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The commercial, continued

Modular forms are tremendously important in various areas of
mathematics, from number theory and algebraic geometry to
combinatorics and lattices.

Their Fourier coefficients, with
Ramanujan’s tau-function as a typical example, have deep arithmetic
significance.

Prior to this book, the fastest known algorithms for computing these
Fourier coefficients took exponential time, except in some special
cases. The case of elliptic curves (Schoof’s algorithm) was at the birth
of elliptic curve cryptography around 1985.

This book gives an algorithm for computing coefficients of modular
forms of level one in polynomial time. For example, Ramanujan’s tau of
a prime number p can be computed in time bounded by a fixed power
of the logarithm of p. . .
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Back to mathematics: sums of squares

To illustrate the progress made in the book and Peter Bruin’s PhD
thesis, we consider the problem of computing quickly, for d and n in Z:

rd (n) := #{x ∈ Zd : x2
1 + · · ·+ x2

d = n}.

Geometric interpretation (Pythagoras): count the number of lattice
points in Zd at a given distance

√
n from the origin.
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Sums of squares: some examples

r2(3) = 0.

r2(5) = 8:

5 = (±2)2 + (±1)2

5 = (±1)2 + (±2)2.
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Dimension one

For n in Z, given in binary notation, say, one can compute r1(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0 then r1(n) = 0.

If n = 0 then r1(n) = 1.

If n > 0 and n is a square, then r1(n) = 2, and otherwise r1(n) = 0.
Use the method of bisection of intervals for approximating

√
n, starting

with [0,n].

Do not use the factorisation of n into primes, because we do not know
how to do that fast enough.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 6 / 24



Dimension one

For n in Z, given in binary notation, say, one can compute r1(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0 then r1(n) = 0.

If n = 0 then r1(n) = 1.

If n > 0 and n is a square, then r1(n) = 2, and otherwise r1(n) = 0.
Use the method of bisection of intervals for approximating

√
n, starting

with [0,n].

Do not use the factorisation of n into primes, because we do not know
how to do that fast enough.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 6 / 24



Dimension one

For n in Z, given in binary notation, say, one can compute r1(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0 then r1(n) = 0.

If n = 0 then r1(n) = 1.

If n > 0 and n is a square, then r1(n) = 2, and otherwise r1(n) = 0.
Use the method of bisection of intervals for approximating

√
n, starting

with [0,n].

Do not use the factorisation of n into primes, because we do not know
how to do that fast enough.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 6 / 24



Dimension one

For n in Z, given in binary notation, say, one can compute r1(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0 then r1(n) = 0.

If n = 0 then r1(n) = 1.

If n > 0 and n is a square, then r1(n) = 2, and otherwise r1(n) = 0.
Use the method of bisection of intervals for approximating

√
n, starting

with [0,n].

Do not use the factorisation of n into primes, because we do not know
how to do that fast enough.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 6 / 24



Dimension one

For n in Z, given in binary notation, say, one can compute r1(n) in time
at most a power of log(1 + |n|) (approximately the number of digits
of n).

If n < 0 then r1(n) = 0.

If n = 0 then r1(n) = 1.

If n > 0 and n is a square, then r1(n) = 2, and otherwise r1(n) = 0.
Use the method of bisection of intervals for approximating

√
n, starting

with [0,n].

Do not use the factorisation of n into primes, because we do not know
how to do that fast enough.

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 6 / 24



Dimension two: Diophantus

Diophantus of Alexandria (≈ 3rd century):

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.
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Dimension two: Fermat

Pierre de Fermat (lawyer, Toulouse, 17th century), for n ≥ 1: r2(n) 6= 0
if and only if every prime factor of n that is 3 modulo 4, occurs an even
number of times in the factorisation of n.
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Dimensions 2 and 3: Legendre, Gauss

Adrien-Marie Legendre (1798) gave a formula for r2(2am2).

Carl Friedrich Gauss (1801) gave a general formula for r2(n), and a
formula for r3(n) that shows that the rd (n) for odd d are more
complicated (involve class numbers).

For n > 1 squarefree, 1 or 2 mod 4, r3(n) = 12·h(Z[
√
−n]).

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 9 / 24



Dimensions 2 and 3: Legendre, Gauss

Adrien-Marie Legendre (1798) gave a formula for r2(2am2).

Carl Friedrich Gauss (1801) gave a general formula for r2(n), and a
formula for r3(n) that shows that the rd (n) for odd d are more
complicated (involve class numbers).

For n > 1 squarefree, 1 or 2 mod 4, r3(n) = 12·h(Z[
√
−n]).

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 9 / 24



Dimensions 2 and 3: Legendre, Gauss

Adrien-Marie Legendre (1798) gave a formula for r2(2am2).

Carl Friedrich Gauss (1801) gave a general formula for r2(n), and a
formula for r3(n) that shows that the rd (n) for odd d are more
complicated (involve class numbers).

For n > 1 squarefree, 1 or 2 mod 4, r3(n) = 12·h(Z[
√
−n]).

Bas Edixhoven (Universiteit Leiden) Number theory, computer algebra, geometry 2012/01/05 9 / 24



Higher even dimensions: Jacobi

Carl Gustav Jacob Jacobi (1829) proved for n ≥ 1:

r2(n) = 4
∑
d |n

χ(d), with χ(d) =


0 if d is even,
1 if d = 4r + 1,
−1 if d = 4r + 3,

and:
r4(n) = 8

∑
2-d |n

d + 16
∑

2-d |(n/2)

d .
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Eisenstein, Smith

It follows from work of Jacobi, Ferdinand Eisenstein and Henry Smith
that:

r6(n) = 16
∑
d |n

χ(n/d)d2 − 4
∑
d |n

χ(d)d2,

r8(n) = 16
∑
d |n

d3 − 32
∑

d |(n/2)

d3 + 256
∑

d |(n/4)

d3.
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Dimension 10: Liouville

For d = 10 Joseph Liouville (1865) found a formula in terms of the
Gaussian integers d = a + bi with a and b in Z:

r10(n) =
4
5

∑
d |n

χ(d)d4 +
64
5

∑
d |n

χ(n/d)d4 +
8
5

∑
d∈Z[i], |d |2=n

d4.
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Dimension 12: Glaisher, Ramanujan

James Whitbread Lee Glaisher, reinterpreted by Srinivasa Ramanujan
in 1916, proved that:

r12(n) = 8
∑
d |n

d5 − 512
∑

d |(n/4)

d5 + 16an

where: ∑
n≥1

anqn = q
∏
m≥1

(1− q2m)12 in Z[[q]].

Note: unlike for d ≤ 10, this formula does not lead to computation of
r12(n) in time polynomial in log n, if n is given with its factorisation into
primes.
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rd(n) for all even d

Negative. Ila Varma (masters thesis, Leiden, June 2010): there is no
even d > 10 for which there is an “elementary” formula for rd (n).

Positive (book and Peter Bruin’s PhD thesis). For every even d one
can compute rd (n) in time polynomial in log n, if n ∈ N is given with its
factorisation into primes.

Note: for n = pq with p and q distinct odd primes:

r4(n) = 8(1 + p + q + n).

Conclusion. From an algorithmic perspective this classical problem is
now solved for all even d . The question for formulas has a negative
answer, but for computing that negative answer does not matter and
we now have a positive answer.
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Explanation: generating series

It is more than time to explain what is going on behind all these
formulas. Generating series:

θd :=
∑
x∈Zd

qx2
1 +···+x2

d =
∑
n≥0

rd (n)qn in Z[[q]].

Let θ := θ1 (Jacobi theta function at z = 0). Then:

θd =

∑
x1∈Z

qx2
1

 · · ·
∑

xd∈Z
qx2

d

 = θd .

Compute θd in Z[[q]]/(qn+1): gives rd (n) but takes time at least linear
in nd .
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Theta functions are modular forms

Key idea: q : H = {z ∈ C : =(z) > 0} → C, z 7→ e2πiz .

Then θd : H→ C, and for z ∈ H: θd (z + 1) = θd (z), and Jacobi proved
(Poisson summation formula):

θd (−1/4z) = (2z/i)d/2θd (z).

This implies: θd is in the C-vector space Md/2(Γ1(4)) of modular forms
of weight d/2 on the subgroup Γ1(4) of SL2(Z). Assume from now on
that d is even. Then k = d/2 is in Z.

The Mk (Γ1(4)) are finite dimensional.

For 0 ≤ k ≤ 4, Mk (Γ1(4)) is generated by Eisenstein series, hence the
formulas for rd (n) for d ≤ 8. For d = 10: also a Hecke character. Ila
Varma: for d > 10 θd is not linear combination of Eisenstein and
Hecke.
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Complex analytic geometry

To get further (SL2(Z) does not suffice, we need Galois symmetry),
interpret Mk (Γ) in terms of de Rham cohomology of the quotient Ek−2

of Ck−2 ×H by an action of Z2(k−2) o Γ:

(x , z) 7→
(

x + n1 + n2z,
az + b
cz + d

)

For f ∈ Mk (Γ), f dx1 · · · dxk−2dz is a Z2(k−2) o Γ-invariant and closed
holomorphic (k−1)-form.

Via de Rham’s comparison theorem, interpret Mk (Γ) as a piece of
Hk−1(Ek−2,C) (Betti cohomology, defined topologically).

The coefficients an(f ) of the modular forms f =
∑

n≥0 an(f )qn are
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Algebraic geometry

In fact, Ek−2 is an algebraic variety, defined over Q.

Grothendieck: Hk−1(Ek−2,Z/mZ) is defined algebraically, as étale
cohomology, hence Aut(C) acts on it.

Some facts about Aut(C), the group of automorphisms of the field C.
Aut(C) is big, and Aut(R) is trivial.
We only know identity and complex conjugation (the continuous
ones).
We know: ∃σ ∈ Aut(C), σ(π) = e.
We know: ∃σ ∈ Aut(C), σ(e) = π.
We do not know (yet?): ∃σ ∈ Aut(C), σ(π) = e and σ(e) = π.
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Just the case ∆

For p prime, the action of Tp on Hk−1(Ek−2,Z/mZ) can be computed
from the Galois action, as the trace of a Frobenius element at p.

To simplify, consider M12(SL2(Z)) = C·E12 ⊕ C·∆, where

E12 = 1 +
65520
691

∑
n≥1

∑
d |n

d11

qn,

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

Deligne: for every integer m > 0 there is ρm : Aut(C)→ GL2(Z/mZ),
such that for every prime p 6 |m, τ(p) = trace(Frobp) in Z/mZ.
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Galois representations in concrete terms

For each m > 0 there is
a polynomial fm = xm2

+ · · ·+ a1x + a0 in Z[x ],
a bijection (Z/mZ)2 → Roots(fm,C),

such that
σ ∈ Aut(C) acts on Roots(fm,C) as ρm(σ) in GL2(Z/mZ),
for p � 0, the trace of Frobp : x 7→ xp acting on Roots(fm,Fp) is
τ(p) mod m,
where Z→ Fp gives (Z/mZ)2 → Roots(fm,C)→ Roots(fm,Fp).
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The book and two theses

The book explains, in about 400 pages, that one can compute, for `
prime, such an f` in time polynomial in `, and then τ(p) in time
polynomial in log p. More generally: for Mk (SL2(Z)).

Johan Bosman: did real computations.

Peter Bruin’s PhD thesis: generalises the theory to Mk (Γ1(N)).
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An example by Johan Bosman

The polynomial:

f = x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19

+ 9223x18 + 121141x17 + 1837654x16 − 800032x15

+ 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9

+ 3299556862x8 + 14586202192x7 + 29414918270x6

+ 45332850431x5 − 6437110763x4 − 111429920358x3

− 12449542097x2 + 93960798341x − 31890957224

has Galois group PGL2(Z/23Z), and (reduced) discriminant 2343; it
comes from étale cohomology of degree 21 of a variety of complex
dimension 21.
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The commercial, end

. . . The computation of the Galois representations uses their
realization, following Shimura and Deligne, in the torsion subgroup of
Jacobian varieties of modular curves.

The main challenge is then to perform the necessary computations in
time polynomial in the dimension of these highly nonlinear algebraic
varieties.

Exact computations involving systems of polynomial equations in many
variables take exponential time.

This is avoided by numerical approximations with a precision that
suffices to derive exact results from them.

Bounds for the required precision–in other words, bounds for the
height of the rational numbers that describe the Galois representation
to be computed–are obtained from Arakelov theory. . .
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The end

Thank you for your attention!

Questions?

With: Jean-Marc Couveignes (Toulouse), Robin de Jong, Franz Merkl
(München), Johan Bosman, Peter Bruin, Ila Varma.
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