Order and Specialisation of Torsion points

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

Topics in Arithmetic Geometry 09-05-2011

Outline

Let (R, v, m, k) be a discrete valuation ring. Then we define:

$$v: M_n(R) \longrightarrow \mathbb{Z}, \qquad (a_{ij})_{i,j=0}^n \longmapsto \min_{i,j} v(a_{ij})$$

Let $a, b \in M_n(R)$ then

$$v(a) = \infty \Leftrightarrow a = 0$$

• $v(a+b) \ge \min(v(a), v(b))$ and equality if $v(a) \ne v(b)$

$$(ab) \geq v(a) + v(b)$$

Proof:

Trivial

$$((a+b)_{ij}) \geq \min(v(a_{ij}), v(b_{ij})) \geq \min(v(a), v(b))$$

■
$$v((ab)_{ij}) = v(\sum_k a_{ik}b_{kj}) \ge \min_k(v(a_{ik}b_{kj})) \ge min_k(v(a_{ik})) + \min_k(v(b_{kj})) \ge v(a) + v(b)$$

Lemma

Let (R, v, m, k) be a d.v.r. and $A \in GL_n(R)$ of prime order p. If either

• $p \neq \text{char} k$, or

• char R = 0, char k = q with q prime and v(q) < q - 1

Then $\overline{A} \in GL_n(k)$ also has order p.

Proof.

Assume $\overline{A} = 1$ and write A = 1 + B with $v(B) \ge 1$ then

$$0 = (1+B)^p - 1 = B^p + pB + pB^2C$$

 $B^p = p(-B - B^2C)$
 $pv(B) \le v(B^p) = v(p) + v(-B - B^2C) = v(p) + v(B)$

Case: char $k \neq p$ Now v(p) = 0 so $pv(B) \leq v(B)$ is a contradion.Case: char R = 0, char k = q, v(q) < q - 1Now $v(p) \geq p - 1 \geq 1$ hence p = q and we get a contradiction.

Corollary

Let (R, v, m, k) be a d.v.r. and $A \in GL_n(R)$ of finite order n. Then

- if char k = 0 then the order of A is n
- if char R = 0, char k = q and v(q) < q 1 then the order of A is n
- if char k = q then the order of A is n/q^l for some $l \in \mathbb{N}$

Example

Let (R, v, m, k) be a d.v.r. with char R = p and $t \in m$. Now consider the matrix

$$M = \begin{bmatrix} 0 & t & & 0 \\ & 0 & t & & \\ & \ddots & \ddots & \\ & & 0 & t \\ 0 & & & 0 \end{bmatrix}$$

in $\operatorname{GL}_{p}(R)$ then

$$(1+M)^p = 1 + M^p = 1$$

but $1 + M \equiv 1 \mod m$ this shows $p \neq \operatorname{char} k$ is really needed if $\operatorname{char} R \neq 0$.

Example

Consider $R = \mathbb{Z}_{(p)}[\zeta_p]$ and $GL_1(R) \cong R^*$, then ζ_p has as minimal polynomial $f(x) = \frac{x^p - 1}{x - 1}$ since $x^p - 1 = (x - 1)^p \in \mathbb{F}_p[x]$ we see that p is completely ramified, i.e. $p = (p, \zeta_p - 1)^{p-1}$ so v(p) = p - 1. Now f(x) = p and $p^2 \nmid p$ so R is nonsingular over p hence a d.v.r. Now $R/m = \mathbb{F}_p$ has only 1 as a pth root of unitiy so $\overline{\zeta_p} = 1$. This shows that the theorem cannot be generalized to v(q) = q - 1.

A scheme is a locally ringed space *S* for which locally at each $s \in S$ is isomorphic to Spec A_s for a A_s some ring. A morphism is just a morphism as locally ringed spaces.

Let *R* be a ring. A scheme over Spec *R* is a scheme together with a morphism $f_S : S \to \text{Spec } R$. A morphism is a morphism of schemes $g : S \to S'$ such that $f_S = f_{S'} \circ g$.

Example

- If A is an R-algebra then Spec A is a scheme over R.
- *P*^{*n*}(*R*)
- A lot of less well behaved things like affine line over *R* with a double point at the origin.

Let *R* be a ring, a group scheme over Spec *R* is a scheme *S* over Spec *R* together with a multiplication μ , identity *e* and inverse ⁻¹:

•
$$\mu: S \times_{\operatorname{Spec} R} S \to S$$

•
$$e: \operatorname{Spec} R \to S$$

•
$$^{-1}: S \rightarrow S$$

Which satisfy the group law's (for example $\mu \circ (Id \times \mu) = \mu \circ (\mu \times Id)$ is associativity).

Example

- The affine line over *R* together with addition induced by $R[x] \rightarrow R[x_1] \otimes_R R[x_2] \cong R[x_1, x_2]$ given by $x \rightarrow x_1 + x_2$.
- $GL_n(R) := Spec R[y, (x_{ij})_{i,j=1}^n]/(y det(x_{ij}) 1)$
- Elliptic curves in Weierstrass form where the coefficients lie in R.

Let G, S be schemes over Spec R. An S valued point of G is just an morphism of Spec R schemes $S \rightarrow G$.

Example

An Spec *R* valued point of $GL_n(R)$ is induced by a map $f: R[y, (x_{ij})_{i,j=1}^n]/(y \det(x_{ij}) - 1) \rightarrow R$ this just means sending all x_{ij} to a value in *R* such that $det(f(x_{ij}))$ is invertible and sending *y* to $det(f(x_{ij}))^{-1}$.

If *G* is a group scheme then all *S* we can define a group structure on $hom(S, G) \times hom(S, G) \rightarrow hom(S, G)$. (i.e. the set of all *S* valued points form a group).

Theorem

Let (R, v, k, m) be a d.v.r with field of fractions K and G a group scheme over Spec R. Let P be a Spec R valued point of prime order p. If either

- $p \neq \text{char} k$, or
- char R = 0, char k = q with q prime and v(q) < q 1

Then P_k also has order p.

sketch of proof.

Idea: Assume P_k has order 1. Reduce to the $GL_n(R)$ case. And get a contradiction.

Take an affine open neighbourhoud U = Spec(A) of the image of $e_k = P_k$. This will also contain all multiples of P. Let F be the scheme theoretic closure in U of all multiples of P_K . Now define $f : \coprod_{i=1}^n \text{Spec}(R) \to \text{Spec}(A/I) = F$ to be P^i on the i-th component. One can now show that the map $\coprod_{i=1}^n \text{Spec}(K) \to \coprod_{i=1}^n \text{Spec}(R) \to \text{Spec}(A/I)$ is equal to $\coprod_{i=1}^n \text{Spec}(K) \cong \text{Spec}((A/I) \otimes K) \to \text{Spec}(A/I)$. Hence $A/I \to R^n \to K^n$ is an injection and A/I is a free R module of rank n. Now translation by P maps F to itself by construction. Hence we get an an R-algebra morphism of A/I to itself. I.e. an element of $GL_p(R)$.

Example

Define the proj. cubic curve E/\mathbb{Z} by $zy^2 + xyz = x^3 + 4x^2z + z^3$, this induces an elliptic curve $E/\mathbb{Z}_{(q)}$ for $q \neq 5, 13$. P = (-2:1:8) is a point of order 2 in $E/\mathbb{Z}_{(q)}$. Now U = Spec(A) with $A = \mathbb{Z}_{(q)}[x, z]/(z + zx - x^3 - z^2x - z^3)$ is an affine open neigbourhood of P = (-2, 8) containing $(0, 0) = P^2$. Now

$$\phi:B=A/(x,z)(x+2,z-8)
ightarrow \mathbb{Q}^2, \hspace{1em} x\mapsto (0,-2), z\mapsto (0,8)$$

is an injection hence $B \cong \operatorname{im} \phi$ is free as a $Z_{(q)}$ module. The automorphism of $B \cong \operatorname{im} \phi$ induced by multiplication by P gives an element in $\operatorname{GL}_2 \mathbb{Z}_{(q)}$. To be explicit $\{(1, 1), (0, 2)\}$ is a $\mathbb{Z}_{(q)}$ basis of $\operatorname{im} \phi$ the automorphism $(x, y) \to (y, x)$ written to this basis is given by the matix

$$M = \left[\begin{array}{rrr} 1 & 0 \\ 2 & -1 \end{array} \right]$$

This matrix has order 2 indeed and $\bar{P} = 1 \Leftrightarrow q = 2 \Leftrightarrow \bar{M} = Id$