
Galois representations attached to elliptic curves
without complex multiplication

1 Introduction

Let K be a number field and K̄ an algebraic closure of K. For an elliptic curve
E defined over K, denote by En the kernel of the multiplication by n map, that
is, the set of elements x ∈ E(K̄) such that nx = 0. This is known to be a free
Z/nZ-module of rank 2. If we let G = Gal(K̄/K) denote the absolute Galois group
of K, then G acts on En and this gives a homomorphism

ϕn : G −→ Aut(En) ' GL2(Z/nZ).

Taking inverse limit we see that there is a continuous action of G on

Aut(E∞) = lim
←

Aut(En)

where E∞ is the torsion subgroup of E(K̄). We denote the corresponding homo-
morphism by

ϕ∞ : G −→ Aut(E∞) ' GL2(Ẑ) =
∏

GL2(Z`)

where the product is taken over all primes `. It will also be useful to consider the
`-primary component of E∞, which we shall denote by E`∞ . It is the subgroup of
elements of E∞ whose order is a power of `. We denote by ϕ`∞ : G → Aut(E`∞)
the corresponding homomorphism given by the action of G; it is the projection onto
the `-th factor of ϕ∞.

In what follows we will be concerned with the question of determining the image
of ϕ∞ in Aut(E∞) in the case where E does not have complex multiplication over K̄.
This is a highly non trivial question, however considerable progress has been made
towards answering it. The most important result in this direction is the following
theorem of Serre (see [3]), which says that ϕ∞(G) is “as big as possible”.

Theorem 1.1 (Serre). Let E be an elliptic curve over a number field K such that E
does not have complex multiplication over K̄. Then the image of the homomorphism
ϕ∞ : Gal(K̄/K)→ Aut(E∞) is an open subgroup of Aut(E∞).

The talk will consist primarily of the following parts. First we will briefly say
a few words on the proof of Serre’s “open image” theorem, and why this does not
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in principle give an easy way of determining ϕ∞(G) explicitly for each E without
complex multiplication. The proof consists of two fundamental parts, as given by
Serre in [2] and [3]. Second and mainly, we will see what can be said about computing
the image of Galois explicitly, in which cases it is possible to do so, and where we
can run into difficulties.

2 Serre’s open image theorem

We keep the same notation as in the Introduction. As we mentioned there, the
proof of Serre’s theorem consists of two parts. Indeed, the assertion that ϕ∞(G) is
an open subgroup of Aut(E∞) is equivalent to the following two assertions holding
simultaneously:

(i) For all primes `, we have that ϕ`∞(G) is an open subgroup of Aut(E`∞).

(ii) For almost all primes ` (all but a finite number), we have that

ϕ`∞(G) = Aut(E`∞)

holds.

Part (i) is proved in [2] and part (ii) is proved in [3].

It is now convenient to introduce the `-adic Tate module T`(E) = limE`n . Also
let V` = T` ⊗Z`

Q`. This is a two-dimensional Q`-vector space on which G also acts
continuously. Note that V`/T` = E`∞ hence we have a homomorphism Aut(T`) →
Aut(E`∞) which is in fact an isomorphism, so we may identify the action of G on T`

with the representation ϕ`∞ . The idea of Serre’s proof of (i) relies firstly on the fact
that the number of isomorphism classes of elliptic curves isogenous to E is finite.
Using this one can show that the representation ϕ`∞ is irreducible for all primes `.
Denote by g` the Lie algebra of the `-adic Lie group ϕ`∞(G). From the irreducibility
of ϕ`∞ one obtains that V` is an irreducible g`-module, hence by Schur’s lemma, the
commuting algebra g′` of g` in End(V`) is a field. This field is either Q` or a quadratic
extension of Q`. Now one discards the case of g′` being a quadratic extension of Q`

by showing that if this were the case, then V` would be locally algebraic. From this,
using the properties of locally algebraic representations, it would follow that there is
an `′ such that V`′ is isomorphic to a direct sum of one-dimensional subspaces stable
under G, which would contradict the irreducibility of V`′ . One concludes after this
that g` = End(V`), hence it follows that ϕ`∞(G) is open in Aut(T`).

For part (ii) one shows that the homomorphism ϕ` : G→ Aut(E`) is surjective
for almost all `. This is shown to imply that ϕ`∞(G) = Aut(E`∞) for almost all
`. This is done by showing that if there were an infinite set of primes L such that
ϕ`(G) 6= Aut(E`) for all ` ∈ L, then ϕ`∞ would be again locally algebraic, hence
reaching the same contradiction as in part (i).
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Of course we have excluded most of the details of these proofs, but it can already
be seen that for example in proving (i), that this gives essentially no information
on what the explicit `-adic image of Galois is, beyond the fact that it is an open
subgroup of Aut(T`). We will see in the next section methods which are somewhat
more explicit.

3 Computing the image of Galois

In this section we look at some techniques for computing the image of Galois for an
elliptic curve over the rationals. In what follows, we let Gm denote the projection
of ϕ∞(G) into the finite product ∏

`|m

Aut(E`∞).

Then we have Gm = Gal(Km/Q), where Km is the m-power torsion field, that is,
the infinite extension of Q obtained by adjoining the coordinates of all mn-torsion
points of E for all n. Also let G(m) denote the reduction of ϕ∞(G) mod m.

If we denote by
πm : Aut(E∞) −→ Aut(Em)

the reduction mod m map, then the statement that ϕ∞(G) is open in Aut(E∞) is
equivalent to saying that there exists an m such that ϕ∞(G) = π−1

m (G(m)). Such
an m has the property that:

(i) ϕ∞(G) = Gm ×
∏
`-m

Aut(E`∞).

(ii) Gm = π−1
m (G(m)), where here

πm :
∏
`|m

Aut(E`∞) −→ Aut(Em)

denotes the reduction map taken from the product only over primes dividing
m (sorry for the bad notation!).

When (i) holds we say m splits ϕ∞, and when (ii) holds we say m is stable. Note
that m splitting ϕ∞ depends only on the primes dividing ` and not on the powers
to which these primes occur, and m being stable depends on the primes dividing
m and their respective powers. Given a split and stable m, the complete Galois
representation of E is completely determined at a finite level, that is, it suffices to
know G(m) to obtain ϕ∞(G).

The problem of computing the image of Galois can be split up into several parts.
The first is to compute G` for each prime `, and then to compute the full image
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in GL2(Ẑ), which essentially translates into determining how the different `-power
torsion fields are related to one another.

So let us start with the computation of G` for each prime `, a problem whose
difficulty can vary depending on the type of elliptic curve we are considering. First
we see that the problem of computing G` is essentially equivalent to the problem of
computing G(`), that is, the mod ` image of Galois. Serre showed in [2] that for ` > 3
there is no proper closed subgroup of SL2(Z`) that maps surjectively onto SL2(Z/`Z)
and concluded that if G(`) = GL2(F`), then G` = GL2(Z`). Note that this fails for
` = 2 and ` = 3 (Elkies). Also, in many cases it is possible to bound the primes
for which the mod ` image may fail to be surjective. For example, in the case of
semi-stable elliptic curves it was shown by Serre in [3] that if ϕ`(G) 6= Aut(E`) then
either E or a curve isogenous to E must have a rational `-torsion point, something
which cannot happen for ` > 7 (although this was not yet known at the time Serre
published this result). This already gives us that the mod ` image is surjective for
` > 7 and hence that G` = GL2(Z`) for ` > 7. in the general case the bound is not
quite so nice, however it is conjectured that the mod ` image is always surjective
for ` > 37.

The next thing to consider is how to deal with the cases when the mod ` image
is not surjective, as well as the cases ` = 2, 3. Here the idea for determining G` will
be to recover it as the inverse image under the reduction map of G(`n) for some n,
that is, finding an n such that `n is stable and computing G(`n) for that n. For that
first we need to have a way of determining G(`n) for small n, something which is
already not clear how to do.

For now we fix a prime `. By successively adjoining to Q the `-power torsion of
E we obtain a tower of field extensions Q ⊂ Q(E`) ⊂ Q(E`2) ⊂ · · · ⊂ Q(E`∞). Let
us look more closely at the different Galois groups that arise in such a tower. Let
M = M2(Z`) denote the set of all 2× 2 matrices with coefficients in Z`, and let

Vn = I + `nM

= Ker π`n

where π`n is the reduction map mod `n. Also, let

Un = G` ∩ Vn = Gal(Q(E`∞)/Q(E`n)).

Note that we have G`/Un ' G(`n) = Gal(Q(E`n)/Q). We obtain in this manner a
filtration G` ⊃ U1 ⊃ U2 ⊃ · · · ⊃ {1}. Consider now the map

M/`M −→ Vn/Vn+1

X mod `M 7−→ I + `nX mod Vn+1

Since mod `n+1 we have (I + `nX)(I + `nY ) = I + `n(X + Y ) with X,Y ∈M2(F`),
this is seen to be a group isomorphism, and M/`M ' M2(F`) is a vector space
of dimension 4. From this we see that working in Vn/Vn+1 is essentially doing
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linear algebra over a vector space of dimension 4. If we look at the extension
Q(E`n+1)/Q(E`n), its Galois group Un/Un+1 is naturally a subspace of Vn/Vn+1,
hence it follows that [Q(E`n+1) : Q(E`n)] divides `4. We will refer to Un/Un+1 as
the vector space associated to Un. It has dimension at most 4 over F`.

We know that if G` = GL2(Z`) then G(`n) = GL2(Z/`nZ) for all n, hence the
associated vector space to Un has dimension 4 for all n. It could happen however
that G` ( GL2(Z`), for example if G(`) ( GL2(F`). In such cases the following
lemma allows us to reduce the problem of determining G` to a finite computation,
namely, that of determining the smallest n such that Un/Un+1 has dimension 4. It
is separated into two cases depending on whether ` is even or odd.

Lemma 3.1. (i) Let ` > 3. With the notation introduced above, suppose that for
some n > 1 the vector space associated to Un has dimension 4. Then we have
Un = Vn.

(ii) Let ` = 2. Suppose that for some n > 2 the vector space associated to Un has
dimension 4. Then Un = Vn. If the vector spaces associated to U1 and U2 each
have dimension 4, then we have U1 = V1.

Proof. This is shown in [1], §6.

Remark 3.2. From Un = Vn it follows that G` = π−1
` (G(`n)), in other words, `n

is stable. Of course we want to find the smallest n for which this holds in order to
reduce computations as much as possible.

Normally the way to prove that the vector space associated to Un has dimension
4 for some n is by means of Frobenius elements. Namely, we try to find 4 linearly
independent Frobenius elements. This works quite well in specific cases since if the
associated vector space does indeed have dimension 4, then Cebotarev’s density the-
orem implies that a machine search should find the 4 Frobenius elements we require.
However to show that these Frobenius elements are linearly independent requires
we find them in a matrix form that allow them to remain linearly independent even
after base change. This discussion raises the following question, could we find an
algorithm which finds an n for which `n is stable which is guaranteed to terminate
in a finite amount of time?

The preceding discussion makes the assumption that we have managed to com-
pute G(`n) for small n, so it seems our first problem should be trying to compute at
least the mod ` image of Galois. There is an algorithm by Andrew Sutherland which
computes the mod ` image of Galois up to isomorphism, however it seems it does
not do it up to conjugacy. When the mod ` image is surjective, it does compute it
unconditionally.

As we mentioned previously, the final stage of computing the image of Galois is
computing the relations between the different `-power torsion fields. Perhaps the
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most useful result in this direction is the following one we know discuss. First we
introduce some terminology. If X is a profinite group, and Y is a finite simple group,
we say that Y occurs in X if there exist closed subgroups X1, X2 of X such that X1

is normal in X2 and X2/X1 is isomorphic to Y . We say a prime occurs in X if it
divides the order of a group which occurs in X.

Theorem 3.3. Let m be divisible by 2, 3 and all primes of bad reduction of an
elliptic curve E/Q. Suppose also that:

(i) G(`) = GL2(F`) for all ` - m.

(ii) If ` - m then ` does not occur in Gm.

Then m splits ϕ∞.

Using this theorem, we may find an m which splits ϕ∞, therefore reducing the
computation of ϕ∞(G) to the computation of Gm. This amounts to computing the
intersection of the different `-power torsion fields for the primes ` dividing m. This
has been done in many specific instances but the methods applied have made use
of specific properties (ramification, etc.) of the `-power torsion fields (and hence of
the elliptic curves) in question. For this reason it is not clear whether this can yield
a general algorithm to perform such computations for any elliptic curve.
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