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Groups acting on rings - a theorem of Tate

1. Introduction

In this talk we would like to present a proof of a theorem of Tate, which is very
elegant and gives short proofs of some useful facts.

2. The theorem

Let G be a group which has a compact topology acting on a ring A with a contin-
uous action when A is endowed with the discrete topology through ring morphisms.
This means that the map G × A → A is continuous. Remark that for a ∈ A the
map G × {a} → A is continuous and the image is compact as G is compact. This
means that all orbits under the action of G are finite.

Examples 2.1. Let G be a finite group acting on a ring A. Then G is compact
under the discrete topology and the action is automatically continuous. Just think
for example of a Galois group acting on the ring of integers of a number field.

Let K be a field and let G = Gal(K/K), the absolute Galois group of K (where
K is the separable closure of K). This G has a natural topology (profinite topology)
and it is a compact group under this topology. This G acts naturally on K (or on
other objects) and this action is continuous.

Theorem 2.2 (Tate). Let (G,A) be as above. Let R be a domain and let f, f ′ :
A→ R be ring morphisms. Suppose that f |AG = f ′|AG , then there is a g ∈ G such
that f ′ = f ◦ g.

Proof. Extend the action of G to A[Y ][X] by letting G act on the coefficients. Let
f0 ∈ A[Y ]. We extend f, f ′ : A[Y ][X] → R[Y ][X] by X 7→ X, Y 7→ Y . Then
consider the polynomial h =

∏
h′∈Gf0

(X − h′) ∈ AG[Y ][X]. We have∏
h′∈Gf0

(X − f(h′)) = f(h) = f ′(h) =
∏

h′∈Gf0

(X − f ′(h′)).

As R and hence R[Y ] are domains, we can compare the roots and conclude that
there is a g ∈ G such that f ′(f0) = f(g(f0)). We see that for any finite E ⊆ A,
there is a g ∈ G such that f ′|E = f ◦ g|E (take a polynomial with the elements of
E as coefficients).

Now let E ⊆ A be finite and consider GE = {g ∈ G : f ′|E = f ◦ g|E}, which is
non-empty by the above observations. We claim that GE is closed in G. Indeed
for e ∈ E we can consider the following continous maps, whose composition is
continous:

G
(f(e),id,e)

// R×G×A
(id,(G×A→A))

// R×A
(id,f ′)

// R×R
−

// R

whose composition σ maps g to σ(g) = f(e) − f ′(g(e)). Hence σ−1(0) = G{e} is
closed. We have GE =

⋂
e∈E G{e}, which is closed as well. Similarly for finite sets

E1, . . . , En we have
⋂n

i=1GEi = GSm
i=1 Ei

6= ∅. By compactness of G we see that
1



2

GA = {g ∈ G : f = f ′} =
⋂

E⊆A,E finiteGE 6= ∅. This means that there is a g ∈ G
such that f ′ = f ◦ g. �

Example 2.3. If one looks at the proof of the main theorem, one sees that one
doesn’t really use all the hypotheses of the theorem. The theorem holds for example
also for the ring {f =

∑
i aix

i ∈ Z[X] : 2|a1} ( Z[X] with G acting trivially.

3. Corollaries

We can now deduce some nice results from the above theorem.

Corollary 3.1. Suppose that (G,A) is as above. Let p ⊂ AG be prime. Then G
acts transitively on the primes of A lying above p.

Proof. Let q, q′ ⊂ A be primes lying above p. We will now construct two maps
from A to Q(AG/p). The first maps f : A → A/q → Q(A/q) → Q(AG/p),
where we use that the extension Q(A/q) ⊇ Q(AG/p) is algebraic (which follows
as the orbits are finite) where the last map is the identity on AG/p. Similarly
one defines another map f ′ : A → A/q′ → Q(AG/p). Both maps agree on AG.
Theorem 2.2 says that there is a g ∈ G such that f ′ = fg. But taking kernels gives
q = Ker(f ′) = Ker(fg) = g−1 (Ker(f)) = g−1q′. So gq = q′, which finishes the
proof. �

Example 3.2. Let K ⊇ Q be a number field which is Galois over Q. Then G acts
transitively on the primes of K (of OK) lying above a prime of Z. One can also
take Q ⊃ Q and the above corollary still holds!

Example 3.3. Some conditions on G and the action of A on G are needed to make
the above corollary valid. Consider the ring A = F2[xi : i ∈ Z] with G = Z action
with n(xi) = xi+n. One easily sees that AG = Z/2Z, but that not all prime ideals
of A lie in the same G-orbit. Indeed, prime ideals can have different residue fields
(such as F2,F4, . . .).

Now we will prove another familiar lemma (which you have seen in number
theory).

Corollary 3.4. Let (G,A) be as above. Let q ⊂ A be a prime lying above a prime
p ⊂ AG. Let Gq/p = {g ∈ G : g(q) = q}. Let l = Q(A/q) and let k = Q(AG/p).
Then the natural map Gq/p → Autk(l) is surjective.

Proof. Let σ ∈ Autk(l). Consider the natural map f : A → Q(A/q) = l which
restricts to the natural map AG → Q(AG/p) = k. Let f ′ = σf . Now apply Lemma
2.2 to see that there is a g ∈ G with σf = fg. But then for a ∈ A we have

g ◦ (f(a)) = f(g(a)) = σf(a).

This means that g maps to σ. �

Of course there are other uses of this lemma (say in the theory of Galois algebras),
but we will not discuss these.
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