
All lectures are 1 hour, and all problem sessions too.

1 Lecture 1: Overview, topology, sheaves, examples

1.1 Introduction

We want to show in the workshop how some basic modern tools from topology, such as sheaves
and cohomology, shed new light on an old theorem of Gauss in number theory: in how many
ways can an integer be written as the sum of three squares? We are also very enthousiastic
about the Stacks Project, and so we want to make people familiar with it. It seems very useful
to us, even for the general theory of sheaves on topological spaces; users should try not to be
intimidated by it, there is a lot of elementary material and it is an excellent place to learn a
lot more.

Here is our plan for the 4 lectures:

1. Topological spaces, continuous maps,

2. Sheaves of groups acting on sheaves of sets, torsors,

3. The case of a transitive action,

4. Application to Gauss’s theorem on 3 squares.

1.2 Topological spaces, continuous maps

Topological spaces were probably invented for catching the essence of the notion of continuity of
maps between metric spaces: no more ε and δ, just “inverse image of open is open”. A subset U
of a metric space (X, d) is called open if for all x in X there is a δ in R>0 such that B(x, δ) ⊂ U ,
where B(x, δ) = {y ∈ X : d(x, y) < δ} is the open ball (in X) of radius δ around x.

1.2.1 Definition. A topological space is a pair (S,Open(S)) with S a set and Open(S) a set
of subsets of S, called the open subsets of S, such that:

1. ∅ and S are elements of Open(S),

2. if I is a set, and, for every i in I, Ui is in Open(S), then the union
⋃
i∈I Ui is in Open(S),

3. if U and V are in Open(S), then so is U ∩ V .

1.2.2 Definition. Let (S,Open(S)) be a topological space. A subset Z of S is closed if its
complement S − Z is open.

1.2.3 Remark. Note that this does not mean that a subset is closed if it is not open. For
example, the interval [0, 1) in R (with the usual topology) is not open and also not closed.

1.2.4 Example. 1. Each metric space (X, d) has a topology defined by d. Note that for
metric spaces (X, d) and (Y, d′), a map f : X → Y is continuous if and only if for all
U ⊂ Y open, f−1U is open in X.

2. There are also natural non-Hausdorff spaces, occurring in algebraic geometry. The Zariski
topology on Cn has as closed sets the Z(T ), where T ⊂ C[x1, . . . , xn] is a set of polynomials
and Z(T ) = {a ∈ Cn : for all f ∈ T , f(a) = 0}. It is a non-trivial exercise that this
indeed satisfies the axioms for a topological space. For n > 0, Cn with this topology is
not Hausdorff. For n = 1 this is easy to see: each non-empty open set is C minus a finite
set, hence two non-empty open sets are not disjoint.
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3. Let A be a ring. Then we let Spec(A) be the set of prime ideals of A, that is, the ideals
x ⊂ A such that A/x is an integral domain. For x in Spec(A), we have the quotient A/x
which is an integral domain, and we let κ(x) be the field of fractions of A/x. For f in A,
and x in Spec(A), we call the image of f in κ(x) the value f(x) of f at x, and so f gives
a function on Spec(A) with values in fields, but the field depends on the point where one
takes the value. Then we can define the Zariski topology on Spec(A): the closed subsets
are the sets of the form Z(T ), for T a subset of A, and

Z(T ) = {x ∈ Spec(A) : ∀f ∈ T, f(x) = 0 in κ(x)}.

We have to prove that this satisfies the axioms for closed subsets.... Make an exer-
cise of this? One has to show that Z(T1·T2) = Z(T1) ∪ Z(T2), here T1·T2 is the set
{f1f2 : f1 ∈ T1, f2 ∈ T2}. One inclusion is clear. So now assume that x is in Z(T1·T2)
and that x is not in Z(T1). Then there is an f1 in T1 such that f1(x) 6= 0. Now let f2 be
in T2. As f1f2 is in T1·T2, we have (f1f2)x = 0. But (f1f2)x = (f1x)(f2x) in κ(x), and
f1x 6= 0, hence f2x = 0.

1.2.5 Definition. Let X and Y be topological spaces, and f : X → Y a map. Then f is
continuous if for all open U ⊂ Y , f−1U is open in X.

This gives us the category Top of topological spaces. In particular, a morphism of topological
spaces f : X → Y is an isomorphism if and only if there exists a morphism g : Y → X such
that gf = idX and fg = idY . The condition on f to be an isomorphism is of course equivalent
to f being bijective and f−1 being continuous.

1.3 Presheaves

1.3.1 Definition. Let S be a topological space. A presheaf of sets F on S consists of:

• for each U in Open(S), a set F(U),

• for each inclusion iV,U : V → U with V and U in Open(S), a map F(iV,U) : F(U)→ F(V ),

such that:

1. for each U in Open(S), F(iU,U) = idF(U),

2. for all inclusions W ⊂ V ⊂ U with U , V , W in Open(S), F(iW,U) = F(iW,V ) ◦ F(iV,U).

1.3.2 Remark. Often one writes the maps F(iV,U) : F(U)→ F(V ) as s 7→ s|V , and calls them
“restriction maps”.

1.3.3 Remark. Category theory provides a very efficient way to summarise the definition of
a presheaf: it is a contravariant functor Open(S)→ Sets, where Open(S) is then the category
whose objects are the open subsets of S and whose morphisms are the inclusion maps, and
where Sets is the category of sets. For those who want to be precise and correct and express
everything in terms of set theory, let us make precise that we decide that all our categories are
“small”, that is, their collection of objects is a set. Actually, they are all subsets of one fixed
big enough set, called a “universe”. According to Albert, a previous visitor, Klaus Denecke,
has talked a lot about categories in a workshop in Yogya in 2009.

1.3.4 Example. Let X be a topological space, then the presheaf C0
X,R of continuous real

functions on X is defined as C0
X,R(U) = {f : U → R : f is continuous}, with, for V ⊂ U an

inclusion of open sets, and for f ∈ C0
X,R(U), f |V the restriction of f to V .
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Similarly, for X a smooth real manifold, we have the sheaf C∞X,R of smooth real functions
given by C∞X,R(U) = {f : U → R : f is smooth}, with the usual restriction maps.

We could also consider a complex analytic manifold and define its sheaf of complex analytic
functions.

1.3.5 Example. Let X be a topological space and let A be a set. Then the constant presheaf
on X with values in A is U 7→ A for all U , and with all restriction maps idA.

1.3.6 Definition. Let X be a topological space, F and G be presheaves on X. A morphism
of presheaves φ : F → G consists of maps φ(U) : F(U)→ G(U), for all open U ⊂ X, such that
for all inclusions V ⊂ U , we have G(iV,U) ◦ φ(U) = φ(V ) ◦ F(iV,U), that is, the diagram

F(U)
φ(U) //

F(iV,U )

��

G(U)

G(iV,U )

��
F(V )

φ(V ) // G(V )

is commutative. In yet other words, morphisms of presheaves are the same as morphisms of
functors.

A set-theoretic description is: a map from Open(X) to the union, over all U , of the
Hom(F(U),G(U)), such that the necessary conditions hold.

1.3.7 Remark. Similarly, we can define presheaves of of groups, of rings, and so on.

1.4 Sheaves

Sheaves are presheaves with the property that their sets of sections are “determined locally”.
The following definition makes this precise.

1.4.1 Definition. Let X be a topological space, and F a presheaf of sets on X. Then F is a
sheaf of sets if for all open subsets U ⊂ X and all open covers (Ui)i∈I (with I any set) of U ,
and for all collections (si ∈ F(Ui))i∈I such that for all i and j in I, si|Ui∩Uj

= sj|Ui∩Uj
, there is

a unique s ∈ F(U) such that for all i ∈ I, si = s|Ui
.

For F and G sheaves of sets on X, a morphism from F to G is a morphism from F to G as
presheaves.

Similarly, one has sheaves of groups, rings etc.

1.4.2 Example. For X a smooth manifold, the presheaf C∞X,R is a sheaf, because the condition
for a function f : U → R to be smooth is a local condition.

1.4.3 Example. Let X = {0, 1} with the discrete topology. Then we have 4 open subsets: ∅,
{0}, {1}, {0, 1}, with their inclusions. The diagram is a very familiar partially ordered set with
sup and inf:

{0, 1}

{0}

<<

{1}

bb

∅

cc ;;

OO
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It is then clear what a presheaf of sets on X is: sets F({0, 1}), F({0}), F({1}), F(∅), with
maps “in the other direction”:

F({0, 1})

xx &&

��

F({0})

&&

F({1})

xx
F(∅)

Now what is the condition that F is a sheaf? Here is the answer. First of all F(∅) is a set with
one element (we do not know which one point set that is, but it does not matter); the proof of
this is an exercise in logic/set theory. Note that each one point set is a final object in Set, the
category of sets. Considering the covers of {0} leads to the conclusion that there is no condition
on F({0}), and by symmetry, also no condition on F({1}). But {0, 1} is covered by U0 = {0}
and U1 = {1}, and that gives that the condition that the map F({0, 1}) → F({0}) × F({1})
is bijective.

To summarise: a presheaf of sets F on {0, 1} with the discrete topology is a sheaf if and
only if (F(∅) is a one point set, and F({0, 1})→ F({0})×F({1}) is bijective).

Note that we have now seen that there are presheaves that are not sheaves. In particular,
for A with at least two elements, the constant presheaf with values in A on {0, 1} with the
discrete topology is not a sheaf, for two reasons.

1.4.4 Example. Let X be a topological space, and let A be a set. Then we define the constant
sheaf AX with values in A on X by AX(U) = {f : U → A : f is locally constant}, with the
restriction maps. This presheaf is a sheaf.

1.4.5 Remark. The chapter “Sheaves on Spaces” of the Stacks Project is a highly recom-
mended reference for all the material of this lecture. It has all the necessary details, and is
very accessible. One important notion that we left out in this lecture is that of the stalk of a
presheaf at a point. If we need it at some point, then it will come up naturally.

2 Problem Session 1

1. Is every discrete topological space a metric space?

2. Let A = C[t]. Show that Spec(A) has one point that is dense, and that all other points
are closed. Give a bijection between the set of closed points and C.

3. Show that for F a sheaf of sets on a topological space X, F(∅) is a set with exactly one
element. This is an important exercise, because it is about how things are really defined,
and so one has to understand it (Hartshorne would not agree with this, he defines F(∅)
to be what he wants it to be; and he does not even define sheaves of sets).

4. Let X be the topological space {0, 1} with open sets ∅, {0} and {0, 1}. Describe the
sheaves of sets on X. (This is more interesting than the preceding exercise.)

5. Take a look at Spec(Z). As a set it is the set of prime ideals of the ring Z, hence all
maximal ideals (pZ for p a prime number) and the zero ideal. What are the residue fields
κ(x)? Show that the closed subsets are: Spec(Z) itself, and the finite sets of maximal
ideals.
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6. (In case you have time.) Let A and B be rings, and φ : A → B a morphism of rings.
Show that for x in Spec(B), φ−1x, the inverse image of x in A, is a prime ideal of A, and
that the map φ−1 : Spec(B) → Spec(A), x 7→ φ−1x is continuous (hint: give a formula
for (φ−1)−1Z(a) for any a ∈ A).

3 Lecture 2: Sheaves of groups acting on sheaves of sets,

torsors

3.1 Sheaves of groups

Recall that a presheaf of groups G on a topological space S consists of groups G(U), for all
U ⊂ S open, and for each inclusion V ⊂ U of open subsets of S, a morphism of groups
ρU,V : G(U)→ G(V ), such that for all U , ρU,U = id, and for all W ⊂ V ⊂ U , ρU,W = ρV,W ◦ρU,V .

A sheaf of groups on S is a presheaf of groups that, as a presheaf of sets, is a sheaf.
Let us give an interesting example. For a ring A, and n ∈ Z≥0, we let GLn(A) be the group

of invertible n by n matrices with coefficients in A. It is the automorphism group of the free
A-module An of rank n. For φ : A → B, we get a morphism of groups GLn(A) → GLn(B) by
applying φ to all the coefficients. This makes GLn into a functor from rings to groups.

3.1.1 Example. Let S be a smooth manifold. Then we have the sheaf of R-algebras C∞S,R
on S. This gives us, for n ∈ Z≥0, a presheaf U 7→ GLn(C∞S,R(U)), with the obvious restriction
maps. This is a sheaf of groups. We have composed the contravariant functor C∞S,R with the
covariant functor GLn. We will denote this sheaf of groups by GLn(C∞S,R)

More generally, if S is a topological space and O is a sheaf of rings (rings are always assumed
to be commutative) on S, then we get the sheaves of groups GLn(O) on S.

In the case n = 1, we use the notation A× = GL1(A) and O× = GL1(O).

3.2 Actions, quotients

For a group G and a set X, we know what left and right actions of G on X are. We generalise
this to sheaves. (Indeed, it is a generalisation, because sheaves on {0} are sets, and presheaves
on ∅ are sets; isomorphisms of categories, if we want to be precise.)

3.2.1 Definition. Let S be a topological space, G a presheaf of groups on S, and X a presheaf
of sets on S. An action of G on X consists of an action of the group G(U) on the set X (U),
for all U ⊂ S open, such that for all inclusions V ⊂ U , for all g ∈ G(U) and x ∈ X (U),
(gx)|V = (g|V )(x|V ).

Equivalently, an action of G on X is a morphism of presheaves G × X → X such that for
each U ⊂ S open, the map G(U)×X (U) = (G×X )(U)→ X (U) is an action of G(U) on X (U).
(But what are products of presheaves? Is a product of sheaves a sheaf?)

If G and X are sheaves, then an action of G on X is an action of presheaves.
What we have defined are left-actions. Of course, there are also right-actions.

We want to take the quotient of a sheaf of sets by the action of a sheaf of groups. Here, it
makes a difference if we do this for presheaves, or for sheaves. First of all, we must make clear
what we mean by a quotient. As usual, it is best to do this with a universal property.

For G a group acting from the right on a set X, the quotient map q : X → X/G has the
property that for any set Y , and for any map f : X → Y such that for all x in X and all g in
G one has f(xg) = f(x), there is a unique map f : X/G→ Y such that f = f ◦ q.

To define the quotient for an action of sheaves or presheaves, we use this universal property,
but then in the category of sheaves or presheaves.
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3.2.2 Definition. Let S be a topological space, X a presheaf of sets on S with a right-action
by a presheaf of groups G on S. A morphism of presheaves q : X → Y is called a quotient for
the G-action on X if for every morphism of presheaves f : X → Z such that for all U ⊂ S
open, all g ∈ G(U), all x ∈ X (U) we have (fU)(xg) = (fU)(x), there is a unique morphism of
presheaves f : Y → Z such that f = f ◦ q.

Of course, if such a quotient exists, it is unique up to unique isomorphism, and therefore, in
vague terms, “well-defined”.

3.2.3 Proposition. Let S be a topological space, X a presheaf of sets on S with a right-action
by a presheaf of groups G on S. Then U 7→ X (U)/G(U), with the obvious restriction maps, is
a quotient. Notation: (X/G)p (with the subscript p of “presheaf”).

Proof. Straightforward. �

But in the category of sheaves the situation is more complicated.

3.2.4 Definition. Let S be a topological space, X a sheaf of sets on S with a right-action by
a sheaf of groups G on S. A morphism of sheaves of sets q : X → Y is called a quotient for
the G-action on X if for every morphism of sheaves of sets f : X → Z such that for all U ⊂ S
open, all g ∈ G(U), all x ∈ X (U) we have (fU)(xg) = (fU)(x), there is a unique morphism of
sheaves f : Y → Z such that f = f ◦ q.

Of course, we have the presheaf (X/G)p, and if it is a sheaf, then it has the universal property
of the desired quotient. But the problem is that this presheaf is not always a sheaf. As this is
very important, we give an example.

3.2.5 Example. Let S = {−1, 0, 1} with opens ∅, {0}, {−1, 0}, {0, 1} and {−1, 0, 1}. Here is
the diagrams of open sets:

{−1, 0, 1}

{−1, 0}

88

{0, 1}

ee

{0}

ff 99

OO

∅

OO

Then a presheaf F is a sheaf if and only if F(∅) is a one point set and

F(S)→ {(a, b) ∈ F({−1, 0})×F({0, 1}) : a = b in F({0})}

is a bijection.
Let now X be the constant sheaf ZS; it is in fact a sheaf of groups. And we let G be the

subsheaf of groups with G(S) = {0}, G({−1, 0}) = 0, G({0, 1}) = 0 and G({0}) = Z, and we
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let G act on X “by translations”. Here we “draw” X , G and the presheaf quotient (X/G)p:

0

�� ��

��

0

��

0

��
Z

��
0

Z

�� ��

��

Z

��

Z

��
Z

��
0

Z

�� ��

��

Z

��

Z

��
0

��
0

Then X and G are both sheaves of groups (addition), and G is a sheaf
of subgroups X . The presheaf quotient (X/G)p is not a sheaf, because
(X/G)p(S) → (X/G)p({−1, 0}) × (X/G)p({0, 1}) does not have the right image; we
have the diagonal map Z → Z × Z and it should be a bijection. In other words: not all
compatible systems of local sections are given by a global section.

But what we can do is to replace (X/G)p(S) by what it should be, and see if that sheaf

Z× Z
pr1

||

pr2

""

��

Z

##

Z

{{
0

��
0

has the required property as in the definition. This works, one uses the sheaf property of Y !
(work it out in a diagram in the lecture, it is too much to type here).

There is standard notation for the sheaves in this example: j!ZU ↪→ZS � i∗ZZ , where U is
the open subset {0}, Z = {−1, 1} its complement, which is closed, and j and i the inclusion
maps. The lower star i∗ is the direct image which exists for arbitrary continuous maps, and
the lower shriek j! is the extension by zero for the open immersion j.

There is a general procedure to make a sheaf from a presheaf.

3.2.6 Theorem. Let S be a topological space, and let X be a presheaf of sets on S. Then
there is a sheaf X# and a morphism of presheaves jX : X → X# such that for every morphism
of presheaves f : X → Y with Y a sheaf, there is a unique f# : X# → Y such that f = f# ◦ jF .
In a diagram:

X jX //

f
��

X#

∃!f#}}
Y

Proof. See the section on sheafification in the chapter on sheaves on spaces in the Stacks
Project. Their the usual construction using stalks at points is given. Another possibility is to
do the operation suggested by our example, that is, replace, for every U , X (U) “by what it
should be”, twice, because there are two problems to solve: injectivity and surjectivity. This
last procedure is what one does in the more general situation of presheaves on sites. �
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3.2.7 Theorem. Let S be a topological space, X a sheaf of sets on S with a right-action by
a sheaf of groups G on S. Then X → (X/G)p → ((X/G)p)

# is a quotient for the action by G
on X . Notation: X/G.

Proof. Apply the previous theorem and the previous proposition. �

3.3 Torsors

These are the generalisation of non-empty sets with a free and transitive group action. Let G
be a group and X a set with a G-action. For x in X, the stabiliser in G of x is the subset
Gx := {g ∈ G : gx = x} of elements that fix x; it is a subgroup of G. For x in X, the orbit of x
under G is the set G·x := {y ∈ X : there exists g ∈ G such that y = gx} = {gx : g ∈ G}. The
action of G on X is free if for all x in X we have Gx = {1}. The action is transitive if for all x
and y in X there is a g in G such that y = gx.

A useful observation is that when X and Y non-empty right G-sets that are free and
transitive, any G-equivariant map f : X → Y (meaning f(xg) = (fx)g) is bijective.

Non-empty sets with a free and transitive group action occur frequently, and are often used
to “identify the set with the group”. Think of affine geometry, for example: the line in R2

given by the equation x+ y = 1 is acted upon freely and transitively by the sub R-vectorspace
of R2 given by the equation x+ y = 0, via addition in R2. Choosing an element in the first line
identifies it with the second one, but there is no natural choice.

We define the same properties in the context of sheaves. This is done by inserting “locally”
at the right places. If one looks well at Example 3.2.5, one sees that this has to be done in the
definition of “transitive”.

3.3.1 Definition. Let S be a topological space, G a sheaf of groups, acting on a sheaf of sets X .

• For x in X(S), the stabiliser Gx of x in G is the sheaf of subgroups given by
Gx(U) = G(U)|x|U (it is indeed a sheaf).

• The action of G on X is free if for all U ⊂ S open, G(U) acts freely on X (U).

• The action of G on X is transitive if for U ⊂ S open, for all x and y in X (U), there exists
an open cover (Ui)i∈I of U , and (gi ∈ G(Ui))i∈I , such that for all i ∈ I, gi·x|Ui

= y|Ui
.

3.3.2 Lemma. Let S be a topological space, G a sheaf of groups, and X and Y right G-torsors.
Then every morphism f : X → Y of G-torsors is an isomorphism.

Proof. This will be an exercise. �

3.3.3 Definition. Let S be a topological space, G a sheaf of groups acting from the right on
a sheaf of sets X . Then X is called a right-G-torsor if the following conditions hold:

1. the action of G on X is free and transitive,

2. locally X has sections: there is an open cover (Ui)i∈I of S, such that for each i ∈ I,
X (Ui) 6= ∅.

Let us give a very useful example of how torsors can arise: vector bundles on manifolds. Let S
be a smooth manifold, and p : E → S (with the necessary additional data) a vector bundle, of
rank n, say. Then, locally on S, E is isomorphic to the trivial vector bundle pr : Rn × S → S.
This suggests to define a sheaf IsomS(Rn × S,E), sending U to the set of isomorphisms of
vector bundles on U from Rn × U to E|U , IsomU(Rn × U,E|U). There are natural restriction
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maps, and in fact this is a sheaf. We also have the sheaf of groups AutS(Rn×S), which is the
same as GLn(C∞S,R) which we have already seen. By construction, GLn(C∞S,R) acts on the right
on IsomS(Rn×S,E), by composition, and it makes IsomS(Rn×S,E) into a right-GLn(C∞S,R)-
torsor.

Actually, as we are algebraists, we probably prefer to describe vector bundles in terms of
their sheaves of local sections, which are then locally free C∞S,R-modules. Personally, I find the
definition of a locally free sheaf of modules much simpler than that of a vector bundle, and the
two notions are equivalent. So, we discuss sheaves of modules.

3.3.4 Definition. Let S be a topological space, and O a sheaf of rings on S. A sheaf
of O-modules is a sheaf E of abelian groups, together with, for all open U ⊂ S, a map
O(U) × E(U) → E(U) that makes E(U) into an O(U)-module, such that for all inclusions
V ⊂ U of opens of S, for all f ∈ O(U) and e ∈ E(U) we have (fs)|V = (f |V )(e|V ).

A morphism of O-modules φ : E → F is a morphism of sheaves φ such that for all opens
U ⊂ S, the morphism E(U)→ F(U) is a morphism of O(U)-modules.

Let n ∈ Z≥0. A sheaf of O-modules E is called locally free of rank n if there is an open
cover (Ui)i∈I of S such that E|Ui

is isomorphic, as O|Ui
-module, to the free O|Ui

-module O|nUi
.

Concretely this means that we have ei,1, . . . , ei,n in E(Ui) such that for all open V ⊂ Ui and all
e ∈ E(V ) there are unique fj ∈ O(V ), 1 ≤ j ≤ n, such that e =

∑
j fjei,j|V .

3.3.5 Proposition. Let S be a topological space, O a sheaf of rings on S, n in Z≥0 and E a
locally free O-module of rank n. Then the sheaf IsomS(On, E) is a right-GLn(O)-torsor.

Proof. Straightforward. �

4 Problem Session 2

1. With S and X as in Example 3.2.5, take now G given by G(S) = {0}, G({−1, 0}) = Z,
G({0, 1}) = Z and G({0}) = Z2. Here is the diagram:

0

~~   

��

Z

inj1   

Z

inj2~~
Z2

��
0

where inj1 : Z→ Z2 is the map x 7→ (x, 0) and inj2 : Z→ Z2 the map y 7→ (0, y), they are
the injections on 1st and 2nd coordinate. There is a morphism of sheaves from G to X
given by:

G(S) = 0→ Z = X (S) is the zero map,

G({−1, 0}) = Z→ Z = X ({−1, 0}) is the identity map,

G({0, 1}) = Z→ Z = X ({0, 1}) is the identity map,

G({0}) = Z2 → Z = X ({0}) is the sum map: +: Z2 → Z.

Show that in this case (X/G)p is not a sheaf, but this time the problem is that the map
(X/G)p(S)→ (X/G)p({−1, 0})× (X/G)p({0, 1}) is not injective (non-zero global sections
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are locally zero). Show that again replacing (X/G)p(S) by what it should be gives a sheaf
and that that sheaf has the universal property for the quotient in the category of sheaves.

Just for information, if we denote U := {−1, 0}, V := {0, 1} and jU and jV their inclusions
in S, then G = jU,!ZU ⊕ jV,!ZV .

2. Give the four missings proofs of the results in this lecture.

3. Browse the Stacks Project a bit: stacks.math.columbia.edu

5 Lecture 3: The case of a transitive action

We start by introducing certain operations with torsors.

5.1 Twisting with a torsor

First we discuss this for sets, not sheaves. Let G be a group, X a set with a right G-action, and
Y a set with a left G-action. Then we define X ⊗G Y to be the quotient of X × Y by the right
G-action (x, y)·g = (xg, g−1y). This is the same as dividing X × Y by the equivalence relation

{((xg, y), (x, gy)) : x ∈ X, y ∈ Y, g ∈ G} ⊂ (X × Y )2.

We use the notation of the tensor product of modules over a ring: M ⊗A N , because this
construction has a similar universal property. For every set Z, for every map f : X × Y → Z
such that for all x, y, g one has f(xg, y) = f(x, gy), there is a unique map f : X ⊗G Y → Z
such that f ◦ q = f , where q : X × Y → X ⊗G Y is the quotient map.

Now for sheaves. For G, X , Y we get X ⊗G Y := (X × Y)/G.
The construction of X ⊗G Y is functorial in X and Y : for f : X → X ′ and g : Y → Y ′, we

get an induced morphism f ⊗ g : X ⊗G Y → X ′ ⊗G Y ′.
Note that if we make G into a right G-torsor by letting it act on itself by right multiplication,

then G × Y → Y , (g, y) 7→ gy, induces an isomorphism G ⊗G Y → Y . Its inverse is given
by Y → G × Y , y 7→ (1G, y). In particular, no sheafification is necessary for the quotient
q : G × Y → G ⊗G Y .

If X is a right G-torsor, then X ⊗G Y is locally isomorphic to Y , as sheaf of sets on S. Let
us make this precise. For U ⊂ S and xU ∈ X (U), we have an isomorphism of right G|U -torsors:
i : G|U(V )→ X|U(V ), g 7→ xU |V ·g. Then i⊗ idY is an isomorphism (G ⊗G Y)|U → (X ⊗G Y)|U .
And, we have seen that (G ⊗G Y)|U is isomorphic to Y|U .

The next proposition shows that a locally free O-module E on a topological space S can be
recovered from the GLn(O)-torsor IsomS(On, E).

5.1.1 Proposition. Let IsomS(On, E) be as in Prop. 3.3.5. Then the morphism of sheaves

f(U) : IsomS(On, E)(U)×On(U)→ E(U), (φ, s) 7→ (φ(U))(s)

factors through q : IsomS(On, E) × On → IsomS(On, E) ⊗GLn(O) On, and induces an isomor-
phism

IsomS(On, E)⊗GLn(O) On → E .
Proof. Let us show that f factors through q. For φ : On|U → EU an isomorphism and s in
On(U) and g ∈ GLn(O(U)), we have to show that (φ ◦ g, s) and (φ, g·s) have the same image
under f(U). But that results from f(φ ◦ g, s) = (φ ◦ g)s = φ(g(s)) = f(φ, g·s).

Now we must show that f : IsomS(On, E) ⊗GLn(O) On → E is an isomorphism of sheaves.
That is a local question, so we may assume that E is isomorphic to On, and even that it is On.
But then IsomS(On, E) is GLn(O), and the morphism f is the action, and we have seen above
that this induces an isomorphism as desired. �
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5.2 Functoriality of torsors

Let S be a topological space, let φ : H → G be a morphism of sheaves of groups on S. Then,
for each right H-torsor X , we obtain a right G-torsor X ⊗H G, where we let H act from the
left on G via left multiplication via φ: h·g := φ(h)g (sections over some U ⊂ S), and where the
right action of G on itself provides the right G action on X ⊗H G.

This construction is a functor from the category of right H-torsors to that of right G-torsors:
f : X → Y induces f ⊗ idG : X ⊗H G → Y ⊗H G.

5.3 The set of torsors up to isomorphism

5.3.1 Definition. Let S be a topological space, and G a sheaf of groups on S. Then we define
H1(S,G) to be the set of isomorphism classes of right G-torsors on S. The isomorphism class
of X will be denoted by [X ] ∈ H1(S,G).

The set H1(S,G) has a distinguished element: the isomorphism class of the trivial torsor G
itself. Hence H1(S,G) is actually a pointed set. It is called the first cohomology set. If G is
commutative, then this set has an commutative group structure: (T1, T2) 7→ T1 ⊗G T2 (there is
no distinction between left and right, precisely because G is commutative). The inverse T −1 of
T is T itself, but with G acting via G → G, g 7→ g−1.

5.3.2 Example. Let S be a topological space andO a sheaf of rings on it. Then H1(S,GLn(O))
is also the set of isomorphism classes of locally free O-modules of rank n on S. This is an
application of the constructions E 7→ IsomS(On, E) and T 7→ T ⊗GLn(O) On that give an
equivalence of categories between the category of locally free O-modules of rank n and with
morphisms only isomorphisms, and the category of right GLn(O)-torsors.

5.4 A transitive action

The following theorem is the result from sheaf theory that will be applied to prove Gauss’s
theorem in the last lecture. We prefer to formulate one long statement.

5.4.1 Theorem. Let S be a topological space, and G a sheaf of groups, X a sheaf of sets with
a transitive left G-action, and x ∈ X (S). We let H := Gx the stabiliser of x in G (see Def. 3.3.1
if necessary), and let i : H → G denote the inclusion. Then G(S) acts on X (S), and we have
maps

(5.4.2) X (S) c // H1(S,H) i // H1(S,G)

where:

• c : X (S)→ H1(S,H) sends y ∈ X (S) to the subsheaf Gx,y of G with (for all open U ⊂ S)
Gx,y(U) = {g ∈ G(U) : g·x|U = y|U}; Gx,y is a right H-torsor;

• i : H1(S,H)→ H1(S,G) is the map that sends the isomorphism class of a right H-torsor
X to the isomorphism class of the right G-torsor X ⊗HG, in other words, the map induced
by i : H → G.

Then:

1. for y1 and y2 in X (S), c(y1) = c(y2) if and only if there exists g ∈ G(S) such that y2 = gy1;

2. for T a right H-torsor, T ⊗H G is trivial if and only if [T ] is in the image of c.
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3. if H is commutative, then for all y in X (S), Gy is naturally isomorphic to H.

4. If H is commutative and G(S)/H(S) is finite, then all fibres of c consist of #(G(S)/H(S))
elements.

Proof. Let us first show that for y ∈ X (S), the presheaf Gx,y is a sheaf. Let U be an open
subset of S, and (Ui)i∈I an open cover of it, and, for i ∈ I, gi ∈ Gx,y(Ui), such that for all
(i, j) ∈ I2, gi|Ui,j

= gj|Ui,j
in G(Ui,j). Note that the gi are in G(Ui). As G is a sheaf, there is a

unique g ∈ G(U) such that for all i ∈ I, gi = g|Ui
. Then we have g·x|U in X (U). Then for all i

in I we have (g·x|U)|Ui
= g|Ui

x|Ui
= gix|Ui

= y|Ui
, hence, as X is a sheaf, (g·x|U) = y|U , hence

g is in Gx,y(U).
Let us now show that for y ∈ X (S), Gx,y is a right H-torsor. First the right H-action. For

U ⊂ S open, h ∈ H(U) and g ∈ Gx,y(U), we have gh in G(U) (h and g are both in G(U)). By
definition of H, hx|U = x|U , and gx|U = y|U . Then (gh)x|U = g(hx|U) = gx|U = y|U . Hence
indeed gh is in Gx,y(U). Let us show that for all U the action of H(U) on Gx,y(U) is free. Let
g be in Gx,y(U) and h in H(U) such that gh = g. Then h = g−1gh = g−1g = 1 in G(U). So the
action is free. Now we show that the action of H on Gx,y is transitive. Let U be open, g1 and g2
in Gx,y(U). Then g2 = g1·(g−11 g2), and h := g−11 g2 is in H(U) because hx = g−11 g2x = g−11 y = x.
Finally, we show that locally Gx,y has sections. But this is because G acts transitively on X :
there is a cover (Ui)i∈I and gi ∈ G(Ui) such that gix = y in X (Ui).

Let us prove (1). Let y1 and y2 be in X (S).
Suppose that g is in G(S) and that gy1 = y2. Then left multiplication by g in G gives us an

isomorphism of right H-torsors from Gx,y1 to Gx,y2
Suppose now that c(y1) = c(y2). We have to show that there is a g in G(S) such that

gy1 = y2. The assumption is that Gx,y1 and Gx,y2 are isomorphic. So let φ : Gx,y1 → Gx,y2
be an isomorphism. Each point in S has an open neighborhood U such that there exists
a t in Gx,y1(U). For such a t, we have φ(t) in Gx,y2(U), and hence (φ(t))t−1 in G(U) with
(φ(t))t−1·y1 = φ(t)x = y2. We claim that this element (φ(t))t−1 does not depend on the choice
of t. Any t′ in Gx,y1(U) is of the form th for a unique h in H(U). Then we have:

φ(t′)t′−1 = φ(th)(th)−1 = φ(t)hh−1t−1 = φ(t)t−1 .

So we let gU be this element φ(t)t−1 of G(U). These gU form a compatible collection of local
sections of G: for all U and V on which Gx,y1 has a section, gU and gV have the same restriction
to U ∩ V . As G is a sheaf, there is a unique g in G(S) such that for all U as above, gU = g|U .
For each U we have (gy1)|U = g|Uy1|U = gUy1|U = y2|U , hence (now using that X is a sheaf),
gy1 = y2.

The proof of (2) is for the problem session. This proof is the heart of our workshop! Some
beautiful things happen in it, and we hope the participants will discover them, with our help.
After the problem session we will put on-line a version of these notes that contains a proof.

Let us prove (3). So now we assume that H is commutative. Let y be in X (S). Each point
of S has an open neighborhood U such that there exists a g in Gx,y(U). Then, for each V ⊂ U ,
we have the map cg(V ) : Gx(V )→ Gy(V ) that sends h to ghg−1. This map is an isomorphism of
groups, and it is compatible with the restriction maps for V ′ ⊂ V , that is, cg is an isomorphism
of sheaves of groups from Gx|U to Gy|U . We claim that cg is in fact independent of the choice
of g. Any g′ in Gx,y(U) is of the form gh for a unique h in H(U). Then, for V ⊂ U :

cg′(V ) : k 7→ g′kg′−1 = ghkh−1g−1 = gkg−1 = (cg(V ))(k) .

Hence we can label the cg as cU , as they only depend on U . But then the cU : Gx|U → Gy|U
are a compatible collection of isomorphisms. Hence there is a unique isomorphism c : Gx → Gy
such that for each U as above, cU = c|U .
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Let us prove (4). By (1), the fibres of c are the orbits of G(S) acting on X (S). For y in X (S)
the map G(S) → X (S), g 7→ gy factors through the quotient map G(S) → G(S)/Gy(S), and
gives a bijection from G(S)/Gy(S) to the G(S)-orbit of y. By (3), we have, for all y inX (S), an
isomorphism H → Gy, which shows that all G(S)-orbits in X (S) have #(G(S)/H(S)) elements.
�

6 Problem Session 3

1. Prove (2) of Theorem 5.4.1. This is a very long exercise, but it is also the most important
one. If you succeed, it is like getting the black belt in judo, but then for working with
torsors. We give some hints to make it more likely that you succeed. But do not hesitate
to ask us if you need help!

• First do the easy half. Let y be in X (S). Then you have to prove that Gx,y ⊗H G is
trivial. This means that you have to show that (Gx,y ⊗H G)(S) is not empty. Your
only hope for this is to construct an open cover (Ui)i∈I of S and a collection of
compatible sections fi ∈ (Gx,y ⊗H G)(Ui).

• Recall that Gx,y ⊗H G is the quotient of Gx,y × G by a suitable action of H. This
means that sections of Gx,y ⊗H G locally come from sections of Gx,y × G. Just be
courageous now and try something.

• Now the other implication. Let T be a right H-torsor, and suppose that T ⊗H G is
trivial. Choose a global section f of it. Locally this f comes from T × G, so choose
something, and do something with it that gives a local section of X .

2. Situation as in §5.3. Show that the formula given for the inverse in H1(S,G) for G
commutative actually is an inverse: T −1⊗GT is isomorphic to G, and give an isomorphism.

3. Situation as in Theorem 5.4.1. Let y1 and y2 be in X (S). Show that Gy2,x is stable under
the action of H on G by left translations, and that it is a left H-torsor. And show that
the morphism of sheaves Gx,y1(U)×Gy2,x(U)→ Gy2,y1(U), sending (g1, g2) to g1g2, induces
an isomorphism of sheaves Gx,y1 ⊗H Gy2,x → Gy2,y1 . To do this, it helps to use the action
by Gy2 on the right, or the Gy1 on the left, to see that the morphism is an isomorphism.
This can be used to give another proof of one of the implications in (1) of Theorem 5.4.1.

7 Lecture 4: Application to Gauss’s theorem on 3

squares

7.1 Picard groups, and the spectrum of a ring

In order to state Gauss’s theorem, we need to introduce the notion of Picard group.
Let S be a topological space, and O a sheaf of rings on S. Then Pic(S,O) is the set of

isomorphism classes of locally free O-modules of rank one, also called invertible O-modules.
The class of an invertible O-module L is denoted by [L]. On this set Pic(S), there is a structure
of commutative group: [L1]·[L2] = [L1 ⊗O L2], and [L]−1 = [L∨], where L∨ = HomO(L,O)
is the dual of L. The equivalence of invertible O-modules with O×-torsors (L corresponds to
IsomO(O,L)) shows that Pic(S,O) = H1(S,O×).

Now let A be a ring. Then we have the set Spec(A) of prime ideals of A, and the Zariski
topology on Spec(A). There is a natural sheaf of rings O on Spec(A) that is analogous to the
sheaf of regular functions on an algebraic variety, see for example Hartshorne’s book “Algebraic
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Geometry”, Chapter II, section 2, or any other text in which affine schemes are defined. We
do not want to go into this construction in detail, but instead give one property of O that
determines it. For each f in A, we have the closed subset Z(f) of Spec(A) (see Examples 1.2.4),
and the complement D(f) := Spec(A)−Z(f) which is open in Spec(A). Then O(D(f)) = Af ,
the localisation of A with respect to the multiplicative system {fn : n ∈ Z≥0}. We then have a
ring morphism ψf : A→ Af that has the universal property that ψ(f) is invertible, and for any
ring morphism φ : A→ B such that φ(f) is invertible, there is a unique morphism φ′ : Af → B
such that φ = φ′ ◦ ψf . If f and g are in A and D(g) ⊂ D(f), then there are n ≥ 0 and a ∈ A
such that g = fna, and so there is a unique morphism ψf,g : Af → Ag such that ψg = ψf,g ◦ψf .
The restriction map O(D(f)) → O(D(g)) is then ψf,g. This determines O, because the D(f)
form a basis for the topology on Spec(A).

But then for a ring A we have the Picard group Pic(A) := Pic(Spec(A),O). This is the
same as what number theorists call the class group of invertible ideals when A is an order in a
number field (finite field extension of Q). For such A, Pic(A) is a finite group, and it measures
how much invertible ideals are not principal, and, if A is the ring of integers, Pic(A) is the
obstruction to unique factorisation in A.

7.2 The theorem

For d ∈ Z not a square, d ≡ 0, 1(mod 4), we let Od be the subring of C generated by
ud := (

√
d + d)/2. It consists of the numbers a + bud with a and b in Z. It is free as Z-

module with basis (1, ud). The minimal polynomial of ud is fd = x2 − dx + (d2 − d)/4; the
discriminant of fd is d. The ring Od is called the quadratic order of discriminant d. For such a
d, we have the group Pic(Od)

Here is Gauss’s theorem. It is article 291 (p. 336–339) of the english Springer edition of
Disquisitiones Arithmeticae. Gauss wrote his book in Latin, finished in 1798 (published in
1801).

7.2.1 Theorem. (Gauss) Let n ∈ Z≥1. Then:

#{x ∈ Z3 : x21 + x22 + x23 = n and gcd(x1, x2, x3) = 1} =



0 if n ≡ 0, 4, 7(8),

48·#Pic(O−n)

#(O×−n)
if n ≡ 3(8),

24·#Pic(O−4n)

#(O×−4n)
if n ≡ 1, 2(4).

The first case in this theorem is very easy to prove. The squares in Z/8Z are 0, 1 and 4.
If (x1, x2, x3) is in Z3 and gcd(x1, x2, x3) = 1, then at least one among the xi is odd, hence
x21 + x22 + x23 cannot be 0, 4 and 7 in Z/8Z.

In the next sections, we will show how we apply Theorem 5.4.1 to prove the last two cases
of Gauss’s result, assuming that there is at least one solution.

7.3 How we apply the results on sheaves

We want to understand the set of primitive solutions in Z3 of the equation x2 + y2 + z2 = n,
where primitive means that gcd(x, y, z) = 1. Theorem 7.2.1 says how many primitive solutions
there are. This suffices for the problem of understanding all solutions, because if (x, y, z) is a
solution and d := gcd(x, y, z) > 1, then (x/d, y/d, z/d) is a primitive solution of the equation
x2 + y2 + z2 = n/d2. We will see that our method of using symmetries to study solutions is
better suited for the problem of primitive solutions than all solutions.
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The set of all solutions is a subset of the solutions (x, y, z) in Q3. The set of rational
solutions is in fact very easy to parameterise, in the same way as one parameterises the rational
points on a circle. If one has one rational point P on a circle C, then each line through P
with rational direction D gives a second rational solution Q = P + tD because the equation
‖P + tQ‖2 = n is quadratic in t, with coefficients in Q and has already t = 0 as solution. Then
the second solution is also in Q.

Another way to get all rational solutions from P is to use symmetries in planes that are
defined by an equation with rational coefficients. Let Q 6= 0 be in Q3. The symmetry about
the plane orthogonal to Q is given by the formula:

sQ : Q3 → Q3, R 7→ R− 2
〈R,Q〉
〈Q,Q〉

Q,

where 〈x, y〉 = x1y1 + x2y2 + x3y3 denotes the standard inner product. (Note that sQ depends
only on the direction of Q). This shows that if R and Q are in Q3, then so is sQ(R). And if
‖R‖2 = n, then ‖sQ(R)‖2 = n (symmetries are isometries, but you can check it by a calculation
if you want). Finally, for R in Q3 with R 6= P and ‖R‖2 = n, we can take Q := R−P and then
we have sQ(P ) = R (elementary geometry, or a calculation but then you do not understand
why this is so).

The idea for proving Theorem 7.2.1 is now to use these symmetries (rotations, actually, so,
products of two symmetries), and do a serious administration concerning the denominators of
the coordinates of the rational solutions to get information on the primitive integers solutions.
The administration tool is sheaf theory on the topological space Spec(Z).

Let us define a sheaf Xn on Spec(Z). We define a, for each open U = D(m) (with m > 0):

Xn(U) := {(x, y, z) ∈ Z[1/m] : x2 + y2 + z2 = n and gcd(x, y, z) = 1}.

Then for V ⊂ U we have Xn(U) ⊂ Xn(V ), these inclusions are our restriction maps, and make
Xn into a presheaf. It is a sheaf (exercise 1 below).

We also want a sheaf of groups acting on Xn. For this we take groups of rotations. For any
ring A we define SO3(A) as:

SO3(A) := {g ∈ M3(A) : gt·g = 13 and det(g) = 1},

where M3(A) is the set of 3 by 3 matrices with coefficients in A. In other words, SO3(A) is
the group of automorphisms of the free A-module A3 that fix the standard inner product and
whose determinant is 1 (that is, they preserve the standard orientation).

For U = D(m) (m 6= 0), we define:

G(U) := SO3(O(U)) = SO3(Z[1/m]).

Then also G is a sheaf, of groups, and it acts naturally on Xn. The following (surprising) result
then makes it possible to apply the sheaf theory from the previous lectures.

7.3.1 Theorem. Let n ∈ Z>0. The action of G on Xn is transitive.

Proof. Our proof will use symmetries as we described above. Transitivity of the action of G
is a local property on Spec(Z), that is, a property at each maximal ideal of Z.

For p a prime number we define Z(p) as the subring of Q, consisting of all x in Q for which
there is an open U in Spec(Z) with x ∈ O(U). More explicitly, Z(p) consists of the x in Q that
are of the form a/b with a and b in Z, with p not dividing b.

The local property at p that what we must show is that for each prime number p and all
primitive P and Q in Z3

(p) with 〈P, P 〉 = n, and 〈Q,Q〉 = n, there exists a g in SO3(Z(p)) such
that gP = Q.
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If P = Q, then for g := 13 ∈ SO3(Z(p)) we have g·P = Q. So assume that P 6= Q. First
suppose that p = 2. Consider v ∈ Z3 that satisfies 〈v, P 〉 = 0 and v is primitive. The set
P⊥ = {v ∈ Z3 : 〈v, P 〉 = 0} is a free Z-module of rank two, with the property that if v is
in Z3 and d ∈ Z with d 6= 0 and dv ∈ P⊥, then v ∈ P⊥. Therefore we can take a primitive
v ∈ Z3 such that 〈v, P 〉 = 0. At least one of the coordinates of v ∈ Z3 is an odd integer, so the
residue of 〈v, v〉 modulo 4 is not equal to 0. Because of that, from the formula of sv, we get
sv : Z3

(2) → Z3
(2). Also we get that sv(P ) = P . Now take w a primitive element in Z3 such that

w is multiple of the vector P −Q by some number in Q. Then the symmetry sw : Z3
(2) → Z3

(2)

maps the point P to the point Q. So by construction g := sw ◦ sv : Z3
(2) → Z3

(2) will be in

SO3(Z(2)) and (sw ◦ sv)(P ) = sw(P ) = Q.
Now let p be a prime number not equal to 2. We want to find v and w in Z3

(p) such that sv
and sw map Z3

(p) to itself, and (sw ◦ sv)(P ) = Q. The idea is that for any v there is no choice

for w: w must be a multiple of sv(P ) − Q. So, the conditions on v ∈ Z3
(p) are: 〈v, v〉 is not

divisible by p, and w := sv(P )−Q ∈ Z3
(p) has 〈w,w〉 not divisible by p, that is, its image in Fp

is non-zero (here Fp denotes the finite field with p elements, Z/pZ).
Now the existence of a v as desired is a matter of showing that there exists an element v in

the Fp-vector space F3
p (that has p3 elements) such that 〈v, v〉 6= 0 and, with w := sv(P ) − Q,

〈w,w〉 6= 0.
Both conditions are homogeneous in v: they are satisfied by v if and only if they are satisfied

by λ·v for all λ in F×p . So, it is better to study these conditions on P2(Fp) = (F3
p−{0})/F×p . The

first condition, 〈v, v〉 6= 0 means that v does not lie on the conic C defined by the homogeneous
equation x20 +x21 +x22 = 0. A simple computation shows that the second condition is equivalent
to:

〈P, v〉〈v,Q〉
〈v, v〉

6= 〈P,Q〉 − n
2

.

Note that the left hand side of the last inequality defines a function

f : P2(Fp)− C(Fp)→ Fp, v := F×p ·v 7→
〈P, v〉〈v,Q〉
〈v, v〉

.

It suffices now to show that f is not constant. Now for v in P2(Fp) − C(Fp) we have
f(v) = 0 if and only if v is on the (projective) line P⊥ perpendicular to P (its equation is
P1v1 + P2v2 + P3v3 = 0), or on the line Q⊥ perpendicular to Q. Each of these has p + 1 Fp-
points, of which at most 2 are on C, hence there are v in P2(Fp) − C(Fp) such that f(v) = 0.
We will now show that there is a v in P2(Fp)−C(Fp) where f(v) is not zero, by considering all
v on a suitable line. The issue is that we want a proof that works for all p ≥ 3, and not have to
treat small primes differently. So, consider a line L that contains only one point R that lies on
P⊥ ∪Q⊥ (if P⊥ 6= Q⊥ then this means that R is the intersection point of P⊥ and Q⊥). Then
L(Fp) has p + 1 points, of which one is R and of which at most two are in C(Fp). Therefore
there are at least p+ 1− 3 = p− 2 > 0 points of L(Fp) where f is defined and is non-zero. �

7.4 Bilinear forms

Let us recall the definition of bilinear form on free modules.

7.4.1 Definition. Let R be a ring (commutative, with identity, as always) and let M be a free
R-module of finite rank. A bilinear form b on M is a function b : M ×M → R such that for
every x, y, z in M and every r in R we have

b(x+ y, z) = b(x, z) + b(y, z), b(x, y + z) = b(x, y) + b(x, z), b(rx, y) = rb(x, y) = b(x, ry).
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A pair of (M, b) is called a module with bilinear form, for simplifying the notation sometime we
just write it as M if the bilinear form b is clear in the context.

A bilinear form b is called symmetric if for every x, y in M we have b(x, y) = b(y, x). A
symmetric bilinear form b will be called perfect if the following strong non-degeneracy condition
is satisfied: For each R-linear map φ : M → R there should exist one and only one element x
in M such that the homomorphism y 7→ b(x, y) from M to R is equal to φ. In other words, the
map M → HomR(M,R) sending x to y 7→ b(x, y) is a bijection. We use the notation M∨ for
the dual HomR(M,R) of M .

Two elements x and y in M with a symmetric bilinear form b are called orthogonal if
b(x, y) = 0. Note that for module with perfect symmetric bilinear M , an element x in M is
orthogonal to every element y in M if and only if x = 0.

7.5 Minkowski’s theorem, triviality of H1(Spec(Z), SO3(O))

Now assume that the ring R is either Z,Q or R. Then a bilinear form b is called positive definite
if for any x in M we have b(x, x) ≥ 0 and b(x, x) = 0 if and only if x = 0.

Now let n be a positive integer and Rn be the R-vector space consisting of all n-tuples
x = (x1, . . . , xn) of real numbers. We can equip Rn with the standard symmetric bilinear form,
i.e., the inner product: x · y =

∑n
i=1 xiyi for x = (xi) and y = (yi) in Rn. The pair Rn with

the inner product is called the euclidean inner product space. Note that for any n-dimensional
vector space V over R with a positive definite symmetric bilinear form b will be isomorphic to
the euclidean inner product space Rn. This is because we can identify the orthonormal basis
of V that is obtained from Gramm-Schmidt process to the standard basis of Rn.

Let n be a positive integer and L be a free Z-module of rank n with positive definite
symmetric bilinear form b. We can embed L canonically to V := L⊗ZR which is a n-dimensional
R vector space with the bilinear form bR. It is still a positive definite symmetric bilinear form on
V . By above we can assume from now that our L is a subgroup of Rn. Suppose now (x1, . . . , xn)
is a Z-basis of L where xi are vectors in Rn. The volume of the quotient torus Rn/L is defined
as the absolute value of the determinant of the matrix whose rows are x1, . . . , xn. It is the same
as the square root of the determinant of the Gramm matrix B = (b(xi, xj))i,j.

Recall that a subset X ⊂ Rn is convex if x, y in X implies that λx + (1− λ)y in X for all
real numbers λ in the interval 0 ≤ λ ≤ 1. A subset X of Rn is symmetric about 0, if x in X
implies −x in X. Now we can state the theorem of Minkowski’s.

7.5.1 Theorem. (Minkowski) Let X be a bounded, convex and symmetric about 0 subset
of Rn. If the volume of X is greater than 2n times the volume of Rn/L, then X contains a
non-zero point of L.

As a consequence of this one can show that H1(Spec(Z), SO3) = {1}. We cannot do this here
because it uses something that we did not discuss: the equivalence between free Z modules of
rank r and locally free O-modules of rank r on Spec(Z).

7.6 The stabiliser in Gauss’s theorem

An important step in proving Gauss’s theorem using sheaves is to relate H of x in Xn(S) to
the quadratic order Od with d = −n or d = −4n depending on n mod 8, and H1(S,H) to the
Picard group of Od. It turns out that there is an exact sequence:

0→ O× → O×d → H→ 0.

Details will appear in Albert’s thesis.
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7.7 Existence of solutions

We have explained Gauss’s result, except that we assumed the existence of a solution in the
last two cases. What can be done about that?

The first thing that one can do is to follow Gauss’s proof. It is a very beautiful argument,
using his results on quadratic forms on Z2.

Another option is to use the Hasse principle (in fact a theorem of Hasse (for number fields)
and Minkowski (Q)) that says, in our case, that the equation x21 + x22 + x23 − nx24 = 0 has a
non-zero solution if and only if it has solutions in all completions of Q, that is, in R and in
all p-adic fields Qp. Then, to deduce from a rational solution an integer solution one can use
the sheaf approach that we have given above (see the “Open problems” below). A very funny
argument is given in Cassels-Fröhlich’s book “Algebraic Number Theory”, Exercise 4.11 on
page 359.

Yet another option is a suggestion by André Weil, in an article dedicated to Siegel. If one
knows the formula for the number of solutions under the assumption that there are solutions,
then one can prove it by relating it to the number of solutions of x21 + x22 + x23 + x24 = n for
which there is a famous fomula by Jacobi.

8 Problem Session 4

1. Let U ⊂ Spec(Z) be a non-empty open subset.

(a) Prove that U is a principal open subset of Spec(Z), that is, prove that there exists
an integer n > 0 such that U = D(n). Hint: the complement of U is a finite set
maximal ideals, say p1Z, . . . , prZ, with the pi distinct prime numbers.

(b) The ring O(U) is by definition equal to Z[1/n]. Prove that this is the subring of Q
consisting of the a/b with a and b in Z, and b of the form pe11 · · · perr .

(c) Prove that O is a sheaf. Hint: think now of a rational number a/b (b 6= 0 and
gcd(a, b) = 1) as a function, that has poles at the primes dividing b, and that at
any prime p not dividing b has value a/b in the field Fp = Z/pZ, where a is the
image of a in Fp, etc. If you know algebraic curves, or Riemann surfaces, this should
be familiar to you (rational or meromorphic functions, and regular or holomorphic
functions). Then note that O(U) is the set of x in Q that do not have a pole at any
pi, 1 ≤ i ≤ r. In particular, all O(U) for U non-empty are subrings of Q; this makes
this kind of sheaves easier to understand.

(d) Prove that Xn defined as above is a sheaf. Hint: this should follow quite formally
from the property that O on Spec(Z) is a sheaf.

2. Let R be a ring, M a free R-module, (e1, . . . , en) a basis of M , and b : M ×M → R a
symmetric bilinear form. Then we have the Gramm matrix B = (b(ei, ej))i,j. Prove that
the bilinear form b is perfect if and only if the matrix B is invertible (it has a 2-sided
inverse). Hint: produce a basis for M∨, and think about the matrix of the linear map
M →M∨ given by b.

3. Let L be free Z-module of rank 3 with positive definite perfect symmetric Z-valued bilinear
form b. Using Minkowski’s theorem prove that L has an orthonormal Z-basis.

9 Conclusions, Open problems

30 minutes.
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I see several open problems, they are for Albert to work on, but if someone wants to work
with him, that would be possible, I think, and nice.

1. Determine H as a groupscheme over Z (problem at 2).

2. Write down as explicit as possible the action of the Picard group on the set of solutions
that the sheaf method gives (suggested by Zagier).

3. Try to get existence of a solution from the Hasse principle for x2 + y2 + z2 − nt2 = 0
and the fact that H2(S,H) = 0 (the dimension of S is one, and 2 > 1). Sheaf methods
say: if there are locally solutions, and this H2 is zero, then there is a global solution (the
technically advanced way to say this is that X with the G-action is an “H-gerbe”).

4. Are there other examples where the Zariski topology works? Learn to work with
Grothendieck topologies on categories, stronger topologies on schemes.
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