^{*}=\{(V, L)\} / \cong\{E / \mathbf{C} \text { elliptic curve }\} / \cong
$$

Then, for $k \in \mathbf{Z}, \Gamma \subset \mathrm{GL}_{2}(\mathbf{Z})$ the space

$$
\left\{f: G \longrightarrow \mathbf{C} \left\lvert\, \begin{array}{cc}
f\left(\varphi \gamma^{t}\right)=f(\varphi) & \forall \varphi \in G, \forall \gamma \in \Gamma \\
f(\lambda \varphi)=\lambda^{-k} f(\varphi) & \forall \varphi \in G, \lambda \in \mathbf{C}^{*}
\end{array}\right.\right\}
$$

is identified with the space

$$
\left\{f: \mathbf{H}^{ \pm} \longrightarrow \mathbf{C} \left\lvert\, \forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma\right., \forall \tau \in \mathbf{H}: f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)\right\}
$$

via

4. The Shimura Datum Picture

For $K \subset \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$ a compact open subgroup, we define:

$$
Y_{K}:=\mathrm{GL}_{2}(\mathbf{Q}) \backslash\left(\mathbf{H}^{ \pm} \times \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right) / K\right)
$$

Example 4.1.

$$
\begin{aligned}
Y_{\mathrm{GL}_{2}(\hat{\mathbf{Z}})} & =\mathrm{GL}_{2}(\mathbf{Q}) \backslash\left(\mathbf{H}^{ \pm} \times \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right) / \mathrm{GL}_{2}(\hat{\mathbf{Z}})\right) \\
& \stackrel{*}{=} \mathrm{GL}_{2}(\mathbf{Z}) \backslash \mathbf{H}^{ \pm}=\mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathbf{H}=\{\mathrm{E} / \mathbf{C}\} / \cong
\end{aligned}
$$

To see the equality marked $*$ note that $\mathrm{GL}_{2}(\mathbf{Q})$ acts transitively on the set of $\hat{\mathbf{Z}}$-lattices in $\left(\mathbf{A}^{\infty}\right)^{2}$.
We want to interpret the Y_{K} as moduli spaces. First analytically. Fix an R-basis of \mathbf{C}, either $(i, 1)$, or $(1, i)$ to get an isomorphism $\mathrm{GL}_{2}(\mathbf{R}) \cong \operatorname{Isom}_{\mathbf{R} \text {-vsp }}\left(\mathbf{C}, \mathbf{R}^{2}\right)$. Hence:

$$
\operatorname{GL}_{2}(\mathbf{A}) \xrightarrow{\cong} \operatorname{Isom}_{\mathbf{R}-\mathrm{vsp}}\left(\mathbf{C}, \mathbf{R}^{2}\right) \times \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right) \underset{\Phi_{1}}{\stackrel{\Phi_{2}}{\longrightarrow}}\{(V, L, \alpha, \beta, \varphi)\} / \cong
$$

where the space on the right is the set of isomorphism classes of tuples $(V, L, \alpha, \beta, \varphi)$, where

- V is a 1 -dimensional \mathbf{C}-vector space;
- $L \subset V$ is a 2-dimensional \mathbf{Q}-vector space, such that $\mathbf{R} L=V$;
- $\alpha: \mathbf{C} \rightarrow V$ an isomorphism;
- $\beta: \mathbf{Q}^{2} \rightarrow L$ an isomorphism;
- $\varphi:\left(\mathbf{A}^{\infty}\right)^{2} \rightarrow \mathbf{A}^{\infty} \otimes_{\mathbf{Q}} L$ an isomorphism.

An isomorphism of two tuples $(V, L, \alpha, \beta, \varphi)$ and $\left(V^{\prime}, L^{\prime}, \alpha^{\prime}, \beta^{\prime}, \varphi^{\prime}\right)$ is two commutative diagrams:

The maps Φ_{i} are given by

$$
\begin{array}{r}
\Phi_{1}:\left(g_{\infty}, g^{\infty}\right) \mapsto\left(\mathbf{C}, g_{\infty}^{-1} \mathbf{Q}^{2}, \operatorname{id}_{\mathbf{C}},\left.g_{\infty}^{-1}\right|_{\mathbf{Q}^{2}},\left(\left.\operatorname{id}_{\mathbf{A}^{\infty}} \otimes g_{\infty}^{-1}\right|_{\mathbf{Q}^{2}}\right) \circ g^{\infty}\right) \\
\Phi_{2}:(V, L, \alpha, \beta, \varphi) \mapsto\left(\left(\operatorname{id}_{\mathbf{R}} \otimes \beta\right)^{-1} \circ \alpha,\left(\operatorname{id}_{\mathbf{A}^{\infty}} \otimes \beta\right)^{-1} \circ \varphi\right)
\end{array}
$$

Consequence: Y_{K} is the set of isomorphism classes of triples (V, L, φ), where V is a 1-dimensional \mathbf{C}-vector space, $L \subset V$ is a 2 -dimensional \mathbf{Q}-vector space such that $\mathbf{R} L=V$, and where $\varphi \in \operatorname{Isom}\left(\left(\mathbf{A}^{\infty}\right)^{2}, \mathbf{A}^{\infty} \otimes L\right) / K$.

What kind of category do the (V, L) give us?? Answer complex elliptic curves "up to isogeny": $\mathbf{Q} \otimes \operatorname{Ell}(\mathbf{C})$, i.e. the category whose objects are elliptic curves and the Hom-sets are tensorred with \mathbf{Q}.

The category $\operatorname{Ell}(\mathbf{C})$ is equivalent with the category of pairs $\left(V, L_{0}\right)$, where V is a 1-dimensional C-vector space and $L_{0} \subset V$ is a lattice. We have

$$
\operatorname{Hom}\left(\left(V, \mathbf{Q} \otimes L_{0}\right),\left(V^{\prime}, \mathbf{Q} \otimes L_{0}^{\prime}\right)=\mathbf{Q} \otimes \operatorname{Hom}\left(\left(V, L_{0}\right),\left(V^{\prime}, L_{0}^{\prime}\right)\right)\right.
$$

Now algebraically:

$$
Y_{K}(\overline{\mathbf{Q}})=\left\{(E, \varphi) \mid E \in \operatorname{Ob}(\mathbf{Q} \otimes \operatorname{Ell}(\overline{\mathbf{Q}})), \varphi \in \operatorname{Isom}\left(\left(\mathbf{A}^{\infty}\right)^{2}, V(E)\right) / K\right\} / \cong
$$

We have

For $K \subset \mathrm{GL}_{2}(\hat{\mathbf{Z}}), \varphi \in \operatorname{Isom}\left(\left(\mathbf{A}^{\infty}\right)^{2}, V(E)\right) / K$ the space $\varphi \hat{\mathbf{Z}}^{2} \subset V(E)$ is a $\hat{\mathbf{Z}}$-lattice and gives a genuine elliptic curve E^{\prime} such that

$$
T\left(E^{\prime}\right)=\varphi \hat{\mathbf{Z}}^{2}
$$

in $V(E)$.
Now modular forms in this perspective. For $k \in \mathbf{Z}$ and $K \subset \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$ the space $\mathcal{S}_{k}(\Gamma)$ is the set of functions $f: \mathrm{GL}_{2}(\mathbf{A}) \rightarrow \mathbf{C}$ such that
(1) f is holomorphic;
(2) For all $\lambda \in \mathbf{C}^{\times}$we have $f \circ(\cdot \lambda)=\lambda^{k} f$;
(3) f is $\mathrm{GL}_{2}(\mathbf{Q})$-invariant on the left;
(4) f is right K-invariant;
(5) f is of moderate growth and zero in the cusps.

To see this last property, f extends over the cusps of $Y_{\mathbf{C}}$, and vanishes there.
For $n \in \mathbf{Z}_{\geq 1}$, let $K_{1, n}$ be defined by the Cartesian diagram

Then $Y_{K_{1, n}}=Y\left(\Gamma_{1}(n)\right)$. Hence for $k \in \mathbf{Z}$ we have $\mathcal{S}_{k}\left(\Gamma_{1}(n)\right)=\mathcal{S}_{k}\left(K_{1, n}\right)$ and we have

$$
\mathcal{S}_{k}\left(\Gamma_{1}(n)\right) \hookrightarrow \underset{K}{\lim } \mathcal{S}_{k}(K)=: \mathcal{S}_{k}=\left\{f: \mathrm{GL}_{2}(\mathbf{A}) \longrightarrow \mathbf{C}: \text { above list }\right\}
$$

Important point: $\mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$ acts on \mathcal{S}_{k}.
For $K \subset \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$ open compact subgroup: $\mathcal{S}_{k}(K)$ equals $\left(\mathcal{S}_{k}\right)^{K}$; the $\mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$-action gives Hecke operators on the $\mathcal{S}_{k}(K)\left(\right.$ via $\left.\mathbf{C}\left[K_{1} \backslash \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right) / K_{2}\right]\right)$.

Suppose now that f is a normalised weight k newform of level n : $a_{1}(f)=1$, and its system of eigenvalues does not occur in a level $<n$ form. Then f generates an irreducible $\mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)$ submodule of \mathcal{S}_{k},

$$
V_{f}^{\infty}:=\left\langle\left\{g f \mid g \in \mathrm{GL}_{2}\left(\mathbf{A}^{\infty}\right)\right\}\right\rangle,
$$

 generated by f.

5. GL_{2} AND MODULAR FORMS

Extra reference: S. Kudla, From modular forms to automorphic representations in a book "An introduction to the Langlands program". But it only gives formulas...

Let G be the set $\operatorname{Isom}_{\mathbf{R} \text {-vsp }}\left(\mathbf{C}, \mathbf{R}^{2}\right)$. The group $\mathrm{GL}_{2}(\mathbf{R})$ acts on the left on this set, and the group $\mathrm{GL}_{\mathbf{R}}(\mathbf{C})$ acts on the right on this set. Note that $\mathrm{GL}_{\mathbf{R}}(\mathbf{C})$ contains the group \mathbf{C}^{\times}, so the group \mathbf{C}^{\times}has a right action on G.

The quotient for the \mathbf{C}^{\times}-action on G is given by

$$
\begin{equation*}
q: G \longrightarrow \mathbf{H}^{ \pm}, \quad \varphi \mapsto \varphi^{-1} e_{1} / \varphi^{-1} e_{2} \tag{.1}
\end{equation*}
$$

where $\mathbf{H}^{ \pm}:=\{z \in \mathbf{C} \mid \Im(z) \neq 0\}$.
We can give a moduli interpretation of this map in the following manner. The set G is also the set of isomorphism classes of tuples (V, L, ψ, α), where V is a one-dimensional \mathbf{C}-vectorspace, $L \subset V$ a Z-lattice, ψ an isomorphism from \mathbf{Z}^{2} to L, and $\alpha: \mathbf{C} \xrightarrow{\sim} V$ an isomorphism of \mathbf{C} vectorspaces.

The set $\mathbf{H}^{ \pm}$is the set of isomorphism classes of tuples (V, L, ψ) (same definitions as above). And under this interpretation the quotient map q in (.1) is the map sending a tuple (V, L, ψ, α) to (V, L, ψ).

Remark 5.1. On $\mathbf{H}^{ \pm}$we have the line bundle $\omega:=0^{*} \Omega_{\mathbf{E} / \mathbf{H}^{ \pm}}^{1}$, which is $\mathrm{GL}_{2}(\mathbf{R})$-equivariant, but it has no invariant trivialisation (stabilisers act non-trivially). But, on G, α gives us a $\mathrm{GL}_{2}(\mathbf{R})$-invairant trivilisation of ω. It is this that makes it possible to describe modular forms as functions, and not as sections of a line bundle.

Concretely, let $f \in \mathcal{S}_{k}(\Gamma)$, where $\Gamma \subset \mathrm{SL}_{2}(\mathbf{Z})$ is a congruence subgroup. Important: Here we view f as a modular form on the double half plane $\mathbf{H}^{ \pm} \subset \mathbf{C}$. Let $\varphi \in G$, let $w_{1}:=\varphi^{-1} e_{1}$, $w_{2}:=\varphi^{-1} e_{2}, \tau:=w_{1} / w_{2}$ and $L:=\mathbf{Z} w_{1} \oplus \mathbf{Z} w_{2} \subset \mathbf{C}$.

We have the commutative diagram

$$
\left.\tilde{f}(\varphi)(\mathrm{d} z)^{\otimes k}:=f_{\mathbf{H}}\left(w_{1} / w_{2}\right) w_{2}^{-k}(\mathrm{~d} z)\right)^{\otimes k} \longleftarrow f_{\mathbf{H}}(\mathrm{d} z)^{\otimes k}
$$

The set

$$
\begin{equation*}
\left\{\tilde{f}: G \longrightarrow \mathbf{C}|\forall \gamma \in \Gamma \forall \varphi \in G| \tilde{f}(\gamma \varphi)=\tilde{f}(\varphi), \forall \lambda \in \mathbf{C}^{\times}, \forall \varphi \in G: \tilde{f}(\varphi \lambda)=\lambda^{k} \tilde{f}(\varphi)\right\} \tag{.2}
\end{equation*}
$$

is in bijection with the set

$$
\left\{f_{\mathbf{H}}: \mathbf{H}^{ \pm} \longrightarrow \mathbf{C} \left\lvert\, \forall\left(\begin{array}{ll}
a & b \tag{.3}\\
c & d
\end{array}\right) \in \Gamma\right., \forall \tau \in \mathbf{H}^{ \pm}: f_{\mathbf{H}}\binom{a \tau+b}{c \tau+b}=(c \tau+d)^{k} f_{\mathbf{H}}(\tau)\right\}
$$

This bijection given as follows. Let \tilde{f} be an element of the set (.2), then

$$
\left.f_{\mathbf{H}}: \mathbf{H}^{ \pm} \longrightarrow \mathbf{C}, \quad \tau \mapsto \tilde{f}\left(\tau \mapsto e_{2}, 1 \mapsto e_{1}\right)\right)
$$

is the corresponding element of the set (.3). Inversely, if $f_{\mathbf{H}}$ is an element of the set (.3), then the corresponding element of the set (.2) is given by

$$
\left.\tilde{f}:=\left(q^{*} f_{\mathbf{H}}\right) w_{2}^{-k}\right)
$$

We use $i \in \mathbf{H}^{ \pm}$as base point and (hence) $\varphi_{0}: \mathbf{C} \xrightarrow{\sim} \mathbf{R}^{2}$ with $\varphi_{0}^{-1} e_{1}=i$ and $\varphi_{0}^{-1} e_{2}=1$ as base point in G. In particular,

$$
\mathrm{GL}_{2}(\mathbf{R}) \xrightarrow{\sim} G, \quad g \mapsto g \varphi_{0}
$$

Then, for $g \in \mathrm{GL}_{2}(\mathbf{R})$ we have

$$
w_{1}\left(g \varphi_{0}\right)=a i+b, \quad w_{2}\left(g \varphi_{0}\right)=c i+d
$$

when $g^{-1, t}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Hence:

$$
\tilde{f}\left(g \varphi_{0}\right)=f\left(\frac{a i+b}{c i+d}\right)(c i+d)^{-k}
$$

And let me say it in yet another way how $f \in \mathcal{S}_{k, K} \subset H^{0}\left(Y_{K}, \omega^{\otimes k}\right)$ gives \tilde{f}. Let $f(V, L, \alpha, \beta, \varphi) \in\left(V^{\vee}\right)^{\otimes k}$. Then α is an isomorphism $\mathbf{C} \xrightarrow{\sim} V$, and it induces an isomorphism

$$
\left(V^{\vee}\right)^{\otimes k} \underset{\left(\alpha^{\vee}\right)^{\otimes k}}{\sim}\left(\mathbf{C}^{\vee}\right)^{\otimes k}=\mathbf{C}
$$

Via this isomorphism, we get $\tilde{f}(V, L, \alpha, \beta, \varphi) \in \mathbf{C}$. Clearly,

$$
\forall \lambda \in \mathbf{C}^{\times}: \tilde{f}(V, L, \alpha \circ(\lambda \cdot), \beta, \varphi)=\lambda^{k} f(V, L, \alpha, \beta, \varphi)
$$

Let us compute the action of the center \mathbf{A}^{\times}on $\mathbf{C} \cdot \tilde{f}$. Let $\varepsilon_{f}: \hat{\mathbf{Z}}^{\times} \rightarrow \mathbf{C}^{\times}$be the character of f.

Consider the commutative diagram

where v is a place of \mathbf{Q}. We denote with $\psi_{\varepsilon_{f}, v}$ the composition

$$
\mathbf{Q}_{v}^{\times} \longrightarrow \mathbf{A}^{\times} \longrightarrow \mathbf{Q}^{\times} \backslash \mathbf{A}^{\times} / \mathbf{R}_{>0}^{\times} \longrightarrow \mathbf{C}^{\times} .
$$

Note $\varepsilon_{f}(-1)=(-1)^{k}$, hence $\psi_{\varepsilon_{f}, \infty}(\lambda)=\left(\frac{\lambda}{|\lambda|}\right)^{k}$. We claim that $\mathbf{R}^{\times} \subset \mathbf{A}^{\times}$acts via $\lambda \mapsto \lambda^{k}=|\lambda|^{k} \psi_{\varepsilon_{f}, \infty}$ and \mathbf{Q}_{p}^{\times}via $|\cdot|{ }_{p}^{k} \psi_{\varepsilon_{f}, p}$. Hence \mathbf{A}^{\times}acts as $\|\cdot\|^{k} \psi_{\varepsilon_{f}}$ and indeed \mathbf{Q}^{\times} acts trivially.

Here is the proof. Let $f(V, L, \varphi) \in\left(V^{\vee}\right)^{\otimes k}, f(V, L, p \varphi) \in\left(V^{\vee}\right)^{\otimes k}$, so

$$
(p \cdot)^{*}:\left(V^{\vee}\right)^{\otimes k} \longrightarrow\left(V^{\vee}\right)^{\otimes k}, \quad f(V, L, p \varphi) \mapsto f(V, L, \varphi),
$$

so

$$
\prod_{\ell \neq p} \varepsilon_{f, l}(p) \cdot f\left(V, L, p_{p} \cdot \varphi\right)=f(V, L, p \cdot \varphi)=p^{-k} f(V, L, \varphi) .
$$

So

$$
f\left(V, L, p_{p} \varphi\right)=|p|_{p}^{k} \cdot \prod_{\ell \neq p} \varepsilon_{f, \ell}(p)^{-1} f(V, L, \varphi) .
$$

Now comes a strange thing. I thought that \tilde{f} would be in $\mathcal{A}_{\{s, t\}}\left(\mathrm{GL}_{2}(\mathbf{Q}) \backslash \mathrm{GL}_{2}(\mathbf{A})\right)$ for suitable s and t. But computing s and t gives $(s, t)=\left(k-\frac{1}{2}, \frac{1}{2}\right):$ not integers.

Here's the computation. Recall $\operatorname{Lie}\left(G l_{2}(\mathbf{R})\right) ; c, h, a_{+}, a_{-}$and $C=\frac{1}{2} h^{2}+a_{+} a_{-}+a_{-} a_{+}$,

$$
\begin{aligned}
\gamma_{\mathrm{HC}}: \mathfrak{z} & \xrightarrow{\sim} \mathbf{C}\left[x_{1}, x_{2}\right]^{\mathfrak{S}_{2}} \\
c & \longmapsto x_{1}+x_{2} \\
C & \mapsto \frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}-1\right)
\end{aligned}
$$

Let $\theta_{(s, t)}: \mathbf{C}\left[x_{1}, x_{2}\right]^{\mathfrak{C}_{2}}$ be the morphism which evaluates a polynomial $P \in \mathbf{C}\left[x_{1}, x_{2}\right]^{\mathfrak{G}_{2}}$ at $x_{1}=s$ and $x_{2}=t$.

Now $h \tilde{f}=k \tilde{f}$ and $c \tilde{f}=k \tilde{f}$ as $\tilde{f} \circ(\lambda \cdot)=\lambda^{k} \tilde{f}$ for all $\lambda \in \mathbf{C}^{\times}$. Moreover $a_{-} \tilde{f}=0$ as \tilde{f} is holomorphic, and a_{0} consists of anti-holomorphic derivation (see Deligne, or compute it).

Then $c \tilde{f}=k \tilde{f}$, and

$$
C \tilde{f}=\left(\frac{1}{2} h^{2}-\left(a_{+} a_{-}-a_{-} a_{+}\right)\right) \tilde{f}=\left(\frac{1}{2} h^{2}-h\right) \tilde{f}=\frac{1}{2}\left(k^{2}-2 k\right) \tilde{f}
$$

So, for \tilde{f} we have $s+t=k$ and $\frac{1}{2}\left((s-t)^{2}-(s-t)\right)=\frac{1}{2}\left(k^{2}-2 k\right)$. Therefore, $s+t=k$ and $s-t=k-1$. We conlcude that $s=k-\frac{1}{2}$ and $t=\frac{1}{2}$.

So this means that we should consider $\tilde{\tilde{f}}:=\tilde{f}\|\operatorname{det}(\cdot)\|^{-\frac{1}{2}}$. Then, for $\tilde{\tilde{f}}$ we have $s=k-1$ and $t=0$, so $\tilde{\tilde{f}} \in \mathcal{A}_{(k-1, v)}^{\circ}$.

I'm glad to see this $(k-1,0)$ as the HS $\sim f$ is of type $\{(k-1,0),(0, k-1)\}$, or also, the Hodge-Tate weights of the Galois representation corresponding to f are $k-1$ and 0 .

The automorphic representation corresponding to f : The function $\tilde{\tilde{f}}$ generates a $\left(\mathfrak{g l}_{2}, O(2)\right)$ module $V_{f, \infty}$, with basis

$$
\left\{a_{+}^{n} \tilde{\tilde{f}} \mid n \geq 0\right\} \coprod\left\{\left.a_{-}^{n}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tilde{\tilde{f}} \right\rvert\, n \geq 0\right\}
$$

and $V_{f}=V_{f, \infty} \otimes V_{f}^{\infty}$.

[^0]: ${ }^{1}$ Congruence subgroup means that it contains the subgroup $\Gamma(N)$ for some $N \in \mathbf{Z}_{>1}$, where $\Gamma(N):=\operatorname{ker}\left(\operatorname{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}(\mathbf{Z} / \mathrm{NZ})\right)$

