Symmetric products of varieties

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

14-02-2011 / Topics in Arithmetic Geometry

Outline

(1) About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?
(2) Prerequisite Knowledge
- Abelian Varieties
- Jacobians
(3) Symmetric Products

Outline

(1) About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?
(2) Prerequisite Knowledge
- Abelian Varieties
- Jacobians
(3) Symmetric Products

Quotients of varietes by finite groups

X is a variety, with ring of regular functions $R . G$ is a group acting on X hence also on R.

- If X is affine then X / G corresponds to R^{G}
- Can also be done for projective varieties.
- take an affine cover $\left(A_{i}\right)_{i \in I}$ of X such that G acts on the A_{i}.
- X / G is covered by A_{i} / G
- if X / G smooth curve: just take the subfield of invariant rational functions.

Definition (Symmetric Product)

The d-th symmetric product of X is $X^{(d)}:=X^{d} / S_{d}$.

Outline

(1) About the Previous Talk

- Recap of Previous talk
- Is the Symmetric Product Smooth?
(2) Prerequisite Knowledge
- Abelian Varieties
- Jacobians
(3) Symmetric Products

The awnser is NO for general symmetric products

Example: $X=\mathbb{C}^{2}$ is smooth, $X^{(2)}$ is not smooth.
Proof:

- Write the action of S_{2} on $X^{2}=\mathbb{C}^{4}$ w.r.t.

$$
(1,0,1,0),(0,1,0,1),(1,0,-1,0),(0,1,0,-1)
$$

- σ acts like $(I d,-1)$ where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^{2} \times$ Cone hence singular.
...However it is true for smooth projective irreducible curves.

The awnser is NO for general symmetric products

Example: $X=\mathbb{C}^{2}$ is smooth, $X^{(2)}$ is not smooth.
Proof:

- Write the action of S_{2} on $X^{2}=\mathbb{C}^{4}$ w.r.t.

$$
(1,0,1,0),(0,1,0,1),(1,0,-1,0),(0,1,0,-1)
$$

- $\quad \sigma(1,0,1,0)=(1,0,1,0)$
- $\sigma(0,1,0,1)=(0,1,0,1)$
- $\sigma(1,0,-1,0)=-(1,0,-1,0)$
- $\sigma(0,1,0,-1)=-(0,1,0,1)$
- σ acts like $(I d,-1)$ where -1 is as in example 2 of last time.
- conclusion: $X(d) \cong \mathbb{C}^{2} \times$ Cone hence singular.
...However it is true for smooth projective irreducible curves.

The awnser is NO for general symmetric products

Example: $X=\mathbb{C}^{2}$ is smooth, $X^{(2)}$ is not smooth.
Proof:

- Write the action of S_{2} on $X^{2}=\mathbb{C}^{4}$ w.r.t.

$$
(1,0,1,0),(0,1,0,1),(1,0,-1,0),(0,1,0,-1)
$$

- $\quad \sigma(1,0,1,0)=(1,0,1,0)$
- $\sigma(0,1,0,1)=(0,1,0,1)$
- $\sigma(1,0,-1,0)=-(1,0,-1,0)$
- $\sigma(0,1,0,-1)=-(0,1,0,1)$
- σ acts like $(I d,-1)$ where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^{2} \times$ Cone hence singular.
...However it is true for smooth projective irreducible curves.

The awnser is NO for general symmetric products

Example: $X=\mathbb{C}^{2}$ is smooth, $X^{(2)}$ is not smooth.
Proof:

- Write the action of S_{2} on $X^{2}=\mathbb{C}^{4}$ w.r.t.

$$
(1,0,1,0),(0,1,0,1),(1,0,-1,0),(0,1,0,-1)
$$

- $\quad \sigma(1,0,1,0)=(1,0,1,0)$
- $\sigma(0,1,0,1)=(0,1,0,1)$
- $\sigma(1,0,-1,0)=-(1,0,-1,0)$
- $\sigma(0,1,0,-1)=-(0,1,0,1)$
- σ acts like $(I d,-1)$ where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^{2} \times$ Cone hence singular.
...However it is true for smooth projective irreducible curves.

The awnser is NO for general symmetric products

Example: $X=\mathbb{C}^{2}$ is smooth, $X^{(2)}$ is not smooth.
Proof:

- Write the action of S_{2} on $X^{2}=\mathbb{C}^{4}$ w.r.t.

$$
(1,0,1,0),(0,1,0,1),(1,0,-1,0),(0,1,0,-1)
$$

- $\quad \sigma(1,0,1,0)=(1,0,1,0)$
- $\sigma(0,1,0,1)=(0,1,0,1)$
- $\sigma(1,0,-1,0)=-(1,0,-1,0)$
- $\sigma(0,1,0,-1)=-(0,1,0,1)$
- σ acts like $(I d,-1)$ where -1 is as in example 2 of last time.
- conclusion: $X^{(d)} \cong \mathbb{C}^{2} \times$ Cone hence singular.
...However it is true for smooth projective irreducible curves.

Outline

(1) About the Previous Talk
 - Recap of Previous talk
 - Is the Symmetric Product Smooth?

(2) Prerequisite Knowledge

- Abelian Varieties
- Jacobians
(3) Symmetric Products

Abelian Varieties

A generalization of elliptic curves

Definition (Abelian Variety)

It is a connected and projective variety X with a group law such that:

$$
\begin{aligned}
& \bullet+: X \times X \rightarrow X \\
& \bullet-: X \rightarrow X
\end{aligned}
$$

Are given by morphims of varieties, i.e., locally by regular functions.

Properties of Abelian Varieties

Let A be an abelian variety defined over a number field K.

- Mordell-Weil holds: $A(K)$ is finitely generated.
- $A(\mathbb{C}) \cong \mathbb{C}^{n} / \Lambda$ for some lattice $\Lambda \subset \mathbb{C}^{n}$
- Not all \mathbb{C}^{n} / Λ are A.V. since not all \mathbb{C}^{n} / Λ embed into projective space.

Outline

(1) About the Previous Talk
 - Recap of Previous talk
 - Is the Symmetric Product Smooth?

(2) Prerequisite Knowledge

- Abelian Varieties
- Jacobians
(3) Symmetric Products

Divisors

Formal sums of points

Let X be a smooth projective curve over k, with function field K.

Definition (Weil Divisors)

They are of the form $\sum_{p \in X} a_{p} p$ with $a_{p} \in \mathbb{Z}$ and for almost all $p \in X: a_{p}=0$.

- Set of all divisors: $\operatorname{div} X:=\bigoplus_{p \in X} \mathbb{Z}$
- Degree of a divisor: $\operatorname{deg} \sum_{p \in X} a_{p} p:=\sum_{p \in X} a_{p} \operatorname{deg} p$, with $\operatorname{deg} p$ the degree of the residue field at p over k
- $\sum_{p \in X} a_{p} p$ is effective if $\forall p \in X: a_{p} \geq 0$

Principal Divisor

Definition (Divisor of a Function)

For $f \in K^{\times}: \operatorname{div} f:=\sum_{p \in X} v_{p}(f) p$. Where v_{p} is the valuation at p.

Fact: $\operatorname{deg} \operatorname{div} f=0$

Jacobians of Curves

The degree zero divisors in the Picard Group.

Let X be a smooth projective curve, with function field K.
Definition (Picard Group of a Curve)

- $\operatorname{Pic}(X):=$ coker div
- $K^{\times} \xrightarrow{\text { div }} \operatorname{div} X \rightarrow \operatorname{Pic}(X) \rightarrow 0$

Definition (Jacobian Variety of a Curve)

- $J(X)=\operatorname{Pic}^{0}(X)$ i.e the classes of degree zero divisors
- $0 \rightarrow J(X) \rightarrow \operatorname{Pic}(X) \xrightarrow{\text { deg }} \mathbb{Z}$

Divisors and Symmetric Products

Effective divisors correspond to points on symmetric products

Let $K \subseteq L$ be number fields and X / K a curve then: And let $\operatorname{div}^{d,+} X$ be set the effective divisors of degree d

$$
\begin{array}{lll}
\operatorname{div}^{d,+} X(\bar{K}) & \stackrel{1: 1}{\longleftrightarrow} & X^{(d)}(\bar{K}) \\
p_{1}+\ldots+p_{d} & \longleftrightarrow & {\left[\left(p_{1}, \ldots, p_{d}\right)\right]} \\
D \text { is defined over } L & \Longleftrightarrow & p \in X^{(d)}(L)
\end{array}
$$

Symmetric Products map to Jacobians

Every $D \in \operatorname{div} X$ with $\operatorname{deg} D=d$ defines a map.

$$
\begin{array}{rll}
\phi_{D}: & X^{(d)} & \rightarrow J(X) \\
& {\left[\left(p_{1}, \ldots, p_{d}\right)\right]} & \mapsto\left[p_{1}\right]+\ldots+\left[p_{d}\right]-D
\end{array}
$$

Summary Where is all this good for

Let $\mathbb{Q} \stackrel{d}{\subseteq} L$ be a field extension. And X / \mathbb{Q} a curve.

- Instead of studying $X(L)$ for all L of degree d study $X^{(d)}(\mathbb{Q})$
- Study $X^{(d)}(\mathbb{Q})$, in a point p by studying $\phi_{p}: X^{(d)} \rightarrow J(X)$
- Outlook
- Application to torsion points on elliptic curves over L
- Find better bounds for $S(5)$.

