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1 Introduction

Shimura varieties form an intimidating subject. The subject was started by Shimura, and then reshaped
by Deligne.

It is not easy to give a good introduction into this subject, because of its many prerequisites: Hodge
theory, algebraic geometry, algebraic groups, number theory. One can say that it took a large part of
the 20th century to develop the necessary tools for the theory of Shimura varieties (algebraic geometry,
Hodge theory, algebraic and arithmetic groups, class field theory, for example).

References: Deligne’s papers Travaux de Griffiths, Théorie de Hodge, Travaux de Shimura, Variétés
de Shimura, Milne’s notes “Introduction to Shimura varieties”, Ullmo’s notes “Autour de la conjecture
d’ André-Oort”, Yafaev’s notes “Introduction to André-Oort and Zilber-Pink™, Voisin’s book “Hodge the-
ory and complex algebraic geometry I”. Moonen’s notes “An introduction to Mumford-Tate groups”,
Moonen’s article “Models of Shimura varieties in mixed characteristics”, Pink’s thesis (compactifac-
tions), etc....

I will do my best to make it into more than just a series of statements of facts with no proofs... My
goal is to present this theory, but for details you will really have to read these references. For motivation,

let me start with an example of a Shimura variety.



1.1 Moduli of complex elliptic curves
Let H= {7 € C: (1) > 0}. We have SLy(Z) acting on it:

ar +b
cr+d

(¢a)T=

In this case, everything is quite explicit. We have the standard fundamental domain. The quotient can be

interpreted as the set of complex elliptic curves up to isomorphism:
Sly(Z)\H={FE/C}/ =, 71— |E, :=C/(Z1+7Z)]

As elliptic curves up to isomorphism are classified by their j-invariant, the quotient map is the holomor-
phic map
H — C, T j(ET) = qfl + 744 +196884q + -+, q= 2T

The quotient C is the moduli space of complex elliptic curves; it is an algebraic variety, defined over Q
(even over Z) because we have the notion of elliptic curves over arbitrary fields and rings (and schemes).
For 7 € H,
End(E;)={2€C:2(ZT+Z) C ZT + Z}.

Hence End(E;) = Z if dimg Q(7) # 2, and End(E;) is an order in Q(7) if dimg Q(7) = 2, and then
E. is called a CM-elliptic curve, and 7 € H and j(E,) € C are called CM-points and also special points.
CM-theory for elliptic curves says:

if 7 special, then j(7) € Q(7)*", algebraic integer,

and it gives a description of the Gal(Q/Q(7))-action in terms of class field theory.
A theorem of Theodor Schneider says:

if 7 is algebraic but not special, then j(7) is transcendental.

So the special 7 are the only 7 with 7 and j(7) algebraic.

1.2 The André-Oort conjecture for C?

Now we consider C? as the moduli space of pairs of elliptic curves:
C? = (SLy(Z) x SLy(Z))\(H x H).
A point z = (x1,29) € C? is called special if both x; and z, are special.

1.2.1 Conjecture. (André-Oort) Let > C C? be a set of special points, and let Z be an irreducible
component of ¥%**. Then Z is one of the following:

1. a special point,



2. {x1} x C with x; special,
3. C x {xy} with x4 special,
4. the image T,, (a Hecke correspondence) of
JH—-HxH—C* 71~ (r,n7) (j(1),5(n7))
for somen € Z>q,
5. C? itself.

In general, the André-Oort conjecture says that the irreducible components of the Zariski closure of a set
of special points are special subvarieties: images of “Shimura-Hecke morphisms” of Shimura varieties.
In the case of C? one gets the list that is given. The Hecke correspondences 7T}, are precisely the images
Ty, go of

H—-HxH—-CxC, 7 (q17,927)— (j(17),7(g27))

with g1 and g9 in GLy(Q)™ (positive determinant).

1.3 A little bit of history of the A-O and Z-P conjecture.

A very recent reference: Umberto Zannier’s 2012 book “Some problems of unlikely intersections in
arithmetic and geometry”.

André stated the case for curves in Shimura varieties in 1989, and Oort stated the case of subvarieties
in A, (moduli space of principally polarised abelian varieties) in 1995. The foundations were laid by
Ben Moonen in his thesis (1995). He also obtained the first results under an assumption on the reduction
of Y at a suitable prime number p. The conjecture is an analog of the Manin-Mumford conjecture: the
ambient variety is a complex abelian variety, special points are torsion points, special subvarieties are
translates of abelian subvarieties by torsion points. The Manin-Mumford conjecture for proved first by
Raynaud (1983) in the case where Z is a curve, and then later by many peoply using many different tools.
The culmination (for me) is an equidistribution result by Shouwu Zhang: if A is an abelian variety over
a number field K C C, and (), is a small and strict sequence (h(x,) — 0, and no subsequence in a
proper special subvariety) in A(Q), then the Galois orbits Gal(Q/Q)-z,, are equidistributed in A(C) for
the translation invariant probability measure. Therefore, such sequences are generic: no subsequence in
a proper closed subvariety. In the André-Oort case, there is such an equidistribution conjecture, but we
seem to be still very far from such a general result. See work of Zhang. Of course, abelian varieties can
be replaced with other algebraic groups: tori, semi-abelian varieties, C can be replaced with other fields.
Here too, much has been done, but I know too little about it.... See Chambert-Loir’s Bourbaki lecture
from 2011. Let me just mention work of Breuer and Hubschmid on the case of Drinfeld modules.

Conjecture 1.2.1 above was proved by myself in 1995, assuming GRH for number fields, and by
Yves André, unconditionally, in 1997(?). We both used the Galois action on special points, I used Hecke

correspondences and André used a result of Masser on the j-function at rational values.
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The method I used, Galois action, Hecke correspondences and intersections, has been generalised,
first by myself and Andrei Yafaev to the case of curves in Shimura varieties, and later by Klingler,
Ullmo and Yafaev to the general case, but still assuming GRH. Also equidistribution techniques have
been added. Results by Clozel, Ullmo, Yafaev only concern sequences of positive dimensional special
subvarieties. The method I used does its work in the quotient, that is, in the algebraic variety, and
therefore uses techniques mostly from algebraic geometry and number theory.

A recent development is the addition, mainly by Jonathan Pila, of tools (o-minimal structure, Pila-
Wilkie counting theorem, of course, Thomas Scanlon reports on that!) that can be used in H" and its
analog in the general case. For example, building on work of himself with Bombieri, and with Wilkie,

Pila has proved André-Oort for C" unconditionally.

1.4 Theorem. (Pila) The André-Oort conjecture for C" is true.

Galois orbits of special points keep playing the same role as in the older approach. It seems to me that
one big issue now is to extend Pila’s method to the general case.

Since about 2000 Bombieri, Masser and Zannier, and then others, studied intersections of subvarieties
of algebraic groups (tori, abelian varieties, semi-abelian varieties) with closed subgroups. This has led to
the Zilber-Pink conjecture; the role of special points is then played by “unlikely intersections”. Richard
Pink has formulated the most general form in the context of mixed Shimura varieties, in his preprint “A

Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang” (2005):

1.5 Conjecture. Let S be a connected component of a mixed Shimura variety, over C, Z C S an irre-

ducible closed subvariety that is not contained in any special 5" C S. Then
| {zn 9" : 8 S special. codimg(S') > dim(Z)}
is not Zariski dense in Z.

Zilber’s conjecture is indeed a special case: if Y is an irreducible component of the Zariski closure of
that union, then Pink’s conjecture implies that Y is contained in some S’ C S.

I mention Pink’s conjecture here, because it means that the correct notion of special subvariety, in this
full generality, comes from that context, and hence from Hodge theoretical conditions. (I am thinkking
in particular of the case of relative Manin-Mumford for semi-abelian schemes.)

This should motivate us to go into the theory of Shimura varieties. The most important cases here
are the moduli spaces A, of principally polarised abelian varieties of dimension g. However, in order to
keep the complexity under control when dealing with all special subvarieties, it seems preferable to use
Deligne’s general definition, which is technically demanding, but which gives flexiblity and a convenient

description of the Galois action on special points:
Shi (G, X)(C) = GQ\(X x G(Ay)/K).

Here, G is a reductive algebraic group over Q, and X is a G(R)-orbit in Hom(S, Gg), where S is the
Deligne torus whose representations are the R-Hodge structures, A is the adele ring of Q.. ., there is a

lot to be explained.



2 Some Hodge theory

Let us begin the story with Hodge structures. These are really at the start of the theory of Shimura
varieties.

Let V be a finite dimensional R-vector space, and V¢ := C ®g V its complexification. Then complex
conjugation acts on Ve by A®@ v = A @ v. If e = (eq, ..., eq) is an R-basis of V' then e (or rather 1 ® e)
is also a C-basis of V¢ and m =>; Ajej.

A Hodge decomposition of V is a direct sum decomposition of V¢ into C-subspaces V77 indexed by
72

Ve=CapV =@ V", suchthat Vra=V9.
P,qEL
Note that not only the subspaces are important, but also their labelling with pairs (p, ¢) is part of the data.

An R-Hodge structure is a finite dimensional R-vector space V' with a Hodge decomposition.

The rype of this Hodge structure is the set of (p, ¢) such that V77 #£ (.

The functor C ®g - from R-vector spaces to C-vector spaces with a semi-linear involution, sending
V to (V,~) is an equivalence, with inverse (W, o) — W°.

@ VP

ptg=n

For n in Z, the subspace

of V¢ is stable under complex conjugation, and therefore the complexification of the subspace V,, of V'
consisting of elements in @©,,—,V?? that are invariant under complex conjugation. The decomposition
V = @,V is called the weight decomposition of V.

A Q-Hodge structure is a finite dimensional (Q-vector space V' together with an R-Hodge structure on
Ve = R®q V, and a Z-Hodge structure is a free Z-module of finite rank V" together with an R-Hodge
structure on V.

2.1 Example. (Complex tori) The simplest way in which Z-Hodge structures arise is from complex tori,
quotients of C-vector spaces by lattices (for example complex elliptic curves). Indeed, let V' be a finite
dimensional C-vector space, and let L C V be a lattice, that is, the free Z-module generated by an R-
basis of V. Then Lg = V is a C-vector space, and let us denote by .J the multiplication by ¢ on Lg, note
that J2 +id = 0 on Lg; we view Ly as an R-vector space. Then on L¢ we have J2 +id = (J —i)(J +1),
and therefore Lc decomposes into two conjugate C-subspaces: V' ~1* on which .J acts as i and V%!
on which J acts as —i (the reason why we label them with (—1,0) and (0, —1) will become clear in a
moment). More generally, the endomorphism a + b.J of Ly (with a and b in R) induces a + b7 on V1.0
and a — bi on V% ~!. We see that the action of C* on Lr = V' coming from the C-vector space structure
of V induces, for € C*, multiplication by z = 2'z° on V=19 and by 7 = 22! on V*~!. The reason
to give L weight —1 is that L is the first homology group of V/ L and that we reserve positive weights for

cohomology. We will now see that all R-Hodge structures are given by an action of C*.



2.2 The Deligne torus

Let V be an R-Hodge structure. Then we let C* act on V¢ by letting z act on V¢ as multiplication by
z~PZ~1 (there is also the other convention zPZ9, but the one we use seems to be standard now for Shimura

varieties). Then the multiplication by z commutes with complex conjugation on V¢ (for v in V79 we

have Zv = 27 PZ % = Z Pz 9 = z-U because v € V?P), and therefore this C*-action comes from an
R-linear C*-action on V, h: C* — GL(V'), and from it one recovers the decomposition of Vi. This
action is algebraic in the sense that, with respect to any R-basis of V', a + bi acts as a matrix whose
coefficients are polynomials in a, b and 1/(a? + b?). This condition is usually stated in terms of the action
of an algebraic group S over R, the Deligne torus. My favourite way of working with algebraic groups is
with their functors of points; this seems the most natural way. The Deligne torus S is defined as the Weil

restriction from C to R of the multiplicative group over C:
S = Resc/rGuc
This means that for all R — A:
S(A) = Gue(A®r C) = (A®r C)* = (Az]/(2* + 1)) ={a+br:a,bc A a® +b* € A}
One can also consider the action of C* on itself, and embed S into GLg :
S(A) = {(¢7") :a, bin A with a® + b* € A*}.

From this we see that S is represented by R[a, b, 1/(a? + b?)], that is, this R-algebra is the coordinate
ring of S. We also see that S(R) = C*. One can show that the C*-action above corresponds to a unique
representation of S on V/, that is, the action is given by a morphism of group schemes h: S — GL(V),
where for every R — A, GL(V)(A) = Autaoa(Va), with V4 = A ®r V. And vice versa, every
representation of S is an R-Hodge structure.

Another way to see this is by looking at the character group Hom(S¢, G,,¢) of the torus S, with its
action by Gal(C/R). Let us compute it. For A a C-algebra, we have:

ArC — Ax A, a® 2z (az,az),

hence

S(A) = (A x A)* = A* x A*.

This gives, by Yoneda and the defining property of the pullback S¢, an isomorphism
(2,2): S¢ — G, inducing C* =S(R) — S(C) = C* x C*, z + (2,%).

This means that X := Hom(Sc, Gy, ¢) is a free Z-module with basis two characters that we can write 2



and Z and that are exchanged by Gal(C/R). Indeed, let us compute the complex conjugation on S(C):

CorC——CxC

a® z—(az,az) (x,y)

T

a®z——>(az,az) (7,7)

which is the ordinary complex conjugation on C x C, followed by the swap, that is, the exchange of

coordinates. For later use we also introduce the cocharacter 11 of Sc:

2,2 1
o Gm(C_>Gm(C X Gm(C(_)>S(C

ar——————>(a, 1)
By its definition, p is characterised by:
zopu=1 Zopu=0, inX(Gue).

A representation of S on a finite dimensional R-vector space V' is then a grading Vi = &, V,,, compatible
with Galois action: V,, = V,. We conclude again that R-Hodge structure on V is the same thing as a
representation h: S — GL(V'). A Q-Hodge structure is a Q-vector space with h: S — GL(Vg). Etc.
Using this interpretation as representations, we define morphisms of Hodge structures, tensor prod-
ucts, duals. We have w: G — S, corresponding on R-points to R* — C*, x ~ x~!. This gives the

weight decomposition of V: V' = @V, x acts as 2™ on V,.

2.3 Tate twists

For n € Z we let Q(n) be the Q-Hodge structure V' = Q, where S acts on Vg = R by the character
(2Z)™, hence Vi = V™ ". Etc. for Z(n) and R(n). Often one lets the underlying Z-module of Z(n)
be (27i)"7Z in C. The reason for this is the factors 27 that occur in comparison between singular and
algebraic or holomorphic de Rham cohomology (natural generators on both sides differ by such factors).
For example, the exponential map C — C* has kernel 27iZ, and therefore it identifies 27¢Z with the
image of H;(C*,Z) in C. A bit more seriously:

Hy(C*,Z) = Z-[y], ~:[0,1] = C*, trs ™

d
(€)= C:| 2],
z
and note that (dz)/z is the natural generator “over Z” (more on this later, where we consider
H?(P!(C),Z) and H3R (P! /Z)), and under the natural pairing we get

d
& _oni.
y z



2.4 Weil operator

For an R-Hodge structure (V,h) we have the Weil operator C' := h(i), acting as 7 on V79, and
C? = h(—1) acts as (—1)" on V,.

2.5 The Hodge filtration

For V' an R-Hodge structure of some weight n we let ['® be the (descending) filtration on V¢ given by:

Vo) =P vre=Evrrr.

pi p=>i

Note that for ¢ + j = n we have:

Fi(Ve)nFi(Ve) =@ Vv rn@ver=PHvrrrn@v— = v,

p>i q>j p>i q>j
We let he: S¢ — GL(V¢). We define py, :== he o pi: Gye — GL(V¢). Then
VerTP = {y € Vi : forall z in C*, uy(2)v = 27 Pv},

and F"(V¢) consists of sums of v in V¢ such that p,(2)v = 27Pv for some p > i.

2.6 Polarisations

Let V' be a Q-Hodge structure of some weight n. A polarisation on V' is a morphism of Hodge structures:
Y: VeV —Q(—n)

such that
wC: VR X VIR — Ru (.flf,y) = w<37,h(2)3/>

is symmetric and positive definite (recall that C' = h(i) is called the Weil operator, and that Q(—n) = Q).
That ¢ is a morphism means that ¢/ is QQ-linear (corresponds to a Q-bilinear map V' x V' — Q) such that

for all z € C*, x and y in V, we have

Vr(h(2)z, M(2)y) = (22) " Yr(z, y).

The symmetry condition means then that for all z and y in Vg:

U(z,y) = Y(h(i)z, h(i)y) = V(y, h(i)’z) = Py, h(—1)z) = P(y, (=1)"z) = (—1)"Y(y, 2).

Hence ¢ is alternating if n is odd and symmetric if n is even. Of course, similar for Z and R-Hodge
structures.
Let us also look at tic: Vi X Ve — C. For z in V% and y in Vé’,’q, we have

Ql}c(h(z)fli, h(z)y) = wC(Zipziq)xv Zﬁplziq»y) = Zﬁpiplziqiq/w(c@j? y)
= (22) "Ye(z, y).
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This means that ¢)¢ gives a perfect pairing between V77 and V¢? and zero if (p/, ¢') # (q,p).
The motivation for the definition of 1) comes from cohomology, as we will see soon. The condition

that v is symmetric and positive definite is equivalent to the sesquilinear form
1//0: V(C X V(C — (Cv (.’L’,y) = w(C(x7 h@)?)

being hermitian (¢ (y, z) = W) and positive definite. The decomposition V¢ = @, V77 is then
orthogonal. If W C V is a sub Q-Hodge structure, and ¢ a polarisation on V', then ¢ induces a polarisa-
tion on TV because of the positive definiteness of ¢)c and ¢(,, and then V splits as V = W W+ with W+
a sub Q-Hodge structure. A polarisation on a Q-Hodge structure V' = &, V" (weight decomposition) is
a system (¢)™),, of polarisations on the V'"". A Q-Hodge structure V" is called polarisable if there exists a
polarisation on it. Direct sums, tensor products and duals of polarised (Q-Hodge structures are naturally

polarised. Polarisable (Q-Hodge structures form a semi-simple (Q-linear abelian category.

2.7 Example. Let V' a Z-Hodge structure of type {(—1,0),(0,—1)} as in the example above. Such
Hodge structures correspond to C-structures on Vg, via Ve—Ve — V10 or, equivalently, via
h: C* — GL(VR) which extends to an R-algebra morphism C — End(Vk). In this case, a polarisation
is a symplectic form ¢): V' x V' — Z such that for all z and y in Vk one has ¢ (iz, iy) = ¢ (x, y) and such
that (z,y) — ¢ (z,iy) is symmetric and positive definite on Vg. The Z-valued form —1), or maybe its op-
posite, is called the Riemann form. In this case, H: Vg x Vg — C given by (z,y) — (¥ (x,iy) —ip(z,y))
is hermitian and positive definite. Note that — is the imaginary part of /. Such a Riemann form is used
to construct a holomorphic line bundle on V//L by which it can be embedded in a projective space. Only

the polarisable complex tori are algebraic.

2.8 Variations of Hodge structures

Let S be a complex (analytic) manifold, and V' a finite dimensional R-vector space. Suppose that
for each s in S we have a Hodge structure h; on V, of weight n (independent of s). Then we have
Ve = Bprq=n VP4, and we have the filtration £ (V). Then we say that hs or F? (V) varies continuously
with s if the dimensions of the V79 are constant, and if the subspaces VP9 vary continuously with s. To
state this, consider the Grassmannians G4(V¢) that parametrise the d-dimensional sub-C-vector spaces
of V. Then we ask that for each (p, ¢) the map S — Gpq)(Vc), s = VP9 is continuous. How to see
G4(Vc) as a manifold? Well, at a point IV in it, choose a complementary subspace U: Ve = W @ U
and let G4(V¢)y be the set of W’ with W’ N U = {0}. Then each such W’ is the graph of a unique
linear map ¢: W — U. Now note that U — Vi /W is an isomorphism, so we have Hom (W, Vi /W)
in bijection with G4(V)y. These are charts. Even, this gives an isomorphism from Hom(W, Ve /W)
to T, v (W) that is independent of the choice of U; see Voisin, or say this. The algebraic group
GL(V) acts transitively on G4(V'). Let GL(V)w be the stabiliser of W. Then T,y (W) is the quo-
tient Tarvy(1)/Tarv), (1), that is, it is the quotient of End (V') by its subspace of f with fiW C W.
Consider End(V) — Hom(W,V/W). This is surjective and its kernel is precisely the set of f with
fwcw.

11



We also have the Pliicker embedding: G4(Ve) — P(A%(Ve)), sending W to the line A*(W) in
A (Ve).

We say that the hg vary holomorphically with s if the filtration F'? (V) varies holomorphically with s
in the sense that the maps from S to the appropriate Grassmannians of V¢ are holomorphic. The tangent
maps are then C-linear. Note that W then varies anti-holomorphically.

Finally, in order for the h, to be called a variation of Hodge structures the Griffiths transversality
condition must be verified: for each s in S and each p, the image of Ts(s) in the tangent space of G 4(C¢)
must be in the subspace Hom(F?, FP~1/FP) of Hom(F?, V/FP). All these definitions are motivated by
the geometric origin of HS’s.

If F?(V¢) varies holomorphically with s, then the Og-module V := Og ®g V has the filtration F'*)
by locally free submodules given by F'* at each s, such that the PV /FPT!V are locally free. For vin V
and p in Z, the set

{seS:veFVeC}CS

is an analytic subset, because it is the set of zeros of v in V/FPV.

2.8.1 Definition. Let S be a non-singular complex algebraic variety, and let S*" be its associated complex

analytic manifold. A polarised variation of Z-HS on S of weight n is:
1. alocally free Og-module V of finite rank,
2. afiltration F'*V such that the F'V/F*"'V are locally free,
3. alocally constant Zgan-module V' and an isomorphism Ogan @ V' - V30
4. a¢: VRV = Z(—n)gan

satisfying Griffiths transversality and such that for all s in S**, (V;, F'?, 1) is a polarised Z-HS of
weight n.

2.9 Hodge classes, Hodge loci

2.9.1 Definition. Let VV be a Q-HS, of weight 0. Then the (Q-vector space of Hodge classes in V' is
Vo (Ve)©oo),

The importance of this will become clear in the next section (Hodge conjecture). The following theorem
gives a strong result on the nature of the loci that are given by the condition that a given class is a Hodge
class in a variation of Z-HS. It is of interest for us because these are our “special subvarieties” in the
context of Hodge structures.

2.9.2 Theorem. (Cattani-Deligne-Kaplan, 1995) Let S be a connected non-singular complex algebraic
variety, and (V, F'*, V') a polarisable variation of Z-HS of weight 0. Let s € S*", and vy € V; a Hodge

class. Let S — S®" be the universal covering and v € V(g\a;) the continuation of vs. Then the image
in S of the set {t € Sa : v, is a Hodge class} is an algebraic subvariety of S.

12



3 Geometric origin of Hodge structures.

First we look at it complex analytically. Let X be a complex manifold, meaning that it is a topological
space, Haussdorf and second countable in order to have partitions of unity, with for each open U C X the
C-algebra Ox (U) of holomorphic functions U — C; Oy is a sheaf of C-valued functions, and locally
(X, Ox) is isomorphic to an open subset of C" for some n, with its sheaf of holomorphic functions.
More explicitly: each x in X has an open neighborhood U, an integer n and functions z1, . .., z, in O(U)
that induce an isomorphism U — V' C C" open. We say that z1, ..., z, are local coordinates at x if for

all j, zj(z) = 0. The stalk Ox . is then the C-algebra of convergent power series in the z;.

3.1 The real de Rham complex

We can view X as a smooth (C*) real manifold by defining the sheaf C'y g of smooth real functions,
we can use z; = R(z;),y; := J(2;), 1 < j < n, as local coordinates. The real tangent space at x,
Txr(xz) = Derg(Cx g, R), has R-basis f — (0f/0x1)z, f — (0f/0yp)x, ..., f — (0f/0x,)x,
f — (0f/0y,)x. The tangent spaces at all x in X together make up the real tangent bundle of X,
whose sheaf of sections we denote by Txg. For U C X open we have Tx g(U) = Derg(Cxr(U)),
the set of smooth vector fields on U, and in local coordinates each derivation can be written uniquely
as »_;(a;0/0x; + b;0/0y;), with a; and b; smooth functions. In other words, T'x g is a sheaf of Cx -
modules, locally free, with basis the (0/0x;); and the (0/0y;);.

We let QY 5, be the dual of T'x g as C'x g-module, and, locally, we let (dz;);, (dy;), be the basis dual
to (0/0x;);,(0/dy;);. Then we have the total derivative d: Cx g — Q2 p given locally by

0 0
df = Z (a—;;dxj + (’9_yfjdyj) .

The exterior algebra
QB(,R = /\ Q%(,R

CxRr
is graded commutative: w;w; = (—1)Yw,w; for w; and w; of degrees i and j, and has a unique
d: Qi p — Qff such that dod = O and forall U C C, all w € Qkp(U) and n € Qyp(U):
d(wn) = (dw)n + (—1)'wd(n). 1In local coordinates, an i-form w can be written uniquely as

w =) ; s frudzrdy;, with I and J subsets of {1,...,n} and #I + #J = i.

3.2 Decomposition of the complex de Rham complex
We can also consider C-valued functions. We let C'y ¢ be the sheaf given by
Cxc(U)={f:U— C:R(f)and S(f) arein Cxr(U)}.

Then we have the complex tangent space T'x c(xz) = Derc(Cx ¢, C), the sheaf of smooth complex
vector fields 7'y ¢, and the complex smooth differentials QB{,(C with differential d, all with the same bases

as in the real case, but now over C or C'y c.
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The sheaf Ox then gives us the C'x c-submodule Q;o of Q}(,C that is generated, locally by the df
where f is holomorphic. In local coordinates, Qﬁgo has basis (dzi,...,dz,). And we have the submod-
ule Qg&l that is generated by the df for f antiholomorphic (that is, f such that f is holomorphic). In
local coordinates, Q%' has basis (d, . ..,d%,). Note that dz; = d(x; + iy;) = dx; + idy; and that
dz; = dx; — idy;. We see that QY ¢ = Q" & Q%' It follows that

e - NS A, Oho- @ o o - Ao e Ao

ptq=k

and in local coordinates w of type (p, ¢) is uniquely written

w=Yfrydzdz, I,JC{l,....n}, #I=p #J=q, fr,€Cxc(U).
I,J
For w € Q%Y(U) we write dw = 0w + dw, with dw € QX (U) and dw € QYT (U). Then we have
d = 0 + 0, with 0 of degree (1, 0) and 0 of degree (0, 1). We have 0 = d?> = 9 + 90 + 00 + 9°, which
means that 9% = 0, 52 =0, 99 + 90 = 0. In other words, the de Rham complex (QS(,@ d) is the total
complex of the double complex (2%°, 0, 0).

As Tx ¢ is the C'x c-dual of Q% ., it decomposes as
~1,0 0,~1
Txc=T¢ ®Ty .

In local coordinates, the basis (dz;);, (dz;); of Qx ¢ = QL @ Q%' has dual basis (9/0z;);, (3/9%;); of
Txc =Ty’ ® Ty ', hence with

o (o ;90N 090 _ 1790 ., 0
8zj N 2 c%vj (9yj ’ 8Z_j N 2 ai[)j ay] .

According to the conventions on Hodge structures that we are using, this decomposition means that 7'y g
should have a natural complex structure. This is indeed so: each local coordinate system z = (z;), gives
an isomorphism of R-vector spaces Tx g(x) — C". The C-vector space structure induced by this on
T'x r(z) does not depend on the choice of coordinate system.

The de Rham complex (of sheaves)
(Q;(,]Rv d)

is a resolution of the constant sheaf R x by fine sheaves (all C'x g-modules are fine, comes from partition
of unity in C'y g) and hence are soft (restrictions to closed subsets are surjective) and I'(X, —)-acyclic.
Therefore we have:

Hk(Xa Rx) = Hk(Q;(’R(X),d).

Likewise:
C R Hk(Xa RX) = Hk(Xv CX) = Hk<Q_.X,(C(X)7 d)

For k € Z and p + q = k we let H??(X) denote the sub-C-vector space of H*(X, Cx) consisting of
classes of closed forms w € Q%?(X), that is, with dw = 0 and dw = 0. If our complex manifold X is a
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projective, that is, a closed submanifold of some complex projective space PV (C) (with the archimedian
topology), or more generally if X is a proper complex algebraic variety, or if X is compact and has a

Kihler metric on T'x g, then:

Cor H¥(X,Qx) = HY(X,C) = € H™(X), and HR(X)=H{"(X).

pt+q=k

Note that the type of H*(X, Qx) is contained in

{(p,q) :p+q=k 0<p,q<dime(X)}.

This is a famous and difficult result of Hodge and others, obtained using a lot of analysis (elliptic com-
plexes, Sobolev spaces,...). Later it was proved, in the algebraic case, by algebraic tools (Faltings,
Deligne, Illusie). Hence the rational Betti cohomology groups of smooth projective complex varieties are
naturally Q-Hodge structures.

The proof of the Hodge decomposition above gives at the same time isomorphisms
HP(X) — HIY(X, Q%),

with Q% the Ox-module of holomorphic p-forms, that in terms of local coordinates has basis dz;, - - - dz;,,

with 4; < --- < 1,,. These isomorphisms are independent of the choice of Kéhler metric.

3.3 Poincaré, Lefschetz and polarisations

These Hodge structures are polarised as follows. Assume for simplicity that X is connected and of
(complex) dimension 7, say. Then H**(X, Z) is canonically isomorphic to Z (X is compact, connected,
of real dimension 2n and oriented by its complex structure). As a Hodge structure it is Z(—n), of type
(n,n). The product structure on cohomology then induces perfect pairings (Poincaré duality)

H'(X,Q) x H*"(X,Q) — H*"(X,Q) = Q(—n).

In terms of real de Rham cohomology Poincaré duality is given by integration:

n])H/Xwn

Let now £ be an invertible O x-module, that is, the sheaf of sections of a holomorphic line bundle on X.
Then, via the exponential sequence, L gives an element [w] (class of a 2-form) of H?(X, Z):

O—)ZXE)OXﬂ)O§—>1
This induces:

0 — HY(X,Z) — H(X, Ox) — Pic(X) — H*(X,Z) — H*(X, Ox).

This shows a lot: Pic’(X) is H*Y(X)/HY(X,Z) = G’(HY(X,C))/H!(X,Z) (notation:
GrP = FP/FP*1), the tangent space at 0 of Pic(X) is H'(X, Ox), and that [w] is in H?(X, Z) N H(X)
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(because it goes to zero in H?(X, Ox) = H%?(X) hence is in F'H?(X, C) and it is real hence invariant
under complex conjugation, so also in F1H2(X, C)).
If we equip £ with a smooth hermitian metric (using partitions of unity), then the image of £ in

H?(X, C) is [w], where, locally on X for s any generator of £ we have:
99 logI5])
w = =—009log(||s]|*).
2mi 08

This also shows that [w] is in H! (X)),

Let us now come back to polarisations on H*(X, Q). We assume X projective, and £ ample on X
(for example the restriction to X of the line bundle O(1) of a projective space in which X is embedded).
Then we have the multiplication by [w] on H*(X, Q) (the Lefschetz operator, often denoted L). For k < n
it gives an isomorphism

HY(X, Q) “ H (X, Q)(n — k) = H" (X, Q) @ Q(n — k)
and the Lefschetz decomposition of H*(X, Q): the kernel H*( X, Q)i of w™ *+1 on H*(X, Q) is the

primitive part, and the decomposition is:
Hk(Xa Q) - @ erk72r (X7 Q)prim
2r<k

See Voisin’s book (Section 7.1.2) for the result that
’QZ)Z Hk(Xv @) X Hk(Xv Q) — Hk(Xa Q) X HQn_k(Xv @)(TL - k) - Q(_n +n— k) = Q(_k)7

sending (,y) to xy[w]"*, induces a polarisation on H*(X, Q) yim, up to a sign depending on k.

3.4 Holomorphic and algebraic de Rham cohomology

Let now X be a smooth projective algebraic variety over a field k, and n = dim(X). Then we have the

algebraic de Rham complex
(% d) = [Ox = Q%) = Qxpp = - = Qi = 0]

on X. Its hypercohomology gives the algebraic de Rham cohomology. A simple description is as follows.
Let X = U7 ,U; be an affine open cover of X. This gives the Cech-de Rham double complex (of £-vector
spaces):
= P QU NN,
i0<<ip
with differentials
d: CPQY — CPQI™  induced by d: Q7 — Q7!

and
(5: Cqu — Cp-‘rqu, (5(4‘})20 ip (_1)q Z(_l)]+1wzo ..... ’L} ..... ;



With these choices of signs we have dd + dd = 0 and we can define the fotal complex:

Tot(C*Q*)' = €D ¢*, d=d+5.

ptq=i

Then the algebraic de Rham cohomology is defined as:
Hig (X) = H(Tot(C*Q*)) = H' (X, Q°),

where the last notation H' means hypercohomology.
It is a theorem of Grothendieck that for k¥ — C one has

C®, H'(X, Q%) = H(Xc, Q°) = H(X(C),Cx) = H(X(C),C).

The first equality is that the construction is compatible with field extensions. The second equality is
GAGA (comparison complex algebraic and complex analytic de Rham cohomology, plus the fact that the
analytic de Rham complex is a resolution of Cy).

The Hodge filtration can be defined algebraically. For ¢ in Z, we let Q)Z;/k be the subcomplex of
0% /i consisting of the ( with ;7 > 4. The morphism of complexes 2=¢ — Q° induces a morphism
of double complexes C*Q=" — (C°Q°, then a morphism of total complexes and finally morphisms
HY (X, Q%) — H/(X,Q*). The image of this one is F(H/(X,Q®)) = F'H),(X/k). For k — C it
induces the Hodge filtration.

Assume now k& = C. We can interpret the Hodge decomposition H (X, C) = &,,,-,H”¢(X) and
the isomorphisms H??(X') = H?( X, 27) as follows in terms of hypercohomology. For each p, we have a

short exact sequence of complexes
0— Q77— Q=P — OP[—p] = 0

where (P[—p] is the sheaf QF, placed in degree p (general notation: (C*[:])? = C**7). For each i this
gives an exact sequence
H' (X, Q7P) — HY(X, Q=) — HP(X, QP)

The first two terms map surjectively to FPT H); (X) and FPH R (X) and the Hodge decomposition
says that GrPHi (X) is isomorphic to H"P(X,QP). This means that H'(X, Q2?) — HP(X, QP)
is surjective, and hence that H'(X,Q>?) — H'(X,Q2P) is injective. =~ We conclude that all
H' (X, Q=P) — FPH!(X) are isomorphisms, and that the

0 — HY(X,Q7P) — HY(X,Q2P) — H"P(X,0P) — 0

are all exact.

3.5 Griffiths transversality

The fact that H(X, C) can be defined algebraically implies (theorems by Deligne, probably), by doing

the same construction for a smooth projective family f: X — S over C, that the Hodge filtration varies

17



algebraically over S. One then has locally free Og-modules H)y (X/S) with a filtration F'® giving fibre-
wise the de Rham cohomology with Hodge filtration. The fact that, analytically, on S(C) we have
Hir (X/S) = Os(c) ®cy e, R f«(Cx), that is, the relative holomorphic de Rham cohomology is obtained
from the locally constant sheaf R’ f.(Cx) by tensoring with Og ), is reflected in the algebraically defined

Gauss-Manin connection:
V: Hjp(X/S) — QlS/tc ®os Hyp(X/9).
A fundamental fact is that this connection has the Griffiths transversality property
V: FPHR(X/S) — Q%s*/c ®os FP Hap(X/S).

To get the Gauss-Manin connection, one lets A = A*QL, B = A° Qﬁ(/s (sheaves of graded-
commutative differential algebras) and I C A the differential ideal generated by f*QL. Then B = A/I,
and one considers the short exact sequence

0—=1I/I>—~ A/I? =+ B—0
of complexes of Ox-modules, and gets a map from R f, B to (R*™! f,)I /1.

3.6 Exercise. In order to understand why often H?(P*(C), Z) = Z(—1) = (2mi)"'Z C C, let us compute
the morphism
H*(P(C), Z) — H*(P'(C),C) = Hgg (P'(C)/C).

Use the resolutions (writing X = P!(C))

injt (27ri)_1L L(2Tri)_1dlog

Cx— Ox —%= QL

Then

exp

H*(X,Z) = H*(Ox — 0%) = HY(X,0%) = Pic(X) = Z

and
H2(X,Cy) = H}(Ox -5 QL) = H'(X, QL) =C

where the identification with C is via residues. In fact, let X = X,U X, be the cover by the complements
of oo and 0, respectively. Then the class in H! (X, Q') of (dz)/z € Q% (Xp ) is sent to its residue at 0,
or oo (depending on conventions), hence to 1. Also, z € Ox (X )™ represents the positive generator
of Pic(X) and it is mapped to (27¢) ' (dz)/z in Q% (X0 ), Which is (277) ! times the generator (dz)/z
of H2; (X/C).

Of course, one can also consider the integration pairing with singular homology to get the factor
(27i)~! (by the Mayer-Vietoris sequence for X = X, U X, H'(C*) = H?(X)). But it is interesting to
see it in terms of algebraic de Rham cohomology.
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3.7 Definition. (cohomology class) Let X be a connected proper non-singular complex algebraic vari-
ety, and Z an irreducible closed subvariety, of dimensions d x and dz, hence of codimension & = dx —d.
Then we let cl(Z) € H?**(X, Q) (k) be the cohomology class of Z. It is a Hodge class.

If Z is non-singular, it is obtained as follows. The inclusion 2: Z — X induces
" H7 (X, Q) — H(2,Q) = Q(~dy).
Dualising and twisting gives:
Q— (H*(X,Q)(dy)) = B*(X,Q)(k), 1~ dl(2),
where for the last equality we used the perfect pairing
H*7(X,Q)(dz) x H*(X,Q)(k) — H**(X,Q)(dx) = Q.

In the general case, one can invoke resolution of singularities: Z — Z — X and proceed in the same
way.

A topologist would triangulate Z, get [Z] in Hyy, (X, Q) = (H?%2(X,Q))" = H?*(X, Q). See also
§11 of Voisin’s book.

3.8 Conjecture. (Hodge conjecture) Let X be a connected proper non-singular complex algebraic va-
riety, and ¢ € H?*(X,Q)(k) a Hodge class. Then ¢ is a Q-linear combination Y, a;cl(Z;) with Z;
irreducible closed subvarieties of codimension k.

4 Background on linear algebraic groups

We need some background on linear algebraic groups. References are: T. Springer’s book “Linear al-
gebraic groups”, Borel’s book (same title), Waterhouse’s “Introducion to affine group schemes”, SGA3
(more categorical approach, more technical), Platonov-Rapinchuk’s “Algebraic groups and number the-
ory”, the Corvallis (1979) articles by Springer and Tits. Also: Conrad’s lectures in the Luminy Summer
School of 2011.

4.1 Linear algebraic groups as representable functors

For k a field, a linear algebraic group over k is an affine group scheme G over k, of finite type. This
means that G = Spec(H) with H = O(G) a finitely generated k-algebra, and that for every k-algebra A
the set G(A) of A-points of G has been given the structure of a group, functorially in A: for A — A’, the
map G(A) — G(A’) is a morphism of groups. Equivalently: G is a covariant functor from the category
of k-algebras to that of groups, whose underlying functor to the category of sets is represented by an
affine k-scheme of finite type. Morphisms (G; — G5 of linear algebraic groups over k are morphisms of

functors. By Yoneda’s lemma they are the morphisms of k-schemes G; — G that are compatible with
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the group laws. Also by Yoneda, the group structure of the G(A) comes from a morphism of k-schemes
G X, G — G. The k-algebra H has the structure of a Hopf algebra. Note that we do not demand that GG
is reduced as k-scheme; this is automatically so if £ D @, and then G is smooth over £, that is, G is a
non-singular variety.

A few examples. First of all we have the GL,, 5, sending A to the group GL,,(A) of automorphisms of
the free A-module A", which we can also see as the group of invertible n by n matrices with coefficients
in A. For n = 1 we have GL,, , = G,y,. Let us show the representability. To give an element of GL,,(A)
is to give two elements a and b in M,,(A) with ab = 1, hence the k-algebra k[x,y]/(xy — 1) with 2n?
variables and n? equations does the job. More generally we have, for V a finite dimensional k-vector
space, GL(V), sending A to Aut4(A ® V') (automorphisms of the A-module). Actually this functorial
approach makes works for arbitrary k-vector spaces, even if GL(V) is then not representable.

Our first aim is to show that every GG can be embedded as a closed subgroup scheme of some GL,, .

This we can do by showing that G has a finite dimensional faithful representation.

4.2 Representations are locally finite

A representation of G is a k-vector space V' together with an action by G, that is, for each k-algebra A, an
action of G(A) on A®, V, functorial in A. (If V' is finite dimensional then this corresponds to a morphism
G — GL(V).) Such a V is then automatically locally finite: each finite subset of V' is contained in a
finite dimensional subspace WW of V' that is stable under the G-action. Let us prove that. For each A, each
g in G(A) = Homy_a1,(H, A) arises by g: H — A from the universal point ide: G — G, hence the
action of G on V is determined by the automorphism of the H-module H ®, V attached to ids, which is
determined by the k-linear map
a:V—-o>H®,V—H®,V.

Explicitly, for g € G(A), let g*: H — A be the corresponding morphism of k-algebras and let v be in
V,then g-(1 ® v) = (¢* ®idy)(av) in A ®; V. We see that a subvector space W of V' is G-stable if and
only if (W) C H @, W.

Let now v be in V. We produce a finite dimensional /' C V' that is G-stable and contains W. Let
(hi)ier be a k-basis of H. Then there are unique v; in V, almost all zero, such that a(v) = Y. h; ® v;.
Then W := ). k-v; has the required properties. Here is the computation. We let g; and g, in G(H @, H )
be given by gj: h — h® 1 and ¢g5: h — 1 ® h. Then we have go¢g; in G(H ®; H). We write
wh; = Zj,l rijih; @ hy with the 7; ;; in k, where p1: G X G — G is the multiplication map. Then we
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have:
g (1®1e0v) Zh R1® v

gr(gr-(1@1@0)) = Zhi ® (g2-(1® v7))

(9291)‘(1®1®U):Z((9291) hi) ® v; = Zh]zh ® h @ v;

% 2,7,

— Z?“j,i,l hz & hl X v = Z hz ® (Z Tjil hl X ’Uj)
i jil

i7.j7l

hence we conclude that for each 7 we have

1®Uz Z?‘]”hl(@’l)]

Hence indeed W is G-stable. (It contains v tautologically, but let us write it, because of e € G/(k), hence

v=-ev=>(eh)v;)

4.3 Embedding in GL,,

Let G be a linear algebraic group over a field k. Let H := O(G). By definition H is a finitely generated
k-algebra. It has an action by GG X, GG by translations on both sides. Let us consider the action of G by
right translations. For k — A, g € G(A) gives an automorphism of A-schemes G4 — G4, ¢ +— ¢'-g (¢’
in G(A’) with A — A’ say), and therefore an automorphism (-g)* of A-algebras H4 — H 4 (we denote
now Hy = A ®; H). This is a faithful action: if g in G(A) acts trivially, then g is the identity element.
Let V' C H be a finite dimensional (G-stable subspace that contains a set of generators for H as k-algebra
(exists by local finiteness of the representation). Then we have a injective morphism of k-group schemes
G — GL(V), sending g in G(A) to (-g)*|v. We show that it is a closed immersion (this results from
a generality: the image of a morphism of linear algebraic groups is closed, but we still show it). Let
(vi)ier be a basis for V. Write a(v;) = > hij ® v;. Then G — GL(V) = GL, corresponds to
klz,1/det(x)] — H, x;; — h, ;. Hence the h; ; are in the image. One checks that a: V' — H ®;, V is
the inclusion V' — H followed by u*: H — H x H maybe switched). Hence we have v; = >, h; j e*v;,
hence the v; are in the image of k[z, 1/ det(z)] — H, hence k[x, 1/ det(x)] — H is surjective.

4.4 Closed subgroups are stabilisers of lines

Let GG be a linear algebraic group over a field £ O Q. Let H be a closed subgroup scheme of Gz, and V'
a finite dimensional faithful representation of G. Then there exists a line L in some finite dimensional
representation of G of the form 7" = @,;(V®"™ @ (V'V)®™), such that H is the stabilizer of L (v denotes
the collection (n;, m;);).

Proof. First of all, we may and do suppose that G = GL(V'). The idea is now the following: let G
act on itself by right translation; then G acts on O(G), and H is the stabilizer of the ideal [j; then use
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that [ is finitely generated, and that O(G) is locally finite. Let us first write down what O(G) is, as a
G-module via right translation on G. Well, G = GL(V') C End(V'), hence

O(G) = O(GL(V)) = O(End(V))[1/ det] = Sym,(End(V)¥)[1/ det] = Sym, (V)[1/ det],

where the last equality comes from the fact that End(V')¥, as G-module given by right translation on
End(V), is simply V¢, where d is of course the dimension of V' (note that the G-action on End(V)Y
extends to an End(V)-action and makes End(V")" into an End(V')-module, and each such module is a
direct sum of a number of copies of /). Also, note that det is in Sym*(End(V)Y), and that we have
g-det = det(g) det. The scalar subgroup G,, of GG induces a Z-grading on O(G). We have

O(G) = O(End(V))[1/ det] = O(End(V))[2]/(z- det 1),

hence:
O(G); = | OEnd(V));gdet ™
j

and (note that we use k O Q to see Sym’ as a submodule of @’ in stead of a quotient):

O(End(V)); = Sym*(End(V)") = Sym’ (V%) c (VH)® = (V&)4
d
k- det = /\ V' is a quotient of V¥,

d
kedet™ = (/\ V)Y (VY)*

This describes O(G) as G-module. Let fi, ..., f,. be a finite set of generators of the ideal Iy of O(G).
Let W C O(G) be a finite dimensional sub-G-module containing the f;. Then H is the stabilizer of the
subspace Iy N W of W, hence of the line A" (I " W) C A\" (W), with n = dim(/z N W). Now note
that W is a subrepresentation of a representation of the form @,;(V®" @ (V)®™). Hence /\" W, being

a submodule of W®" is of that form too. O

4.4.1 Remark. A subgroup H such that G/H is not quasi-affine cannot be the stabiliser of an element
in a representation of (G, because the orbits of G in representations of GG are quasi-affine. This happens

for example if G/ H is projective and of positive dimension.

4.4.2 Remark. If we allow subquotients of the @;(V®™ @ (VV)®™i), then we can drop the hypothesis
that k is of characteristic zero.

4.4.3 Remark. If H contains the scalars in G = GL(V/), then one can take L to be in some representation
of the form (V¥™)™. To prove this, consider the Zariski closure H of H in End(V'), and use that it is a
cone. The ideal I of H is then positively graded, and for all 4 sufficiently large we have that H = Z(I;)
(standard argument in projective spaces, vanishing of H' (P~ I,)).
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4.4.4 Example. Just for fun, let us look at some examples in G := GLjy. The Borel subgroup
B := {(§*)} is the stabilizer of the line generated by (1,0) in V' := k2. The subgroup {({*)} is
the stabilizer of k(1,(1,0)) in k @& V. The subgroup {(§ 1)} is the stabilizer of k(1,(0,1)*) in k & V*.
The subgroup {(§ )} is the stabilizer of k£((1,0), (0,1)) in V@& V. The subgroup {( 4 ?)} is the stabilizer
of the two-dimensional subspace of the ((z,0), (0,y)) in V & V; note that the proof above gives the same
result. Finally, the trivial subgroup {(§ ¢)} is the stabilizer of (1, (1,0),(0,1))ink @V @ V.

4.5 Embedding in sums of the regular representation

Let (G be a linear algebraic group over a field &, and let V' be a finite dimensional representation of GG. For
[:V = kinV¥andvinV,let f;, € O(G) = Hom, (G, A} ) be given by: forall k — A forall g in G(A),
fin(g) = l(g-v) in A. Of course, f;, is determined by its value on the universal g = id: O(G) — O(G),
and we have

V-5 0@) @,V 0G), v fia

Each such a composition (id ® 1) o « is a morphism of representations of G, if we let G act on O(G) by
right multiplication on G. For all £ — A and all ¢; and g, in G(A) we have

fl,gzv(gl) = 1(91(92v)) = ((9192)v) = f1.0(9192)-

By taking /1, .. .,l4 a basis for V'V, we get an embedding of V in O(G)? (note that f;,(1) = I(v), hence
the map is injective).

We could also note that we have just shown that Homg (V, O(G)) is the same as Homy(V, k) (the
map in the other direction is ¢ — (v — (¢v)(1))), hence O(G) is induced from the trivial representation

of the trivial subgroup.

4.6 All representations from one

Let G be a linear algebraic group over a field k, and V' a finite dimensional faithful representation. We
have seen that O(G) is a union of subrepresentations that are subquotients of &;(V®" @ (V'V)®™), It
follows from this and the existence of embeddings in sums of copies of O(G) that every finite dimen-
sional representation of G is obtained from V' by the following operations: direct sums, tensor products,
duals, subrepresentations, quotients. Also: it is a subquotient of some @;(V®™ @ (V'V)¥™), because the
collection of subquotients of such 7"’s is stable under &, ®, (-)¥ and subquotients.

Here is why. In any abelian category a subquotient of a subquotient is again a subquotient (the square
1s cartesian):

M M M3

o

MQ <—<JW?,

|

M,
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A subquotient is a “quotientsub’: consider for M, M; and M, the push-out, that is, the quotient of M by
ker(M; — Ms). A subquotient of a & or @ of 7"’s or of a dual of a 7" is again one such.

4.7 Quotients G/H

Let GG be a linear algebraic group over a field k, and H a closed subgroup scheme. Let V' be a finite
dimensional representation of G and L C V a line such that H is the stabiliser of L (for all k — A,
H(A) = G(A),; for A = Ek[e] this implies that Lie(H) = Lie(G)). Let X be the orbit of [L] in
P(V'), the projective space of lines in V. It is a locally closed subscheme, with an action of G. Assume
now that X is reduced (certainly the case if G is reduced). Then X realises the quotient G/ H (that one
could imagine as a sheaf on the fppf-site schemes over £, in particular, G — X is faithfully flat, and an
H-torsor). If H is a normal subgroup, then G/ H is again a linear algebraic group over k. If H is smooth
over k and G is reduced, then G — X is smooth and we have T'x ([L]) = Lie(G)/Lie(H).

4.8 Jordan decomposition

Let k be a perfect field, G a linear algebraic k-group, and g € G(k). Then there are unique g, and g,
in G(k) such that ¢ = ¢s9, = gugs, gs is semisimple (diagonalisable in any representation of G, or
equivalently, on O(G) or on one faithful representation) and g, is unipotent (in any representation of GG
its only eigenvalue is 1, or equivalently, g, — 1 is nilpotent in all finite dimensional representations). To
prove this: let G act on O(G) by right translations. Decompose p(g) = su, with s semi-simple and u
unipotent and su = us. (In terms of p(g) = d +n, s = d, u = 1 + d~'n.) Then s and © commute with
the action of G on O(G) by left translations, and are k-algebra morphisms, hence are right translations
of uniquely determined g, and g, in G(k) (the only morphisms of varieties G — G commuting with the
left-action by G are the right translations from G(k)).

4.9 Representations and Tannaka

Let GG be a linear algebraic group over a field k. Let Rep(G) denote the category of representations of
G on finite dimensional k-vector spaces. The Hom-sets in this category are finite dimensional k-vector
spaces, and Rep(G) has direct sum, tensor product, dual, and it is abelian. We have the forgetful functor
F from Rep(@) to k-vector spaces. A theorem named after Tannaka says that every automorphism of F
that is compatible with the tensor product is given by a unique element of G(k). Let us make this more ex-
plicit. Let v be such an automorphism. This means that for every V' in Rep(G) we have a(V') in GL(V),
such that for every morphism f: V' — W in Rep(G) we have o(W)o f = f o (V). Compatibility with
tensor product means that for V and W in Rep(G) we have a(V @, W) = a(V) @ a(WW). For the trivial
representation k this implies that (k) = 1 (k®yk is isomorphic to k and therefore a(k)? = a(k)). For V
in Rep(G) it implies that (V") = «(V)V~! (exercise). Let us now prove that there is a unique element
g in G(k) such that for all V" we have o(V') = (g-). Let V' be in Rep(G). Let W be a finite dimensional
faithful representation of G, then V' @ W is also one, and a(V & W) = a(V) & «(W) (consider the
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injections of V' and W into V @& W). Let L be a line in some representation 7" of GL(V & 1) obtained by
tensor product, direct sum, dual, subrepresentation, quotient, such that G is the stabiliser of L. Then the
inclusion L — T is a morphism in Rep(G) and therefore «(7") stabilises L, and therefore a(V @& W) is
in G(k). In fact, one can recover the Hopf algebra O(G) from Rep(G), and therefore G itself (see §2.5 in
Springer’s book). As we have seen that for all V in Rep(G) we have Hom¢(V, O(G)) = Homy (F'V, k),
it is not surprising that O(G) can be reconstructed from F'. But it also works like this: for every k — A,
one has A®;Rep(G) (keep the objects, tensor the Hom’s with A), and Fy: A®,Rep(G) — A®k—Vect
(the category of free A-modules), one will have G(A) = Aut(Fy), I guess.

4.10 Representations of tori

Let us first consider Rep(Gy,;,). It is a very nice exercise to show that to give an action of G, on a
k-vector space V' is the same as giving a Z-grading of V: V' = @,z V;, such that G,,;, acts on V; via the
1th power map.

More generally, for T" a split torus, that is, 7 = Hom(X, G,,;,) with X a free Z-module of finite
rank, to give an action of 7" on a k-vector space V' is to give VV an X-grading: V = er « V4. Note that
we have Hom(T, G,,;,) = X.

A k-torus is a linear algebraic group 7' such that 73 is a split torus. One puts
X*(T) := Homg(T%, Guy), and X, (T') := Homy(Gpy, T3). These are free Z-modules of rank dim(7"),
with action by Gal(k/k), called character and co-character group, canonically duals of each other. The
action of Gal(k/k) induces injections Gal(k'/k) into GL(X*(7T)) and GL(X,(T)), with k — &’ finite
separable, called the splitting field of 7. To give an action of 7" on a k-vector space V' is to give an X*(7T')-
grading Viy = @yex+(1)Vy such that for all y in X*(7T") and all o in Gal(k’/k) we have oV}, = V..

4.11 Reductive groups in char zero

Let k be a field of characteristic zero, and let G be a connected linear algebraic group over k. Then G
is smooth over k. The k-group G is called reductive if Rep(G) is semi-simple: every V' in Rep(G) is
a direct sum of simple ones; this is a property of V' as a Lie(G)-module, and it is invariant under field
extensions &k — k' (indeed, the formation of End¢ (V) = Endpie) (V) commutes with £ — %', and
a finite dimensional k-algebra A is semi-simple if and only if A; is; we use here that £ D Q). This is
equivalent to the condition that G contains no nontrivial normal subgroup isomorphic to G,;,, where G,
is the additive group, for all k — A, G, (A) = (A, +); it is represented by Aj. Or in other words: the
unipotent radical of G is trivial (this plus smoothness is the definition over algebraically closed fields of
arbitrary characteristic).

Examples. G, is not reductive, and neither is the tautological semi-direct product of G,;, by G,:

(¢ 1)- Some positive examples are GL,,, special orthogonal groups, symplectic groups,. ..
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4.12 Compact forms

Let GG be a connected linear algebraic group over C. Then G is reductive if and only if there exists an
R-model Gl of G over R (that is, G is isomorphic to (Gr)c¢), with Gg(R) compact (for the Archimedean
topology). Let us prove one direction: for G over R, linear algebraic and connected, with G(R) compact,
G is reductive (and we already know that G is reductive iff G¢ is). Let V be in Rep(G). Let (-, -) be
an inner product on V. Then averaging over G(R) gives a G(R)-invariant inner product on V. As GG
is connected, G(R) is Zariski dense in G, and the inner product is G-invariant. Then for W C V a
subrepresentation of V, the orthogonal W is also a subrepresentation, and therefore V. = W & W+ as

GG-representation.

4.13 Twisting

Let k& — [ be a finite Galois extension, and let I := Gal(l/k). Let X and Y be k-schemes, and suppose
that f: X; — Y] is an isomorphism of [-schemes. Then, for every o in I', we have o(f): X; — V], the
pullback of f under Spec(c): Spec(l) — Spec(l). Then f comes from k if and only if for all 0 € T’
we have o(f) = f. Anyway, we get two right-actions of I" on X; — Spec(l), covering the tautological
action of I" on Spec(l): one is where o acts as idx X Spec(o), and the other is by transporting the action
by idy x Spec(c) on Y; to X; via f: f~! o (idy x Spec(c)) o f. Clearly, f is an isomorphism from
X; — Spec(l) with the second action to Y; — Spec(l) with its own action by idy x Spec(o). Therefore,
the quotient of X; by the second action exists, and is X; — ¥; — Y. Assume now that X is quasi-
projective over k. Then for every right-action of I" on X; — Spec(l) the quotient X; — X /I exists, and
gives what we call the twist of X by that action. In this way, one gets all k-schemes Y such that Y is
isomorphic to X; as [-schemes. One can make a bijection between such actions and the set of 1-cocycles
of I' with coefficients in Aut,;(X;), the group of automorphisms of X, as [-scheme (Galois cohomology).
A simple case is where [" acts from the right on X as k-scheme. We give an example of that.

Let 7 be the automorphism of the R-scheme GL,, g given by g — g"~!, the inverse of the transpose;
then 72 = id. Then we let Gal(C/R) act (from the right) on GL, ¢ — Spec(C), by sending the complex
conjugation ¢ to 7 X Spec(¢). Then, for all R — A, the A-points of the quotient are the ¢g in GL,,(C®g A)
such that

g=7""
That is, the quotient is the R—group U, g of unitary n by n matrices, stabilising the standard hermitian
inner product on C". As U, g(R) is compact, U, is reductive and therefore GL,,c = (U,g)c is
reductive, and therefore GL,,  is reductive.

4.14 Reductive groups and root data

Reductive groups can be described in terms of root data (and this works over any separably closed field
(one needs a split maximal torus)). Let us show how this works in the simplest example: G = GL,, .
We let T = G, be the diagonal torus in G; t = (t4,. .., t,) corresponds to the diagonal matrix diag(t)
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with ¢;; = t;. We let X*(T') be the character group of 7'. It has Z-basis the e;: T" — G,,;,, projections
on the factors. The action of GG on itself by conjugation restricts to an action by 7" on (G, hence on

Lie(G) = M,,(k), which decomposes as Lie(G) = > () Lie(G)y. The computation

xeX*
(diag(t)-a- diag(t)’l)m = tia; t; !
shows that Lie(G)y = Lie(7"), and

Lie(G) = Lie(T) & @ Lie(G)a, R={ei—¢;:i#j}, Lie(Gee, = k-Eyj.

In particular, if & # 0 and Lie(G), # 0, then Lie(G), is of dimension one. The subset R of X*(T')
is called the set of roots of GG with respect to 7". Note that it is symmetric: for each o € R, we have
—a € R. Also, for « and in R with o # %3, o and [ are linearly independent (reducedness of the root
datum). For each root «, there is an injective morphism of group schemes u,,: G,, — G, unique up to
k>, such that forany k — A, any a € Aandt € T(A),

tug(a)t™! = us(a(t)-a) in G(A).

For a € R, the subgroup scheme (u,, u_,) generated by u, and u_, is isomorphic to SLo . (in general
it can also be isomorphic to PGLy ;) and 7' N (u,, u_,) is isomorphic to Gy, uniquely up to sign, and
there is a unique cocharacter denoted " in X, (T") factoring through (u,,u_,) such that « o ¥ = 2 in
End(G,;,) = Z. For a € R, let

Sa: X*(T) = XX(T), x+—x— (', x)a

denote the symmetry given by a and «V: it is the identity on (o), and sends o to —a. Then one can
check that the s, preserves R, R, and W, and hence

(X*(T), R, X.(T), R, V),

where RY = {a¥ : @ € R}, and ¥V: R — RY is the bijection o — «", is a root datum. For any such
datum there exists a reductive group scheme over Z, called a Chevalley group scheme, that gives by the
above recipe, the root datum in question. It can be built up “by generators and relations” (first Borel
group, then by Bruhat decomposition G itself). The subgroup of Aut(X*(7")) generated by the s, is
called the Weyl group of (G, T'), or of the root datum. Note that the notion of root datum is symmetric:
if (X, R, X"V, R, W) is aroot datum, then so is (X, R¥, X, R, U~ 1).

If G and G’ are reductive, over k, with split maximal tori 7" and 7", and if ¢ is an isomorphism from
(X*(T), R, X.(T),RY,¥) to (X*(T"), R', X,(T"), R"”, W), then there is an isomorphism ¢ from G to
G’ sending T to T" and inducing ¢. Such a ¢ can be made unique by imposing “épinglages™ (pinnings)
on the root data and on the groups. See Cor. 5.1 in Exposé XXIII of SGA3. For completeness, a pinning
of (G, T, B) is a collection of u,, for each a € A, the set of simple roots specified by B. Multiplication
in G induces dualities between Lie(G),, and Lie(G)_,, hence from the u,, one gets u_,.
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4.15 Semi-simple, adjoint, derived, simply connected

Let us say something about the structure of reductive group schemes. Let GG be a reductive group scheme
over a field k, and let Z be its center. If T is a split maximal torus of G (of course, this does not
necessarily exist), and R is the set of roots, then Zg = Nyer ker(a). The maximal torus C¢ of Z is the
intersection of the ker(5), 8 in X*(T)NY_ .5 Q-a. Note that Z is not necessarily a torus, for example
for G = SL,, Zg = p,, which is not reduced if & D F, with p|n. The reductive group G is called
semi-simple if Z, is finite. This is the case if and only if Z-R C X*(T') is of finite index.

There are two ways to get a semi-simple group from a reductive group. The first is to divide out the
center: G* := G /Zq; G* is called the adjoint group of G. If £ O Q then G is the image of G acting on
Lie(G). The group scheme G is again reductive, its root datum of G*? (w.r.t. a split torus) is obtained
from that of G by replacing X*(7") by the submodule spanned by R, and the rest accordingly. The second
construction is to take the derived subgroup: G is the subgroup scheme generated by commutators. It
is generated by the u,,, and its torus is generated by the o¥. If GG is semi-simple, then its simply connected
cover G is obtained by replacing X, (T') by Z-R" and adapting the rest accordingly.

For G reductive, the morphism Cg X G4 — G is an isogeny (surjective, finite kernel), and one says

that G is almost a product of Cg and G9°*. Similarly, Gder — G4 are the extremes in the isogeny class
of G4 (well, I only consider isogenies with kernel in the center). If G — G’ is a central isogeny, 1" and
T’ maximal tori of G and G’, with T'— T", we have X*(T") — X*(T), injective, and so we consider the
X*(T) as lattices in one Q-vector space, and similarly for the X, (7).

4.16 Subgroup schemes containing 7', Borel groups, simple roots

Let GG be reductive over k, T a split maximal torus, R the set of roots. Then the map that sends smooth
subgroup scheme H of G containing 7" to the set of o € R such that Lie(H), # 0 is an injection to the
power set of R.

Let B be a Borel subgroup containing 7' (a smooth subgroup scheme, minimal parabolic), in GL,,
typically the upper triangular elements). Then the set of @ € R such that Lie(B), # 0 is called the
set of positive roots RT attached to (G, T, B). It has a subset A, called the set of simple roots, with the
property that each o in R* can be uniquely written as a sum of elements of A. For GL,,, these are the
e; — €;+1. The set of B containing 7' is a torsor under the Weyl group. Each B has an opposite B~ such
that BNB~ =T.Then R=RT"UR".

One attaches to A a Dynkin diagram: the graph with set of vertices A, with distinct vertices « and
S connected if and only if («¥, ) # 0, and with the function length from A to {1, 2,3} that sends each
a to its “length”, determined by length(«) (", 5) = length(5){(S", a), for all & and § in A. Root data
that are simply connected or adjoint are uniquely determined by their Dynkin diagram.

Here is the list of all connected Dynkin diagrams coming from simply connected (almost) simple
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groups, copied from SGA3, Exp. 21.

ol Ll A s, n>t
s 3 232 1 B, SOm, n>2
LS SN S SN S Cn, Spy,, n>3
|
s Lt p, SO, n>4
|
(S S L S S NP O
L1 2 2
3 G

4.17 Decomposition of adjoint or simply connected groups

Let (G be reductive over a field k£ = k*°, and suppose that G is adjoint or simply connected. Then G is a
product of (almost) simple factors, each corresponding to a connected Dynkin diagram. Over a general
field k, G, is a product G = [], G;, with each G; (almost) simple (over k), and such that G; yseo is a
product of (almost) simple groups over k°°P that are all isomorphic (G; is isotypical). In other words, G;

is a rwist of a product of split almost simple groups over k that are all of the same type.

4.18 Galois action on Dynkin diagram

Let G be reductive over a field k. Then there exists a maximal torus 7" of GG, not necessarily split (7% is
maximal in Gy, this is a theorem of Grothendieck, SGA3, Exp.XIV); Gal(k*P/k) acts on X*(7'), on R
(because Lie(G) is in Rep(T")), on the root datum of (G, T') over k*P. Let B be a Borel subgroup of Gsep
containing Tyser, and A C R the set of simple roots. For o in Gal(k**?/k) we have o(B), o(A), and
o: A — o(A), and there is a g in G(k**P) that conjugates (Tjser, 0(B), 0(A)) to (Tyser, B, A) (we could
also take an element of the Weyl group, which is moreover unique). This is the action of Gal(k*P /k)
on A.

Exercise: show that the complex conjugation acts on the Dynkin diagram A,,_; of SU, g as the

reversion.

4.19 Reductive group as stabiliser of element

We have seen above that for £ O Q each closed subgroup scheme G of GL(V) is the stabiliser of
some line L in a suitable k-vector space W obtained from V' by direct sums, duals and tensor prod-

ucts. Assume now that GG is reductive. Then, as representation of G, we have W = L & W/,
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and WY = LY & (W)Y, hence G is the stabiliser of any non-zero element of the line L ® LV
in the representation W ®; WY of GL(V'). Exercise: given lines L C V and M C W, then
(GL(V) x GL(W))zans = GL(V)1 x GL(W ).

4.20 Simply connectedness over R and connectedness

Let GG be a connected linear algebraic group over R, semi-simple, and simply connected. Then G(R) is
connected. Reference: Borel-Tits, Cor. 4.7, Publ. Math. THES, 1972, “Compléments a I’article Groupes
réductifs”. Deligne says ‘“Puisque G (k,) est connexe...” right after Cor. 2.0.7.

4.21 Compact over R and connectedness

Let G be a connected linear R-algebraic group with G(R) compact. Then G(R) = G(R)*. Let me
give the argument from Platonov-Rapinchuk, page 121, for this. Let g be in G(R). We have the Jordan
decomposition g = gsg,, with g, and g, in G(R). As G(R) is compact, g, = 1. Hence ¢ is contained
in some torus 7" in G (Springer, 13.3.8: every semi-simple g in G(R) is contained in a maximal torus 7’

of G). As T(R) is compact, it is connected connected (it is a product of circles).

5 Mumford-Tate groups
For h: S — GL(V) a Q-HS, A(S) is a closed subgroupscheme of GL(Vk) = GL(V )g.
5.1 Definition. We define:
MT(V) = m{H : H € GL(V) closed subgroupscheme (over Q!) such that hA(S) C Hg}.

Hence MT(V), also denoted MT(h), MT(V, h), is the smallest algebraic subgroup of GL(V') such
that h: S — GL(Vg) factors through MT(V)g. It is connected, because S is (if h(S) C Hg, then
h(S) C (H°)g). Itis called the Mumford-Tate group of (V, h).

5.2 Proposition. Another description is the following:
Zar
MT(V)(C) = <U{a(h(S((C))) o€ Aut((C)}> C GL(Ve).

Proof. To prove this, one observes that the right hand side is the Zariski closure of an Aut(C)-
invariant subgroup of GL(V¢), hence a closed subgroup of GL(V¢), “defined over Q”, meaning that
it comes from Q by base change. More precisely: let I be the ideal of the right hand side in
O(GL(V¢)) = O(GL(V))c; then [ is an Aut(C)-invariant sub-C-vector space, and therefore gener-
ated by Ip := I N O(GL(V)), and I is the ideal of MT (V). In fact: one does not need to take Zariski
closure here (use Prop.2.2.6 of Springer’s LAG). UJ
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Now I copy from Moonen’s notes. The key property of MT(V') is that in any tensor construction obtained
from V it cuts out exactly the sub-HS’s. Notation: for v = {(a;, b;) }; a finite collection of pairs of integers
a; > 0,b; > 0, we let

TV = @ V& g (VV)®P (called “tensor space obtained from V)

which inherits a HS from V', and we have

S — MT(V)g>GL(V)z — GL(T")g.

5.3 Proposition. Let V' be a Q-HS, T" as above. Let W C T" be a subspace. Then W is a sub Q-HS if
and only if it is M'T(V')-invariant. Lett € T". Thent is a Hodge class if and only if it is M'T (V') -invariant.

Proof. Let H = GL(V)y, the stabiliser. Then H is a closed subgroupscheme of GL(V'). Suppose
that W is a sub-HS. Then W4 is S-invariant, hence h(S) C Hg, and hence MT(V) C H and W is
MT(V)-invariant. Suppose that W is MT(V)-invariant. Then Wy is S-invariant because S acts on 7"
via MT(V ). For the second assertion, apply the first result to 7% := Q(0) @ T", and note that ¢ is a
Hodge class if and only if Q-(1,¢) € T" is a sub-HS. 0J

5.4 Example. Let A be an abelian variety over C, and let V' = H;(A,Z). Then
End(A) = Endz(V)MTV) = (VY @ V)MTV),

Let £/C be an elliptic curve, V' = H;(E,Q), and MT(E) := MT(V). If End(E) = Z, then
MT(E) = GL(V). If End(E)g = F, an imaginary quadratic extension of QQ, then MT(E) = TF,
with T = RGSF/QGmF.

5.5 Corollary. LetV be a Q-HS. Then
MT(V) =({GL(V)y : L = Qt witht € T" N (T*)&¥, v varying}

Proof. For each such v, and L, L is a sub Q-HS, hence MT(V')-invariant. Hence MT(V/) is contained
in the right hand side. Now we prove equality, by showing that MT (V') is one of these stabilisers. As
MT(V) is a subgroup scheme of GL(V'), and our base field is of characteristic zero, it is the stabiliser of
aline L in some T". Then Ly is S-invariant, hence S acts on it via a character S — G, z — (2Z)? for
some p in Z. O]

5.6 Corollary. LetV be a Q-HS. The functor
Rep(MT(V)) — Q-HS, W (W,h:S — MT(V)g — GL(W)g)

is fully faithful, and its essential image is the full subcategory (V)® of Q-HS of objects isomorphic to
subquotients of T ’s.
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Proof. We prove the fully faithfulness. Let W, and W, be in Rep(MT(V')). Then

Homg.ys (W1, Wa) = Homg(Wy, Wa) N (Homg (Wy, Wa)g)® = Homg (W, Wy)MTV)
= HomRep(MT(V))<W17 WQ)-

For the second equality, note that if ¢ is in the LHS, then GL(V),, is a subgroup over QQ containing A (S)
over R, and that if ¢ is in the RHS, then ¢ is S-invariant because S acts via MT (V).

Now the essential image. As V' is a faithful representation of MT(V), every W in Rep(MT(V)) is
isomorphic to a subquotient of some 7", and by the Proposition, the subquotients are the same in Q-HS
and in Rep(MT(V)). O

5.7 Corollary. LetV be a polarisable Q-HS. Then MT(V') is reductive.

Proof. The group MT(V) is connected, and Rep(MT(V)) = (V)® is semisimple, because all W in
(V)® get a polarisation from one on V.

Another proof is to show that a polarisation leads to a compact form over R. Let 1) be a polarisation
on V and let G be connected component of the algebraic subgroup of GL(V) of elements that preserve v
up to a multiple (the group of similitudes of /). Then we claim that 7 := inn(h(7)) is a Cartan involution
of G4, that is, the twist G9°7 of G over C by 7 has the property that G4 (R) is compact. By definition
of twisting, we have:

G (R) = {g € G*(C) : 7(g) = g} = {g € G*(C) : h(i)g = gh(i)}.

Let us show that such ¢ fix the positive definite hermitian form H: Vg x Vg — C given by
(z,y) — ¥(z,h(i)y). Note that GI° fixes ¢) because it acts on Q1) and has no nontrivial character.
So, for g € G¥"7(R) and x and y in V¢ we have:

H(gz, gy) = ¥(gz, h(1)gy) = ¥ (g2, h(i)gy) = ¥ (g7, gh(i)y) = ¥ (z, h(i)y) = H(z,y).

Hence G°*" is a subgroup of the algebraic subgroup of GL (V) that preserves H, and therefore G4 (R)
is closed in the unitary group of A which is compact.

It follows that MT(V') N G is reductive, and hence MT (V) is (it is an extension of a torus by this
intersection). O

5.8 Lemma. Let V) and V; be Q-HS’s. Then MT(V; & V5) is contained in MT (V) x MT(V4) and both
its projections are surjective.

Proof. Easy exercise. ]

5.9 Definition. Let A be an abelian variety over C. Then A is a CM-abelian variety if MT(A) is com-

mutative, hence a torus, because it is reductive.

5.10 Proposition. Let A/C be an abelian variety. Then A is isogeneous to [ [, A" with the A; simple
and mutually non-isogeneous. Then A is a CM-abelian variety if and only if for all i, End(A4;) is a field
of degree 2 dim A; over Q.
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Proof. Assume that MT(A) is a torus. Let B be one of the A;’s. Then MT(B) is a torus, because it is
a quotient of MT(A). Let V := H;(B,Q). Then End(B)g = Endg(V)MT®) is a division algebra; let
F be its center. Then MT(B) C T, and therefore End(B)g D Endg(V), hence dimp(V) = 1, and
dimg(F') = dimg(V) = 2dim(B).

On the other hand, assume that for all i, F; := End(A;)q is a field of degree 2 dim A; over Q. Then
for all i, MT(A;) C Tr,, and MT(A) C [, MT(A4;) is a torus. O

5.11 Definition. (extended Mumford-Tate group) Sometimes it is convenient to consider a slightly
larger Mumford-Tate group, to not only consider 7%’s and their subquotients, but also Tate twists. For V'
a Q-HS, we define

MT#(V) := MT(V @ Q(1)) € MT(V) X G-

Then Rep(MT#(V)) is the full subcategory of Q-HS consisting of subquotients of the T (r).

6 Motivation for Deligne’s definition of Shimura datum

At this point we can really start working on the title of my series of lectures: Introduction to Shimura
varieties. Our goal is now to understand Deligne’s motivation for his definition of “Shimura datum”.

The starting point is that we have some very nice and important examples of quotients I'\ X of her-
mitian symmetric domains by discrete arithmetic groups, that have an interpretation as a moduli space
and play an important role in number theory (Langlands program, for example). The first example is
SLo(Z)\H with H the complex upper half plane, on which SLy(R) acts transitively. It is the mod-
uli space of elliptic curves. Of course, congruence subgroups are also essential. The next example is
Spy,(Z) acting on H, the Siegel half space consisting of symmetric g by g complex matrices 7 such that
3(7) is positive definite. This gives the moduli space A, ;(C) of principally polarised complex abelian
varieties of dimension g. Inside (or better, “almost” inside) A, ;(C), one finds many more examples
(Hilbert modular varieties, or more generally subvarieties parametrising abelian varieties with certain
endomorphisms). Shimura showed in many cases that such quotients can be defined over number fields,
in the 1960’s. Deligne, in his Bourbaki lecture “Travaux de Shimura”, 1971, reshaped and generalised it,
into what is now called the theory of Shimura varieties.

As complex abelian varieties correspond, via A — H;(A,Z), to polarisable Z-Hodge structures of
type (—1,0), (0, —1), and subvarieties of A, ; that we are interested in are given in Hodge theoretical
terms (classes being of type (0, 0)), the idea is to study the problem in terms of Hodge structures. For
example, H can be seen as the set of complex structures on the fixed R-vector space R?, or, equivalently,
as half of the set of Hodge structures on R? of type (—1,0), (0, —1) (in stead of viewing H as the set of
lattices in C with basis (1,7)): V>t C C?is the line {(z,72) : € C}. Similarly, Hj, is the set of
Hodge structures on R? of type (—1,0), (0, —1) for which the standard symplectic form ¢ on Z is a
polarisation.

Let (V;);cs be a finite set of finite dimensional R-vector spaces, and let (s;) e be a set of elements in
R-vector spaces obtained from the V; by direct sum, duals and tensor products. We are then interested in
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the set S of Hodge structures (h;: S — GL(V;));e; on the V; such that for all j, s; is of type (0, 0), that
is, is S-invariant. Note that the set of Hodge structures on an R-vector space V, such that the V7 have
fixed dimensions, form one orbit under GL(V") (compose by inner automorphisms, two such (V, h) are
isomorphic as representations of S). This gives .S the structure of the set of real points of an R-scheme
that is locally of finite type.

For example, for abelian varieties of dimension g, we would take V; = R?9, and V, = R, and
s =1: V1 ®V; — V, the standard symplectic pairing, that is, s € V}Y ® V}Y ® V4, and consider the set of
hy:S — GL(V}) and hy: S — GL(V3) for which V; be of type (—1,0), (0,—1), V5 of type (—1, —1),
and s is of type (0, 0), that is, ¢ is a morphism of Hodge structures.

Back to the general case. Let now G be the algebraic group over R obtained as intersection, in
[Lic; GL(V;), of the stabilisers of the s;:

G:=) (H GL(%))S .

jeJ \iel .

Then S is the set of h = (h;);er suchthat h: S — [],.; GL(V;) factors through GG. Hence:

i€l
S = Hom(S, G)

The idea is now to consider G as the primordial object, and not the V; and s;. An element & in Hom(S, G)
gives each representation 1/ of G a Hodge structure, compatible with morphisms of representations and
with tensor products. Conversely, each such compatible system of Hodge structures on Rep(G) comes
from a unique morphism h: S — G, because for each z € S(R) = C*, the action of z on the objects
in Rep(G) is an automorphism of the forget functor from Rep((G) to the category of R-vector spaces
(Tannakian result). For 4 in Hom(S, G) we have wy,: Gur — G and p,: G — Ge.

So, let us forget about the GG above, and let now GG be a connected (I added this!) linear algebraic
group over R. As Sis a torus, the functor Hom(S, GG), sending R — Ato Hom(S 4, G 4), is representable,
by a smooth R-scheme that we denote Hom(S, GG), with the property that each connected component
is a G-orbit, for G acting by composition with inner automorphisms. Reference for conjugacy: SGA3,
Exp.IX, Cor. 3.3. For representability and smoothness: SGA3, Exp.XI, Cor. 4.2 Let X be a connected
component of Hom(S,G) = Hom(S,G)(R). Then X is a G(R)"-orbit. Let G; be the smallest
algebraic subgroup of G through which all & in X factor. Then G is a normal subgroup of G, and,
applying the same theorem again, X * is a G;(R)*-orbit.

Recall that variations of Hodge structure that come from via cohomology from geometry are po-
larisable, have holomorphically varying Hodge filtration and satisfy Griffiths transversality. Any V' in
Rep(G) gives a family of Hodge structures on X *: the fiber at h is (V, h). Therefore, Deligne imposes
the following conditions on X . For any V' in Rep(G):

(o) The weight decomposition V' = &,V" is independent of h € X*. (Equivalently: wy, factors
through Z.)

() There is a complex structure on X, independent of V, such that the Hodge filtration Fil*V- varies

holomorphically, and satisfies Griffiths transversality.

34



() For each n, there exists a )": V" ® V"™ — R(—n) that is a polarisation for all h € X .

And then he proves the following proposition, translating these conditions in terms of properties of G,
Gyand X ™.

6.1 Proposition. Assume that (o) is satisfied.

1. There is a unique complex structure on X such that for any V' the Hodge filtration varies holo-

morphically on X .

2. Condition (f3) is satisfied if and only if for one (equivalently, all, because these representations
of S are all isomorphic via the G(R)"-action) h € X, Lie(G) is of type (—1,1),(0,0), (1, —1).
If (B) is satisfied then the complex structure on Tx+(h) is given by the S*-action induced by
h: C* — G(R);, — Autg(Tx+(h)) factoring through C* — S, z — 2 /Z.

3. Condition (v) is satisfied if and only if G is reductive and for one (equivalently, all) h € X, the

involution Inn(h(i)) is a Cartan involution of G39.

Proof. We start with (1). Let V' be a faithful representation of . All representations of GG can be
obtained from V' by direct sums, duals, tensor products, and subquotients, hence it suffices to prove the
result for V. We consider the map ¢ that sends h € X T to the Hodge filtration plus weight decomposition
of V¢ that it gives. By condition (), this is a map from X to the homogenous GL(V¢, wy,)-space
H = GL(Vg,wy)/GL(Vg, 'l,Uh)Fi]}'LO, where hq is any element in X *, and where GL(V¢, wy,) denotes the
subgroup of GL (V) that preserves the weight decomposition (which is independent of h). It is injective
because the Hodge decomposition of V¢ at h is determined by the weight decomposition together with
the Hodge filtration. We will show that ¢ identifies X with a complex submanifold of H, which will
prove (1).

Let p: Lie(G) — End(V,wy,) be the derivative of p: G — GL(V,w). Let G act on itself by
inner automorphisms, and on GL(V, w;,) via p, followed by conjugation. Then p is a morphism of G-
varieties, and hence p is a morphism of GG-modules, and therefore, at each h € X, a morphism of Hodge
structures. Let h be in X . Then

Tx+(h) = Lie(G)/Lie(G),) = Lie(G)/Lie(G)%"

(these are R-vector spaces; indeed, the (0, 0)-part makes sense and is the right thing). The tangent space
of H at ¢(h) is

TH(¢(h)) = Lie(GL(V(c, wh))/Lie(GL(VC, wh)Fﬂ;) = End(V@, wh)/FﬂOEnd(V@, wh),

because to stabilise ¢(h) means stabilising the weight decomposition of (V, h) and the Hodge filtration
Fil} of (V¢, h), and
End(VZ)” = €  Hom(V»7,V7)
—p+p/=i

—q+q'=j
ptg=n=p’+q'

35



hence
Fil’End(VZ) = @5 Hom(V»7, V).
p'>p
p+q=n
p'+q'=n

We have a commutative diagram

Lie(G)/Lie(G)*%—— End(V, wy,) /End(V, wy,)*°

e T

Lie(G)¢/Fil’Lie(G)e— End(Ve, wy,) /Fil’End(Ve, wy,)

where the vertical arrows are isomorphisms of R-vector spaces because Lie(G) and End(V)? are Hodge
structures of weight 0: for W of weight 0 and p > 0 we have (W PP ¢ WP ~P)g — WP P an isomor-
phism. As a consequence, as ¢ is injective, the horizontal maps are injective.

This shows that, in a neighborhood of h, the map ¢: X+ — H factors through what is called the
open embedding in the compact dual X* = G(R)*/G(R);; — G(C)/G(C)pus, where G(C)pys is the
stabiliser in GG(C) of Filj, for its action on Lie(G)c. Note that G(C)/G(C)gys is a complex projective
variety; this embedding generalises H — P!(C) in the case of XT = H and G = GlLyg. In fact,
from the actions by G(R), G(C) and GL(V,w;,) and GL(V¢, w) on Lie(G) — End(V,w;,) and its

complexification, we get a commutative diagram

G(R)/G(R)—— GL(V, wp)/GL(V, wn)n

| T

G(C)/G(C)F11;l>—> GL(V((;, wh)/GL(V@, wh)pilz

where the vertical maps are open immersions. This clearly shows (1).

The proof of (2) is short. Griffiths transversality means that the image of d¢ is in
Fil 'End(Vg, wy) /Fil’End(Ve, wy,), and that means that Lie(G)c = Fil 'Lie(G)c. Now the second
claim. In the proof of (1) we have seen that T'y+(h) = Lie(G)/Lie(G)%°, and that the C-structure on

T'x+(h) is induced by the isomorphism of R-vector spaces
Lie(G)/Lie(G)*° = Lie(G)¢/Fil’Lie(G)c.

Now note that S acts, via h, on the right hand side by the character z — z/Z.

Then (3). Let V be a faithful representation of G. As in the proof of (1), if for V' and all n a ¥™
as in () exists, then this gives polarisations for all W in Rep(G). So let us assume that the i)™ are
as in (v), and deduce the conclusion of (3) (after that we will prove the converse implication). It was
already noticed that X is a G (R) " -orbit. Hence, for all hy € X, Inn(hy(7)) is a Cartan involution of
G4 if and only this is so for all h € XT. So we have ™ that are polarisations for all » € X*. Then
Y V™ @ V™ — R(—n), being a morphism of Hodge structures for all h € X, is S-invariant for all
h € X*. Hence ¥ is S'-invariant for all A € Xt (S! is the unit circle in C*). Note that forall h € X,
St acts trivially on R(—n). Let Gy be the smallest R-subgroup scheme of G through wich all &g,
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h € X, factor. Then all ¢)" are G>-invariant. Let now 4 € X . We show that 7 := Inn(h(7)) is a Cartan
involution of (55, that is, the group

G3(R) = {g € G2(C) : h(i)gh(i)™" = g}
is compact. For each n, the sesquilinear form
o Ve x Ve — €, (z,y) = @"(z, h(1)Y)
is hermitian and positive definite. For g in G3(R), and x and y in V¥ we have

Va9, gy) = " (g, h(i)gy) = " (g, h(i)gy) = " (g gz, 9~ ' h(i)g7)
=" (x, g7 h(i)g ) = " (x, g h(i)gh(i) " h(i)y) = " (x, g gh(i)y)

Hence all g in G}(R) fix all ¢7 and therefore G}(R) is contained in the product of the unitary groups
given by the ¢ and therefore G3(R), being closed in that product, is compact. Hence, for each h € X,
Inn(h(7)) is a Cartan involution of Go. Hence Gy is reductive.

Let us now consider the difference between G5 and G;. For each h € X, wy,: G,g — G factors
through Z4, and all w;, are equal. Hence G5 and the image of wy,, a central torus, generate Gy, and
therefore G54 — G4 is an isomorphism, and G| is reductive because G+ is. As G* is a quotient of G,
all Inn(h(i)) are Cartan involutions of G54, and therefore of G39.

It remains to prove the converse implication. So we assume now that Inn(h(4)) is a Cartan involution
of G24, for some hy € X, and we must prove that for each n, there exists a )": V" @ V" — R(—n)
that is a polarisation for all » € X*. For this, it suffices that ¢)" is a polarisation for hy and that )™ is
G5(R) " -invariant, because then, for all ¢ € Go(R)* and 2 and y in V' we have

V™, gho(i)g~'y) =" (g7 @, g gho(1)g ' y) = " (97 @, ho(i)g'y)

is symmetric and positive definite. ~ Also, note that G5(R)" acts transitively on X7, as
Go(R)T — G24(R)™ is surjective.

As Gy — G2 is an isogeny, 7 := Inn(hy(7)) is a Cartan involution of G5. Let n be in Z. Consider
the R-vector space ® of hg(i)-invariant bilinear forms ¢: V" x V™ — R that are (—1)"-symmetric, and
the R-vector space ®¢ of hy(i)-invariant hermitian sesquilinear H: V@ x V¥ — C. Then ¢ — ¢¢ with
dc(x,y) = ¢(z, ho(i)y) and H — ¢p, with ¢y (x,y) = H(x, ho(i)~'y), are inverse maps between P
and ®..

We need to see that there are Go-invariant ¢ in ¢ such that o : V@ x V¥ — C, (z,y) — ¢(x, ho()y)
is positive definite. We claim that for ¢ € @, ¢ is Go-invariant if and only if ¢¢ is G7(R)-invariant. First
we prove that ¢¢ is G} (R)-invariant if and only if ¢¢c: V¥ x V& — Cis G(R)-invariant:

forall z, yin V¢!,  ¢c(gz, gy) = éc(gz, h(i)gy) = éc(gz, h(i)gy) = ¢c(gr, g h(9)y),

because for g € GT(R) we have g = h(i)gh(i)~', hence g h(i) = h(i)g. Then, as G}(R) is Zariski dense
in G5(C), ¢¢ is GE-invariant if and only if ¢¢ is G(C)-invariant. Finally, ¢ is G>-invariant if and only
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if it is G(C)-invariant, by definition of the notion of being invariant under an algebraic group. So, our

bijection between ® and ®¢ induces a bijection between %2 and (I)gg ®)

)

. The compactness of G3(R)

. . o . . T(R . . o .
gives us the existence of positive definite H in @gQ( , hence of GGy-invariant polarisations ¢ in ®. [

We have now the most important ingredients of Deligne’s definition of Shimura datum at our disposal:
a pair (G, X ™), with G a reductive linear R-group with X a G(R)-orbit in Hom(S, ) that satisfies the
following conditions:

1. forall h € X, wy, factors through Zg,
2. forall h € X, Lie(G) is of type (—1,1), (0,0), (1, —1).
3. forall h € X, Inn(h(i)) is a Cartan involution of G*.

Under these conditions, every V' in Rep((G) gives a variation of R-Hodge structures over X *: holo-
morphically varying Hodge filtration, Griffiths transversality, and polarisable. Note: we really want
variations of (Q-Hodge structures, with these three properties; only the polarisability is an issue and that

will be addresses after the definition of shimura datum.

6.2 The Siegel case

After the GLy r-case, the best known example is that of the group of symplectic similitudes. In the end,
it is given by the same formula. So let n € Z>y, let V = R?", and 1) be the symplectic bilinear form on
V' given by

v VxV =R, (x,y)—2'Jy, with J= ( (i 1(:) :

Let G = GSp(v) be the linear algebraic R-group given by

G(R) ={(g,¢) € (GL(V),R¥) : forall w, y € V, ¥(gz, gy) = c(z,y)}.
Then we have

ho: C = G(R), z=a+bi—a+bJ= (“” Z”) .
Then ho(R*) is in the center. The characters of S appearing the left and right multiplication on End (V)¢
are z and Z, hence the characters in the action on End (1) by conjugation are 1, 2z~ ' and 2z~ 'Z. Therefore,
all three conditions are satisfied (of course, we just wanted to know what the Siegel case looks like, from
this perspective).

Let us also show that Xt := G(R)"-hg is identified with the Siegel upper half space H,,, by the
map that sends h in X to Fil’(V¢,) (the embedding in the compact dual). Let g be in Sp,, (R),
and let h := Inn(g) o hy. Then Fil’(Vcy) = ¢-Fil(Ves,). We compute Fil’(Vey,). We have
Ver, = V(C_ﬁ(’)o @b V(g”h_o 1, the decomposition in the two subspaces on which J acts as ¢, and as —z, re-
spectively. Then

Fil’ (Vo) = Vi ={(5) € C - J(5) = —i(y)} ={(¥) :yeC"}.
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In terms of the usual description of the open part of the Grassmannian G, (V) of n-dimensional sub-
spaces I that intersect C" x {0} and {0} x C" trivially as graphs of isomorphisms, Fil’(V¢ ,) is the
isomorphism (0, y) + (iy, 0). Indeed our F have this property, because they satisfy F' N F = {0}. Now
we apply g to Fil®(Ve, ), writing g = (2 8):

Fil’(Ven) = {(25)(%) 1y € C"} = ({41)Y) 1y € C"} = ((@iDe+d ™)y € €7}

So we see that g = (%) is sent to 7, := (ai + b)(ci + d)~* in M,,(C). A simple computation shows
that g*.Jg = .J implies 7} = 7,. Let us also show that (7, ) is positive definite. We observe that for each
g € Spy,(R), I(7,) is invertible because Fil’(Ve ;) N {0} x C* = {0}}, so that the signature of (7, ) is

constant (Sp,,,(R) is connected). And at hy we have 71 = 7, hence J(71) = 1, which is positive definite.

6.3 Some unitary cases

Letn; and ny be in Z>p and letn = ny +n9. Let V := C" and let¢: V x V' — C be the skew-hermitian
form given by
_ in, 0
¢($7y) = thya Q = ( 0 —i )

Let (G be the linear algebraic R-group of similitudes of v:

G(R) = {(g,¢) € (GL.(C),R¥) : forall z, y € V, d(gz, gy) = c-¢(2,y)}

In other words, G(R) is the subgroup of ¢ in GL,,(C) such that there is a ¢ in R* such that ¢'Qg = cQ.
Then we have

h: C* — G(R), z»—><2"1 0).
0 zn,

Then h(R*) is in the center, and conjugation by h(z) on End(V) is given by the characters 1, 2z}

and 2~'Z. Finally, twisting (V1)) by its automorphism h(i) gives the positive definite hermitian form
Y (z,y) = x'y, hence the twist of G by its inner automorphism Inn(%(7)) gives the group of similitudes
of ', and hence Inn(h (7)) is a Cartan involution of G*. So the three conditions are satisfied.

Another way to think about this twist is that the complex conjugation on G7(C) is given by
g — h(i)gh(i)~', where g is in G(C). Then one sees that G™(R) consists of the g in GL,(C) such
that g'Qn(i)g = Qh(7).

To finish: note that if n; = 0 or ny = 0, then X is a point. We do not consider such cases, unless
G is trivial.

6.4 Hermitian symmetric domains

Deligne shows in his Corvallis article, Cor. 1.1.17, that for (G, X*) with G a reductive R-group and
Xt a G(R)"-orbit in Hom(S, G) satisfying conditions 1-3, X is a hermitian symmetric domain (of

non-compact type, i.e., negative curvature), and that all of them are obtained like this. For at least some
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details references about this notion we refer to Milne’s notes. Let it suffice to say that X is a complex
manifold, that G(R)* acts transitively on it, via G®(R), by the way, and that for each h in X the
stabiliser G*4(R);,, in G*4(R) is compact, because 7 := Inn(h(i)) is a Cartan involution of G*!(R).

Namely, for g in G(R) we have
gh=h<eIm(g)oh=h= gh(i)g ' =h(i) < h(i)g 'h(i) =g ' =g "' eG(R).

Hence X has a G(R)"-invariant hermitian metric.

The word “symmetric” has to do with the existence, for each h in X, of an isometry that induces
—1 on its tangent space (and this is what Inn(h(7)) does, because Tx+(h) = Lie(G)/Lie(G)*?). Or, it
has to do with the automorphism group acting transitively (symmetric space). The word “domain” means

“connected open subset of some C"”. They are simply connected.

6.5 Classification

The action of G(R) ™ factors through G4, which is a product G x - - - X G, of simple R-groups. Therefore
X decomposes as a product X;~ x - -+ x X, with X" the hermitian symmetric space attached to Gi.
The possible X;“ , or, equivalently, the G;, have been classified (see Deligne, Corvallis for the list):
there are the unitary cases that we have seen above (Dynkin types A, ), orthogonal groups in even and
odd dimensions (B,, and D,), the symplectic groups that we have seen (C),), and then Fs and F;. In

particular: Ejg, F; and (G5 do not occur.

7 Definition of Shimura varieties

7.1 Definition. A Shimura datum is a pair (G, X ), with G a reductive algebraic group over QQ, and X
a G(IR)-orbit in the set of morphisms of algebraic groups Hom(S, Gr), such that for some % in X the
following conditions hold:

SD1 Lie(G)g is of type {(—1,1),(0,0), (1,—1)}.
SD2 Inn(h(i)) is a Cartan involution of G&: G*47(R) = {g € G*(C) : h(i)gh(i)~* = g} is compact.
SD3 for every simple factor H of G4, the composition of h: S — G with Gg — Hp is not trivial.

As G(R) acts transitively on X, each of these conditions are “constant” on X, that is, it is satisfied by all
h if and only if it is satisfied by some &, no-matter which.

The first condition implies that the weight morphism wy,: G,,g — Gg has image in the center Zg g,
and therefore does not depend on h. (Note: it is not necessarily defined over (Q.) We have seen that SD1
implies that X has a unique complex structure such that every V' in Rep(G) gives a variation of Q-Hodge
structures over X with holomorphically varying Hodge filtration, and satisfying Grifiths transversality.

About condition SD3. Let G&' — H be a simple factor such that H(RR) is compact. Then Inn(h(i))
induces the identity on H, hence, Lie(H ) being of type (—1,1), (0,0), (1, —1), is of type (0,0), hence
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trivial (H being adjoint), and the composition of h with G&! — H is trivial. Condition SD3 means that
for all simple factors H of G (over Q), H (R) is not compact. Under this condition, the universal cover

H — H satisfies strong approximation; a very useful fact.

7.2 Existence of polarisations

Let (G, X) be a Shimura datum. Deligne shows (Corvallis, 1.1.18(a) and (b)) that under the following
two assumptions these are polarisable. (And I think that without SD5 one gets a counterexample with G

a simple torus of dimension two, such that G(R) is isomorphic to C* (start with a cubic field)).

SD4 The weight morphism wg : G,g — Gr, which is constant on X, is defined over Q.

SDS5 For all (or, equivalently, for some) » € X, Inn(h(7)) induces a Cartan involution on (G /w(Gmng))r.

Under these conditions, X (Z%)g contains the trivial representation of Gal(Q/Q) with multiplicity
at most one, depending on w(Gy,g) being trivial or not. Let 7' denote the subtorus of Z such
that X (Z2) — X(T) is the quotient by the subgroup of Gal(Q/Q)-invariants in X (Z%). Then
w(Gg) X T x GY — G is an isogeny. Let G be the image of 7' x G4 in G. Then w(Gyg) X G2 — G
is an isogeny, and for every h € X, Inn(h(7)) induces a Cartan involution of G2 g. We can use the group
(3 as in the last part of the proof of Proposition 6.1(3). All h|s: factor through G5 g, because (G/G2)r
is either trivial or G,,g. Let V' be in Rep(G). Then w: Gg — G decomposes V as V = @, V™.
We may and do assume that V' = V™. Let ® be the Q-vector space of (—1)" symmetric bilinear forms
V: V xV — Q, and %2 the sub Q-vector space of those that are G-invariant. Then, as in the proof
referred to,

(99)z = (¥g) % = 9EE

and so we see that the 1/ in (®%2)g such that ¢ is positive definite form a non-empty open subset, and

therefore there are such v in ®2.

7.3 A few examples

We have already seen (GLg g, H*) (H® is called the “double half space”) and (GSp(¢))g, HZ). These
also satisfy SD3 and SD4. Let us give one example that does not satisfy SD4. Let Q — F be a cubic
totally real field, and let B be a quaternion algebra over F' that is everywhere split except at two real
places: R ®q B is isomorphic to My(R) x H x H (where now H denotes the quaternions over R, sorry).
Then one can take G the group over QQ such that for all Q-algebras A one has G(A) = (A ®q B)*, and
for X the orbit of

h:S— Gr, a+bir ((%4%),1,1) inGLy(R) x H* x H*

(one chooses any isomorphism from R ®qg B to My(R) x H x H, the conjugacy class is independent of it
by the Skolem-Noether theorem). The weight morphism w: G,z — Gr is then givenby a — (a7, 1, 1),
a € R*,and (a,1,1) in (R ® F')*. This is not defined over Q because F is a field, and not Q x Q x Q.
The field of definition of w is ' — R via the place where B splits.
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7.4 Exercise. Show that there is no Shimura datum (G, X) with G = SL, . (But there is a so-called
connected Shimura datum; see Milne’s notes.)

7.5 Morphisms of Shimura data

Let (G, X1) and (G2, X5) be Shimura data. A morphism from (G, X;) to (G2, X3) is a morphism
f: G1 — G4 such that for each h in X1, the composition f o h: S — Gy is in Xs.

7.6 The adjoint Shimura datum

Let (G, X) be a Shimura datum. Let X be the G*(R)-orbit in Hom(S, G&!) that contains the image
of X in Hom(S, G&1). Then (G*, X*) is a Shimura datum, and the quotient morphism G — G
is a morphism of Shimura data (G, X) — (G®, X?). The map X — X! is a closed and open
immersion (G(R) — G®(R) need not be surjective, one gets examples from Hilbert modular varieties,
that is, Resp/oG, with G(Q) = {g € GLy(F) : det(g) € Q*}). This is a useful construction, for
example because G*! decomposes as a product, over Q, and even more over R. On the other hand, if
(G, X) has a moduli interpretation, it may become harder to understand it for (G, X). Note that
(G*) Xd) satisfies SD4 and SD5. In the context of the André-Oort conjecture, or Zilber-Pink, the
difference between (G, X ) and (G*4, X?4) is irrelevant (but passing to subvarieties does not preserve this

propery).

7.7 Intermezzo on adeéles

For p a prime number, let Z, = lim,(Z/p"Z), and Q, = Frac(Z,). Together with R, this gives all
completions of Q (locally compact fields, non-discrete). We define A ¢, the topological Q-algebra of the
finite adéles of QQ, be the restricted product

4y =TT'Q = {(@), : for almostall p. z, € Z,)
p

with the following topology: Z = lim,(Z/nZ) = [1,Z, C Ay, and all its translations, are open, and
carry the product topology, hence are compact. We have Ay = Q ® 7, it is sometimes written (@ Then
the complete (Q-algebra of adeles of (Q is defined as:

A=Ay xR, with the product topology.

The image of Q is discrete: in @ we have Q N 7 = 7, hence in A we have QnN 7, % (—1,1) = {0}. And
it is co-compact: Z x [0, 1) is a fundamental domain, Z x [0, 1] surjects to A /Q.

7.7.1 Exercise. A/Q is the profinite universal cover of R/Z, called solenoid:

A/Q=(ZxR)/Z= lim(Z/nZ x R)/Z = limR/nZ.
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7.7.2 Exercise. Prove that End(Q/Z) = Z, and that Hom(Q, Q/Z) = Q.

For F' a finite dimensional (Q-algebra we define Ap = A ®q F/, etc.

For X a closed subscheme of Af, we give X (A) C A" the induced topology. And similarly for any
topological Q-algebra. For example, A* = G,(A) gets the topology from its embedding into A? as the
subset of (x,y) with xy = 1.

In this way, for G a linear algebraic group over QQ, G(A) becomes a locally compact topological
group (equivalently: locally profinite). For example, G(A ) is locally compact and totally disconnected,
it has a basis of 1 consisting of compact open subgroups: embed G into GL, g, use the kernels of
GL,(Z) = GL,(Z/nZ).

If K, and K are compact open subgroups of G(Ay), then K; N K, is a compact open subgroup, of
finite index in both KX and K.

For K C Ay a compact open subgroup, let, for p prime, K, be its image under projection to Q,, in
which it is compact open (A; = QP x A", product topology). Then (exercise), for almost all p we have
K, =Zp,and K =[] K.

Let now G be a linear algebraic group over Q, and K a compact open subgroup of G(Ay), with
projections K, C G(Q,). Then (exercise) [ [, K, is contained in G(A f) and is compact open (K contains
a K’ obtained by intersecting G(A ;) with a suitable compact open ker(GL,(Z) — GL,(Z/mZ)), and
K' =TI, K}).

Be careful with notation as G(Z) or G(Z,), these do not make sense for G over Q, one has to specify

a model over Z or so first.

7.8 Congruence subgroups, arithmetic subgroups

Let GG be a linear algebraic group over Q. The subgroups obtained as G(Q) N K, with K compact
open in G(Ay) are called congruence subgroups), and a subgroup of G(Q) is called arithmetic if it is
commensurable with a congruence subgroup: I'; and I'; are commensurable if I'; N I'y has finite index
inI'y and in I's.

Let K C G(Ay) be compact open, and ' = G(Q) N K. As G(Q) is discrete in
G(A) = G(R) x G(Ay), G(Q) N (G(R) x K) is discrete, and as K is compact, I is discrete in G(R):
the projection

GR) x K — G(R)

is closed, hence every subset of the image of G(Q) N (G(R) x K) is closed. Another way to see this is
to embed G in some GL,, and to compare with GL,,(Z) in GL,(R).

One has to be careful about the distinction between arithmetic subgroups and congruence subgroups.
The subgroup I'(2) of SLy(Z) has the property that its quotient by {£1} is 7 (P*(C) —{0, 1, 00}), and so,
by Belyi’s theorem, all curves over Q are quotients of H by arithmetic subgroups of SL;(Q). Whereas
modular curves, quotients by congruence subgroups, are defined over cyclotomic fields. On the other
hand, in many algebraic groups all arithmetic subgroups are congruence subgroups by Bass, Milnor and

Serre (search for “Congruence subgroup problem”). A second way in which SLs is not typical is that
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SLs(R) has many discrete subgoups of finite covolume, for example the fundamental groups of compact
Riemann surfaces with H as universal cover. It is a theorem of Margulis that for / a simple real Lie
group not isogenous to SO(1,n) of SU(1,n), every discrete subgroup of finite covolume is conjugate to
an arithmetic subgroup (note that SLy(R) is isogeneous to SO(1, 2)).

7.9 Finiteness results

It is a theorem of Borel that for any linear algebraic group G over Q, and for every compact open
subgroup K of G(Ay), the set G(Q)\G(Ay)/K is finite (Theorem 5.1 in ‘Some finiteness properties in
adele groups over number fields’, IHES PM 16). Of course, the set G(A)/K is discrete because K is
open. This result can be seen as a generalisation of the finiteness of class numbers of number fields:

divisors on Spec(Op)

Pic(Op) = = F*\A},/OF.

principal divisors

To get some more feeling for such quotients, let us consider the case of GL,, » with F'a number field. Let
O = Or. Instead of working over I, we work over Q, or rather over Z, with the group G = Resp,7GL,,.
Let us show that

_ {locally free O-modules of rank n}

GLu(F)\GLa(Arf)/GLA(O) =

Let L be a locally free O-module of rank n. Then Ly := F ®¢o L is free of rank n. We choose an
isomorphism
¢: F" — Lp, unique up to ¢’ = ¢g, with g € GL,,(F).

For each maximal ideal m of O, let O,,, = lim O /m" be the completion of O at m, and F},, the completion
of F' at m. Then for each m, L,, is free of rank n as O,,-module, and we choose an isomorphism

Gm: OF — L, unique up to ¢, = ¢y gm, with g, € GL,,(O,,).
Then, for each m, we have ¢~1¢,, in GL,(F},), and we have a well-defined element
(¢ dm)m] € GLu(F)\GLy(Agf)/GLn(O).
And vice versa, if we start with an element g in GL,, (A g f), we have the O-module
(O™ N F" C F",

whose isomorphism class depends only on g in GL,(F)\GL,(Ap)/GL,(O).

To prove that these constructions are inverses of each other (we leave that to the audience), it seems
most convenient to use the bijection between “lattices” in Q" and in A%.

We define a Z-lattice in Q" to be a sub Z-module L of Q™ that is finitely generated and satisfies
Q-L = Q". Such L are automatically free of rank n. The group GL,,(Q) acts on the set of such L by
(g9, L) — gL. This action is transitive and the stabiliser of Z" is GL,,(Z). Hence

GL,(Q)/GL,(Z) = Z-lattices in Q".
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We define a Z-lattice in A’ to be a compact open subgroup. Equivalently: finitely generated sub Z-
modules M with A;-M = A, or also: free sub Z-modules M C A% of rank n. The group GL,(Ay) acts
on the set of M, transitively, and with stabiliser GL,, (Z) at 7", Therefore,

GL,(As)/GL,(Z) = Z-lattices in A%
We have two maps:
{Z-lattices in Q"} < {Z-lattices in A%} L——>7-L MNQ'=——M

These maps are inverses. To see it, start with an L. Take a Z-basis for L, take that basis as Q-basis for
Q", and use that ZN Q = Z to conclude that (ZL) N Q" = L. For every m € Z>, we have on each side
the subsets of lattices between “at most m away from the standard lattice”, that is:

{L:mZ"c L cm™Z"} and {M:mZ"C M C m~'Z"}.

Both sets are preserved by our two maps, and are the same as the finite set of all subgroups of (Z/m?Z)™.
That finishes the argument that the two maps are inverses of each other (details left to audience).

There are the following stronger general results, by Borel. The quotient G(Q)\G(A) is of finite vol-
ume if and only if Hom(G?, Gy,q) is trivial. And G(Q)\G(A) is compact if and only if Hom (G, G,q)
is trivial and every unipotent element in G(Q) is in the unipotent radical of G. Even more general for
connected G: G(A); := Ny ker(||-|| o x: G(A) — R) (with x ranging over Hom(G, Gy,q)) is unimodu-
lar, contains G(Q), and G(Q)\G(A); is of finite volume, and is compact if and only if every unipotent
element in G(Q) is in the unipotent radical of G.

7.10 Neat subgroups

References: Milne’s notes, §3, and Pink’s thesis (on his webpage), §0.6 for the adelic case. And for more
details, Borel’s “Introduction aux groupes arithmétiques.” (I have not seen this book! Pink refers to it.)

Let GG be a linear algebraic group over Q. An element g of G(Q) is called neat if the subgroup of Q"
generated by the eigenvalues of ¢ in some faithful V' in Rep(G) is free (that is, no nontrivial elements
of finite order). This is independent of V', as all W in Rep(G) are obtained from V' via sums, tensor
products, duals and subquotients, hence the group in question is the set of eigenvalues that occur in
the .

The importance of this notion is that if ¢ is neat and of finite order, then it is the identity element: its
eigenvalues are all equal to 1, therefore g is unipotent, say 1 + a in some faithful representation, with
minimal polynomial (z — 1)", then n = 1 (the field is Q).

It is easy to guarantee elements to be neat by imposing congruences. Let p be prime, and
K c GL,(Q,) the kernel of GL,,(Z,) — GL,(Z/p"Z), with r > 1, and r > 2 if p = 2. Then for
gin K we have g = 1 + p"a, with a € M,,(Z,). The eigenvalues a (in @p, to which we extend the valu-
ation v: QY — Z, keeping v(p) = 1) are satisfy v,(A) > 0. Hence the eigenvalues y of g, being of the
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form 1+ p" A, satisfy v(1 — u) > r. The only element of finite order in @; with this property is 1. For ex-
ample, for ¢ # 1 of finite order prime to p, 1 —( is a unit, and for ¢ of order p, v(1—¢) = 1/((p—1)p*™ 1)
(the ramification index, and the ramification is total).

We conclude: for G a linear algebraic group over QQ, and for /& a compact open subgroup of G(Ay),
there is a compact open subgroup K’ of K such that G(Q) N K’ is neat. Namely: take K’ of the form
[1, K}, such that at least one factor K, is obtained as intersection with ker(GL,,(Z,) — GL,(Z/p"Z))
under some embedding of G, into GL,, g,

7.11 Definition. (Shimura variety, finally!) Let (G, X) be a Shimura datum (that is, satisfying SD1-3),
and let K C G(Ay) be a compact open subgroup. Then the Shimura variety attached to (G, X) and K is

Shi (G, X)(C) == GQ\(X x G(Af)/K),
with G(Q) and K acting as follows:

¢ (v, 9) = (qz,q9), (z,9)k = (v,gk).

We recall that X = G(R)/G(R)p, is a finite union of hermitian symmetric domains, on which G(R) acts
via G*(R). Considering the G(Q)-action on G(A;)/K we see:

Shi(G,X)(C) = GQNX x G(Ay)/K) =[]  Ty\X, Ty=G@QngKg™"
9eG(Q\G(Af)/K
In words: the Shimura variety is a finite union of quotients of finite unions of hermitian symmetric
domains by congruence subgroups.
We want to see that Shy (G, X)(C) is a complex analytic variety. This means that the action of the
', on X should be sufficiently nice. Let X’ C K be a normal neat open subgroup of K (these are easy
to get). Then K/ K" is a finite group, and

Shy: (G, X)(C) — Shg (G, X)(C) is the quotient for the K /K'-action
So we may assume that K is neat. Let F_g be the image of I', in G*!(R). Then F_g acts faithfully on X by
SD3 (if G* =[], Gi and G; = [] .., Gi, then the kernel of the action of G*!(R) on X is the product

Jj€J;
of the G; ;(R) that are compact). Let v € 'y, and z € X with v-x = z. Then 7 is in ('), which is
discrete in the compact group G*(RR), (it is compact because of SD2, or, if you like, because the product
of the non-compact G; ;(R), acts faithfully on T’x (x), preserving the hermitian inner product), hence of

finite order. As v € G(Q) is neat, ¥ € G*(Q) is neat as well, and therefore trivial. So we have:
F_g acts freely on X (assuming K is neat).

Now we show that Shx (X, G)(C) is a complex manifold. Let = be in X. We get a fundamental domain
F containing x for the I',-action

F:={ye X forally €T, — {1}, d(y,z) < d(y,y-z)}
Then F — T,\ X is a chart at the image of z. Hence:

Shi (G, X)(C) is a complex analytic variety, non-singular if K is neat.
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7.12 The set of connected components

It will take us some time to understand the set of connected components of a Shimura variety, but it is
important because we need it for the Galois action on special points, when we take GG a torus; then the
Shimura variety is zero-dimensional, and it is its 7.

Let (G, X) be a Shimura datum, and X' C G(A) an compact open subgroup. Let X be a connected
component of X . The stabiliser of X, as an element of 7y (X), say, in G*(R) is exactly G4 (R)*. This
is not a triviality. To see it, write G%d = [[, Gi with G; simple, use ((1.2.7) of Deligne, Corvallis) for the
i with G;(R) not compact, and use that for H a linear algebraic group over R with H (R) compact, H (R)
is connected (see notes above on algebraic groups).

We can also see it like this. Let h € X ™. Then G%C}h is the centraliser of a torus, hence it is con-
nected (Springer, 6.4.7); G%(}h(R) is compact by SD2, hence connected; and then G2¢(IR) x+ is connected
because G2 (IR)" acts transitively on X+ and G*4(IR)}, is connected.

We define

G(R); := ¢ H(G*(R)"), whereq: G — G*.
Then G(R), is the stabiliser in G(R) of Xt € m(X). In other words: mo(X) is a G(R)/G(R).-torsor.

We define
G(Q)+ == G(Q) NG(R).

Then, because G(Q) C G(R) is dense (this is called real approximation, valid for all connected lin-
ear algebraic Q-groups; Platonov-Rapinchuk, Theorem 7.7, p.415, see also Milne’s notes) G(Q) acts

transitively on 7y (X). Hence:
mo(Shi (G, X)(C)) = G(Q)4\G(Ay)/ K.

It is not obvious that this finite set is in fact a commutative group! As K is open, all G(Q), x K-orbits
in G(Ay) are open, hence, being the complement of the union of the other orbits, closed. Hence, with
G(Q) the closure of G(Q) in G(Ay):

GQ)\G(Ay)/K = G(Q\G(Ay) /K.

Let p: G — G be the universal cover. Then (¢ (R) is connected (see notes above), hence

p(G(Q)) C GQ)T C G(Q)4-

Now we use strong approximation in G; note that SD3 say that G has no simple factor G; with
G;(R) compact, so neither has G, and therefore the strong approximation theorem applies (see Platonov-
Rapinchuk, Thm 7.12, page 427):

7.13 Theorem. (Strong approximation) Let G be a reductive algebraic group over a number field F,
and S a finite set of places of F. Then G(F) is dense in G(A3) = H;}gs G(F,) if and only if 1: G is

semi-simple and simply connected and 2: G has no simple factor G; with G;([ [, ¢ F») compact.

47



Hence:

G(Q) = G(Ay), and p(G(A)) C GQ)+ C G(Ay).

As p: G — G is proper, p: @(Af) — G(Ay) is proper, hence p(é(Af)) is closed in G(Ay), and
therefore p(G(A 7))\G(Ay) has a decent topology (locally profinite). So, G(Q)+\G(Ay)/K is a quotient
of p(G(A #)\G(Ay). Deligne shows that this is a commutative group. At least p(G(A £)) is a subgroup

of G(Ay). It is normal because the action of G on itself by conjugation factors through G4:
G — G - Aut(G), hence G — G* — Aut(G).
Next we consider commutator maps (morphisms of varieties over QQ):
[ ]:GxG oG, GxG—G, GxGd— g
All these factor through G x %4, hence we get:
[ ]:GxG—=GI%xGY -G -G

which shows that indeed that p(G/(Ay)) contains all commutators in G(A ). We have:

Q)+p(G(A)\G(A)/ K

mo(Shx (G, X)(C)) =

I
ol o
=
&H
g
>
9\2
=
>
«Q
l'®)
X
=

Ap)/G(Q)+ K (G(Q)4K is open normal, with abelian quotient)

Similarly (well, see pages 262264 in Deligne, Corvallis, especially Cor. 2.0.8), G(Q) p(é (A))isaclosed
normal subgroup of G(A) with abelian quotient. With

m(G) == G(A)/G(Q)p(G(A)), Tom(G) := mom(G)/mo(G(R)),

we have _
7o(Shie(G, X)(€)) = G(A)/pG(A)GQ)G(R)s x K
=7(G)/G(R)y x K =Ty (G)/K.
Let us finish with an example. We take (G, X) = (GLy, H*). Then for K compact open in GLy(A ;) we

have det(K) open compact in Z* C A%,

SL2(Q)-K = SLo(Af), anddet: GLy — Gy, is split, with kernel SL,

hence
Shy (G, X)(C) = GLy(Q\(H* x GLa(As)/K) = GLy(Q)"\(H x GLa(Af)/K)
mo(Shi (G, X)(C)) = Q%p\A} / det(K) = Z* / det(K)
= Q\AT/(R™ x det(K)) = mo(Q*\A™/ det(K)).
Let us compare with the general result. We have m(GL2(R)) = {1}, and

W(GLQ) = GLQ(A)/SLQ(A)GLQ(@) = AX/QX, 7To7T(GL2> = A; /@;0 = ﬁoﬂ'(GLg).
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Let us also give the result for the adjoint Shimura datum (PGLy, HF). Then G = PGLs,, and G = SLy:
1 — po — SLy — PGLy — 1.
Then, for each prime p, we have
1 — {£1} — SLy(Q,) — PGLy(Q,) — HY(Q,, o) — H*(Q,,SLy) = 1

(Indeed, SL; is the automorphism groupscheme of Z? plus a trivialisation of A%(Z?), and this has no
non-trivial twists over a field.) The Kummer sequence gives H'(Q,, 112) = Q) /(Q;)?. Similarly, over
R:

1 — {£1} — SLy(R) = PGLy(R) = R*/RZ, — 1

We have:
m(PGL;) = PGLy(A)/p(SL2(A))PGL,(Q) = (F2 © A)/PGL2(Q) = (F, © A™)/Q”
=F, ® (R, x Z°) =F, ® Z*.
Observe that this is profinite, and that mo(PGLy(R)™") = 1, hence
om(PGLy) = m(PGLy), Tom(PGLs) = n(PGLsy).

So, for K C PGLy(A) compact open, mo(Shy (PGLy, H¥)) = (F, ® Z*)/K. Note also that in this
case, for each prime p, there are two PGL4(Q,)-conjugacy classes of maximal compact subgroups:
one can stabilise a vertex, or an edge, in the Bruhat-Tits tree of PGLy(Q,) (the set is vertices is
PGL;(Q,)/PGLy(Z,), the set of lattices in Q2 up to Q).

7.14 The theorem of Baily and Borel

Let (G, X) be a Shimura datum, and ' C G/(Af) a compact open subgroup. Baily and Borel have shown
(1966):

Shy (G, X)(C) is canonically the analytification of a quasi-projective complex algebraic va-
riety Shi (G, X)c.

The proof is by compactification and projective embedding via sufficiently many sections (modular
forms!) of a high enough power of Q¢ (where d = dim(X)). Boundary components correspond to
parabolic subgroups of G (think of P!(Q) and the stabilisers its points in GLsg). For G = GSp,,,, the
compactification is named after Satake.

If you need an ample line bundle on a Shimura variety, then first try the one from the Baily-Borel com-
pactification. The Baily-Borel compactification is normal, but usually singular (already for GSp,, mod-
uli of abelian surfaces, and even for Hilbert modular surfaces, where the boundary is zero-dimensional).
There are better compactifications, toroidal, and they become more and more canonical (Alexeev’s and
Olsson’s work on A, for example).

The modular forms used by Baily and Borel can be used to understand algebraic functions. Example:
. _ 3
j=ci/A.
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7.15 Moduli interpretation in the Siegel case

For details, and certainly for more generality, see §1 and §4 of Deligne’s “Travaux de Shimura”.

Letn € Z>1, let V = Z*", and v be the symplectic bilinear form on V' given by

1
V: VXV =7, (x,y)—2'Jy, with Jz(ol O”)

Let G = GSp(v) be the linear algebraic Z-group such that for all Z-algebra’s A
G(A) = {(g,¢) € (GL(Va), A¥) : forall A — B, x, y € Vp, ¥ (g, gy) = c-(z,y)}.

The morphism
v:G— Gn, (g,¢)—c

is called the multiplier character.
Let X := H the set of h: S — G that are Hodge structures of weight —1 on R?" such that 1 is a
polarization up to a sign. Then X is the G(IR)-orbit of

—0p Qp

ho: C* = G(R), z=a+bi—a+b]= (an bn).

and it is called the Siegel double space. Let us consider:
An(C) = GQ\(X x G(Ar)/G(2).

What we want to show is that A, (C) is the set of isomorphisms classes of pairs (A, \) of principally
polarized abelian varieties of dimension n. We already know what the interpretation of X is: it is the set
of Hodge structures of weight —1 on R?" such that 1 is a polarization up to a sign. Let us now interpret
G(A¢)/G(Z). Consider the action of G(A¢) on the set of lattices in A?". The stabilizer of the standard
lattice Z2" is G(Z). Hence G(Af)/G(Z) is the set of lattices of the form zZ2, with z in G(A;). We
claim that this is the set of lattices L on which a suitable multiple of ¢ induces a perfect pairing. For
z in G(A¢) we have: ¢(zu, zv) = v(2)(u,v), which proves that v(z) =14 is a perfect pairing on zZ2.
On the other hand, let L be a lattice and a in A/ be such that a1} is a perfect pairing on L. Then take
a Z-basis li,...,la, of L such that a1 is in standard form, i.e., given by the matrix (% {). Then the
element = of GLy, (A¢) with ze; = [; is in G(A¢). This finishes the proof of the fact that G(A¢) /G(Z) is
the set of lattices on which a multiple of 1) is perfect.

Let us now describe the constructions that give A, (C) the interpretation as the set of isomorphism
classes of abelian varieties of dimension n, with a principal polarization.

Suppose (A, \) is given. Then choose an isomorphism f: Q%" — H;(A, Q) such that ) corresponds
to a multiple of A (such an f is unique up to an element of G(Q)). Let x be the element of X that is given
by the Hodge structure on Q2" induced from A via f. Let L in G(A;)/G(Z) be the lattice corresponding
to Z*" via f. The class of (z, L) modulo G(Q) depends only on the isomorphism class of (A, ).
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Suppose now that we have (2, L) in X x G(A¢)/G(Z). Then let A be (R ® L)/L with the complex
structure given by the Hodge structure corresponding to z. Let a be the element of Q* such that ai) is
perfect on L (this fixes a up to sign) and is a polarization A on A (this fixes the sign). For g in G(Q),
multiplication by ¢ gives an isomorphism from (A, \) to the (A’, \’) obtained from (gz, gL).

7.16 Limit over K, G(A[)-action

Let (G, K) be a Shimura datum. For every inclusion K; C K5 of compact open subgroups we have a

morphism of complex algebraic varieties (also morphisms are algebraic by a result of Borel):
ShK1 (G, X)(C — ShK2 (G, X)(C

If K is normal in K then it is the quotient for the action by the finite group K5/ K7, and therefore these
morphisms are finite (as morphisms of schemes). That means that we can take the limit (projective limit)

of the system of these, in the category of schemes:
Sh(G, X)¢ = li[r(n Shi (G, X)c.

The system has a right-action by G/(A):

K g 1Kg

o , 2
GQN\X x G(Ay)) —== GQ\(X x G(Ay))

l quot l quot

Sh (G, X)(C) Y~ Shy1,(G, X)(C)

~

inducing
-g: Shy (G, X)c — Shy-1x,(G, X)c.

These are compatible with the transition maps in the system, and so give us a right-action of G(Ay) on
Sh(G, X )c. This action is continuous in the sense that Sh(G, X )¢ has a cover by open affine subschemes
U; such that each Uj is stabilised by some open subgroup K;, and each f € O(U;) has open stabiliser
in K; (indeed, let K be compact open, then Sh(G, X)c — Shg (G, X)c is affine etc.). From this action
we recover the system of the Shx (G, X )¢ because Shy (G, X)¢ = Sh(G, X)c/K.

In the Langlands program, the G/(A f)-action on the cohomology of Shimura varieties is very impor-
tant because it brings the representation theory of G(A ) into the picture.

Deligne gives two results that describe Sh(G, X )(C). We state them here.

7.17 Proposition. (Deligne, Corvallis, 2.1.10.) Let (G, X) be a Shimura datum. Then:
ele)
Za(Q)

It is indeed clear that the map from G(Q)\(X x G(Ay)) factors through the indicated quotient by Z(Q)
and Z(Q) (consider the action of Z(Q) on the left).

Sh(G, X)(C) \ (X % G(A)/Z6(@)
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7.18 Corollary. (Deligne, Corvallis, 2.1.11) Let (G, X) be a Shimura datum that satisfies D4 and D5.
Then
Sh(G, X)(C) = GQ\(X x G(Ay))

We remark that this corollary applies to (GSp, H*). See also Milne’s notes, Proposition 4.19 for the case
of “connected Shimura varieties. Let us give a proof of the last result in case G = G (then SD4-5 hold,
trivially). We write X = G(R)/Kg, and K7y is a compact subgroup of G(R). We observe that G(Q) acts
faithfully on X, because, writing G = Hl G; with the G; simple, and (G;)r =[] j G ;, there is no ¢ such
that for all j the G, ;(R) are compact; for each 7 there is at least one j such that G; ;(IR) acts faithfully on
its hermitian symmetric domain. More of relevance is that the map

G(A) = G(R) x G(Af) — (G(R)/Kz) x G(As) = X x G(Ay)

is proper, hence closed, so that all G(Q)-orbits in X x G(Ay) are discrete. So we get, for each (z, g)
in X x G(Ay), a compact neighborhood B(z,7) x gK, with B(z,r) the closed ball of radius r, and
K C G(Ay) acompact open subgroup. Shrinking these, we get an open immersion of B(x,r) x g/K into
G(Q)\(X x G(Ay)). The image is K -stable, and for every K’ C K it has quotient B(x,r) x K/K'in
Shy/ (G, X)(C). The we have

(B, r) x K/ K') = Bla,r) x glim K/ K' = Ba,r) x gK

because K — limg K /K’ is from compact to Hausdorff etc.

7.19 Hecke correspondences

At finite level, the G(A f)—action induces correspondences, as follows. For K, K’ compact open, and g

in G(Ay), we have :
K K’
Y ‘ Y
Sh(G, X)¢ —2— Sh(G, X)¢

ShK<G7X)(C ShK/<G7X>(C

where ¢ is a quotient for the action of g/&’g~!. This diagram induces the Hecke correspondence:

SthgK/ —1 G X

GX/ \

Shi( Shy (G, X)c

7.20 Moduli of elliptic curves, ‘“up to isogeny”
We give an example. Let G = GLg g and X = H* as usual. As SD4-5 hold we have
Sh(G, X)(C) = GQ\(X x G(Ay))
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We want to interpret this limit as a moduli space: the points should correspond to elliptic curves with
some data. But then the right-action by G(A;) must also have such an interpretation, and therefore its
quotient. The quotient Shy;, 7 (G, X) by the action of GL, (Z) should be the moduli space of elliptic
curves without any extra structure. But then the quotient by GL2(A ) should be elliptic curves up to
isogeny (Hecke correspondences do change elliptic curves by isogenies). And therefore, finally, we
should interpret Sh(G, X)(C) as the moduli space of “elliptic curves up to isogeny with some extra
data”. Let us define this properly.

Let Ell(C) be the category of complex elliptic curves, its Hom-sets are finitely generated free Z-
modules of rank 0, 1 or 2, and composition is bilinear (this is called pre-additive). The category Q®EIL(C)
of complex elliptic curves up to isogeny has the same objects as Ell(C) but the Hom-sets are tensored
with Q. The functor Ell(C) — Q ® ElI(C) is the localisation that inverts the set of isogenies. Let us
write Q ® F for the image of F in Q ® Ell(C). The functor

T: EI(C) — Z-Mod, E — T(E) = lim E[n] = Hom(Q/Z, Eyors)

does not factor through this localisation: T'(E) is a free Z-module of rank 2, but not a Q-module. But the
functor
V:EI(C) - Ay-Mod, Ew— V(E)=Q®T(E)=Hom(Q, Etys)

does. And so we have
V:Q®EIN(C) — Ar-Mod, Q® E — V(E).

We note that applying Hom(—, Fis) to 0 = Z — Q — Q/Z — 0 gives

Biow = V(E)/T(E).
For ¢: F — F anisogeny we have

ker¢p = ¢ 'T(F)/T(E) C V(E)/T(E).
Similarly, the functor ' +— H;(E, Z) does not factor through the localisation, but we have the functor
H: Q®EI(C) —» Q-Mod, Q& E+— Hy(F,Q).

The functors V' and H are related, for every £ we have an isomorphism

V(E) =Ar®q H(E).

It is still useful to have V/, as it is defined algebraically, for elliptic curves over arbitrary fields, whereas
H is not. Note that H (F) has a Q-Hodge structure, we have h: S — GL(H (F)g).

7.20.1 Proposition. We have:

GLz(Q)\(H* x GLz(Af)) ={(Q® E,®)}/ =, Q® EinQ®EI(C), a: A} — V(E).
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Proof. We start with (Q ® E, o). We choose an isomorphism ¢: Q* — H(Q ® E); it is unique up to
¢ = ¢oq,qec GLy(Q). Then we have

¢: A2 "5 Ar@g H(E) = V(E), a:A2-5V(E), ¢ 'oae GLy(Ay).

And we have
S - GL(H(E)) 5 GLag, s h(s)— ¢ oh(s)os.

And we get a well-defined element

(0'h(x)¢, 67" oa) in GLy(Q)\(H* x GLy(Ay)).

And vice versa, for (z, g) in GLy(Q)\(H* x GLy(A;)) we equip R? with the complex structure corre-
sponding to . This gives E := R*/Z?, with H,(E, Z) = Z?, hence V(E) = A%. We get the pair

(Q® (R*/Z%,z),9) in{(Q®FE,a)}/=.
For ¢ € GLy(Q), q(x,g) = (gox o q ', qg), which is sent to (Q ® (R?*/Z? qxq™'), qg), and indeed

¢: (Q® (R*/Z% x),9) — (Q® (R*/Z*,qzq "), q9).

Our next step is to interpret, for X' C GLy(Ay), the quotient Shy (G, X):
Shx (G, X)(C)={(Q® E,a)}/ =, aclsom(A},V(E))/K

For K = GLQ(Z), we have, for each F/

A

Isom(A%, V(E))/GLy(Z) = {Z-lattices in V(E)}, @~ a(Z?).
7.20.2 Proposition. The functor
El(C) » {(Q® E, L)}, with L aZ-latticeinV(E), E— (Q® E,T(E))

is an equivalence of categories, where morphisms in the target category are those that send the lattice in
the lattice.

Proof. Let £ and F' be in Ell(C). Let ¢ € Q ® Hom(FE, F') be a morphism from Q ® E to Q ® F' with
o(T(E)) C T(F). Letn € Z> be such that o := n¢ is in Hom(E, F'). Then o(T(E)) C nT(F'), hence
ker(o) = o 'T(F)/T(E) D> n 'T(E)/T(E) = El[n]. This proves that « = n¢ with ¢ € Hom(E, F).
So, the functor is fully faithful. Now we show that it is essentially surjective. Let £ be in Ell(C) and
L C V(E) a Z-lattice. Let n € Zs, such that T(E) C n~'L. Then n-: E — E induces an isomorphism
from (Q® E,n"'L) to (Q® E, L). The quotient £ — F by n~'L/T(FE) induces an isomorphism from
(Q® E,n"'L)to (Q® F,T(F)). O
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So, we conclude that
She, 2 (G, X)(C) = Ob(EN(T))/ = |

We can now also understand Hecke correspondences better. Let K = K’ = GL,(Z), and let p be prime
and g € GLy(Ay) be such that g, = (pal 9) and for all [ # p, g; = 1. Then the correspondence on the
j-line Shi (G, X)c = C given by ¢ sends j(E) in C to the formal sum of the j(£/G), where G varies
over the p 4+ 1 subgroups of order p of . The reason is that ZZ C ngz with quotient of order p. We
leave the details to the audience.

7.21 Morphisms of Shimura varieties

Let f: (G1,X;) — (G2, X3) be a morphism of Shimura data. Recall that this means that f: G; — G3
is a morphism of reductive linear algebraic groups over QQ, such that

fo: Hom(S, Gy ) — Hom(S, Gor) sends X; to Xs.

For this, it suffices that one h in X; has f o h € X, the G;(R)-action then does it for all inn, oh,
g € Gi(R). For K} C G1(Ay) and Ky C G2(Af) compact open subgroups such that f(K;) C K, we
get a map

Iy K, Shi, (G1, X1)(C) — Shg, (G2, X2)(C)

By a theorem of Borel (see Milne’s notes, Theorem 3.14), this map is a morphism of algebraic varieties
fK1,K2 : ShKl (Gh Xl)(C — ShK2<G27 X2)(C-

Taking limits, we have
fZ Sh(Gl, Xl)(C — Sh(GQ, XQ)(C

One can factor f = f; o f; with f; surjective and f; a closed immersion.

7.22 Proposition. (Deligne (Travaux de Shimura, Prop.1.15)) If (G, is a subgroup of G5, then for all
K, there is a K, such that fx, k, is a closed immersion. The limit f is injective.

The proof takes more than one page, I do not go into it.

7.23 Special subvarieties

There are two ways of looking at this: as images of morphisms, or as Hodge class loci and Mumford-Tate

groups. We give the definition in terms of morphisms.

7.24 Definition. Let Shy (G, X)c be a Shimura variety. A closed irreducible subvariety Z is called
special if there exists a morphism of Shimura data f: (G', X') — (G, X) and a g in G(Ay), such that Z
is an irreducible component of the image of

quot

Sh(G', X')e —L= Sh(G, X)e —2= Sh(G, X)e —% Shye (G, X)e.
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This is equivalent to: Z is an irreducible component of the image of T}, o fx i, for a suitable K’. The
special points in Shi (G, X )¢ are the zero-dimensional special subvarieties. Note that the set of special

subvarieties of Shy (G, X)c is countable.

7.25 Definition. For h € X, MT(h) C G is the smallest subgroupscheme H C G such that h: S — Gg
factors through Hg. For z € Shy (G, X)(C), each pre-image (h, g) in X x G(Ay) gives MT(h) C G,
and together this gives a well-defined group MT(z) with a G(Q)-conjugacy class of embeddings in G.

7.26 Proposition. Let S := Shi (G, X)c be a Shimura variety, and z in S(C). Let (3, g) be a pre-image
of s in X x G(Ay), and let M := MT(5), and X := M(R)-5§ C X and X;; := M(R)"-3. Then the

smallest special subvariety of S containing s is the image of
X x{1} — X x{g} — S.

Proof. Because 5 is Hodge generic on M (R)*-s. O

7.27 Canonical models

Let (G, X) be a Shimura datum. The C-scheme Sh(G, X )¢ together with its action by G(Ay) can be
naturally defined over a number field £ = E(G, X ) C C called the reflex field of (G, X). By this we
mean that there is an E-scheme Sh(G, X)g with an action by G(A[) that by base change to C gives
Sh(G, X)c together with its action by G(Ay).

The subfield £ of C is defined as follows. Let h € X. Recall that we have

2,2 1
p: Gue — Gy X Gmc(—)>SC

ar——————>(a, 1)

Then we have

pn: Ge 2S¢ —== G

When h varies over X, p, varies in the G(C)-orbit of pj,, where G(C) acts by composition with inner
automorphisms. Let ¢(X') be this orbit:

c¢(X) € G(C)\Homc¢ (G, Ge)-
Note that Aut(C) acts on Home(Gye, Ge), and on G(C)\Hom¢(Gyc, Ge). Then
E(G, X) = CA* e

the subfield of C fixed, pointwise, by the stabiliser in Aut(C) of ¢(X), that is, “the field of definition of
c(X)”.
Let us state it in scheme theoretic terms. The functor Hom(G,,q, G) is representable by a smooth Q-

scheme, and the connected components are precisely the G-orbits (I gave the references to SGA3 before).
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So G\Hom(G,q, GG) is an etale Q-scheme (a disjoint union of spectra of finite field extensions of Q),
and ¢(X) is a C-valued point of it

c(X): Spec(C) = G\Hom(G,q, G).

Then F is the residue field at ¢(X), together with its embedding into C.
We can also state it more concretely (see Milne, chapter 12, for more details). Let £ C C be a finite

Galois extension of (Q such that GG, contains a split torus 7'. Then
G(C)\HomC(GmC, Gc) = W\Homc(GmC, T(c> = W\Homk(Gmk, T) = W\X*<T)

where W = N, (T")/T, the Weyl group of 7. Note that W is a finite group (in fact a constant group-
scheme over k). Then Gal(k/Q) acts on W\ X*(7T') (this is a bit tricky, 7" is not necessarily fixed by

Gal(k/Q)), and
E = LGalk/Qex)

A few examples. The reflex field of (GSp(¢)), H*) is Q, as the group has a split maximal torus over Q.
(Exercise: try to see it directly, start with GL5.) The moduli interpretation gives the canonical model
over Q.

Second example. Hilbert modular varieties: £ = Q, but the group has no split maximal torus over Q.
Again: moduli interpretation.

Third example (we’ve seen it already before, as example where the weight morphism is not defined
over Q). Let Q — F be a totally real field of degree d, say, and let B be a quaternion algebra over F,
and G = Resp/gGL;(B). Let ¥ := Hom(F,R). Then

G(R) =2 GLy(R)> x (H*)>1.

With X as described before. Then F is the field of definition of the subsets ¥ and £, of £ (let Q be the
algebraic closure of Q in Q, then ¥ = Hom(F,Q), Gal(Q/Q) acts, F is fixed field of the stabiliser of
>0).

7.28 Canonical model when G is a torus

Let T be a torus over Q, and h: S — Tg. Then (7', {h}) is a Shimura datum (satisfying SD1-3, not
necessarily SD4-5). Then

Hom(Gm(c, Tc> = Hom(Gm@, T@) = X* (T)

the co-character group with its Gal(Q/Q)-action. Then Hom(Gy,q,T) is the etale Q-scheme corre-
sponding to X, (7"), and E C C is the residue field at 1, € Hom(Gy,q, 7)(C). This gives us

ptr: Gug — Tk.

We have

Sh(T, {h})(C) = lim T(As)/T(Q)K = T(As)/T(Q).
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So T(A;) acts transitively.  If Sh(T,{h})r is a model over E, then Gal(Q/E) acts on
Sh(T,{h})£(Q) = Sh(T,{h})(C), commuting with the T'(A;)-action. But that means that Gal(Q/E)
acts via a continuous morphism of groups Gal(Q/E) — T'(A;)/T(Q). And vice versa, such a morphism

defines a model over F; the coordinate ring is:
{f: T(A;)/T(Q) — Q: flocally constant} G21(@/F),

Class field theory gives us what we need. Let £2P be the maximal abelian Galois extension of E in Q,
and Gal(Q/E)* = Gal(E*"/E). Then there is a unique isomorphism of topological groups

artp: mo(A%/EX) = (AX/EXT)/EX 5 Gal(Q/E)™

such that for all finite extensions £ C L C FE?P and for all finite places v of E' where L is unramified,
any uniformiser 7, in £, C A} is sent to the inverse of the arithmetic Frobenius element Frob, (Frob,
induces the g,th power map on the residue field of L at all places over v) (we follow Deligne, Corvallis,
0.8 here; see Milne’s notes, Chapter 11 for many more details).

We can now define the morphism Gal(Q/E) — T'(A;)/T(Q) that defines the model Sh(T’, {h}) .
We define

r(T,h): ResE/QGmEP% ResE/QTEm T

where, for every (Q-algebra A, Norm is given by

(RespqT)A——T(E ®g A) —= T(Q @g A)Fem(ED) 2L 7 1)
t———(0(t)s, pg—11,0(t)

Taking A ¢-points gives

A —TY (s

e |

Gal(Q/E)™ —T(Ay)/T(Q) ==L SK(T, {h})5(Q)

Explicitly, Gal(Q/E) acts on Sh(T, {h})£(Q) as follows

fora € Ay, andt € T(Ay): artg(a)-[(h,t)] = [(h, (T, h)(a)t)].

7.29 CM elliptic curves

Let £ C C be an imaginary quadratic field, 7" := Resg/gGunpg, and h: S — Tg such that
h: S(R) = C* = T(R) is the identity. Then E (7, h) = E, and

SW(T, {h}) (@) = E*\Aj .
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Let Ell5(Q) be the category of (F, ), with F an elliptic curve over Q, and o: £ — Q ® End(F), such
that the action of E on the tangent space T (0) gives the given embedding £ C Q C C. Let Q@ Ell5(Q)

be the category obtained by tensoring the Hom’s with Q. Note that all objects in Q ® Ellg(Q) are
isomorphic: all F' with CM by FE are isogeneous, and Aut(Q ® (F, a])) = E*. Then we have a bijection

Sh(T, {h})e(Q) — {(Q& (F,a),¢) : with ¢: Apy — V(F)}/ =,

sending [(h, t)] to the elliptic curve (R ®¢ E)/Op with ¢ = t. Both sides have an action by Gal(Q/E).
The theory of complex multiplication says that these actions are equal, and that justifies the choices
that were made in defining the canonical model Sh(T', {h} ). The same is true for general CM-abelian
varieties by the theorem of Shimura-Taniyama. See Milne’s notes, Ch. 10-11 for details.

The algebraic definition of the (Q ® (F,«),¢) in fact gives directly a morphism
Gal(Q/E) — Ag ;/E*, because the Gal(Q/E)-action commutes with the Aj ;/E*-action and
that action is free and transitive.

7.30 Back to general theory.

For f: (G1,X1) — (G3, X3) a morphism of Shimura data, we have E, C FEj: this follows directly from
the definition.

7.31 Theorem. Let (G, X) be a Shimura datum. Let E := E(G, X) C C. There is a unique FE-scheme S
with a right action by G(A ), together with a G(A )-equivariant isomorphism S ® C — Sh(G, X)c,
such that for all closed immersions of Shimura data i: (T,{h})—(G, X) with T a torus, the induced
T'(Ay)-equivariant morphism i: Sh(T,{h})c — Sh(G, X)c comes via base change E(T', h) — C from
a morphism Sh(T', {h})gr,ny = Seery) of E(T, h)-schemes.

For a morphism of Shimura data f: (G',X') — (G,X), and E' = E(G',X'), the induced
morphism Sh(G', X’)c — Sh(G, X)c comes by base change E' — C from a unique morphism
Sh(G', X")p — Sh(G, X) .

For a discussion of the proof see Section 2 of Moonen’s article “Models of Shimura varieties...”. This

theorem tells us how a large part of Gal(Q/Q) acts on special points.

7.32 Corollary. Let (T, {h}) and (G, X) be as in the theorem. Let g € G(Ay) andt € T(Ay), and
a € A%. Then [(i(h),i(t)g)] € Sh(G, X)g(E(T, h)*"), and

art(a)-[(i(h),i(t)g)] = [(i(h), i(r(T, h)a)i(t)g)]

Theorem 2.6.3 in Deligne’s Corvallis paper gives, for (G, X) a Shimura datum, the action of Gal(Q/E)
on m(Sh(G, X)g), a torsor under the commutative group G(A)/G(Q) (Prop. 2.1.14). The definition
of (G, X) is very complicated. Klingler and Yafaev do not use it, but use (G, X) — (G?*,{-}), and G*"

1S a torus.
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8 Where to put????

8.1 PEL type, simple of type A or C

(For details, see Milne, 8.) Let B be a simple finite dimensional Q-algebra (that is, M,,(D) for some
division algebra of finite dimension over Q) and * a positive involution (for every nonzero b € B,
trace(b*-b) > 0), and such that .

8.2 A Hodge type example

bRl

In his paper “A note of Shimura’s paper...” in 1969, Mumford gives an example of a Shimura datum
(G, X) that is of Hodge type, but not of PEL type, meaning that (G, X)) can be embedded in (GSp,,,, H)
for some n, but that morphisms between abelian varieties are not sufficient to define G as stabilising
subgroup in GSp,,,. We describe his example.

Let Q — F be a totally real extension of degree three, and B a quaternion algebra over F' that is
ramified at two of the three real places of /" and unramified elsewhere. Then the corestriction Cor /g (5)
of B from F' to Q is isomorphic to Mg(Q) (it is the tensor product along the fibres Spec(F') — Spec(Q);

Weil restriction is product along the fibres). Here is a description. We have a semi-linear action:

Gal@Q/Q) x X) ¢B— (X ¢B, o®@id: ¢B — 0¢B,

¢: F=Q ¢: F=Q
and _
Gal(Q/Q)
CorpgB = | (X) ¢B
¢: F—Q

We have a norm map
Norm: B — Corp/gB, b= ®4(1®0D).

Doing the same over (Q-algebras gives a morphism of linear algebraic groups over (Q which on Q-points
is:

Norm: B* — Corp/q(B)* = GLsg.
We let GG be the image, hence a subgroup of GLg .

Geometrically: over Q, G is isomorphic to GLy x GLy x GLy, and G is its image under the rep-
resentation on W @ W ® W, with W the standard representation of GL,. So, G is the quotient of
GL2 x GLy x GL4 by the subgroup given as the kernel of G, X G, X G, — Gy, (2, y, 2) — xyz. Over
Q, this kernel is the norm 1 subgroup of £ (well, the algebraic group).

Let us write, over C, an h: S(R) — G(C), of which the G(R)-orbit gives the Shimura datum. We
first give h on R* and on S seperately, as morphisms to GLy(C) x GLy(C) x GLy(C):

h:R 3 A= (AMNA), S'3z20-(1,1,(32)).
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Note that the images of —1 do not agree, they are (—1 — 1 — 1) and (1,1, —1), but their difference
(—1 —1,1) is zero in G, and therefore h factors as R* x S' — C* — G(C). The weight morphism is
defined over Q. The representation W @ W ® W has, up to scalar multiple, a unique symplectic form
that is invariant up to multiple (it is the tensor product of a symplectic form on each factor 11). Over R,
we have G, x SO, x SLy — Gg.

These Shimura varieties parametrise 4-dimensional abelian varieties with extra Hodge classes. See
Moonen’s notes on MT-groups, (5.9) that there are none in H*(X,Q), but also that they occur in
HY(X x X,Q).

Mumford also shows that there are special points, as follows. Let h be in X, and 7" a maximal
torus of G containing h(S). Let a € T'(R) be a regular element (not in kernel of any root; the set of
regular elements in G is open and dense (multiplicity of eigenvalue 1 in char pol of g acting on Lie(G) is
minimal)). The centraliser of a is T, and there is an open U C G(R) containing a such that for every b in
U the centraliser of b is a conjugate of 7" (take U the connected component of a in G™(RR)). Now take b
in U(Q) (we know it is dense in U(R)), and let g € G(R) such that gT'g~! is the centraliser of b. Then
g-h is special, as (g-h)S C (Zg(b))R. Of course, this is a very general argument.
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