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In the following, we will analyse the group structure that we can put on the set of the
smooth points of a singular cubic curve. We start defining the group law that we can put
on this set.

0.1 The group structure on Csm(K)

Let C an irreducible plane cubic curve, defined over a field K (this means that C is defined
by an irreducible polynomial of degree three in three homogenous variables and with
coefficient in K).

Our cubic C, if it is singular, has exactly one singular point over K̄ (from Bezout’s
theorem). Denote with Csm(K) the set of all the smooth K-points of C, and suppose that
this set is not empty.

Definition 1. For any two points p, q ∈ Csm(K), we define the following composition law: p ◦ q
is the point obtained intersecting Csm(K) with the K-line that passes through p and q (the tangent
line if p = q).

This point p◦q is uniquely determined by p and q and cannot be singular (from Bezout
theorem). Furthermore, the following properties of ◦ are straightforward: p◦ q = q◦p and
p ◦ (p ◦ q) = q for any p, q ∈ Csm(K).

Definition 2. Fix now a K-rational point O in Csm(K). Define the abelian group law on Csm(K)
in this way:

p + q B O ◦ (p ◦ q)

for any p, q ∈ Csm(K).

Proof. We will prove now that the previous definition satisfies the axioms of an abelian
group law. Suppose p, q, s ∈ Csm(K).

• The commutativity holds:

p + q = O ◦ (p ◦ q) = O ◦ (q ◦ p) = q + p

• The neutral element is O:

p + O = O + p = O ◦ (O ◦ p) = p

• The inverse of p is defined by −p B (O ◦O) ◦ p:

p + (−p) = O ◦ (p ◦ (p ◦ (O ◦O))) = O ◦ (O ◦O) = O
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• The associativity holds: this is the most hardest point. We start observing that, for
p, q, s ∈ Csm(K), saying that s = p+q (i.e. s = O◦ (p◦q)) is the same as saying that there
are two K-lines l and t, such that l passes through p, q, p ◦ q, and t passes through
O, p ◦ q, s. If l(x), t(x) are the respective linear forms over Csm(K), then l(x) has zeroes
in p, q, p ◦ q, while t(x) has zeroes in O, p ◦ q, s. This means that there exists a rational
function over Csm(K), defined by g(x) B l(x)

t(x) , that has two zeroes in p and q and that
has two poles in s and O. In terms of the divisors over Csm(K), we have that

(p) + (q) ≈ (s) + (O)

(recall that the set of the divisors Div(Csm(K)) is the free abelian group generetad by
formal sums

∑
p∈Csm(K) np(p), where np ∈ Z; for D1,D2 divisors on Csm(K), D1 ≈ D2 if

and only if there is a rational function over Csm(K) with associated divisor D1 −D2).

Now saying that (p + q) + r = s is then equivalent in the language of divisors to
(p + q) + (r) ≈ (s) + (O) and (p) + (q) ≈ (p + q) + (O), and so it is also equivalent to

(p) + (q) + (r) ≈ (s) + 2(O)

We have the same result for p + (q + r) = s. This proves the associativity.

�

0.2 Singular cubic curve with K-rational singular point

Consider now an irreducible cubic curve in the Weierstrass model

C : zy2 + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3

with ai ∈ K. Take O B [0 : 1 : 0], the neutral element of our group law on Csm(K). Suppose
that C is singular and that the (unique) singular point is defined over K. It is easy to show
that this point can never be O. Because the singular point has coordinates in K, we can
move it in the origin of our plane, namely in [0 : 0 : 1]. We get the following equation for
C:

zy2 + bxyz + cx2z = x3

with b B a1, c B −a2.
The group structure varies with the kind of tangents that the singular point has. Here

we can define the tangent complex at the singular point p = [p1, p2, p3] by
∑3

i=1 pi
∂ f
∂xi

(x1, x2, x3) =
0, where f is the equation of our cubic curve.

In our case then, the tangent complex at the singular point [0 : 0 : 1] satisfies the
equation

y2 + bxy + cx2 = 0

It’s not hard to see that, if we define s1, s2 as the two roots in K̄ of the polynomial
t2 + bx + c, we have y2 + bxy + cx2 = (y − s1x)(y − s2x), . Hence the splitting behaviour into
lines of y2 + bxy + cx2 = 0 over K, depends exactly on what kind of roots t2 + bx + c has.
Precisely the following cases can happen:
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Definition 3. 1. C is of nodal type: t2 + at + b has two distinct solutions in K, the complex
tangent consists of two distinct lines defined over K.

2. C is of cuspidal type: t2 + at + b has one double root in K, the complex tangent consists of
one double line defined over K.

3. C is of twisted type: t2 + at + b is irreducible over K. In particular:

3a) C is of twisted nodal type: t2 + at + b has two distinct solutions in some quadratic
extension of K but not in K. This means that the tangent complex consists of two
distinct lines that are defined in some quadratic extension of K, but not in K.

3b) C is of twisted cuspidal type: t2 + at + b has one double solution in some quadratic
extension of K but not in K. This means that the tangent complex consists of a double
line that are defined in some quadratic extension of K, but not in K. This case can only
happen in characteristic 2 (and furthermore the field has not to be perfect, in particular
not finite).

Observation 1. We will now specify some facts concerning what can happen in the definition
above.

• If char(K) , 2, we can obtain the solutions of t2 + at + b (in some quadratic extension of K)
using the resolutive formula for quadratic equations:

t1,2 =
−a ±

√

a2 − 4b
2

If we have a double root, then it has to be t = − b
2 , and so it must live in K. This implies that

in characteristic different from 2 the twisted cuspidal case cannot happen.

• If char(K) = 2, the polynomial t2 + at + b has two distinct roots (in its splitting field over K)
if and only if a , 0.

Indeed, let t̄ a root of t2 + at + b. Then t̄ + a is the other solution of the polynomial:

(t + t̄)(t + t̄ + a) = (t + t̄)2 + a(t + t̄) = t2 + t̄2 + at + at̄ = t2 + at + b

The two solutions are distinct if and only if a , 0. Furthermore, they belongs to the same
quadratic extension of K.

We will now state the main result of this section.

Theorem 1. Let C an irreducible singular cubic curve, defined over a field K. Assume that the
singular point of C is defined over K.

1. If C is of nodal type, Csm(K) is isomorphic to K×.

2. If C is of cuspidal type, Csm(K) is isomorphic to K+.
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3. If C is of twisted nodal type, Csm(K) is isomorphic to the elements of norm 1 of some quadratic
extension of K (subgroup of the multiplicative group of that extension).

4. If C is of twisted cuspidal type (that implies char(K) = 2), Csm(K) is isomorphic to{
(α, β) ∈ K2 : α2 = β + bβ2}.

Proof. We start from a cubic curve C of equation x3 = (y2 + axy + bx2)z: it has the singular
point in the origin [0 : 0 : 1], and also only the point O = [0 : 1 : 0] lies on the line at
infinity z = 0 (observe that this O is a flex point: O = O ◦O, because z = 0 is its tangent).

First, we define the following map:

P1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}
−→ Csm(K)

[λ : m] 7−→
[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m : λ3]

This correspondence is obtained intersecting the smooth points Csm(K) of our cubic
curve, with the pencil of projective lines over K through the singular point, namely the
lines λy = mx, with λ,m ∈ K not both zero. Each line (except the K-rational tangents
at the singular points) determines exactly one point on Csm(K), using Bezout’s theorem.
We obtain then the above correspondence between the set of projective lines through the
origin (written as points of a P1(K)), with the smooth points of the cubic.

By this observation, it is then clear that the inverse of this map has to be:

Csm(K) −→ P1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}[
x : y : z

]
7−→

[
x : y

]
We will now formally show that the two maps are bijections, one the inverse of the

other. Indeed,[
x : y : z

]
7−→

[
x : y

]
7−→

[
(y2 + axy + bx2)x : (y2 + axy + bx2)y : x3

]
=

=
[
(y2 + axy + bx2)x : (y2 + axy + bx2)y : (y2 + axy + bx2)z

]
=

[
x : y : z

]
and

[λ : m] 7−→
[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m : λ3

]
7−→

7−→

[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m

]
= [λ : m]

We have obtained a well defined bijection from Csm(K) toP1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}
.

Observation 2. In the particular case of K = Fq finite field, from this map, we directly obtain the
number of K-rational smooth points of our singular cubic curve:

• if C is of nodal type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 2 = q − 1
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• if C is of cuspidal type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 1 = q

• if C is of twisted type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 0 = q + 1

Now we will see what happens in each case.

1. Suppose C of nodal type: then there are s1, s2 ∈ K two distinct zeroes of the equation
t2 +at+b = 0. Notice that [1 : s1], [1 : s2] represent the inclinations of the two tangents
at the singular point. With these assumptions, we can write the equation of C as

x3 = (y − s1x)(y − s2x)z

We have already seen that we have a bijection between Csm(K) andP1
\ {[1 : s1], [1 : s2]}.

To define a (group) isomorphism between Csm(K) and K×, we continue defining an-
other map:

P1
\ {[1 : s1], [1 : s2]} −→ K×

[λ : m] 7−→ m−s1λ
m−s2λ

The meaning of this is, sort of speaking, to move one of the problematic tangent
to infinity, and the other to 0. This map is clearly a bijection (it comes from a
projectivity).

It remains only to prove that the composition of the two maps

ψ : Csm(K) −→ K×[
x : y : z

]
7−→

y−s1x
y−s2x

is now a group isomorphism. Recall that the unit element of the group law over
Csm(K) is O = [0 : 1 : 0]. Writing the group law additively, and using the fact that
O = O◦u and −p B (O◦O)◦p = O◦p, then by definition p+q B O◦ (p◦q) = −(p◦q).
So the definition of the group law becomes equivalent to

p + q + (p ◦ q) = O

Hence, to prove that ψ is a group homomorphism, it is enough to prove that
ψ(p)ψ(q)ψ(p ◦ q) = ψ(O), for any p, q ∈ Csm(K).

Observe thatψ(O) = ψ ([0 : 1 : 0]) = 1. It is then sufficient to show that, fixed any line
not containing the singular point, and called p, q, r the three points of intersection of
it with the cubic curve, we have always that

ψ(p)ψ(q)ψ(r) = 1
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To do that, we can change the variables y 7→ y − s2x. This gives in the new variables
the equation of the cubic

x3 = (y − sx)yz

where s B s1 − s2 , 0, and now

ψ
(
[x : y : z]

)
=

y − sx
y

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have nonsingular points on the line y = 0, so we can pass
to the affine coordinate system obtained sending that line at infinity: we get that the
lines z = αx + β, with β , 0, are all the lines that intersect the cubic curve but that
do not contain the singular point. The affine equation of the curve is now become
x3 = (1 − sx)z and ψ ([x : 1 : z]) = 1−sx

1 .

We want to show that, for the three points of intersection of the line z = αx + β with
the cubic curve, that are pi = [1 : αxi +β : xi] such that x3

i = (1−sxi)(αxi +β) (i = 1, 2, 3),
we have that

ψ(p1)ψ(p2)ψ(p3) = 1

equivalently
(1 − sx1)(1 − sx2)(1 − sx3) = 1

Observing that the xi are solution of x3 = (1− sx)(αx + β) = −sαx2 + (α− sβ)x + β, then

x1x2x3 = β x1x2 + x1x3 + x2x3 = sα − β x1 + x2 − x3 = −sα

We get

(1 − sx1)(1 − sx2)(1 − sx3) = 1 − s(x1 + x2 + x3) + s2(x1x2 + x1x3 + x2x3) − s3x1x2x3 =

= 1 − s(−sα) + s2(sβ − α) − s3β = 1 + s2(α − α) + s3(β − β) = 1

as wanted.

We have proved that ψ is a group isomorphism between Csm(K) and K×.

2. Suppose C of cuspidal type: then there exists s ∈ K the unique zero of the equation
t2 + at + b = 0. Notice that [1 : s] represents the inclination of the double tangent at
the cusp. With these assumptions, we can write the equation of C as

x3 = (y − sx)2

We have already seen that we have a bijection between Csm(K) and P1
\ {[1 : s]}. To

define a (group) isomorphism between Csm(K) and K+, we continue defining another
map:
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P1
\ {[1 : s]} −→ K+

[λ : m] 7−→ λ
m−sλ

Sort of speaking, we have moved the inclination of the tangent at infinity. This map
is clearly a bijection (it comes from a projectivity).

It remains only to prove that the composition of the two maps

ϕ : Csm(K) −→ K+[
x : y : z

]
7−→

x
y−sx

is now a group isomorphism. As before, it is enough to prove that ϕ(p) +ϕ(q) +ϕ(p◦
q) = ϕ(O), for any p, q ∈ Csm(K). Observe that now ϕ(O) = ϕ ([0 : 1 : 0]) = 0. So it
is sufficient to show that, fixed any line not containing the singular point, if we call
p, q, r the three points of intersection of it with the cubic curve, we have

ϕ(p) + ϕ(q) + ϕ(r) = 0

To do that, we can change the variables as y 7→ y − sx. This gives, in the new
variables, the equation of the cubic curve

x3 = y2z

and now
ϕ

(
[x : y : z]

)
=

x
y

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have smooth points on the line y = 0, so we can pass to the
affine coordinate system obtained sending that line at infinity: we get that the lines
z = αx + β, with β , 0, are all the lines that intersect the cubic curve but that do not
contain the singular point. The affine equation of the curve is now become x3 = z
and ϕ ([x : 1 : z]) = x

1 .

We want to show that, for the three points of intersection of the line z = αx + β with
the cubic curve, that precisely are pi = [1 : αxi + β : xi] such that x3

i = (1− sxi)(αxi + β)
(i = 1, 2, 3), we have that

x1 + x2 + x3 = 0

This follows because x3 = (αx + β) has no term of second degree.

We have proved that ϕ is a group isomorphism between Csm(K) and K+.

3. Suppose C of twisted nodal type: there are no solutions in K of t2 + at + b = 0, but
there are two distinct solution s1, s2 in some quadratic extension of K.

Define L B K(s1, s2) = K(s1), the quadratic extension of K that is also the splitting field
of our polynomial. Over L our cubic curve is of nodal type, hence we can use the point
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1., to get an isomorphism ψ : Csm(L) � L×. This implies that Csm(K) � ψ(Csm(K)) ⊆ L×.
We will now see that

ψ(Csm(K)) =
{
l ∈ L× : NL/K(l) = 1

}
One side of the inclusion is easy:

NL/K
(
ψ([x : y : z])

)
= NL/K

(
y − s1x
y − s2x2

)
=

y − s1x
y − s2x2

· σ

(
y − s1x
y − s2x2

)
=

y − s1x
y − s2x2

y − s2x
y − sx1

= 1

where σ is the K-automorphism that exchanges s1 and s2.

Viceversa, notice that the inverse of the map ψ is the map

ψ−1 : L× −→ Csm(L)
u 7−→

[
(s1 − s2)2u(1 − u) : (s1 − s2)2u(s1 − s2u) : (1 − u)3]

If u = 1, then ψ−1(1) = [0 : 1 : 0]. If not, we can write

ψ−1(u) =

[
(s1 − s2)2 u

(1 − u)2 : (s1 − s2)2 u
(1 − s)2

s1 − s2u
1 − u

: 1
]

Take then u an element of L× of norm 1, precisely u = a + bs1 ∈ L× = K(s1)× is such
that NL/K(u) = u · σ(u) = 1. First, observe that (s1 − s2)2 = b2

− 4c ∈ K. Secondly, we
have

u
(1 − u)2 =

u
1 − 2u + u2 =

u
uσ(u) − 2u + u2 =

1
σ(u) + u − 2

∈ K

because u + σ(u) = TrL/K(u) ∈ K. Finally,

s1 − s2u
1 − u

=
(s1 − s2u)(1 − σ(u)

(1 − u)(1 − σ(u)
=

s1 − s2u − s1σ(u) + s2uσ(u)
N(1 − u)

=

=
s1 + s2 − (s2u) − (σ(s2u)

N(1 − u)
=
−b − Tr(s2u)

N(1 − u)
∈ K

Hence ψ−1(u) ∈ Csm(K) for u ∈ L× of norm 1, and we have proved that:

Csm(K) �
{
l ∈ L× : NL/K(l) = 1

}
≤ L×

4. Suppose C of twisted cuspidal type: the characteristic of K has to be 2, our polynomial
has to be t2 + b = 0 and is irreducible over K. It has a unique solution s in some
quadratic extension of K. Precisely s < K is such that s2 = b.

Define then L B K(s).

Over L our cubic curve is of cuspidal type: we can then use the point 2., to get an
isomorphism ϕ : Csm(L) � L+. This implies that Csm(K) � ϕ(Csm(K)) ⊆ L+. We will
now see that

ϕ(Csm(K)) =
{
l = α + βs ∈ L : β2 = α + bα2

}
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One side of the inclusion is easy: consider [x : y : z] ∈ Csm(K); we have

ϕ([x : y : z] =
x

y + sx
=

x(y + sx)
y2 + bx2 =

xy
y2 + bx2 + s

x2

y2 + bx2

We can define α B
xy

y2+bx2 and β B x2

y2+bx2 . If we write γ B x
y+bx , we have that

y
y+sx = 1 + sγ and we get

α = γ(1 + sγ) and β = γ2

We obtain
α2 + β + bβ2 = γ2 + bγ4 + γ2 + bγ4 = 0

what we want.

For the converse, it is easy to check that the inverse of ϕ is the following map:

L+
−→ Csm(L)

u 7−→ [u : 1 + su : u3]

Suppose u = α + sβ, with α, β ∈ K, and α2 + bβ2 = (α + sβ)2 = β. Then

ϕ−1(u) = ϕ−1(α + sβ) = [α + sβ : 1 + s(α + sβ) : (α + sβ)3] =

=

[
1 :

α + sβ + s(α + sβ)2

(α + sβ)(α + sβ)
: (α + sβ)2

]
= [1 :

α
β

: β] ∈ Csm(K)

as wanted.

�

0.3 Singular cubic curve with the singular point not defined over K

This case can happen only if the ground field K is of characteristic 2 or 3 (furthermore this
field at least has not to be perfect, nor finite).

0.3.1 Case - characteristic 2, singular point not defined over K

Suppose now that our field K has characteristic 2. From the Weierstrass model

zy2 + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3

we get the partial derivatives
(
x2 + a1yz + a4z2, z(a1x + a3z), y2 + a1xy + a2x2 + a6z2). It is

easy to show that the only possibility to have a singular point not defined over K is that

a1 = a3 = 0
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We can make the substitution x 7→ x + a2z, in order to get the following equation for
our singular cubic:

y2z = x3 + b4xz2 + b6z3

with b4 B a2
2 + a2a4 and b6 B a2a4 + a6.

The singular point is now [γ, δ, 1], with γ2 = b4, δ2 = b6, and γ and δ not both in K.
In all the cases, over L′ B K(γ, δ), we can change the variables moving the singular

point in [0 : 0 : 1]. Precisely we send x 7→ x + γz and y 7→ y + δz, obtaining the equation

C0 : zy2 = x3 + γx2z

Now the tangent complex at the singular point is 0 = y2 +γx2 = (y + sx)2, for an s such
that s2 = γ. This s could be in K or in K(δ), for example. But, if γ < K, then s < K(γ): indeed
if s = a + γb ∈ K(γ) for some a, b ∈ K, then, taking the square γ = a2 + b4b2

∈ K. In exactly
the same way it’s clear also that if γ < K then s < K(δ).

We will now state the main result of this section.

Theorem 2. Assuming what done above, we can define L B K(s, δ). We have that

1. if γ, δ < K and δ < K(γ), then

Csm(K) �
{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

6b4
}

2. if γ, δ < K and δ ∈ K(γ), i.e. δ = α + γβ for some known α, β ∈ K, then

Csm(K) �
{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

4β
4b4

}
3. if γ < K, δ ∈ K, then

Csm(K) �
{
(a, b) ∈ K2 : a4 = b + b4b2

}
4. if γ ∈ K, δ < K and s < K(δ), then

Csm(K) �
{
(a, b) ∈ K2 : a2 = b + γb2 + b6b4

}
5. if γ ∈ K, δ < K and s < K, but s ∈ K(δ), i.e. s = α + βδ for some known α, β ∈ K, then

Csm(K) �
{
(a, b) ∈ K2 : a2 = b + b6β

2b2 + b6b4
}

6. if γ ∈ K, δ < K and s ∈ K, then

Csm(K) �
{
(a, b) ∈ K2 : a2 = b + b6b4

}
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Proof. We start now in all generality, with γ, δ not both in K. Over L = K(s, δ), we have,
using the notations as before,

φ : Csm(L) −→ C0
sm(L) −→ L+

[x : y : z] 7−→ [x + γz : y + δz : z]
[x : y : z] 7−→

x
y+sx

The composition gives, for [x : y : z] ∈ Csm(L),

φ([x : y : z]) =
x + γz

y + δz + sx + s3z
=

(x + γz)(y + δz + sx + s3z)
y2 + b6z2 + γx2 + γb4z2 =

=
z(x + γz)(y + δz + sx + s3z)
x(x2 + b4z2) + z(γx2 + γb4z2)

=
z(x + γz)(y + δz + sx + s3z)

(x2 + b4z2)(x + γz)
=

=
z(y + δz + sx + s3z)

x2 + b4z2 =
yz

x2 + b6z2 + δ
z2

x2 + b6z2 + s
xz

x2 + b6z2 + s3 z2

x2 + b6z2

We define

a B
yz

x2 + b6z2 , b B
z2

x2 + b6z2 , c B
xz

x2 + b6z2 , d B
z2

x2 + b6z2

If [x : y : z] ∈ Csm(K), these elements are in K.
Define furthermore

l B
z

x + γz

Now +γl = x
x+γz , and then we obtain the formulas

b = d = l2 and c = l(1 + γl)

Furthermore, using the equation of the cubic curve y2z + x3 + b4xz2 + b6z3 = 0, we can
write y2

(x+γz)2 l + (1 + γl)3 + b4(1 + γl)l2 + b6l3 = 0. This implies y2

(x+γz)2 l = 1 + γl + b6l3 and so
y

x+γz = 1
√

l
+ s + δl. Finally we have

a = l
y

x + γz
=
√

l + sl + δl2

In the following, we will analyze all the cases.

1. Suppose γ, δ < K and δ < K(γ). We know furthermore that s < K(γ, δ). Then we can
write each element u of L = K(s, δ) as

u = k1 + k2δ + k3s + k4γ + k5s3 + k6δs + k7δγ + k8δs3

for some uniquely determined ki ∈ K, i = 1, ..., 8.
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Before, we have shown that, for [x : y : z] ∈ Csm(K),

φ([x : y : z]) = a + bδ + cs + ds3

with a =
√

l + sl + δl2, b = d = l2, c = l + γl2.

From this, we have a2 = l + γl2 + b6l4 = c + b6b2, and so

c = a2 + b6b2

We can then define the following map:

L+
−→ K2

u = k1 + k2δ + k3s + k4γ + k5s3 + k6δs + k7δγ + k8δs3
7−→ (k1, k2)

If we restrict the domain toφ(Csm(K)), the map has image in
{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

6b4
}
.

Indeed, for a + bδ + cs + ds3
∈ φ(Csm(K)) as before, we have that

a4 =
(√

l + sl + δl2
)4

= l2 + b4l4 + b2
6l8 = b + b4b2 + b2

6b4

Using the relations shown above, we can define the inverse map in this way:{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

6b4
}
−→ φ(Csm(K))

(a, b) 7−→ a + bδ + (a2 + b6b2)s + bs3

It is clear from before, that between this two sets, the two maps are one the inverse
of the other (once we know the surjectivity). It’s very easy to show also that they
are groups isomorphisms, if we give to

{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

6b4
}

the usual
sum induced by K+. We only need to know that the image of this map lies really
in φ(Csm(K)), in order to conclude that Csm(K) �

{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

6b4
}

as
groups.

Recall that

φ−1 : L+
−→ C0

sm(L) −→ Csm(L)
u 7−→ [u : 1 + su : u3] 7−→ [u + γu3 : 1 + su + δu3 : u3]

If u = 0, φ−1(u) = [0 : 1 : 0]. If not we can write φ−1(u) =
[

u2+γu4

u4 : u+su2+δu4

u4 : 1
]
.

Suppose a, b ∈ K such that a4 = b + b4b2 + b2
6b4, and take u = a + bδ + (a2 + b6b2)s + bs3.

Then u2 = a2 + b6b2 + γb and u4 = b. Then

φ−1(u) =

[
a2 + b6b2

b
:

a
b

: 1
]

that belongs to Csm(K), what we wanted.
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2. Suppose γ, δ < K and δ = α+γβ ∈ K(γ), for some known α, β ∈ K. Then we can write
each element u of L = K(s, δ) = K(s) as

u = k1 + k2s + k3γ + k4s3

for some uniquely determined ki ∈ K, i = 1, ..., 4.

Before, we have shown that, for [x : y : z] ∈ Csm(K),

φ([x : y : z]) = a + bδ + cs + ds3

with a =
√

l + sl + δl2, b = d = l2, c = l + γl2. Now

φ([x : y : z]) = a + b(α + γβ) + cs + ds3 = (a + αb) + cs + βbγ + ds3

We then define

a′ B a + αb =
√

l + sl + δl2 + αl2 =
√

l + sl + (βγ)l2

and
b′ B βb = βl2 = βd

We have that a′2 = l + γl2 + β2b4l4 = c + β2b4d2, hence

c = a′2 + β2b4d2

Then we can define the following map:

L+
−→ K2

u = k1 + k2s + k3γ + k4s3
7−→ (k1, k4)

If we restrict the domain toφ(Csm(K)), the map has image in
{
(a, d) ∈ K2 : a4 = d + b4d2 + b2

4β
4d4

}
.

Indeed, for u = a′ + cs + b′γ + ds3
∈ φ(Csm(K)) as before, we have that

a′4 =
(√

l + sl + βγl2
)4

= l2 + b4l4 + β4b2
4l8 = d + b4d2 + b2

4β
4d4

(observe also that b2
4β

4 = b2
6 + α4).

Using the relations shown above, we can define the inverse map in this way:{
(a′, d) ∈ K2 : a′4 = d + b4d2 + b2

4β
4d4

}
−→ φ(Csm(K))

(a′, d) 7−→ a′ + (a′2 + β2b4d2)s + βdγ + ds3

It is clear from before, that between this two sets, the two maps are one the inverse of
the other (once we know that the map is surjective). It’s very easy to show also that
they are two groups isomorphisms if we give to

{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

4β
4b4

}
the

usual sum induced by K+. We only need to see that the image of this map lies really
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in φ(Csm(K)), in order to conclude that Csm(K) �
{
(a, b) ∈ K2 : a4 = b + b4b2 + b2

4β4b4
}

as
groups.

Recall that
φ−1 : L+

−→ Csm(L)
u 7−→ [u + γu3 : 1 + su + δu3 : u3]

If u = 0, then φ−1(u) = [0 : 1 : 0]. If not we can write φ−1(u) =
[

u2+γu4

u4 : u+su2+δu4

u4 : 1
]
.

Suppose a, b ∈ K such that a4 = b+b4b2+b2
4β

4b4, and take u = a+(a2+β2b4b2)s+βbγ+bs3.
Then u2 = a2 + β2b4b2 + bγ and u4 = b. Then

φ−1(u) =

[
a2 + β2b4b2

b
:

a + αb
b

: 1
]

that belongs to Csm(K), what we wanted.

3. Suppose γ < K, but δ ∈ K. We know also that then s < K(γ).

In the previous point 2), we have never really used the fact that δ < K, equivalently
we have never supposed that β , 0. Hence, in this case, δ = α (so β = 0), and so

Csm(K) �
{
(a, b) ∈ K2 : a4 = b + b4b2

}
4. Suppose γ ∈ K, δ < K and s < K(δ). Then we can write each element u of L = K(s, δ)

as
u = k1 + k2δ + k3s + k4sδ

for some uniquely determined ki ∈ K, i = 1, ..., 4.

Before, we have shown that, for [x : y : z] ∈ Csm(K),

φ([x : y : z]) = a + bδ + cs + ds3

with a =
√

l + sl +δl2, b = d = l2, c = l +γl2. Observe that, since γ ∈ K then l ∈ K. Now

φ([x : y : z]) = a + bδ + (c + γd)s

We define then
c′ = c + γd = l + γl2 + γl2 = l

Furthermore we have that
c′2 = l2 = b

So we can define the following map:

L+
−→ K2

u = k1 + k2δ + k3s + k4δs 7−→ (k1, k3)

14



If we restrict the domain toφ(Csm(K)), the map has image in
{
(a, c′) ∈ K2 : a2 = c′ + γc′2 + b6c′4

}
.

Indeed, for u = a + c′2 + δ + c′s ∈ φ(Csm(K)) as before, we have that

a2 =
(√

l + sl + δl2
)2

= l + γl2 + b6l4 = c′ + γc′2 + b6c′4

Using the relations shown above, we can define the inverse map in this way:{
(a, c′) ∈ K2 : a2 = c′ + γc′2 + b6c′4

}
−→ φ(Csm(K))

(a, c′) 7−→ a + c′2δ + c′s

It is clear from before, that between this two sets, the two maps are one the inverse
of the other (once we know that the map is surjective). It’s very easy to show also
that they are two groups isomorphisms if we give to

{
(a, b) ∈ K2 : a2 = b + γb2 + b6b4

}
the usual sum induced by K. We only need to see that the image of this map lies
really in φ(Csm(K)) in order to conclude that Csm(K) �

{
(a, b) ∈ K2 : a2 = b + γb2 + b6b4

}
as groups.

Recall that
φ−1 : L+

−→ Csm(L)
u 7−→ [u + γu3 : 1 + su + δu3 : u3]

If u = 0, then φ−1(u) = [0 : 1 : 0]. If not we can write φ−1(u) =
[

u2+γu4

u4 : u+su2+δu4

u4 : 1
]
.

Suppose a, b ∈ K such that a2 = b + γb2 + b6b4, take u = a + b2δ + bs. Then u2 = b and
u4 = b2. Then

φ−1(u) =

[
b + γb2

b2 :
a
b2 : 1

]
that belongs to Csm(K), what we wanted.

5. Suppose γ ∈ K, δ < K and s < K, but s = α + βδ ∈ K(δ), for some α, β ∈ K known.
Then we can write each element u of L = K(s, δ) = K(δ) as

u = k1 + k2δ

for some uniquely determined k1, k2 ∈ K.

Before, we have shown that for [x : y : z] ∈ Csm(K),

φ([x : y : z]) = a + bδ + cs + ds3

with a =
√

l + sl +δl2, b = d = l2, c = l +γl2. Observe that, since γ ∈ K then l ∈ K. Now

φ([x : y : z]) = a + bδ + (c + γd)(α + βδ) = a + α(c + γd) + (b + β(c + γd))δ

We define then
b′ B b + β(c + γd) = b + βl = l2 + βl
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and

a′ B a + α(c + γd) = a + αl =
√

l + sl + δl2 + αl2 =
√

l + δ(l2 + βl) =
√

l + δb′

Hence we have a′2 = l + b6b′2 and so

l = a′2 + b6b′2

Then we can define the following map:

L+
−→ K2

u = k1 + k2δ 7−→ (k1, k2
1 + b6k2

2)

If we restrict the domain toφ(Csm(K)), the map has image in
{
(a′, l) ∈ K2 : a′2 = l + b6β2l2 + b6l4

}
.

Indeed, for u = a′ + b′δ ∈ φ(Csm(K)) as before, we have that

a′2 = l + b6b′2 = l + b6β
2l2 + b6l4

Using the relations shown above, we can define the inverse map in this way:{
(a′, l) ∈ K2 : a′2 = l + b6β2l2 + b6l4

}
→ φ(Csm(K))

(a′, l) 7→ a′ + (βl + l2)δ

It is clear from before, that between this two sets, the two maps are one the inverse of
the other (once we know that the map is surjective). It’s very easy to show also that
they are two groups isomorphisms if we give to

{
(a, b) ∈ K2 : a2 = b + b6β2b2 + b6b4

}
the usual sum induced by K. We only need to see that the image of this map lies really
in φ(Csm(K)) in order to conclude that Csm(K) �

{
(a, b) ∈ K2 : a2 = b + b6β2b2 + b6b4

}
as

groups.

Recall that
φ−1 : L+

−→ Csm(L)
u 7−→ [u + γu3 : 1 + su + δu3 : u3]

If u = 0, then φ−1(u) = [0 : 1 : 0]. If not we can write φ−1(u) =
[

u2+γu4

u4 : u+su2+δu4

u4 : 1
]
.

Suppose a, b ∈ K such that a2 = b + b6β2b2 + b6b4, and take u = a + (βb + b2)δ. Then
u2 = b and u4 = b2. Then

φ−1(u) =

[
b + γb2

b2 :
a + αb

b2 : 1
]

that belongs to Csm(K), what we wanted.

6. Suppose γ ∈ K, δ < K and s ∈ K.

In the previous point, we have never really used the fact that s < K, equivalently we
have never supposed that β , 0. Hence, in this case, s = α (so β = 0), and so

Csm(K) �
{
(a, b) ∈ K2 : a2 = b + b6b4

}
�

16



0.3.2 Case - characteristic 3, singular point not defined over K

Suppose now that our field K has characteristic 3. From our Weierstrass model zy2+a1xyz+
a3yz2 = x3 + a2x2z + a4xz2 + a6z3, we can change the variables with y 7→ 1

2 (y − a1x − a3z),
obtaining the equation

yz = x3 + b2x2z + b4xz2 + b6z3

with b2 B a2 + a2
1, b4 B a4 − a1a3, b6 B a6 + a2

3.
The partial derivatives are

(
z(−b2x + b4z); yz;−y2 + x(b2x − b4z)

)
, and it is not difficult

to see that the only case for which the singular point is not defined over K, can happen
when

b2 = b4 = 0

We get then the equation
y2z = x3 + b6z3

Hence we have the singular point in [γ : 0 : 1], where γ < K is such that γ3 = −b6.

Theorem 3. With the assumptions done above, define L B K(γ). We have that

Csm(K) �
{
a + bγ ∈ L : a3 = b + b6b3

}
Proof. Over L = K(γ), we can move the singular point to the origin with the change the
variables x 7→ x − γz, getting the curve in the new variables

C0 : y2z = x3

Hence we have
φ Csm(L) −→ C0

sm(L) −→ L+

[x : y : z] 7−→ [x − γz : y : z]
[x : y : z] 7−→

x
y

The composition gives, for [x : y : z] ∈ Csm(L),

φ([x : y : z]) =
x − γz

y
=

x
y
− γ

z
y

Now, if [x : y : z] ∈ Csm(K), then from the equation of the cubic we get(
x
y

)3

−
z
y

y2

y2 + b6

(
z
y

)3

= 0

It follows that φ([x : y : z]) ∈
{
a + bγ ∈ L : a3 + b6b3 + b = 0

}
.

For the converse, we take u = a + γb ∈ L such that a3 + b6b3 + b = 0, equivalently
(a + γb)3 = −b. Now

φ−1 : L+
−→ Csm(L)

u 7−→ [u + γu3 : 1 : u3]

In our case, [u + γu3 : 1 : u3] = [a + γb + γ(−b) : 1 : −b] = [a : 1 : −b] ∈ Csm(K). Hence we
have proved the other inclusion and we have finished. �
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