Symmetric products of varieties

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

14-02-2011 / Topics in Arithmetic Geometry

э

イロト イポト イヨト イヨト

Outline

About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?

Prerequisite Knowledge

- Abelian Varieties
- Jacobians

Recap of Previous talk Is the Symmetric Product Smooth?

Outline

About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?
- Prerequisite Knowledge
 - Abelian Varieties
 - Jacobians

- ∢ ⊒ →

3

Recap of Previous talk Is the Symmetric Product Smooth?

Quotients of varietes by finite groups

X is a variety, with ring of regular functions R. G is a group acting on X hence also on R.

- If X is affine then X/G corresponds to R^G
- Can also be done for projective varieties.
 - take an affine cover $(A_i)_{i \in I}$ of X such that G acts on the A_i .
 - X/G is covered by A_i/G
 - if X/G smooth curve: just take the subfield of invariant rational functions.

Definition (Symmetric Product)

The *d*-th symmetric product of *X* is $X^{(d)} := X^d / S_d$.

(日)

Recap of Previous talk Is the Symmetric Product Smooth?

Outline

About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?
- Prerequisite Knowledge
 - Abelian Varieties
 - Jacobians

- 신문 () 신문

Recap of Previous talk Is the Symmetric Product Smooth?

The awnser is NO for general symmetric products

Example: $X = \mathbb{C}^2$ is smooth, $X^{(2)}$ is not smooth. Proof:

- Write the action of S_2 on $X^2 = \mathbb{C}^4$ w.r.t. (1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)
- $\sigma(1,0,1,0) = (1,0,1,0)$
 - $\sigma(0, 1, 0, 1) = (0, 1, 0, 1)$
 - $\sigma(1,0,-1,0) = -(1,0,-1,0)$
 - $\sigma(0, 1, 0, -1) = -(0, 1, 0, 1)$
- σ acts like (*Id*, -1) where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^2 \times Cone$ hence singular.

...However it is true for smooth projective irreducible curves.

Recap of Previous talk Is the Symmetric Product Smooth?

The awnser is NO for general symmetric products

Example: $X = \mathbb{C}^2$ is smooth, $X^{(2)}$ is not smooth. Proof:

• Write the action of S_2 on $X^2 = \mathbb{C}^4$ w.r.t. (1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)

•
$$\sigma(1,0,1,0) = (1,0,1,0)$$

• $\sigma(0,1,0,1) = (0,1,0,1)$

•
$$\sigma(1,0,-1,0) = -(1,0,-1,0)$$

•
$$\sigma(0, 1, 0, -1) = -(0, 1, 0, 1)$$

- σ acts like (*Id*, -1) where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^2 \times Cone$ hence singular.

...However it is true for smooth projective irreducible curves.

Recap of Previous talk Is the Symmetric Product Smooth?

The awnser is NO for general symmetric products

Example: $X = \mathbb{C}^2$ is smooth, $X^{(2)}$ is not smooth. Proof:

• Write the action of S_2 on $X^2 = \mathbb{C}^4$ w.r.t. (1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)

• •
$$\sigma(1,0,1,0) = (1,0,1,0)$$

•
$$\sigma(0, 1, 0, 1) = (0, 1, 0, 1)$$

•
$$\sigma(1,0,-1,0) = -(1,0,-1,0)$$

•
$$\sigma(0, 1, 0, -1) = -(0, 1, 0, 1)$$

- σ acts like (*Id*, -1) where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^2 \times Cone$ hence singular.

...However it is true for smooth projective irreducible curves.

Recap of Previous talk Is the Symmetric Product Smooth?

The awnser is NO for general symmetric products

Example: $X = \mathbb{C}^2$ is smooth, $X^{(2)}$ is not smooth. Proof:

• Write the action of S_2 on $X^2 = \mathbb{C}^4$ w.r.t. (1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)

• •
$$\sigma(1,0,1,0) = (1,0,1,0)$$

•
$$\sigma(0, 1, 0, 1) = (0, 1, 0, 1)$$

•
$$\sigma(1,0,-1,0) = -(1,0,-1,0)$$

•
$$\sigma(0, 1, 0, -1) = -(0, 1, 0, 1)$$

- σ acts like (*Id*, -1) where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^2 \times Cone$ hence singular.

...However it is true for smooth projective irreducible curves.

Recap of Previous talk Is the Symmetric Product Smooth?

The awnser is NO for general symmetric products

Example: $X = \mathbb{C}^2$ is smooth, $X^{(2)}$ is not smooth. Proof:

• Write the action of S_2 on $X^2 = \mathbb{C}^4$ w.r.t. (1,0,1,0), (0,1,0,1), (1,0,-1,0), (0,1,0,-1)

• •
$$\sigma(1,0,1,0) = (1,0,1,0)$$

•
$$\sigma(0, 1, 0, 1) = (0, 1, 0, 1)$$

•
$$\sigma(1,0,-1,0) = -(1,0,-1,0)$$

•
$$\sigma(0, 1, 0, -1) = -(0, 1, 0, 1)$$

- σ acts like (*Id*, -1) where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^2 \times Cone$ hence singular.

...However it is true for smooth projective irreducible curves.

Abelian Varieties Jacobians

Outline

- Recap of Previous talk
- Is the Symmetric Product Smooth?
- Prerequisite Knowledge
 Abelian Varieties

 - Jacobians

- ∢ ⊒ →

-≣⇒

Abelian Varieties Jacobians

Abelian Varieties A generalization of elliptic curves

Definition (Abelian Variety)

It is a connected and projective variety X with a group law such that:

•
$$+: X \times X \to X$$

•
$$-: X \to X$$

Are given by morphims of varieties, i.e., locally by regular functions.

< < >> < </>

Abelian Varieties Jacobians

Properties of Abelian Varieties

Let A be an abelian variety defined over a number field K.

- Mordell-Weil holds: A(K) is finitely generated.
- $A(\mathbb{C}) \cong \mathbb{C}^n / \Lambda$ for some lattice $\Lambda \subset \mathbb{C}^n$
- Not all Cⁿ/∧ are A.V. since not all Cⁿ/∧ embed into projective space.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abelian Varieties Jacobians

Outline

- Recap of Previous talk
- Is the Symmetric Product Smooth?

Prerequisite Knowledge

- Abelian Varieties
- Jacobians

→ E → < E →</p>

Abelian Varieties Jacobians

Divisors Formal sums of points

Let X be a smooth projective curve over k, with function field K.

Definition (Weil Divisors)

They are of the form $\sum_{p \in X} a_p p$ with $a_p \in \mathbb{Z}$ and for almost all $p \in X$: $a_p = 0$.

- Set of all divisors: div $X := \bigoplus_{p \in X} \mathbb{Z}$
- Degree of a divisor: deg ∑_{p∈X} a_pp := ∑_{p∈X} a_p deg p, with deg p the degree of the residue field at p over k
- $\sum_{p \in X} a_p p$ is effective if $\forall p \in X : a_p \ge 0$

Maarten Derickx

Abelian Varieties Jacobians

Principal Divisor

Definition (Divisor of a Function)

For $f \in K^{\times}$: div $f := \sum_{p \in X} v_p(f)p$. Where v_p is the valuation at p.

Fact: deg div f = 0

э

イロト イポト イヨト イヨト

Abelian Varieties Jacobians

Jacobians of Curves The degree zero divisors in the Picard Group.

Let X be a smooth projective curve, with function field K.

Definition (Picard Group of a Curve)

•
$$K^{\times} \stackrel{\text{div}}{\to} \text{div} X \to \text{Pic}(X) \to 0$$

Definition (Jacobian Variety of a Curve)

J(X) = Pic⁰(X) i.e the classes of degree zero divisors

•
$$0 \to J(X) \to \operatorname{Pic}(X) \stackrel{\operatorname{deg}}{\to} \mathbb{Z}$$

(日)

Symmetric Products

Divisors and Symmetric Products Effective divisors correspond to points on symmetric products

Let $K \subseteq L$ be number fields and X/K a curve then: And let $\operatorname{div}^{d,+} X$ be set the effective divisors of degree d

$$\begin{array}{lll} \operatorname{div}^{d,+} X(\overline{K}) & \stackrel{1:1}{\longleftrightarrow} & X^{(d)}(\overline{K}) \\ p_1 + \ldots + p_d & \longleftrightarrow & [(p_1, \ldots, p_d)] \\ D \text{ is defined over } L & \Longleftrightarrow & p \in X^{(d)}(L) \end{array}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Symmetric Products

Symmetric Products map to Jacobians

Every $D \in \operatorname{div} X$ with deg D = d defines a map.

$$\phi_{D}: \begin{array}{cc} X^{(d)} & \rightarrow J(X) \\ [(p_{1}, \dots, p_{d})] & \mapsto [p_{1}] + \dots + [p_{d}] - D \end{array}$$

э

イロト イポト イヨト イヨト

Let $\mathbb{Q} \stackrel{d}{\subseteq} L$ be a field extension. And X/\mathbb{Q} a curve.

- Instead of studying X(L) for all L of degree d study X^(d)(Q)
- Study $X^{(d)}(\mathbb{Q})$, in a point *p* by studying $\phi_p : X^{(d)} \to J(X)$

Outlook

- Application to torsion points on elliptic curves over L
- Find better bounds for S(5).

・ロト ・ 同ト ・ ヨト