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The geometry of a finite group acting on a ring

1. Introduction

In these short notes we will discuss Proposition 9.1.1 from [1] in more detail.
The proposition is as follows:

Proposition 1.1. Let X = Spec(A) be an affine scheme with an action by a finite
group G. Then the morphism π : X → Y := Spec(AG) is a quotient in the category
of locally ringed spaces.

Assume in the rest of these notes that A is a ring and that a finite group G acts
on this ring.

2. Integral extensions

We know that A is integral over AG (indeed, a ∈ A is a zero of
∏
g∈G(X−g(a))).

Hence we study such an integral extensions of rings B ⊆ A first. The following
lemma gives us a construction of quotients in the category of locally ringed spaces.

Lemma 2.1. Let B ⊆ A be integral and assume that B is a domain. Then B is a
field if and only if A is a field.

Proof. Suppose that B is a field. Let a ∈ A with a relation an+bn−1a
n−1+. . .+b0 =

0 where bi ∈ B of minimal degree. As B is a domain, it follows that b0 6= 0 and
a−1 = −a

n−1+bn−1a
n−2+b1

b0
.

Suppose that A is a field. Let b ∈ B. Then b−1 ∈ A and suppose that b−n +
bn−1b

1−n + . . .+ b0 = 0 where bi ∈ B. Then b−1 = −bn−1 + . . .+ b0b
n−1 ∈ B. This

shows that B is a field. �

Corollary 2.2. Let ϕ : B → A be an integral morphism of rings. Then the induced
map ψ : Spec(A)→ Spec(B) is closed and if ϕ is injective, then ψ is surjective.

Proof. Let Z = Z(I) ⊆ Spec(A) be closed. Let J = ϕ−1(I). Notice that Z =
Spec(A/I). Replacing B by B/J and A by A/I we may assume that Z = Spec(A)
and ϕ is injective. Hence it is enough to show that Spec(A)→ Spec(B) is surjective.
Let p ∈ Spec(B). Consider the inclusion Bp ⊆ Ap. Now take a maximal ideal of
Ap, say m. Then we get an integral extension Bp/ (m ∩Bp) → Ap/m. As Ap/m
is maximal, it follow from Lemma 2.1 that m ∩ Bp is maximal as well, that is,
m ∩Bp = pBp. This finishes the proof. �

For the surjectivity, it is needed that the map ϕ is injective. Otherwise take a
finite non-local ring and divide out by one of its maximal ideals to find a counter
example.
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3. Group actions on locally ringed spaces

Let G be a finite group and let A be a ring. A group action of G on A is a
morphism from G to Aut(A). Denote the automorphism corresponding to g ∈ G
just by g. We now define AG = {a ∈ A : ∀g ∈ G : g(a) = a}, the G-invariants of A.
Let X := Spec(A) and let Y := Spec(AG). Then G acts on the right on X, namely
for p ∈ X we set pr(g) := g−1(p). It induces a right G-action on X. Now consider
the morphism π : X → Y (corresponding to the inclusion AG → A, it maps p ∈ X
to p∩AG ∈ Y ). We have π ◦ r(g) = π, our map is invariant under G. We have the
following lemma.

Lemma 3.1. The map π : X → Y is the quotient for the action of G in the
category of affine schemes: every G-invariant morphism f : X → Z with Z affine
factors uniquely through π.

Proof. First use the anti-equivalence of categories between the category of affine
schemes and rings. The result now follows from the obvious statement: any ring
morphism ϕ : R → A such that for all g ∈ G we have gϕ = ϕ factors uniquely
through AG. �

Actually, as we will show below, π : X → Y is the quotient in the category of
locally ringed spaces. We first have the following lemma.

Lemma 3.2. Let X ′ be a locally ringed space and let a finite group G′ act on it
(on the right). Let Y ′ = X ′/G′ as sets, let π : X → Y be the quotient map. For
U ⊆ Y define OY ′(U) := OX′(π−1U)G

′
. Then π is the quotient for the G′-action

in the category of locally ringed spaces.

Proof. First we will show that G acts naturally on OX′(π−1U) for U ⊆ Y open.
Any g ∈ G′ induces an automorphism X ′ → X ′ which for any V ⊂ X ′ open
induces a map OX′(V ) → OX′(g−1(V )). Now notice that a set of the form π−1U
is G′-invariant, that is, we have the induced action as claimed.

One can easily show that (Y ′,OY ′) is a ringed space and that it is the quotient
in the category of ringed spaces (by construction we have the unique morphisms as
claimed).

We now claim that (Y ′,OY ′) is a locally ringed space. Let y′ ∈ Y ′ with preimage
x′ ∈ X. Then we have a natural map OY ′,y′ → OX′,x′ . This induces a natural map
ψ : OY ′,y′ → k(y′). We claim that its kernel, which is a prime ideal, is a maximal
ideal. Suppose that ψ(f) 6= 0. This means that this element has an inverse in the
stalk of x′. But this means that it has an inverse in the stalks at all points of G′x′.
But this means that we have an inverse in OY ′,y′ (here we use that inverses are
unique)

Now one can check that the universal property of ringed spaces gives a morphism
of locally ringed spaces, which explicitly follows from our construction. �

4. The proof

Proposition 4.1. Let X = Spec(A) be an affine scheme with an action by a finite
group G. Then the morphism π : X → Y := Spec(AG) is a quotient in the category
of locally ringed spaces.

Proof. We have already noticed that B = AG ⊆ A is integral. We will first show
that π : X → Y is the set-theoretical quotient map, that is, the map induces a
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bijection between the G-orbits of X and Y . By Corollary 2.2 we know that π
is surjective. The fibers of π are G-stable, so it remains to show that each fiber
consists of exactly one G-orbit. Let y = p ∈ Y be a prime of B. We have an
inclusion Bp → Ap and G acts here naturally. We want to look only at the primes
lying above p, hence we consider Ap/pAp which is integral over Bp/pBp = k(y) (we
have already shown that this is a nonzero ring). It also follows from Lemma 2.1
that any prime ideal lying above pBp in Ap is maximal.

We will now show that (Ap)G = Bp. First let b ∈ B and consider the natural
inclusion map Bb → Ab (by exactness of localization), which factors through a
map Bb → (Ab)

G. We need to show that the map is surjective. Let a
bm ∈ (Ab)

G.
Then for g ∈ G we have ga

bm = a
bm which means that there exists an n such that

bn(ga − a) = 0, and as G is finite, we may assume this holds for all g. But then
bna ∈ AG (notice that b is fixed under G) and hence bna

bn+m 7→ a
bm . We then have

Bp = lim
→

b∈B\p

Bb = lim
→

b∈B\p

(Ab)
G =

 lim
→

b∈B\p

Ab

G

= (Ap)G

Suppose that we have two distinct orbits x1G and x2G of primes lying over
p. By the Chinese remainder theorem the map Ap →

∏
σ k(x1σ) ×

∏
σ k(x2σ) is

surjective. Pick an element f ∈ Ap which has image 1 in k(x1σ) and 0 in k(x2σ)
(for all σ ∈ G). Then f ′ =

∏
σ σ(f) has the same property and lies in Bp. But this

is impossible: 0 and 1 are different in Bp/pBp. Hence our map is the set theoretical
quotient map.

We will now show that Y has the quotient topology. First of all, the map π is
continuous. By Corollary 2.2 it follows that π is closed. This shows that Y has the
quotient topology.

Now we have to show that the morphism OY → (π∗OX)G is an isomorphism (it
exists by the universal property of the quotient). Since both are sheaves, it suffices
to verify that all D(b) with b ∈ B have the same section. On the left we have Bb.
On the right we have (Ab)

G. We have already seen that both are equal by the
natural map and hence we are done. �
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