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The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 3/26



The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices. Their Fourier coefficients, with
Ramanujan’s tau-function as a typical example, have deep arithmetic
significance.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 3/26



The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices. Their Fourier coefficients, with
Ramanujan’s tau-function as a typical example, have deep arithmetic
significance.

Prior to this book, the fastest known algorithms for computing these
Fourier coefficients took exponential time, except in some special
cases.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 3/26



The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices. Their Fourier coefficients, with
Ramanujan’s tau-function as a typical example, have deep arithmetic
significance.

Prior to this book, the fastest known algorithms for computing these
Fourier coefficients took exponential time, except in some special
cases. The case of elliptic curves (Schoof’s algorithm) was at the birth
of elliptic curve cryptography around 1985.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 3/26



The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices. Their Fourier coefficients, with
Ramanujan’s tau-function as a typical example, have deep arithmetic
significance.

Prior to this book, the fastest known algorithms for computing these
Fourier coefficients took exponential time, except in some special
cases. The case of elliptic curves (Schoof’s algorithm) was at the birth
of elliptic curve cryptography around 1985.

This book gives an algorithm for computing coefficients of modular
forms of level one in polynomial time. For example, Ramanujan’s tau of
a prime number p can be computed in time bounded by a fixed power
of the logarithm of p...
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Back to mathematics: sums of squares

To illustrate the progress made in the book and Peter Bruin’s PhD
thesis, we consider the problem of computing quickly, for d and nin Z:

fd(n)::#{XEZd:X12+...+X§:n}‘
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Back to mathematics: sums of squares

To illustrate the progress made in the book and Peter Bruin’s PhD
thesis, we consider the problem of computing quickly, for d and nin Z:

fd(n)::#{XEZd:X12+...+X§:n}‘

Geometric interpretation (Pythagoras): count the number of lattice
points in Z¢ at a given distance /n from the origin.
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Sums of squares: some examples

ra(3) = 0. T

r2(5) = 8: / | \

(£2)% + (1) \
(£1)% + (£2)2. N ~

oo
I
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Dimension one

For nin Z, given in binary notation, say, one can compute ry(n) in time

at most a power of log(1 + |n|) (approximately the number of digits
of n).
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Dimension one

For nin Z, given in binary notation, say, one can compute ry(n) in time

at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0then ri(n)=0.
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Dimension one

For nin Z, given in binary notation, say, one can compute ry(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0then ri(n)=0.
If n=0then ry(n) =1.
If n > 0 and nis a square, then ry(n) = 2, and otherwise ry(n) = 0.

Use the method of bisection of intervals for approximating +/n, starting
with [0, n].
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Dimension one

For nin Z, given in binary notation, say, one can compute ry(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0then ri(n)=0.

If n=0then ry(n) =1.

If n > 0 and nis a square, then ry(n) = 2, and otherwise ry(n) = 0.
Use the method of bisection of intervals for approximating +/n, starting

with [0, n].

Do not use the factorisation of ninto primes, because we do not know
how to to that fast enough.
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Dimension two: Diophantus

DIOPHANTI
ALEXANDRINTI -
ARITHMETICORVM
LIBRI SEX.

ET DE NVMERIS MVLTANGVLIS
LIFER ¥

LVTETIAE PARISIORVM,

Sumptibus SepasTiant CraMoIsY, vid

Tacobga, fub Ciconiis.
M. DC. XXL
CVM PRIPILEGIO REGIS

Diophantus of Alexandria (=~ 3rd century):

(& + b?)(c? + d?) = (ac — bd)? + (ad + bc)?.
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Dimension two: Fermat

Pierre de Fermat (lawyer, Toulouse, 17th century), forn > 1: rn(n) # 0
if and only if every prime factor of n that is 3 modulo 4, occurs an even
number of times in the factorisation of n.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 8/26



Dimensions 2 and 3: Legendre, Gauss

Adrien-Marie Legendre (1798) gave a formula for r,(22m?).
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Dimensions 2 and 3: Legendre, Gauss

Adrien-Marie Legendre (1798) gave a formula for r,(22m?).

Carl Friedrich Gauss (1801) gave a general formula for r>(n), and a
formula for r3(n) that shows that the ry(n) for odd d are more
complicated (involve class numbers).
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Higher even dimensions: Jacobi

Q)
|

Carl Gustav Jacob Jacobi (1829) proved for n > 1:

0 if d is even,
rp(n) =4 x(d), with x(d)=< 1ifd=4r+1,
din —1ifd =4r+3,
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Higher even dimensions: Jacobi

Q)
|

Carl Gustav Jacob Jacobi (1829) proved for n > 1:

0 if d is even,
=4 x(d), with x(d)=q 1ifd=4r+1,
din —1ifd =4r+3,
and:
=8) d+16 > d.
2td|n 2td|(n/2)
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Eisenstein, Smith

It follows from work of Jacobi, Ferdinand Eisenstein and Henry Smith

that:
n) =16 x(n/d)a? —4>  x(d)d?
d|n d|n
(n=16Y d*-32 Y d*+256 » d°
d|n d|(n/2) d|(n/4)
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Dimension 10: Liouville

For d = 10 Joseph Liouville (1865) found a formula in terms of the
Gaussian integers d = a+ bi with aand b in Z:

4 64 8
ro(n) = ¢ > x(d)d* + = > x(n/d)d* + : >ooat
din din dez[], |dj2=n
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Dimension 12: Glaisher, Ramanujan

James Whitbread Lee Glaisher, reinterpreted by Srinivasa Ramanujan
in 1916, proved that:

ra(n)=8% d®-512 )  d°+16a,
d|n d|(n/4)
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Dimension 12: Glaisher, Ramanujan

James Whitbread Lee Glaisher, reinterpreted by Srinivasa Ramanujan
in 1916, proved that:

ra(n)=8% d®-512 )  d°+16a,
d|n d|(n/4)

where:

Yand"=q][(1-a"™™ inZ[q].

n>1 m>1
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Dimension 12: Glaisher, Ramanujan

James Whitbread Lee Glaisher, reinterpreted by Srinivasa Ramanujan
in 1916, proved that:

ra(n)=8% d®-512 )  d°+16a,
d|n d|(n/4)

where:
dad"=q (1 - inZ[q]]
n>1 m>1
Note: unlike for d < 10, this formula does not lead to computation of

ri2(n) in time polynomial in log n, if nis given with its factorisation into
primes.
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rq(n) for all even d

Negative. lla Varma (masters thesis, Leiden, June 2010): there is no
even d > 10 for which there is an “elementary” formula for ry(n).
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rq(n) for all even d

Negative. lla Varma (masters thesis, Leiden, June 2010): there is no
even d > 10 for which there is an “elementary” formula for ry(n).

Positive (book and Peter Bruin’s PhD thesis). For every even d one
can compute ry(n) in time polynomial in log n, if n € N is given with its
factorisation into primes.
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Positive (book and Peter Bruin’s PhD thesis). For every even d one
can compute ry(n) in time polynomial in log n, if n € N is given with its
factorisation into primes.

Note: for n = pqg with p and q distinct odd primes:

ra(n)=8(1+p+q+n).
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rq(n) for all even d

Negative. lla Varma (masters thesis, Leiden, June 2010): there is no
even d > 10 for which there is an “elementary” formula for ry(n).

Positive (book and Peter Bruin’s PhD thesis). For every even d one
can compute ry(n) in time polynomial in log n, if n € N is given with its
factorisation into primes.

Note: for n = pqg with p and q distinct odd primes:

rs(n) =8(1+p+q+n).
Conclusion. From an algorithmic perspective this classical problem is
now solved for all even d. The question for formulas has a negative

answer, but for computing that negative answer does not matter and
we now have a positive answer.
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Explanation: generating series

It is more than time to explain what is going on behind all these
formulas. Generating series:

bg:= Y @6 =" ry(n)g" in Z[[q]].

xczd n>0
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Explanation: generating series

It is more than time to explain what is going on behind all these
formulas. Generating series:

bg:= Y @6 =" ry(n)g" in Z[[q]].

xczd n>0

Let 6 := 04 (Jacobi theta function at z = 0). Then:

X1EZ XgEZL
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Explanation: generating series

It is more than time to explain what is going on behind all these
formulas. Generating series:

bg:= Y @6 =" ry(n)g" in Z[[q]].

xczd n>0

Let 6 := 04 (Jacobi theta function at z = 0). Then:

X1EZ XgEZL

Compute 69 in Z[[q]]/(g"*"): gives ry(n) but takes time at least linear
in nd.
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Theta functions are modular forms

Keyidea: g: H={zcC:3(2) >0} - C, zw— &2
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Theta functions are modular forms

Keyidea: g: H={zcC:3(2) >0} - C, zw— &2

Then 04: H — C, and for z € H: 64(z + 1) = 04(2), and Jacobi proved
(Poisson summation formula):

0a(—1/42) = (22/i)?/204(2).
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Theta functions are modular forms

Keyidea: g: H={zcC:3(2) >0} - C, zw— &2
Then 04: H — C, and for z € H: 64(z + 1) = 04(2), and Jacobi proved
(Poisson summation formula):

0a(—1/42) = (22/i)?/204(2).

This implies: 0 is in the C-vector space My,»(I'1(4)) of modular forms
of weight d/2 on the subgroup I'1(4) of SLx(Z). Assume from now on
that d is even. Then k = d/2isin Z.
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Then 04: H — C, and for z € H: 64(z + 1) = 04(2), and Jacobi proved
(Poisson summation formula):

0a(—1/42) = (22/i)?/204(2).

This implies: 0 is in the C-vector space My,»(I'1(4)) of modular forms
of weight d/2 on the subgroup I'1(4) of SLx(Z). Assume from now on
that d is even. Then k = d/2isin Z.

The My(T'1(4)) are finite dimensional.

For 0 < k < 4, M(I'1(4)) is generated by Eisenstein series, hence the
formulas for ry(n) for d < 8.
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Then 04: H — C, and for z € H: 64(z + 1) = 04(2), and Jacobi proved
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This implies: 0 is in the C-vector space My,»(I'1(4)) of modular forms
of weight d/2 on the subgroup I'1(4) of SLx(Z). Assume from now on
that d is even. Then k = d/2isin Z.

The My(T'1(4)) are finite dimensional.

For 0 < k < 4, M(I'1(4)) is generated by Eisenstein series, hence the
formulas for ry(n) for d < 8. For d = 10: also a Hecke character.
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Theta functions are modular forms

Keyidea: g: H={zcC:3(2) >0} - C, zw— &2

Then 04: H — C, and for z € H: 64(z + 1) = 04(2), and Jacobi proved
(Poisson summation formula):

0a(—1/42) = (22/i)?/204(2).

This implies: 0 is in the C-vector space My,»(I'1(4)) of modular forms
of weight d/2 on the subgroup I'1(4) of SLx(Z). Assume from now on
that d is even. Then k = d/2isin Z.

The My(T'1(4)) are finite dimensional.

For 0 < k <4, M(I'1(4)) is generated by Eisenstein series, hence the
formulas for ry(n) for d < 8. For d = 10: also a Hecke character. lla
Varma: for d > 10 6, is not linear combination of Eisenstein and
Hecke.
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Complex analytic geometry

To get further (SL»(Z) does not suffice, we need Galois symmetry),

interpret M(I") in terms of de Rham cohomology of the quotient EX—2
of Ck=2 x H by an action of Z2—2 x T":

az+b
X,Z X+ n{+noz
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Complex analytic geometry

To get further (SL»(Z) does not suffice, we need Galois symmetry),
interpret M(I") in terms of de Rham cohomology of the quotient EX—2
of Ck=2 x H by an action of Z2—2 x T":

az+b
(x,z)»—><x+n1+ngz, +>

cz+d

For f € Mi(T), fdxy - - - dxx_pdz is a Z?*—2 x T-invariant and closed
holomorphic (k—1)-form.
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cz+d

For f € Mi(T), fdxy - - - dxx_pdz is a Z?*—2 x T-invariant and closed
holomorphic (k—1)-form.

Via de Rham’s comparison theorem, interpret My (I") as a piece of
Hk=1(E*=2,C) (Betti cohomology, defined topologically).
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Complex analytic geometry

To get further (SL»(Z) does not suffice, we need Galois symmetry),
interpret M(I") in terms of de Rham cohomology of the quotient EX—2
of Ck=2 x H by an action of Z2—2 x T":

az+b
(x,z)»—><x+n1+ngz, +>

cz+d

For f € Mi(T), fdxy - - - dxx_pdz is a Z?*—2 x T-invariant and closed
holomorphic (k—1)-form.

Via de Rham’s comparison theorem, interpret My (I") as a piece of
Hk=1(E*=2,C) (Betti cohomology, defined topologically).

The coefficients a,(f) of the modular forms f = 3" -, a(f)q" are
closely related to Hecke operators T, coming from the GL,(Q)*-action
on H.
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Algebraic geometry

In fact, EX=2 is an algebraic variety, defined over Q.
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cohomology, hence Aut(C) acts on it.

Some facts about Aut(C), the group of automorphisms of the field C.
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ones).
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Algebraic geometry

In fact, EX=2 is an algebraic variety, defined over Q.

Grothendieck: H*~'(EX=2 7/ mZ) is defined algebraically, as étale
cohomology, hence Aut(C) acts on it.

Some facts about Aut(C), the group of automorphisms of the field C.
@ Aut(C) is big, and Aut(R) is trivial.
@ We only know identity and complex conjugation (the continuous
ones).
@ We know: Jo € Aut(C), o(n)
@ We know: 3o € Aut(C), o(e)

e.
.
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Algebraic geometry

In fact, EX=2 is an algebraic variety, defined over Q.

Grothendieck: H*~'(EX=2 7/ mZ) is defined algebraically, as étale
cohomology, hence Aut(C) acts on it.

Some facts about Aut(C), the group of automorphisms of the field C.
@ Aut(C) is big, and Aut(R) is trivial.
@ We only know identity and complex conjugation (the continuous
ones).
@ We know: Jo € Aut(C), o(m) = e.
@ We know: Jo € Aut(C), o(e) = .
@ We do notknow (yet?): 3o € Aut(C), o(w) = e and o(e) = .

18/26
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Just the case A

For p prime, the action of T, on H*~1(EX=2,7Z/mZ) can be computed
from the Galois action, as the trace of a Frobenius element at p.
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Just the case A

For p prime, the action of T, on H*~1(EX=2,7Z/mZ) can be computed
from the Galois action, as the trace of a Frobenius element at p.

To simplify, consider M;2(SL(Z)) = C-Eq2 @ C-A, where

. 65520 A
Ee=1+ 51 Z(Zd )q,

n>1 \ din
A=q[[(1-g"* =) r(n)aq"
n>1 n>1
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Just the case A

For p prime, the action of T, on H*~1(EX=2,7Z/mZ) can be computed
from the Galois action, as the trace of a Frobenius element at p.

To simplify, consider M;2(SL(Z)) = C-Eq2 @ C-A, where

. 65520 A
Ee=1+ 51 Z(Zd )q,

n>1 \ din
A=q[[(1-g"* =) r(n)aq"
n>1 n>1

Deligne: for every integer m > 0 there is p,: Aut(C) — GLo(Z/mZ),
such that for every prime p fm, 7(p) = trace(Froby) in Z/mZ.
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The book and two theses

The book explains, in about 400 pages, that one can compute, for ¢
prime, p, in time polynomial in ¢, and then 7(p) in time polynomial in
log p. More generally: for Mk(SL2(Z)).
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The book explains, in about 400 pages, that one can compute, for ¢
prime, p, in time polynomial in ¢, and then 7(p) in time polynomial in
log p. More generally: for Mk(SL2(Z)).

Johan Bosman: did real computations.
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The book and two theses

The book explains, in about 400 pages, that one can compute, for ¢
prime, p, in time polynomial in ¢, and then 7(p) in time polynomial in
log p. More generally: for Mk(SL2(Z)).

Johan Bosman: did real computations.

Peter Bruin’s PhD thesis: generalises the theory to My (I'1(N)).
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Galois groups

Let f = x" + ap_1x"' + ... + gy be in Q[x].
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Galois groups

Let f = x" + ap_1x"' + ... + gy be in Q[x].

Then f(z) = 0 has exactly n solutions in C, counted with multiplicity.
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Galois groups

Let f = x" + ap_1x"' + ... + gy be in Q[x].
Then f(z) = 0 has exactly n solutions in C, counted with multiplicity.

For ¢ in Aut(C) and z in Roots(f):

0=0(0) =0o(f(2)) =0(2"+--- + a1z + a)
=o(2")+ - o(a12) + o(ap)
=0(2)"+ -+ o(a1)o(z) + o(ao)
=o(2)"+---+ ai0(2) + ag = f(o(2)),

hence o(z) is in Roots(f).
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Galois groups

Let f = x" + ap_1x"' + ... + gy be in Q[x].
Then f(z) = 0 has exactly n solutions in C, counted with multiplicity.

For ¢ in Aut(C) and z in Roots(f):

0=0(0) =0o(f(2)) =0(2"+--- + a1z + a)
=o(2")+ - o(a12) + o(ap)
=0(2)"+ -+ o(a1)o(z) + o(ao)
=o(2)"+---+ ai0(2) + ag = f(o(2)),

hence o(z) is in Roots(f).

Gal(f) is the group of permutations of Roots(f) given by elements of
Aut(C).
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Example: roots of unity

Example: f = x" — 1.
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Example: roots of unity

Example: f = x" — 1. Let z = &?7//7,
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Example: roots of unity

Example: f = x" — 1. Let z = €?™//". Then:
Z/nZ — Roots(f), aw z?2

is a labelling of the roots.
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Example: roots of unity

Example: f = x" — 1. Let z = €?™//". Then:
Z/nZ — Roots(f), aw z?2

is a labelling of the roots.

For n=5:
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Example: roots of unity

Example: f = x" — 1. Let z = €?™//". Then:
Z/nZ — Roots(f), aw z?2

is a labelling of the roots.

For n=5:

Gal(x"—1)={a— ka mod n: k € (Z/nZ)*}
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Example: roots of unity

Example: f = x" — 1. Let z = €?™//". Then:
Z/nZ — Roots(f), aw z?2

is a labelling of the roots.

For n=5:

Gal(x"—1)={a— ka mod n: k € (Z/nZ)*}

Conclusion: in terms of the labelling Gal(f) is given by elements of
GL1(Z/nZ).
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Two-dimensional Galois representations

A 2-dimensional Galois representation mod n is a polynomial
f=x"™ 4 ...+ a;x + a in Q[x] of degree n?, with a bijection
Z./nZ? — Roots(f), such that each element of Gal(f) acts as
multiplication by an element of GL>(Z/nZ).
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Two-dimensional Galois representations

A 2-dimensional Galois representation mod n is a polynomial
f=x"™ 4 ...+ a;x + a in Q[x] of degree n?, with a bijection
Z./nZ? — Roots(f), such that each element of Gal(f) acts as
multiplication by an element of GL>(Z/nZ).

These objects play the most important role in Andrew Wiles’s proof of
Fermat’s Last Theorem (1993-1994).
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Two-dimensional Galois representations

A 2-dimensional Galois representation mod n is a polynomial
f=x"™ 4 ...+ a;x + a in Q[x] of degree n?, with a bijection
Z./nZ? — Roots(f), such that each element of Gal(f) acts as
multiplication by an element of GL>(Z/nZ).

These objects play the most important role in Andrew Wiles’s proof of
Fermat’s Last Theorem (1993-1994).

40 years ago the Langlands program started, relating Galois
representations and automorphic forms.
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Two-dimensional Galois representations

A 2-dimensional Galois representation mod nis a polynomial
f=x"™ 4 ...+ a;x + a in Q[x] of degree n?, with a bijection
Z./nZ? — Roots(f), such that each element of Gal(f) acts as
multiplication by an element of GL>(Z/nZ).

These objects play the most important role in Andrew Wiles’s proof of
Fermat’s Last Theorem (1993-1994).

40 years ago the Langlands program started, relating Galois
representations and automorphic forms.

Question: can one efficiently compute the Galois representations
whose existence is guaranteed by the Langlands program?
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Two-dimensional Galois representations

A 2-dimensional Galois representation mod nis a polynomial
f=x"™ 4 ...+ a;x + a in Q[x] of degree n?, with a bijection
Z./nZ? — Roots(f), such that each element of Gal(f) acts as
multiplication by an element of GL>(Z/nZ).

These objects play the most important role in Andrew Wiles’s proof of
Fermat’s Last Theorem (1993-1994).

40 years ago the Langlands program started, relating Galois
representations and automorphic forms.

Question: can one efficiently compute the Galois representations
whose existence is guaranteed by the Langlands program?

It looks as if the answer will be ‘yes’.
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An example by Johan Bosman

The polynomial:

f=x?*—2x% + 115x%2 4+ 23x2" + 1909x%° + 22218x°
+9223x"® 4 121141x"" + 1837654x'% — 800032x°
+ 9856374x'* + 52362168x "3 — 32040725x "2
+279370098x"" + 1464085056x'° 4 1129229689x°
+ 3299556862x% + 14586202192x” + 29414918270x°
+ 45332850431x° — 6437110763x* — 1114299203583
— 12449542097 x2 + 93960798341x — 31890957224

has Galois group PGL,(Z/23Z), and (reduced) discriminant 2343; it
comes from étale cohomology of degree 21 of a variety of complex
dimension 21.
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The commercial, end

... The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.
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The commercial, end

... The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.

The main challenge is then to perform the necessary computations in
time polynomial in the dimension of these highly nonlinear algebraic

varieties.
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The commercial, end

... The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.

The main challenge is then to perform the necessary computations in
time polynomial in the dimension of these highly nonlinear algebraic
varieties.

Exact computations involving systems of polynomial equations in many
variables take exponential time.
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The commercial, end

... The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.

The main challenge is then to perform the necessary computations in
time polynomial in the dimension of these highly nonlinear algebraic
varieties.

Exact computations involving systems of polynomial equations in many
variables take exponential time.

This is avoided by numerical approximations with a precision that
suffices to derive exact results from them.
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The commercial, end

... The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.

The main challenge is then to perform the necessary computations in
time polynomial in the dimension of these highly nonlinear algebraic
varieties.

Exact computations involving systems of polynomial equations in many
variables take exponential time.

This is avoided by numerical approximations with a precision that
suffices to derive exact results from them.

Bounds for the required precision—in other words, bounds for the
height of the rational numbers that describe the Galois representation
to be computed—are obtained from Arakelov theory. ..

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2011/05/06 25/26



Thank you for your attention!

Questions?

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

UNIVERSITE DE%

RENNES 1 DGA

With: Jean-Marc Couveignes (Toulouse), Robin de Jong, Franz Merkl
(Minchen), Johan Bosman, Peter Bruin, lla Varma.
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