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Abstract

Elliptic curves are very important in my work in number theory and
arithmetic geometry, and so it makes me happy to encounter them as
well in other areas of mathematics, and even outside mathematics.

I will give a few examples of elliptic curves showing up in plane
geometry (Poncelet), in Escher’s “Print Gallery” (de Smit and Lenstra),
in classical mechanics (Euler), and in the Guggenheim museum in
Bilbao (minimal art by Richard Serra).

The first three examples are well known, but the last one appears to be
new.

These notes can be downloaded from my homepage (talks/. . . ).
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Real Elliptic curves in Weierstrass form

For a,b ∈ R with 4a3 + 27b2 6= 0:

{(x , y) ∈ R2 : y2 = x3 + ax + b}.
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Real Elliptic curves in Weierstrass form

4a3 + 27b2 6= 0⇔ the curve is non-singular.

All non-singular degree 3 curves in R2 can be brought in Weierstrass
form by projective transformations.
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The algebraic point of view (algebraic geometry)

Closed subvarieties in Rn: solution sets of systems of polynomial
equations.

Maps (morphisms) are “locally” given by rational functions without
poles.

Locally: Zariski topology, the closed subsets are the closed
subvarieties.

It is often useful to consider Rn ⊂ Cn ⊂ Pn(C): complex projective
algebraic geometry.

Instead of C we can use any algebraically closed field, and, in fact, any
ring (commutative, with 1).
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Elliptic curves cannot be parametrised

Non-singular degree 2 curves in R2 are locally isomorphic to R.

Lines through (−1,0):

y = a·(x + 1).

Second intersection point:(
1− a2

1 + a2 ,
2a

1 + a2

)
.

R→ circle, a 7→
(

1− a2

1 + a2 ,
2a

1 + a2

)
.

Fact: elliptic curves cannot be parametrised, even locally. Lines
intersect them in 1 or 3 points, if we count with multiplicity and use the
“projective plane”.
Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 6 / 40



Parallel lines intersect on the
horizon: one extra point for
each direction in R2.

E(R) has one point “O”
for the vertical direction.

E(R) (including O) has
a binary operation:

E(R)× E(R)→ E(R),

(P,Q) 7→ P + Q.

This binary operation makes
E(R) into commutative group. The
associativity is not at all obvious.

(Picture made by: Jean Brette.)
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The degenerate
case where
E(R) is the union
of the unit circle and
the line at infinity,
with (1,0) as origin.

Conclusion: it
is addition of angles!

Hence associative.
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Complex elliptic curves, Weierstrass functions

Let E(C) be a complex projective elliptic curve.

Fact: E(C) is homeomorphic to S1 × S1, for three reasons.

Topology. E(C) is compact, oriented, connected and has a Lie group
structure, hence a vector field without zeros, hence (Poincaré-Hopf) its
Euler characteristic is zero.

Analysis. Weierstrass functions. Let L ⊂ C be a lattice. Then
P : C− L→ C, z 7→ z−2 +

∑′
λ∈L((z − λ)−2 − λ−2) is L-periodic, and

z 7→ (P(z),P ′(z)) gives C/L→ E(C).
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Elliptic curves as double cover of P1

Riemann surfaces. E(C)→ P1(C), (x , y) 7→ x is a 2 to 1 map with 4
ramification points. It is the quotient map for a rotation about 180◦.
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Automorphisms of elliptic curves

The group of translations acts transitively: all points are “equal”.

Fixing one point: automorphisms of E as algebraic group.

Aut(E ,O) is cyclic of order 2, 4, or 6: symmetries of 2-dimensional
lattices.

Aut(E) = (E ,+) o Aut(E ,O).

These are affine transformations: P 7→ a(P) + B, with a in Aut(E ,O)
and B in E .
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Poncelet

Jean-Victor Poncelet
(1788–1867) was a French
engineer and mathematician
who served most notably
as the commandant general
of the École polytechnique. He is
considered a reviver of projective
geometry, and his work
Traité des propriétés projectives
des figures is considered
the first definitive paper on the
subject since Gérard Desargues’
work on it in the 17th century.

Source: wikipedia.
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Poncelet’s closure theorem, 1822

Let C and D be two plane conics. If it is possible to find, for a given
n > 2, one n-sided polygon that is simultaneously inscribed in C and
circumscribed around D, then it is possible to find infinitely many of
them.
In fact, the construction “moves”: one can move the starting point on C
anywhere.

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 13 / 40



Proof of Poncelet’s closure theorem (“Jacobi”, 1826)

X := {(P,L) : P on C, L tangent to D, P on L}.
X → C, (P,L) 7→ P has degree 2 and ramifies precisely over the 4
points of C ∩ D. We have already seen that complex conics are
parametrisable by the Riemann sphere. Hence X is an elliptic curve.
Two involutions: L ∩ C = {P,P ′}, σ : (P,L) 7→ (P ′,L),
L and L′ tangents through P, τ : (P,L) 7→ (P,L′).
In terms of group law: σ(x) = −x + b, τ(x) = −x + c for some b and c
on X . Hence (τ ◦ σ)x = x + (c − b), a translation. That explains all.
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Remarks

1 If the two ellipses are confocal, then the dynamical system is
really an elliptic billiard, with the usual rule of reflection.

2 Bos, Kes, Oort and Raven have written an article on historical
aspects: Poncelet’s closure theorem.

3 Duistermaat has written a whole book on such dynamical
systems: Discrete Integrable Systems, QRT maps and Elliptic
Surfaces.
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Classical mechanics: free rotation of a rigid body

Let B be the block in R3: |x1| ≤ b1, |x2| ≤ b2, |x3| ≤ b3, with a uniform
mass distribution. Its center of gravity is at 0. We consider free rotation
(no force on B) of B, preserving the center of gravity.

Such movement is given by a map h : R→ SO3(R), where h(t)·b is the
position of b ∈ B at time t .

Main principle of classical mechanics: the movement is determined by
position plus speed at time 0. The set of pairs (position,speed) is
called the phase space.
In mathematical terms: the movement is given by a vector field on the
tangent bundle T of SO3(R). Indeed: SO3(R) is a 3-dimensional
manifold, evidently an algebraic variety. The question is: which vector
field?

T = {(g, v) : g ∈ SO3(R), v ∈ T (g)}, with T (g) the tangent space of
SO3(R) at g. Concretely: SO3(R) ⊂ M3(R) = R9 defined by 6
equations, T (g) ⊂ M3(R) of dimension 3.
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Trivialisation of the tangent bundle

The movement is given by a map h̃ : R→ T , t 7→ (h(t),h′(t)).

For g1 in SO3(R), the left translation g1· : g2 7→ g1g2 induces an
isomorphism T (g2)→ T (g1g2), v 7→ g1v .

We have Lie := T (1) = {a ∈ M3(R) : a + a∗ = 0}, where a∗ is the
transpose of a.

Φ: T → SO3(R)× Lie, (g, v) 7→ (g,g−1v).

Φ−1 : SO3(R)× Lie→ T , (g,a) 7→ (g,ga),

Write Φ ◦ h̃ : R→ SO3(R)× Lie, t 7→ (h(t), k(t)),
where k : R→ Lie.
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Euler’s equations

Cross product: R3 × R3 → Lie, (x , y) 7→ x × y .

Angular momentum: J : SO3(R)× Lie→ Lie,

J(g,a) = g
(∫

x∈B
x × (ax) · dx1 dx2 dx3

)
g−1 = g j(a)g−1,

with j : Lie→ Lie self-adjoint and positive definite.

Preservation of angular momentum means that J ◦ Φ ◦ h̃ is constant.
The dynamics is given by the vector field (Euler’s equations):

(g,a)′ = (ga, j−1[j(a),a]).

Remarkable fact: the RHS depends only on a, the dynamical system
can be projected to Lie! Reason: the vector field on T is left-invariant,
because of symmetry.

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 18 / 40



Projected Euler’s equations in coordinates

We write a =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

The vector field is:


I1a′1 = (I2 − I3)a2a3

I2a′2 = (I3 − I1)a3a1.

I3a′3 = (I1 − I2)a1a2

It is polynomial!

Two conserved quantities:

I1a2
1 + I2a2

2 + I3a2
3, kinetic energy,

I2
1a2

1 + I2
2a2

2 + I2
3a2

3, length squared of angular momentum.

So the movement is over the intersection of the level surfaces: elliptic
curves! Indeed, complex projectively, the first quadric is P1 × P1, and
the intersection with the second quadric is a (2,2)-curve! So, same
situation as with Poncelet.
Moreover: the vector field on these curves is translation invariant. The
group given by the flow is the addition law, it is algebraic!
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Remarks

Rotation in the plane with constant speed is also algebraic,
although the parametrisation is not, but there the group is SO2(R).
Explicit solutions involve Weierstrass functions, or other functions
parametrising elliptic curves.
To prove that the vector field is translation invariant, it suffices to
see that on the projective complex elliptic curves it has no poles.
A simple but annoying computation, and it makes the outcome
look like a miracle. Conversely, if one knows that the translations
by the flow are algebraic, then one deduces (without computation)
that the vector field (on the complex projective curves) has no
poles. But this doesn’t seem to help, it is just a phenomenon that
such algebraic dynamical systems have algebraic group of flow.
More advanced way: Lax equations, spectral curves.... This is a
very much studied area: integrable systems.
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Intersections of 2 ellipsoids, one fixed

Picture from V.A. Arnold’s book “Math. Methods of Class. Mech.”
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Back to dimension 6, a question

The dynamical system on Lie has periodic orbits. Circles for Arnold
(analytic point of view), elliptic curves for me (algebraic point of view).

Back to the 6-dimensional system on SO3(R)× Lie.

There are 4 preserved quantities: kinetic energy, and angular
momentum.
The map is: SO3(R)× Lie→ R× Lie, (g,a) 7→ (K (a),gj(a)g−1).

The movement is on the fibres of this map. These fibres are of
dimension 2, S1 × S1 for Arnold, but algebraic circle bundles over
elliptic curves for me. The movement is almost never periodic.

Question: what are these circle bundles, are there algebraic group
laws on them such that the vector field is translation invariant? I have
not seen the answer to these questions in the literature, although it
should be there.

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 22 / 40



Escher

Source: http://escherdroste.math.leidenuniv.nl

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 23 / 40

http://escherdroste.math.leidenuniv.nl


Droste-Escher

Escher’s print gallery is a transformed Droste picture: the “straight
picture” contains a copy of itself, scaled by q := 1/256.
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A Droste picture is a picture on an elliptic curve!

We view the Droste picture as a function f : C× → X , where X is the
set of colors.

The self-similarity is then expressed by:

for all t in C×, f (qt) = f (t).

So in fact, f induces a function f : C×/qZ → X .

The quotient C×/qZ is a complex elliptic curve:
1 The annulus {t ∈ C× : q ≤ |t | ≤ 1} is a fundamental domain.
2 exp : C→ C×, z 7→ ez gives C× = C/2πiZ,

hence C×/qZ = C/(Z·2πi + Z· log(q)).

So, on C we have the picture f̃ : C→ X , invariant under the lattice
Z·2πi + Z· log(q) = Z·i ·6.283 . . .+ Z·5.545 . . ..
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The lattice-invariant picture on C
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Transforming Droste to Escher

Instead of first dividing out by Z·2πi , first divide out by
z1 := 2πi − log(q), then by the rest.

So, let a := 2πi/z1 = 0.5621 . . .+ i ·0.4961 . . .,
and consider C→ C×, z 7→ exp(az).
This maps Z·z1 to 1, and 2πi to
q1 := exp(2πia) = −0.040946 . . .− i ·0.01685 . . ., with
|q1| = 1/22.58 . . . and arg(q1) = −157.6 . . .◦.

Conclusion: Escher’s picture is obtained by applying the multi-valued
transformation t 7→ ta = exp(a log(t)) to the Droste picture, that is:
g(t) := f (ta). The resulting picture is invariant under t 7→ q1t .
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The Droste and Escher grids

See the animation
http://escherdroste.math.leidenuniv.nl/index.php?
menu=animation&sub=bmpeg&a=1&b=1
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Richard Serra’s “torqued ellipse”, Guggenheim, Bilbao

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 29 / 40



How is this surface made?

Let us watch Serra’s explanation in
http://www.youtube.com/watch?v=iRMvqOwtFno&feature=
youtube_gdata_player:
(minutes 16–18).

So, it is obtained from two ellipses in horizontal planes, one on the
ground and one at the top, with their long axes in different directions.
But Serra did not explain here how the joining is done. The fact
however that the side contours of the surfaces are straight lines
reveals the joining process.

Each such side contour corresponds to a plane through our eye. Such
a plane “touches” both ellipses. Its intersections with the two horizontal
planes containing the ellipses are tangent lines of the ellipses.

The surface is a part of the boundary of the convex hull of the union of
the two ellipses.

Bas Edixhoven (Universiteit Leiden) Some elliptic curves from the real world La Serena, 2014/12/01 30 / 40

http://www.youtube.com/watch?v=iRMvqOwtFno&feature=youtube_gdata_player
http://www.youtube.com/watch?v=iRMvqOwtFno&feature=youtube_gdata_player


How is this surface made?

The surface is the union of lines that join points of the two ellipses
where the tangent lines are parallel.

Serra describes it mechanically:
http://www.youtube.com/watch?v=G-mBR26bAzA
Start at 1:35.

So he rolls a plane around the ellipses, or rolls his wheel on a sheet of
lead.
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What is it to an algebraic geometer?

First question: is it algebraic? Can it be described by a polynomial
equation?

Yes! Well,. . . half.

There is an irreducible F in R[x , y , z], of degree 8 (I computed this in
two ways), such that Serra’s surface is half of the zero set of F . I do
not know F .

The other half consists of lines joining a point below to the “opposite”
of the point above: opposite points have parallel tangents.

These two halves cannot be separated algebraically, Serra’s surface
has a siamese twin.
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Siamese twins, apart

Pictures and computations by sage.
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Siamese twins, together
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Parametrisation by an elliptic curve

Let C1 and C2 be the two ellipses, in their planes H1 and H2.

For Pi on Ci , let TCi (Pi) be the tangent of Ci at Pi .

Then E := {(P1,P2) : P1 ∈ C1, P2 ∈ C2, TC1(P1) and TC2(P2) parallel}
is an elliptic curve.

Proof: use complex projective geometry. L := H1 ∩ H2.
Then we have pi : Ci → L, pi{Pi} = L ∩ TCi (Pi),
pi is a degree 2 cover, ramified over Ci ∩ L, two points,
long axes of C1 and C2 not parallel implies C1 ∩ C2 = ∅.
Hence E → Ci is of degree 2, and ramifies over 4 points. Q.E.D.

E(R) is homeomorphic to S1∐S1.
Serra’s surface S is parametrised by a P1-bundle over E , in fact by
P1 × E .
In technical terms: the normalisation is P1 × E .
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Some more pictures, and an automorphism

The singularities suggest that there is an automorphism of S
exchanging blue and yellow.

Indeed (Maarten Derickx): the reflection in P3 with respect to the plane
H1 and the center of C2 does this.
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A one-dimensional part of S(R)

The red ellipse is part of S(R)! Only a segment of it is in the yellow
part.
It is explained by conjugate intersecting lines.
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Some metric properties

Away from the singularities, the yellow and blue surfaces have
Gaussian curvature zero: they are locally a boundary of their convex
hull, and are ruled. The Gaussian curvature is the product of the two
main curvatures, one of which is zero.

Minding’s theorem (1839) says that locally, the surface is isometric to
the plane.

Intuitively this means: the surface can roll on the plane, giving a
mathematical explanation of Serra’s wheel.

The yellow part is obtained by letting one ellipse roll on top of the
paper, and the other below it!

Hard to imagine, but we can imagine the case of two circles, giving a
cone. The cone can roll on the plane.
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3D-printing

Oliver Labs is a mathematician in Mainz, with an interest in computer
science and design.
He converted my Sage output to input for a 3d-printer, so that I could
have it printed by Shapeways.
Check it out!
http://www.oliverlabs.net/
http://www.shapeways.com/art/mathematical-art?li=nav
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Thanks

Thanks to Robert-Jan Kooman for conversations on Euler’s
equations.
Thanks to Ton Van de Ven for quite a few conversations about
Serra’s work.
To Maarten Derickx for the automorphism exchanging Serra’s
surface and its twin.
To Oliver Labs for 3d-printing it from my sage output.
To you for your attention!
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