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Abstract

The purpose of this text is to explain, to first year students in Mathematics, some things
about the Galois representations that play an important role in the proof by Wiles of Fermat’s
theorem.

Prerequisite: Some mathematics language (sets, functions), complex numbers. The level
will rise a bit, as we go along.

1 Automorphism of complex numbers
Our point of departure is the set C of complex numbers. Recall that each complex number can
be written in a unique way as a + bi where a and b are real numbers, that is, with a and b in R.
The addition in C is done coordinate by coordinate:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

while the multiplication follows from the relation i2 = −1:

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

In C we can also divide (except by 0 of course):

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
+
−b

a2 + b2
i.

∗This text is a translation of [Ed]. The author thanks Xavier Caruso for making the original text more accessible
by simplifying the vocabulary and adding more explanatory passages. And he thanks Albert Gunawan for this
translation from french to english.
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For the notion of symmetry in number theory, which is the basis of Galois theory, we will forget
the distance in C and will only consider the algebraic properties: the addition and the multipli-
cation. The symmetries of C are called automorphisms and they are defined as follows.

Definition 1.1 The automorphisms of C are the maps σ : C→ C that satisfy:

• σ(z + w) = σ(z) + σ(w),

• σ(z·w) = σ(z)·σ(w),

• σ is bijective.

These properties imply that σ(0) = σ(0 + 0) = σ(0) + σ(0), and then σ(0) = 0. They imply
the equality σ(1) = σ(1·1) = σ(1)·σ(1), from which we deduce that σ(1) = 1 or σ(1) = 0, and
then finally σ(1) = 1 because σ(1) is different from σ(0).

The set of automorphisms of C is denoted by Aut(C). If σ1 and σ2 are elements of Aut(C),
then so are their composition σ2 ◦ σ1 and inverses: mathematicians say that Aut(C) is a group.

We know two automorphisms of C: the identity idC : z 7→ z, and the complex conjugation:
σ(a + bi) = a − bi, written as z 7→ z. It is a good exercise (left to the reader) to show these
are the only automorphisms that are continuous. We can show that Aut(C) is very large (as
large as the set of subsets of R). For example, knowing that

√
2 is irrational (see [Du-Le] for

65 proofs of this statement), we can consider the map a + b
√
2 7→ a − b

√
2 (which is defined

on the set K of numbers of the form a + b
√
2 with a and b in the set Q of rational numbers)

and show that this extends to an automorphism of C. This last property of extension generalizes
to all automorphisms σ : K → K where K is a subset of C stable under addition, subtraction,
multiplication and division (we call this a subfield of C). This permits us to obtain a lot of
automorphisms of C.

A lot of questions that we can ask about the algebraic properties of complex numbers are
open. For example, we know that the numbers e and π are transcendental, meaning that they are
not a root of a polynomial xn + an−1x

n−1 + · · ·+ a0 with coefficients ai in Q. This implies that
there exists a σ in Aut(C) such that σ(e) = π, and there exists a σ in Aut(C) with σ(π) = e.
It is believed that e and π are algebraically independent (meaning that there exists no non-zero
polynomial f in Q[x, y] such that f(e, π) = 0). However, we don’t know, at present, how to
prove this. We also don’t know if there exists a σ in Aut(C) that exchanges e and π.

2 Galois symmetry in number theory
Leu us start with Galois theory. Let f = xn + an−1x

n−1 + · · · + a0 be a polynomial with
coefficients ai in Q. The fundamental theorem of Algebra says that the equation f(z) = 0 has
exactly n solutions in C, counting with multiplicity. Let us write Roots(f) for the set of these
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roots. For σ in Aut(C) and z in Roots(f) we have

0 = σ(0) = σ(f(z)) = σ(zn + · · ·+ a1z + a0)
= σ(zn) + · · ·+ σ(a1z) + σ(a0)
= σ(z)n + · · ·+ σ(a1)σ(z) + σ(a0)
= σ(z)n + · · ·+ a1σ(z) + a0 = f(σ(z))

hence σ(z) is again in Roots(f). We conclude that each σ in Aut(C) permutes the elements
of Roots(f). The Galois group of f is defined as the set Gal(f) of permutations of Roots(f)
induced by the elements of Aut(C).

Let us consider some examples. Let f be the polynomial x2 − 4. Then Roots(f) is the set
{−2, 2}. The two elements of this set are fixed by all the σ in Aut(C); indeed, we have already
seen that σ ∈ Aut(C) necessarily sends 1 to 1, it sends also 1+1 = 2 to σ(1)+σ(1) = 1+1 = 2.
The same reasoning shows that it sends −2 to itself. Finally, Gal(f) only contains the identity
permutation 2 7→ 2, −2 7→ −2.

For g = x2 + 4, we have Roots(g) = {2i,−2i}. This time, there exists an element of
Aut(C) that exchanges these two roots: the complex conjugation. Therefore Gal(g) contains the
two possible permutations of two roots: the identity, and the one that exchanges the two roots:
2i 7→ −2i, −2i 7→ 2i.

For h = x2 − 2, the roots are
√
2 and −

√
2 and we have already said that there exists a σ in

Aut(C) that permutes these two numbers. Hence Gal(h) contains the two possible permutations
of {
√
2,−
√
2}.

Let us go back to the general theory. This theory has initially been invented for solving the
problems of solution by radicals of algebraic equations. Nowadays, however, it has many other
applications, both in theory and in computation.

Readers interested in the possibility of calculating Galois groups are invited to install the
freely-available software PARI/GP (see [PARI]) and to try the command polgalois, which
compute Gal(f) for polynomials of degree at most 11.

We propose in the rest of this article to sketch how Galois theory is used in the proof of
Fermat’s Last Theorem by Wiles and Taylor-Wiles .

3 Galois representations of dimension one and two
Important examples of polynomials are those attached to the division of the circle in n equal

parts or, equivalently, to regular polygons.
Let n > 1, f = xn − 1, and z = e2iπ/n = cos(2π

n
) + i sin(2π

n
). The map

{0, 1, . . . , n−1} → Roots(f), a 7→ za

is then bijective; we call it labeling of the roots of f . Figure 1 above shows the case n = 5.
In term of the labeling {0, 1, . . . , n−1} → Roots(f), a 7→ za, the group Gal(f) then exactly

consists of the permutations of {0, 1, . . . , n−1} of the form a 7→ ka mod n, with 0 ≤ k < n
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and gcd(n, k) = 1. Here b mod n denotes the remainder obtained from the euclidean divi-
sion of b by n. For example, the complex conjugation corresponds to the multiplication by
k = −1 (or rather n−1, but that has the same effect on the remainder modulo n), because
z = e2πi/n = e−2πi/n = z−1.

In this example, the way the Galois group permutes the roots

z0 = z5

z1
z2

z3
z4

Figure 1: n = 5

(we often say the action of Galois group) is then very simple:
if we number the roots properly, the action is by multiplication.
Such data is called a Galois representation of dimension 1.

We can say that for a long time mathematicians had tried to
prove Fermat’s theorem by studying these Galois representations
(roots of unity, cyclotomic field), and that finally it is through the
study of Galois representations of dimension 2 that they finally
succeeded.

What are these representations? The basic idea is instead of labeling the roots by integers
from 0 and n− 1, we label the roots by pair of integers, the notion of multiplication in this new
situation is slightly different and explained precisely below.1

Definition 3.1 A Galois representation of dimension 2 is a polynomial

f = xn
2

+ · · ·+ a1x+ a0

of degree n2, with the ai in Q, together with a labeling of Roots(f) with the pairs v = (v1, v2)

with v1 and v2 in {0, 1, . . . , n−1}, such that the Galois group Gal(f) is consists of permutations
of the form

(v1, v2) 7→ ((av1 + bv2) mod n, (cv1 + dv2) mod n)

where a, b, c and d are integers such that ad− bc is relatively prime to n.

Remark. To remember the fixed integer n in this story, mathematicians usually say that the Galois
representation has coefficients in Z/nZ.

These objects play very important role in the proof of Fermat’s Last Theorem by Wiles (see
[Wi]). In the last 40 years the study of such representations is central in arithmetic (that was the
beginning of the famous “Langlands program”). The essential difference with the dimension 1
case is the non-commutativity: when we compose two permutations taking the form given by
above definition, the order of factors is important.

4 Elliptic curves
We have seen that the polynomial xn − 1 gives a Galois representation of dimension 1. We
will see that certain polynomials associated to elliptic curves provide Galois representations of
dimension 2.

1Those who knows matrices will recognize the multiplication a vector by 2× 2 matrices.
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Figure 2: An elliptic curve and its addition operation

An elliptic curve (over the field Q of rational numbers) is a curve in the plane given by one
equation of the form y2 = x3 + ax+ b with a and b in Q, such that the polynomial x3 + ax+ b
does not have double roots in C, meaning that 4a3 + 27b2 is non-zero. In Figure 2 below (found
on Wikipedia) we see the equation of the curve y2 = x3−x+1 in the real plane (as well as some
of the intersections with lines).

As the equation of the curve is of degree 3, each line in the plane has at most 3 intersection
points with the curve. In fact, if we count these intersection points with multiplicity and if we
accept points whose coordinates are complex numbers, each line given by an equation y = cx+d
with c non-zero has exactly 3 intersection points, and each vertical line (the equation x = c) has
2 intersection points. For having 3 intersection points in all cases, we usually add to the elliptic
curve a “point at infinity” denoted by 0 (zero), at which all vertical lines meet. We denote by E
the complete complex curve, meaning the set {(x, y) ∈ C2 : xy2 = x3 + ax+ b} ∪ {0}.

If now we have two points P and Q on the curve E, we take the line that passes through P
and Q (the tangent line if P = Q, and forget the case P = Q = 0). This gives us the third
intersection point, say R. The point symmetric to R with respect to the x-coordinate axis is then
denoted by P + Q. One can show that for all P , Q and R in E, we have P + 0 = P (this is
immediate), (P +Q)+R = P +(Q+R) (this is difficult), P +Q = Q+P (this is immediate),
and that for all P there exists a Q such that P +Q = 0 (take for Q the point symmetric to P with
respect to the x-coordinate axis). This justifies the notation P +Q (as well as) with the notation
0 for the point in infinity: E with the operation +: E × E → E is a commutative group.

Another (difficult) classical result says that for each integer n ≥ 1, the set E[n] of points
P of E such that the sum P + · · · + P with n terms is 0 consists of n2 elements. Better than
that: there exists a bijection (labeling) between this set E[n] and the set of pairs (v1, v2) with v1
and v2 in {0, . . . , n−1}, and this bijection is compatible with the addition operation of the two
sides, in the sense if P corresponds to (v1, v2) and Q to (w1, w2), then P + Q corresponds to
((v1 + w1) mod n, (v2 + w2) mod n). For the proof, we can say that this result is obtained by
studying E in the terms of Weierstrass’s doubly periodic complex meromorphic functions.

On the other hand, as the curve E is defined by an equation with coefficients in Q, the
addition operation on E is compatible with all σ in Aut(C): for all P and Q on E we have
σ(P+Q) = σ(P )+σ(Q) where we define, for P = (x, y) with x and y in C, σ(P ) = (σ(x), σ(y)).
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This implies that for σ in Aut(C) and P in E[n], we have σ(P ) in E[n]. From this, we can de-
duce that the points ofE[n] are in bijection with the roots of a polynomial f in Q[x] of degree n2.
For obtaining such a bijection, we choose a point C in Q2 that does not lie on a line contain-
ing two points in E[n], and whose second coordinate is distinct from all second coordidates
of points in E[n]. Then we associate to each P in E[n] the first coordinate of the intersection
point of the line passing through C and P with the x-coordinate axis. We denote this coordinate
by xP . The map P 7→ xP is compatible with the action of Aut(C): for all P and all σ we have
σ(xP ) = xσ(P ). The polynomial f is then the product, indexed by P in E[n], of the (x − xP ).
Indeed, this product is invariant under Aut(C), hence it is in Q[x].

If we go back to the definition of a Galois representation of dimension 2 and we put together
all that has been said above, we see that the polynomial that we have constructed defines a Galois
representation of dimension 2.

Let us finish with a small example. Let E be the completed curve given by y2 = x3 − x+ 1.
Take n = 2. Then E[2] is the set of 4 points 0, (z1, 0), (z2, 0) and (z3, 0) where z1, z2 and z3
are the roots of x3 − x + 1. If we take C = (0, 1), then the numbers xP are 0, z1, z2 et z3 and
the polynomial with these roots is f = x(x3 − x + 1). The Galois group of this polynomial
consists of the permutations of the set Roots(f) = {0, z1, z2, z3} that fix 0: it is clear that if a
permutation of the roots of f comes from an automorphism of C, then it leaves 0 fixed, and to
show the equality, we can use PARI/GP for assuring that the Galois group of x3−x+1 contains
all the permutations {z1, z2, z3}. Finally, if we label the roots as follows

0↔ (0, 0) ; z1 ↔ (1, 0) ; z2 ↔ (0, 1) ; z3 ↔ (1, 1)

then we can verify, by looking separately all the case for example, that the 6 elements of
Gal(f) can be put in the form imposed in the definition a Galois representation of dimen-
sion 2. For example the permutation that sends z1 to z2, z2 to z3 and z3 to z1 can be written
(v1, v2) 7→ (v2, (v1 + v2) mod 2).

5 Fermat’s last theorem
Fermat’s last theorem says that if n is an integer greater or equal than 3, then the equation
xn + yn = zn has no solution in positive integers. It appeared for the first time in a 17th
century in the manuscript of Pierre de Fermat, without proof. Since then, many generations
of mathematicians have tried to prove this result. Their work has led, over the centuries, to
significant progress, including the development of the theory of algebraic numbers. The first
complete proof was given by Wiles and Taylor-Wiles in 1995. It used Galois representations of
dimension 2 as the main idea, especially those related to elliptic curves.

The discovery of a link between Fermat’s last theorem and elliptic curves seems to date from
1969. It appeared in a lecture by Hellegouarch in Bordeaux (see [He2], and appendix [He1]).
The question that is asked by Hellegouarch was to know if an elliptic curve E (over Q) can have
a point P = (x, y) in E[n] with x and y in Q and n “big”. Under certain hypotheses, he showed
that if that happened, then Fermat’s last theorem would fail in degree n.
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In 1985, Frey studied the question in other direction: can we prove Fermat’s last theorem by
showing that the elliptic curves associated by Hellegouarch to a counter example to Fermat’s last
theorem can not exist? To support his idea, he remarked that the existence of such an elliptic
curve would contradict with a the so-called modularity conjecture (on which we will say a few
words in the following), that is very important in mathematics.

After that, things went quickly. In an article in 1987, Serre clarified and generalized the
ideas of Frey placing them in the context of Galois representations, and formulated a precise
conjecture. Then, Ribet showed a sufficient portion of Serre’s conjecture to conclude that the
modularity conjecture implies Fermat’s last theorem. Finally, Wiles and Taylor-Wiles showed
enough of modularity conjecture to deduce Fermat’s last theorem. We don’t give more detail
of the whole story (see section 7). Our goal is rather to point out the role played by Galois
representations.

6 The role of Galois representations
To prove Fermat’s last theorem, it is sufficient to suppose that there exists a solution of the Fermat
equation xn+yn = zn with n ≥ 3 and deduce a contradiction. As we already know (by the work
of Fermat himself and of Gauss) that the theorem is true for degrees 3 and 4, we can suppose that
n is a prime number p ≥ 5. So let p ≥ 5 be a prime, and a, b and c in Z such that ap+bp+cp = 0,
with abc 6= 0. We can suppose that a, b and c are relatively coprime, and by symmetry that b is
even and a+1 is divisible by 4. LetA = ap,B = bp, and C = cp and, by following Hellegouarch
and Frey, consider the elliptic curve EA,B,C over Q given by:

EA,B,C : y2 = x(x− A)(x+B).

It turns out that this curve EA,B,C has properties that make its existence impossible. The first
of these is the non-ramification outside 2 and p of the Galois representation EA,B,C [p]. This
means that for all prime numbers ` different from 2 and p, in suitable coordinates, the points
P of EA,B,C [p] remain distinct after reduction modulo ` (if the coordinates of these points are
integers, this means simply “after coordinate-wise taking their remainders by Euclidean division
by `”, except that the notion is more complicated). The proof of this property uses “standard”
tools: the discriminant of the polynomial x(x − A)(x + B) (which appeared in the definition
of elliptic curve), which is equal to A2B2(A + B)2 = (ABC)2 = (abc)2p and has remarkable
property of being the p-th power. Using an analogous argument, one shows also a slightly weaker
property for the reduction modulo ` = p.

The second property that we use is the modularity of elliptic curves arising from (part of) the
modularity conjecture proven by Wiles and Taylor-Wiles. It would be too long to explain exactly
here the modularity conjecture. For the purpose of this article, it is important to remember that
this conjecture predicts in particular that the Galois representation EA,B,C [p] can be obtained
by completely different ways involving so-called modular forms (which are in nature analytic
objects having a priori no relation with elliptic curves). The reader wishing to know more may
consult [Di-Sh].
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Finally, by studying modular forms, it can be shown that a Galois representation which is
constructed from modular forms cannot verify the property of non-ramification that was men-
tioned above. The contradiction that appears here proves Fermat’s last theorem.

In fact, the modularity conjecture, which relates elliptic curves to modular forms, can be
stated without Galois representations. However, on the one hand, as we have explained, it is
through Galois representations that the contradiction (of which results Fermat’s last theorem)
appears, and on the other hand, the proof of Wiles and Taylor-Wiles could not be done without
Galois representations. For example, in this proof, we pass first from the elliptic curve E to
system of Galois representations (E[3n])n≥1. If we were physicists, we would say that it is Ga-
lois representations that carry forces between Fermat’s last theorem, elliptic curves and modular
forms.

To finish, since the most recent results by Khare-Wintenberger and Kisin, who proved Serre’s
conjecture mentioned above, there is a more direct proof of Fermat’s last theorem, but again it
proceeds via Galois representations.

7 Read more
Good references for reading more on this topic (the story of the proof of Fermat’s last theorem,
theory of modular forms and modularity of elliptic curves over Q) are the books by Hellegouarch
[He1, He2] and the book by Diamond and Shurman [Di-Sh], and the expositions at Séminaire
Bourbaki [Se] and [Oe].

References
[Di-Sh] F. Diamond and J. Shurman, A first course in modular forms GTM 228, Springer, Berlin,

2005
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