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This talk was given at the seminar Topics in Arithmetic Geometry II on February 28, 2011. The
seminar was aimed at master students. In this talk a ring is an associative, commutative and
unitary ring. A morphism of rings respects the unit elements.

1 Motivation

Today’s main theorem is

Theorem 1.1. Let X = SpecA be an affine scheme. Suppose that G is a finite group acting on
X. There is a canonical action of G on A. Let AG ⊂ A be the ring of invariants of A. Define
Y = SpecAG. The induced morphism π : X −→ Y is a quotient in the category of locally ringed
spaces.

In this talk we will define and explain the notions in the above Theorem. That is, we will define the
category of locally ringed spaces and its subcategory of affine schemes. We will give examples and
finish with the following useful result: the fiber of a morphism SpecB −→ SpecA in p ∈ SpecA
is the affine scheme Spec(B ⊗A Ap/pAp).

The proof of the above Theorem will be given by Michiel Kosters in the next talk.

2 Locally ringed spaces

Let us state the definition of a “ringed space”.

Definition 2.1. A ringed space is a pair (X,OX), where X is a topological space and OX is a
sheaf of rings on X. A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f#), where
f : X −→ Y is a morphism of topological spaces and f# : OY −→ f∗OX is a morphism of sheaves
of rings on Y . This defines the category of ringed spaces.

Example 2.2. Let X be a topological space and OX the sheaf of continuous functions on X.
That is, for every open U ⊂ X, we have that OX(U) = C0(U,R). The pair (X,OX) is a ringed
space.

Example 2.3. Let X be a Ck-manifold, where k ∈ Z≥0 ∪ {∞} ∪ {ω}. The pair (X,OX),
where OX is the sheaf of Ck-functions on X, is a ringed space. (Recall that C0-manifolds are
called topological manifolds, C∞-manifolds are called differentiable manifolds (by Lübke) and
Cω-manifolds are complex analytic manifolds.)

Example 2.4. Let k be an algebraically closed field and let X be a (quasi-projective) variety over
k. Let OX be the sheaf of regular functions on X. That is, for every open U ⊂ X, we have that
OX(U) is the ring of regular functions on U . The pair (X,OX) is a ringed space.

All three examples above are “locally ringed spaces”. (We will need the following notion. A
morphism A −→ B of local rings is local if the image of the maximal ideal of A is contained in
that of B. This is equivalent to the inverse image of the maximal ideal of B being equal to the
maximal ideal of A.)



Definition 2.5. A ringed space (X,OX) is a locally ringed space if for every x in X, the stalk
OX,x of OX at x is a local ring. A morphism of locally ringed spaces from (X,OX) to (Y,OY )
is a morphism of ringed spaces (f, f#) from (X,OX) to (Y,OY ) such that, for every x in X, the
induced homomorphism of local rings

f#
x : OY,f(x) −→ OX,x

is local. (Here we used that there is a canonical morphism (f∗OX)f(x) −→ OX,x constructed as
follows in Remark ?? below. ) This defines the category of locally ringed spaces. We denote it by
Lrs. It is not a full subcategory of the category of ringed spaces. (See [Har, Example II.2.3.2].)

For X as in any of the above examples, note that (X,OX) is a locally ringed space. In fact, the
maximal ideal mx of OX,x is the set of germs1 which vanish at x.

Remark 2.6. Let f : X −→ Y a morphism of topological spaces. Let F be a sheaf on X and let
x be in X. The stalk of F at f(x) is not Fx in general. (Take a constant morphism, for example.)
There is a canonical morphism from (f∗F)f(x) to Fx constructed as follows. Let s be a section of
F on f−1V , where V is an open in Y containing f(x). Then, by continuity of f , there exists an
open U in X containing x such that f(U) ⊂ V . In particular, we have that U ⊂ f−1V . Thus, we
can restrict s to U .

Here’s a pathological example of a ringed space which is not a locally ringed space.

Example 2.7. Let X be a singleton. To give a sheaf of rings on X is to give a ring. Let R be
any ring which is not local. Then this will not be a locally ringed space (obviously).

Here’s an example of a morphism of local rings which is not local.

Example 2.8. Let A be a local integral domain with field of fractions K. Then the morphism
A −→ K is not local.

We finish this section with the following important remark.

Remark 2.9. Let (X,OX) be a locally ringed space and U ⊂ X an open subset. Then (U,OU ) is
a locally ringed space, where OU := (OX)|U . In fact, for every x in U , we have that OU,x = OX,x.

3 Affine schemes

We have seen three important examples of (full) subcategories of Lrs. We will now construct
another subcategory of Lrs: the category of affine schemes.

Let A be a ring. Let X = SpecA be the set of prime ideals. The goal is to define a topology on
X and to construct a sheaf of rings OX on X such that (X,OX) is a locally ringed space.

Let us recall how the topology on SpecA is defined. For any ideal I ⊂ A in A, we define

V (I) := {p ∈ SpecA | I ⊂ p}.

For a in A, we define D(a) = SpecA\V (aA). If I ⊂ J , we have that V (J) ⊂ V (I).

The closed subsets of SpecA are precisely the subsets V (I), where I ⊂ A is an ideal in A. This
defines a topology on X. It is called the Zariski topology. A morphism ϕ : A −→ B of rings
induces a morphism f : SpecB −→ SpecA of topological spaces given by q 7→ ϕ−1(q).

Example 3.1. Consider the canonical surjection ϕ : A −→ A/I, where I ⊂ A is an ideal of A.
Then the induced morphism f : Spec(A/I) −→ SpecA induces a homeomorphism of Spec(A/I)
to the closed subset V (I) of SpecA.

1A germ is an equivalence class of pairs (U, f), where U is an open of X and f ∈ OX(U)...
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Example 3.2. For a in A, the morphism f : SpecAa −→ SpecA induced by ϕ : A −→ Aa induces
a homeomorphism of SpecAa onto the open D(a) in SpecA.

Remark 3.3. Let k be an algebraically closed field. Recall that an algebraic set in An
k is a subset

of the form {x ∈ An
k : f(x) = 0 for all f in S} for some subset S ⊂ k[x1, . . . , xn]

The Zariski topology on X defined above can also be defined in terms of “functions” having “value”
zero.

Definition 3.4. Let x be in X. The residue field of x, denoted by k(x), is defined to be

k(x) = Ap/pAp,

where p ⊂ A is the prime ideal corresponding to x.

Example 3.5. The residue field of the zero ideal in A1
k = Spec(k[t]) is k(t). The residue field of

(P ), where P is an irreducible polynomial, is k[t]/(P ). This is a finite extension of k.

Example 3.6. The residue field of (0) in Spec Z is Q. The residue field of (p) is Z/pZ.

Remark 3.7. Let x be in X and let p ⊂ A be the prime ideal corresponding to it. Each element
a in A gives an element in Ap. This element should be considered as the ”germ of a function”. It
also gives an element a(x) in k(x). This should be considered as the “value of the germ” at x.

Proposition 3.8. Let V be a subset of X. Then V is closed in the Zariski topology if and only
if there exists a subset S ⊂ A such that V = {x ∈ Spec(A) : a(x) = 0 for all a in S}.

Proof. The easy verification is left to the reader.

The following theorem tells us how we can make X = SpecA into a locally ringed space.

Theorem 3.9. There is a unique sheaf of rings O = OX (which we call the structure sheaf ) on
X = SpecA satisfying the following properties.

1. For every a in A, we have that O(D(a)) = Aa = A[t]/(at− 1).

2. For every a and b in A such that D(b) ⊂ D(a), we have that the restriction morphism
O(D(a)) −→ O(D(b)) is the canonical morphism Aa −→ Ab. (Note that b ∈

√
(a). Write

bm = fa with m > 0 and f ∈ A. Then f is invertible in Ab and we obtain a canonical
homomorphism Aa −→ Ab (mapping ca−n to cfnb−nm) which is an isomorphism if D(a) =
D(b).)

3. For every x ∈ X, the stalk OX,x is isomorphic to the local ring Ap, where p ⊂ A is the prime
ideal corresponding to x.

Proof. The uniqueness follows from the fact that the (D(f))f∈A form a basis B for the Zariski
topology onX. In fact, to show thatO is a sheaf it suffices to show that for an open cover (D(ai)) of
U ∈ B by principal opens and sections si ∈ O(D(ai)) such that (si)|D(ai)∩D(aj) = (sj)|D(ai)∩D(bi)

for all i, j, there exists a unique section s ∈ OX(U) such that s|Ui
= si for all i. Property 3 follows

from 1 and 2. In fact, one easily shows that, for every prime ideal p ⊂ A in A, the canonical
morphism

lim
a6∈p

Aa −→ Ap

is an isomorphism.

Corollary 3.10. Let X = SpecA. Then (X,OX) is a locally ringed space.
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We have a (contravariant) functor Spec from the category of rings to the category of locally
ringed spaces defined as follows. Let ϕ : A −→ B be a morphism of rings. We already know
how this induces a morphism f : SpecB −→ SpecA of topological spaces. Let X = SpecB
and Y = SpecA. There is a canonical morphism f∗ : OY −→ f∗OX of sheaves constructed
as follows. Firstly, note that f−1(D(a)) = D(ϕ(a)) for all a in A. (The condition a 6∈ f(p) is
equivalent to the condition ϕ(a) 6∈ p.) Therefore, we see that ϕ induces a morphism OY (D(a)) =
Aa −→ Bϕ(a) = (f∗OX)(D(a)). These homomorphisms are clearly compatible with the restriction
morphisms. Since the D(a) form a basis of open sets of Y , this defines a morphism of sheaves
f# : OY −→ f∗OX . Note that the morphism on stalks is a local morphism of local rings.

Theorem 3.11. The functor Spec from the category of rings to the category of locally ringed
spaces is fully faithful. That is, if A and B are rings, the morphism

HomRing(A,B) −→ HomLrs(SpecB, SpecA)

is bijective. (Here Ring is the category of rings.)

Definition 3.12. The category of affine schemes is the essential image of the functor Spec in the
category of locally ringed spaces. (In particular, it is a full subcategory of Lrs.) An affine scheme
is an object of the category of affine schemes, i.e, a locally ringed space which is isomorphic to
(SpecA,OSpec A) for some ring A.

Remark 3.13. One should view Theorem 3.11 as a generalization of Corollary I.3.8 in Hartshorne.
In fact, the category of rings is anti-equivalent to the category of affine schemes.

Example 3.14. Let U ⊂ X be an open subset of X = SpecA. Then U is not necessarily an affine
scheme. For example, let X = A2

k = Spec k[t1, t2] and U = X − {(0, 0)}, where k is a field. Then
U is not an affine scheme. To show this, let us cover U by U1 = D(t1) ⊂ U and U2 = D(t2) ⊂ U .
Note that OX(U1) = k[t1, t2]t1 and OX(U2) = k[t1, t2]t2 . The inclusion i : U −→ X is not
surjective (clearly). Therefore, it is not an isomorphism of locally ringed spaces. Note that the
homomorphism OX(X) −→ OX(U) is an isomorphism. (We have a short exact sequence

0 // OX(U) // OX(U1)⊕OX(U2) // OX(U1 ∩ U2)⊕OX(U2 ∩ U1) ,

where the first map is given by the restriction maps and the second by (s1, s2) 7→ (s1 − s2). The
elements of OX(U) are rational fractions whose denominator is a power of t1 and t2. Therefore,
the elements of OX(U) are polynomials.) Suppose that U is an affine scheme. Then, by Theorem
3.11, the inclusion i : U −→ X is an isomorphism. Contradiction.

Example 3.15. Let X = SpecA be an affine scheme. Then there exists a unique morphism
X −→ Spec Z.

Remark 3.16. Note that the structure sheaf allows us to distinguish between Spec k, SpecL and
Spec k[T ]/(T 2) for a field extension k ⊂ L even though their topological space consists of a single
point.

4 Fibres of a morphism of affine schemes

Definition 4.1. Let f : X −→ Y be a morphism of affine schemes, where X = SpecB and
Y = SpecA. Let y be a point in Y . The fibre of f in y is the affine scheme

Xy := Spec(B ⊗A k(y)).

Example 4.2. Let K be a number field with ring of integers OK . Consider the morphism
SpecOK −→ Spec Z of affine schemes. The generic fibre SpecK is the fibre in the generic point
of Spec Z. The fibre in the closed point (p) is Spec(OK ⊗Z Fp). Note that Spec(OK ⊗Z Fp) is the
set of primes lying above p.
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Proposition 4.3. Let f : X −→ Y be a morphism of affine schemes, where X = SpecB and
Y = SpecA. Let y be a point in Y . The canonical morphism ϕ : B −→ B ⊗A k(y) induces a
morphism of affine schemes p : Xy −→ X. This morphism induces a homeomorphism of Xy onto
f−1(y) ⊂ X.

Proof. Let p ⊂ A be the prime ideal corresponding to y. Let u : A −→ B be the (unique!)
morphism corresponding to f . (Here we use Theorem 3.11.) The canonical morphism ϕ : B −→
B ⊗A k(y) is the composition of the localization ϕ1 : B −→ B ⊗A Ap and the canonical surjection
ϕ2 : B⊗AAp −→ B⊗A k(y). Therefore, we have that p induces a homeomorphism of Xy onto the
set of prime ideals q in B which contain u(p)B and do not meet u(A − p). This means precisely
that u−1(q) = p (or f(q) = p).

5 The main theorem of the day again

We have explained what the category of locally ringed spaces is and what affine schemes are. The
action of a finite group G on an affine scheme X can be transformed into an action of G on OX(X).
An action of G on OX(X) can be transformed into an action of G on X by taking the Spec. Since
Spec is an anti-equivalence this explains the following statement.

Theorem 5.1. Let X = SpecA be an affine scheme. Suppose that G is a finite group acting on
X. There is a canonical action of G on A. Let AG ⊂ A be the ring of invariants of A. Define
Y = SpecAG. The induced morphism π : X −→ Y is a quotient in the category of locally ringed
spaces.
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