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In the following, we will analyse the group structure that we can put on the set of the
smooth points of a singular cubic curve. We start defining the group law that we can put
on this set.

0.1 The group structure on C,,,(K)

Let C an irreducible plane cubic curve, defined over a field K (this means that C is defined
by an irreducible polynomial of degree three in three homogenous variables and with
coefficient in K).

Our cubic C, if it is singular, has exactly one singular point over K (from Bezout’s
theorem). Denote with Cs,,(K) the set of all the smooth K-points of C, and suppose that
this set is not empty.

Definition 1. For any two points p,q € Cs,,(K), we define the following composition law: p o g
is the point obtained intersecting C,,(K) with the K-line that passes through p and q (the tangent

lineif p = q).

This point p o g is uniquely determined by p and g and cannot be singular (from Bezout
theorem). Furthermore, the following properties of o are straightforward: pog = gop and

po(poq)=qforanyp,q e Cs(K).

Definition 2. Fix now a K-rational point O in Cs,,(K). Define the abelian group law on Cs,,(K)
in this way:

ptq=00c(pog)
forany p,q € Cgn(K).

Proof. We will prove now that the previous definition satisfies the axioms of an abelian
group law. Suppose p, q,s € Cs(K).

e The commutativity holds:
p+q=0o(pog)=0oclgop)=q+p
e The neutral element is O:
p+O=0+p=00(Oop)=p
e The inverse of p is defined by —p := (O 0 O) o p:

p+(=p)=00(po(po(000)=00(000)=0
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e The associativity holds: this is the most hardest point. We start observing that, for
p,q,s € Cou(K), saying thats = p+g (i.e. s = Oo(poq)) is the same as saying that there
are two K-lines [ and ¢, such that I passes through p,q,p o g, and t passes through
O,p ogq,s. If I(x), t(x) are the respective linear forms over Cs,(K), then I(x) has zeroes
inp,q,p o q, while t(x) has zeroes in O, p o g,s. This means that there exists a rational
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function over Cs,(K), defined by g(x) := 0’ that has two zeroes in p and g and that

has two poles in s and O. In terms of the divisors over Cs,,(K), we have that

() + (9) = (s) + (O)

(recall that the set of the divisors Div(Cs,,(K)) is the free abelian group generetad by
formal sums Zpecm(m n,(p), where n, € Z; for Dy, D, divisors on C;,,(K), D; ~ D; if
and only if there is a rational function over Cs,(K) with associated divisor D; — D).

Now saying that (p + g) + r = s is then equivalent in the language of divisors to
(p+q)+ ()= (s)+(0)and (p) + (g) = (p + q) + (O), and so it is also equivalent to

(p) +(q) + (r) = (s) + 2(0)

We have the same result for p + (g + r) = s. This proves the associativity.

0.2 Singular cubic curve with K-rational singular point
Consider now an irreducible cubic curve in the Weierstrass model
C: zyz +axyz + a3y22 = X% + X%z + ayxz® + agz°

with a; € K. Take O := [0 : 1: 0], the neutral element of our group law on Cs,,(K). Suppose
that C is singular and that the (unique) singular point is defined over K. It is easy to show
that this point can never be O. Because the singular point has coordinates in K, we can
move it in the origin of our plane, namely in [0 : 0 : 1]. We get the following equation for
C:

zy* + bxyz + cx’z = x°
with b :=ay, ¢ := —a,.

The group structure varies with the kind of tangents that the singular point has. Here
we can define the tangent complex at the singular pointp = [p1, p2, p3] by 21‘3:1 pig—i(xl, X, X3) =
0, where f is the equation of our cubic curve.

In our case then, the tangent complex at the singular point [0 : 0 : 1] satisfies the
equation

vV +bxy+cx* =0

It's not hard to see that, if we define s;,s, as the two roots in K of the polynomial
£ + bx + ¢, we have y? + bxy + cx? = (y — s1x)(y — $2x), . Hence the splitting behaviour into
lines of y* + bxy + cx* = 0 over K, depends exactly on what kind of roots * + bx + ¢ has.
Precisely the following cases can happen:



Definition 3. 1. Cis of nodal type: * + at + b has two distinct solutions in K, the complex
tangent consists of two distinct lines defined over K.

2. Cis of cuspidal type: t* + at + b has one double root in K, the complex tangent consists of
one double line defined over K.

3. Cis of twisted type: t* + at + b is irreducible over K. In particular:

3a) Cis of twisted nodal type: * + at + b has two distinct solutions in some quadratic
extension of K but not in K. This means that the tangent complex consists of two
distinct lines that are defined in some quadratic extension of K, but not in K.

3b) Cis of twisted cuspidal type: #* + at + b has one double solution in some quadratic
extension of K but not in K. This means that the tangent complex consists of a double
line that are defined in some quadratic extension of K, but not in K. This case can only
happen in characteristic 2 (and furthermore the field has not to be perfect, in particular
not finite).

Observation 1. We will now specify some facts concerning what can happen in the definition
above.

e Ifchar(K) # 2, we can obtain the solutions of t* + at + b (in some quadratic extension of K)
using the resolutive formula for quadratic equations:

f1p = >

If we have a double root, then it has to be t = —%, and so it must live in K. This implies that
in characteristic different from 2 the twisted cuspidal case cannot happen.

e Ifchar(K) = 2, the polynomial t* + at + b has two distinct roots (in its splitting field over K)
if and only if a # 0.

Indeed, let f a root of t* + at + b. Then f + a is the other solution of the polynomial:
t+Dt+t+a) =+ +a(t+ D= +P+at+af = +at+b

The two solutions are distinct if and only if a # 0. Furthermore, they belongs to the same
quadratic extension of K.

We will now state the main result of this section.

Theorem 1. Let C an irreducible singular cubic curve, defined over a field K. Assume that the
singular point of C is defined over K.

1. If C is of nodal type, Cs,(K) is isomorphic to K*.
2. If Cis of cuspidal type, Csy(K) is isomorphic to K*.
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3. If Cis of twisted nodal type, Cs,,(K) is isomorphic to the elements of norm 1 of some quadratic
extension of K (subgroup of the multiplicative group of that extension).

4. If C is of twisted cuspidal type (that implies char(K) = 2), Cs,(K) is isomorphic to
{(,B) € K* : 0 = B+ bB?}.

Proof. We start from a cubic curve C of equation x* = (y* + axy + bx?)z: it has the singular

point in the origin [0 : 0 : 1], and also only the point O = [0 : 1 : 0] lies on the line at

infinity z = 0 (observe that this O is a flex point: O = O o O, because z = 0 is its tangent).
First, we define the following map:

PYK\{[1:m]:m*> +am+b=0} — Cqu(K)
[A:m] + [(m*+amA +bAP)A : (m? + amA + bA?)ym : A3]

This correspondence is obtained intersecting the smooth points C,(K) of our cubic
curve, with the pencil of projective lines over K through the singular point, namely the
lines Ay = mx, with A,m € K not both zero. Each line (except the K-rational tangents
at the singular points) determines exactly one point on Cs,(K), using Bezout’s theorem.
We obtain then the above correspondence between the set of projective lines through the
origin (written as points of a IP'(K)), with the smooth points of the cubic.

By this observation, it is then clear that the inverse of this map has to be:

Can(K) —> PYKN\{[1:m]:m?+am+Db=0}
[x:y:z] — [x:y]

We will now formally show that the two maps are bijections, one the inverse of the
other. Indeed,

x:y:z]— [x:y] — [ +axy + bxP)x . (P +axy +bxPy: x| =
y y y y y y y

= (P +axy +bxPx: (Y +axy+bx®)y: (VP +axy+bx?)z|=[x:y:z
y y y Y y: y y

and
[A:m]+— [(m2 +amA +bAPA : (m* +amA + bAH)m : A?’] —

— [(1? + amA + bADA = (m? + amA + bAD)m| = [A : m]

We have obtained a well defined bijection from Cs,,(K) to PY(K)\ {[1 : /] : 1@® + am + b = 0}.

Observation 2. In the particular case of K = I, finite field, from this map, we directly obtain the
number of K-rational smooth points of our singular cubic curve:

o if C is of nodal type, we get

#(Can(K)) = #(P(K)) = #({[1: 7] - ? +am +b=0}) = (g +1)-2=¢ -1
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e if C is of cuspidal type, we get

#Con(K)) = #(P'(K) - #({[1: 7] : P +am+b=0}) = (4 +1) -1 =4
o if C is of twisted type, we get

#Con(K)) = #(P'(K) - #({[1: 7] : "+ am +b=0}) = (3 +1) -0 =g +1

Now we will see what happens in each case.

1. Suppose C of nodal type: then there are 51,5, € K two distinct zeroes of the equation
2 +at+b = 0. Notice that[1 : s1], [1 : s] represent the inclinations of the two tangents
at the singular point. With these assumptions, we can write the equation of C as

X = (y — s10)(y — $2%)z

We have already seen that we have a bijection between Cg,,,(K) and P\ {[1 : s1], [1 : s5]}.
To define a (group) isomorphism between Cs,,(K) and K*, we continue defining an-
other map:

P\{[1:5][1:s]} — KX

—s11
[A:m] +— —Z_E;A

The meaning of this is, sort of speaking, to move one of the problematic tangent
to infinity, and the other to 0. This map is clearly a bijection (it comes from a
projectivity).

It remains only to prove that the composition of the two maps

Yp: Cyu(K) — KX

[x:y:z] — %

is now a group isomorphism. Recall that the unit element of the group law over
Csm(K) is O = [0 : 1 : 0]. Writing the group law additively, and using the fact that
O =0Oouand —p := (OoO)op = Oop, then by definitionp+g := Oo(poq) = —(pogq).
So the definition of the group law becomes equivalent to

p+tq+(pogq =0

Hence, to prove that ¢ is a group homomorphism, it is enough to prove that
PP (p o g) = P(O), for any p, q € Con(K).

Observe that ¢(O) = ¢ ([0 : 1 : 0]) = 1. Itis then sufficient to show that, fixed any line
not containing the singular point, and called p, g, r the three points of intersection of
it with the cubic curve, we have always that

Y(p)Y@y(n) =1
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To do that, we can change the variables y + y — s,x. This gives in the new variables
the equation of the cubic

X = (y —sx)yz
where s :=s; — s, # 0, and now

Y —sx

Y ([x:y:z]) =

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have nonsingular points on the line y = 0, so we can pass
to the affine coordinate system obtained sending that line at infinity: we get that the
lines z = ax + B, with g # 0, are all the lines that intersect the cubic curve but that
do not contain the singular point. The affine equation of the curve is now become
X¥=(1-sx)zand ¢ ([x:1:2]) = =%,

We want to show that, for the three points of intersection of the line z = ax + g with
the cubic curve, thatare p; = [1 : ax;+f : x;] such that x1.3 = (1-sx;)(ax;+p)(1=1,2,3),
we have that

Y(p)Y(p2)Y(ps) = 1

equivalently
(1 —=sx1)(1 —sx)(1 —sx3) =1

Observing that the x; are solution of x*> = (1 — sx)(ax + f) = —sax? + (a —sp)x + B, then
X1X2X3 = f3 X1X2 + X1X3 + XoX3 = sa — f X1+ X9 — X3 = =S«
We get
(1 = sx1)(1 = sx2)(1 —sx3) = 1 —5(x1 + Xp + X3) + S(X12X2 + X1X3 + XoX3) — S°X1XpX3 =
=1-s(-sa)+s*(sp—a)-sp=1+s(a—a)+s°(B-p) =1

as wanted.
We have proved that 1 is a group isomorphism between Cs,(K) and K*.
. Suppose C of cuspidal type: then there exists s € K the unique zero of the equation

t> + at + b = 0. Notice that [1 : s] represents the inclination of the double tangent at
the cusp. With these assumptions, we can write the equation of C as

= (y - sx)?

We have already seen that we have a bijection between Cs,(K) and P\ {[1 : s]}. To
define a (group) isomorphism between C;,,,(K) and K*, we continue defining another
map:



PN\{[1:s]}] — K*

[A:m] +— mfsA

Sort of speaking, we have moved the inclination of the tangent at infinity. This map
is clearly a bijection (it comes from a projectivity).

It remains only to prove that the composition of the two maps

p: CopuK) — K*

[x:y:z] — 5

is now a group isomorphism. As before, it is enough to prove that ¢p(p) + ¢(q) + @(p o
q) = ¢(0), for any p,q € Cyu(K). Observe that now ¢(O) = ¢ ([0:1:0]) = 0. So it
is sufficient to show that, fixed any line not containing the singular point, if we call
p,q,1 the three points of intersection of it with the cubic curve, we have

P(p) + (@) + @) =0

To do that, we can change the variables as y +— vy — sx. This gives, in the new
variables, the equation of the cubic curve

X =Yyz

and now

X
GD([x-y-Z])—y

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have smooth points on the line y = 0, so we can pass to the
affine coordinate system obtained sending that line at infinity: we get that the lines
z = ax + B, with g # 0, are all the lines that intersect the cubic curve but that do not
contain the singular point. The affine equation of the curve is now become x* = z
andp([x:1:z])=1.

We want to show that, for the three points of intersection of the line z = ax +  with
the cubic curve, that precisely are p; = [1 : ax; + 8 : x;] such that xf = (1 —sxj)(ax; +p)
(i=1,2,3), we have that

X1 +x+x3=0

This follows because x* = (ax + ) has no term of second degree.

We have proved that ¢ is a group isomorphism between C,,,(K) and K*.

. Suppose C of twisted nodal type: there are no solutions in K of #* +at + b = 0, but
there are two distinct solution sy, s, in some quadratic extension of K.

Define L := K(s1, s2) = K(s1), the quadratic extension of K that is also the splitting field
of our polynomial. Over L our cubic curve is of nodal type, hence we can use the point
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1., to get an isomorphism ¢ : C,,(L) = L*. This implies that Cs,(K) = (Cs(K)) € L*.
We will now see that
P(Csm(K)) = {I € L™ : Nyyx(l) = 1}

One side of the inclusion is easy:

y—slx) Y —sx (y—slx) Y—S1X Y —SoX
-a f j—
Y — S2X2 Y — S2Xp

= = =1
Y — S2X7 Y —SXo Y — SXq

Nk (W([x:y:z]) = NL/K(
where o is the K-automorphism that exchanges s; and s.
Viceversa, notice that the inverse of the map ¢ is the map
Yl L — Cyu(L)
u +— [(s1—s2)*u(l —u) : (51— s2)*u(s1 — spue) = (1 = u)’]

Ifu=1,then ¢1(1) =[0:1:0]. If not, we can write

U S —Su

01
1-9)2 1-u

(s1— 52)2

u
() = [ (51 - Sz)Zm
Take then u an element of L* of norm 1, precisely u = a + bs; € L* = K(s1)* is such
that Ny x(u) = u - o(u) = 1. First, observe that (s; — s,)*> = b* — 4c € K. Secondly, we

have
u u u 1

- = = €
T-u? 1-2u+u*> uo(u)—-2u+u> ou)+u-2
because u + o(u) = Try k(1) € K. Finally,

K

s1—5u (st —su)(1—o(u) s1—su—so(u)+suo(u)

1-u  (A-wd-ou) N(1 - u)
_ syt 8 —(sou) — (o(sou) — —b —Tr(su)
- N( - u) N1 -u

Hence ¢ !(u) € Cyu(K) for u € L* of norm 1, and we have proved that:

Con(K) = {l € L* : N jg(l) = 1} < L*

. Suppose C of twisted cuspidal type: the characteristic of K has tobe 2, our polynomial
has to be  + b = 0 and is irreducible over K. It has a unique solution s in some
quadratic extension of K. Precisely s ¢ K is such that s* = b.

Define then L := K(s).

Over L our cubic curve is of cuspidal type: we can then use the point 2., to get an
isomorphism ¢ : C,,,(L) = L. This implies that C,,,(K) = ¢(C,(K)) € L*. We will
now see that

@(Con(K)) = {l =a+psel:p=a+ba?)
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One side of the inclusion is easy: consider [x : y : z] € C;,,(K); we have

(Le:y: 2] = x _x(y+sx)  xy N X2
Prr-y= Cy+sx y24bx® Y2+ ba? Sy2+bx2
We can define a = 77 and f = yzi‘r—zxz If we write y = %, we have that
i = 1+5y and we get
a=y(l+sy) and p=77
We obtain

a2+ﬁ+bﬁ2:y2+by4+y2+by4:0
what we want.

For the converse, it is easy to check that the inverse of ¢ is the following map:

Lt — Cgu(L)
u +— [u:1l+su:u?

Suppose u = a + B, with @, € K, and a? + bp* = (a + sB)* = B. Then
e w)=p (a+sp)=[a+sB:1+s(a+sp): (a+sp)’]=

~a+sp+s(a+sp)

(a+sp)(a+sp)

o

p

C(a+ sﬁ)2 =[1:=:p] € Csu(K)

as wanted.

0.3 Singular cubic curve with the singular point not defined over K
This case can happen only if the ground field K is of characteristic 2 or 3 (furthermore this
tield at least has not to be perfect, nor finite).

0.3.1 Case - characteristic 2, singular point not defined over K

Suppose now that our field K has characteristic 2. From the Weierstrass model
ZY* + XYz + a3yz’ = X0 + apxX’z + axz* + a2’

we get the partial derivatives (X?* + a1yz + asz?, z(a1x + a3z), Y* + a1xy + ax* + agz?). It is
easy to show that the only possibility to have a singular point not defined over K is that

51120320
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We can make the substitution x = x + a4z, in order to get the following equation for
our singular cubic:
Y’z = X7 + byxz? + bz’

with b4 = a% + drdy and b6 = anay + dg.
The singular point is now [y, 6, 1], with y? = by, 6* = bs, and y and 6 not both in K.
In all the cases, over L’ := K(y, 6), we can change the variables moving the singular
pointin [0 : 0 : 1]. Precisely we send x — x + yz and y = y + 0z, obtaining the equation
Clizy? =27 +yx’z

Now the tangent complex at the singular pointis 0 = y? +yx2 = (y + sx)*, for an s such
that s> = . This s could be in K or in K(6), for example. But, if y ¢ K, then s ¢ K(y): indeed
if s = a+ yb € K(y) for some 4,b € K, then, taking the square y = 4 + byb* € K. In exactly
the same way it’s clear also that if y ¢ K then s ¢ K(9).

We will now state the main result of this section.

Theorem 2. Assuming what done above, we can define L := K(s, 6). We have that

1. ify,6 ¢ Kand 6 ¢ K(y), then
Can(K) = {(a,b) € K : 0" = b+ byb® + b2D"}
2. ify,0 ¢ Kand 6 € K(y), i.e. 6 = a + yp for some known a, p € K, then
Con(K) = {(a,0) € K2 : 0" = b+ byb* + b3p*b")

3. ify ¢ K, 6 €K, then
Con(K) = {(@,0) € K 1 a* = b + by}

4. ify €K, 6 ¢ Kand s ¢ K(0), then
Con(K) = {(a,0) € K2 : 0 = b+ y1? + beb'
5. ifyeK, 6¢Kands ¢ K, but s € K(6), i.e. s =« + o for some known a, € K, then
Con(K) = {(a,b) € K2 : 4% = b + be?b? + bib*

6. ify €K, 6 ¢ Kands € K, then

Can(K) = {(a,b) € K : 0 = b+ beb*

10



Proof. We start now in all generality, with y, 6 not both in K. Over L = K(s, 0), we have,
using the notations as before,

¢ Con(L) - Con(L) — L*
[x:y:z] — [x+yz:y+06z:z2]
[x:y:z] — yfsx

The composition gives, for [x : vy : z] € C,,(L),

X +7yz (x +y2)(y + 0z + sx + $°2)
Bllx:y:2]) = R o ML
Yy+06z+sx+sz Y? + bez? + yx? + ybyz
_z2x+yz)(y+0z+sx+5°z)  z(x+yz)(y+0z+sx+5°2)
©x(x2 + byz?) + z2(yx? + ybyz?) (x2 + byz?)(x + y2)
+0z+sx+g° 2 2
z(y + 0z + sx sz): 2 z S S
X2 + byz? X2 + bez? X2+ bez?  x2 + byz? X2 + bgz?
We define
LV 2 I 2z
T2 402 T X2+ bez? T xX2+bgz2 T 2+ b2

If [x : y : z] € Cqu(K), these elements are in K.

Define furthermore .

X+yz

[ =

Now +yl =

b=d=F and c=I1+yl)

Furthermore using the equation of the cubic curve y?z + x° * byxz* + bez® = 0, we can

write (x+)/z)21 + (1 +71)° + ba(1 + YD) + bl® = 0. This implies = +yz) —L <1 =1+ vyl + bgl® and so
iz =~ + 5+ 0l. Finally we have

Yy
xX+yz

a=1 = VI+sl+ 0P

In the following, we will analyze all the cases.

1. Suppose 7,6 ¢ K and 6 ¢ K(y). We know furthermore that s ¢ K(y, 6). Then we can
write each element u of L = K(s, ) as

u= k1 + k0 + kgS + k4)/ + k5S3 + k668 + k75)/ + k8553

for some uniquely determined k; € K,i =1, ..., 8.
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Before, we have shown that, for [x : y : z] € C,,(K),

qb([x:y:z]):a+bé+cs+als3

witha= Vi+sl+ 62, b=d=1c=1+yP

From this, we have a® = [ + yI*> + bgl* = ¢ + bgb?, and so
c = a® + bgb?
We can then define the following map:

L* — K2
u= k1 + k;_(S + k3S + k4')/ + k553 + k655 + k7(3'}/ + kg(SS3 — (k1,k2)

If we restrict the domain to ¢(Cs,(K)), the map has image in {(a, b) € K?:a* = b+ byb* + béb‘l}.
Indeed, for a + bd + cs + ds® € P(Cs,(K)) as before, we have that

at = (V4 sl +68) = P byl + 12 = b+ byb? + 020

Using the relations shown above, we can define the inverse map in this way:

{@b) e K2 :a* =b+bt? + B2b*} — P(Con(K)
(a,b) > a+bd + (a® + bgb?)s + bs®

It is clear from before, that between this two sets, the two maps are one the inverse
of the other (once we know the surjectivity). It’s very easy to show also that they

are groups isomorphisms, if we give to {(a, b) € K? :a* = b+ byb? + bgb“} the usual
sum induced by K*. We only need to know that the image of this map lies really
in ¢(Cy(K)), in order to conclude that Cg,(K) = {(a, b) € K? :a* = b+ byb? + bgb‘l} as
groups.
Recall that
qb_l LY — Co.(L) — Csm(L)
u +— [u:l+su:u®] — [u+yu®:1+su+ou:u’]

-1 : -1 iyt s +out
Ifu=0,¢"(u)=[0:1:0]. If not we can write ¢ (u)=[ : :1].

ut ut

Suppose 4,b € K such that a* = b + b,b* + b2b*, and take u = a + b6 + (a* + bb?)s + bs°.
Then u? = a* + bgb* + yb and u* = b. Then

. |a®+ e a
QDl(M)—[TEl]

that belongs to C,,,(K), what we wanted.
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2. Supposey,6 ¢ Kand 6 = a+yp € K(y), for some known a, § € K. Then we can write
each element u of L = K(s,0) = K(s) as

u= k1 + sz + kg')/ + k483

for some uniquely determined k; € K, i =1, ..., 4.
Before, we have shown that, for [x : v : z] € C,,(K),

O([x:y:z])=a+Dbd+cs+ds’

witha = Vi+sl+ 6% b=d=12,c=1+yLE Now
O([x:y:z])=a+bla+yp)+cs+ds® = (a+ab)+cs+ by +ds®
We then define
@ =a+ab= VI+sl+6P +al* = \/z+sl+(‘8y)lz

and

vV =pb=pI=pd
We have that a’? = [ + yI? + B?bsl* = ¢ + B*bsd?, hence
¢ =a”? + B*byd?
Then we can define the following map:

L* —  K?
u= kl + sz + k37/ + k453 — (kl,k4)

If we restrict the domain to ¢(Cy;,(K)), the map has image in {(a, d)eK?:a*=d+byd® + biﬁ‘*d‘*}.
Indeed, for u = a’ + cs + b’y + ds° € ¢p(Csu(K)) as before, we have that
4
at = (Vi+sl+pyP) =P +byl* + BB = d + byd® + D'’
(observe also that b78* = bZ + a*).
Using the relations shown above, we can define the inverse map in this way:
{@,d)e K :a* =d+bid + BBdY) — (Can(K))
(@,d) — ' + (0% + BPbyd?)s + Bdy + ds®

It is clear from before, that between this two sets, the two maps are one the inverse of
the other (once we know that the map is surjective). It’s very easy to show also that

they are two groups isomorphisms if we give to {(a, b) € K?:a* = b+ byb* + biﬁ“b‘*} the
usual sum induced by K*. We only need to see that the image of this map lies really
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in ¢(Csn(K)), in order to conclude that Cs,(K) = {(a, b) € K*:a* = b+ byb* + biﬁ4b4} as
groups.

Recall that
(p‘lz Lt — Cgu(L)

u +— [u+yud:1+su+6u’:u]

If u =0, then ¢! () = [0: 1: 0]. If not we can write ¢~} (u) = [uz+w4 kst 1].

ut ut

Supposea, b € Ksuch thata* = b+byb*+b3p*b*, and take u = a+(a®+p*bsb*)s+pby +bs>.
Then u? = a* + B*byb* + by and u* = b. Then

2 Zb bz
Qb_l(u): : +[Z - :a+bab:1]

that belongs to Cs,,(K), what we wanted.

. Suppose y € K, but 6 € K. We know also that then s ¢ K(y).

In the previous point 2), we have never really used the fact that 6 ¢ K, equivalently
we have never supposed that § # 0. Hence, in this case, 6 = a (so § = 0), and so

Can(K) = {(a,b) € K 1 a* = b+ by}

. Suppose y € K, 6 ¢ Kand s ¢ K(6). Then we can write each element u of L = K(s, 0)
as
u =ky + ko + kzs + kys0

for some uniquely determined k; € K, i =1, ..., 4.

Before, we have shown that, for [x : v : z] € C,,(K),

O([x:y:z]) =a+bd+cs +ds

witha = VI+sl+06%,b=d =%, c = |+ y. Observe that, since y € K then € K. Now
O([x:y:z])=a+bd+ (c+yd)s

We define then
=ct+yd=1+yP+yP =1

Furthermore we have that
?=P=b

So we can define the following map:

L* — K
u= k1 + kzé + kgs + k465 — (k1,k3)

14



If we restrict the domain to ¢(Cs,(K)), the map has image in {(a, )eK*:a?>=c" +yc?+ béc"*}.
Indeed, for u = a + > + 6 + ¢'s € $(Csn(K)) as before, we have that

2
a? = (Vi+sl+0P) =1+yP+bel* = '+ yc + bec'
Using the relations shown above, we can define the inverse map in this way:

{(a, )eK*:a?> =c +yc?+ b6c’4} —  (Csn(K))
(a,c’) — a+c?5+c's

It is clear from before, that between this two sets, the two maps are one the inverse
of the other (once we know that the map is surjective). It’s very easy to show also
that they are two groups isomorphisms if we give to {(a, b)eK*:a>=b+yb* + b6b4}
the usual sum induced by K. We only need to see that the image of this map lies
really in ¢(Cs,,,(K)) in order to conclude that Cg,, (K) = {(a, b)e K?:a> =b+yb*+ b6b4}
as groups.

Recall that
qi)_l : LY — Cgu(L)
u +— [u+yud:1+su+ou’:u’)

-1 : -1 Wyt s vut
If u=0,then ¢~ (u) = [0:1:0]. If not we can write ¢~ (1) = : e 1.

ut u

Suppose a,b € K such that a®> = b + yb* + bgb*, take u = a + b*5 + bs. Then u? = b and

u* = b%. Then ; "
+
o) = |[— 1 = -1]

that belongs to Cs,,(K), what we wanted.

22

. Suppose y € K, 6 ¢ Kand s ¢ K, buts = a + 6 € K(6), for some a, € K known.
Then we can write each element u of L = K(s, ) = K(0) as

u:k1+k26

for some uniquely determined k;, k;, € K.

Before, we have shown that for [x : y : z] € Cs,(K),
O([x:y:z]) =a+bd+cs +ds
witha = Vi+sl+6%,b=d =12, c = [+ Observe that, since y € K then € K. Now
O([x:y:z])=a+bd+ (c+yd)a+pd) =a+a(c+yd)+ (b+p(c+ yd))od

We define then
Vi=b+Bc+yd)=b+pl=1+pl
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and
@ =a+alc+yd)=a+al= Vi+sl+6P+al = Vi+ 6 +pl) = Vi+ob
Hence we have a’? = | + bgb’? and so
I =a” + beb™
Then we can define the following map:
LY — K?
U=k +kd (ki k* + bek?)

If we restrict the domain to ¢(Cs,(K)), the map has image in {(a’, ) e K?:a? =1+ b + b6l4}.
Indeed, for u =a’ + b'6 € ¢( Sm(K ) as before, we have that

= [+ bgb’ = [ + bef** + bel*
Using the relations shown above, we can define the inverse map in this way:

(@) e K2 :a? =1+ bfPP +bsl} > G(Con(K))
@,l) - a + B+ 7)o

It is clear from before, that between this two sets, the two maps are one the inverse of
the other (once we know that the map is surjective). It’s very easy to show also that
they are two groups isomorphisms if we give to {(a, b) € K?:a? = b+ bef°b* + b6b4}
the usual sum induced by K. We only need to see that the image of this map lies really
in ¢(Cy(K)) in order to conclude that Cg,,(K) = {(a b) € K?: a? = b + bef*b* + b6b4} as
groups.

Recall that

o1 LT — Ceu(L)
u +— [u+yud:1+su+06u’:u]

u

If u =0, then ' () = [0: 1: 0]. If not we can write ¢~ (u) = [u T sl out 1].

Suppose a,b € K such that a> = b + bg*b* + bgb*, and take u = a + (Bb + b*)6. Then
u?> = band u* = b%. Then

B b+yb® a+ab
oM (u) = FaaE 1]

that belongs to C,,,(K), what we wanted.

. Supposey € K, 6 ¢ Kand s € K.

In the previous point, we have never really used the fact that s ¢ K, equivalently we
have never supposed that g # 0. Hence, in this case, s = a (so § = 0), and so

Can(K) = {(a,b) € K : a* = b + beb"
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0.3.2 Case - characteristic 3, singular point not defined over K

Suppose now that our field K has characteristic 3. From our Weierstrass model zy* +a;xyz +
asyz® = xX° + ax’z + ayxz* + az°, we can change the variables with y — 1(y — a1x — as2),
obtaining the equation

Y= X3 + byx?z + byxz? + beZ®
with bz =a, + El%, b4 =a4 —mdas, b(, =dae + a%.

The partial derivatives are (z(—=byx + bsz); yz; —y* + x(byx — bsz)), and it is not difficult
to see that the only case for which the singular point is not defined over K, can happen
when

bz = b4 = 0
We get then the equation
¥’z = x° + bz’
Hence we have the singular point in [y : 0 : 1], where y ¢ K is such that y® = —b;.
Theorem 3. With the assumptions done above, define L := K(y). We have that

Com(K) = {a+by eL:a®= b+b6b3}

Proof. Over L = K(y), we can move the singular point to the origin with the change the
variables x — x — yz, getting the curve in the new variables
ClryPz=x
Hence we have
¢ Cul) — OO — LF

[x:y:z] +— [x—yz:y:z]
[x:y:z] —

=R

The composition gives, for [x : y : z] € Cyy(L),

dlxiy:z) =L =2 )2

y y y
Now, if [x : y : z] € Cs(K), then from the equation of the cubic we get

XS z 2 23
(-3 -
Yy vy Yy

It follows that ¢p([x: y : z]) € {a+ by € L: a® + bgb® + b = 0}.
For the converse, we take u = a + yb € L such that a®> +bgb® +b =0, equivalently
(a + yb)® = —b. Now

o1 LY — Ceu(L)
u +— [u+yu’:1:u
Inourcase, [u+yu?:1:u]=[a+yb+y(-b):1:-b]l=[a:1:-b] € Cyy(K). Hence we
have proved the other inclusion and we have finished. m|
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