Locally ringed spaces and manifolds

March 14, 2011

In this lecture we shall define the category of Manifolds \mathcal{M}_{at} giving a *k*-differential atlas on a topological space *X* and the category of Manifolds \mathcal{M}_{Sh} as a subcategory of the category of locally ringed spaces and then we shall prove that \mathcal{M}_{at} and \mathcal{M}_{Sh} are actually isomorphic.

We shall reserve the symbol k to denote an integer $k \ge 0$ or ∞ .

Definition 0.1. Let *X* be a topological space. A *k*-differentiable atlas A_X^k on *X* is a family $\{(U_i, h_i, X_i, n_i)\}_{i \in I}$ of quadruples, where *I* is a set and for each $i \in I X_i$ is an open subset of *X*, $n_i \ge 0$ is an integer, U_i is an open subset of \mathbb{R}^{n_i} and $h_i : U_i \to X_i$ is a homeomorphism such that $X = \bigcup_i X_i$, and for *i* and *j* in *I*, if we use use the notations: $X_{ij} := X_i \cap X_j =: X_{ji}$, the restrictions $h_i : U_{ij} \to X_{ij}$ and $h_j : U_{ji} \to X_{ji}$ are compatible in the sense that the homeomorphism $h_j^{-1} \circ h_i : U_{ij} \to U_{ji}$ is *k*-differentiable.

Whenever required for the sake of clarity, we shall denote an atlas whose data is given using the symbols above by the symbol $A_X^k(I, U, h, n)$, but when there is no risk of confusion we shall continue using A_X^k .

A pair (X, A_X^k) of a set X and a k-differentiable atlas A_X^k on X we call a topological space with a k-differentiable atlas. A morphism, or k-differentiable map ϕ : $(X, A_X^k(I, U, h, n)) \rightarrow (Y, A_Y^k(J, V, g, m))$ of such pairs is a continuous map $\phi : X \rightarrow Y$ such that for each $(i, j) \in I \times J$,

$$g_j^{-1} \circ \phi \circ h_i : h_i^{-1}(\phi^{-1}(Y_j) \cap X_i) \to V_j$$

is a *k*-differentiable map.

Lemma 0.2. If $\phi : (X, A_X^k) \to (Y, A_Y^k)$ and $\psi : (Y, A_Y^k) \to (Z, A_Z^k)$ are morphisms of topological spaces with k-differentiable atlases on them, $\psi \circ \phi : (X, A_X^k) \to (Z, A_Z^k)$ is also a morphism of the same. Also, for every (X, A_X^k) , $1_X : (X, A_X^k) \to (X, A_X^k)$ is a morphism.

The Lemma above proves that the topological pairs, defined above, together with their morphisms form a category. Lets name it *category of topological spaces with a k-differentiable atlas*.

Lemma 0.3. Let $A_X^k(I, U, h, n)$ and $A_X^k(J, U, h, n)$ are two of the k differentiable atlases on X, the relation ~ given by

 $A_X^k(I, U, h, n) \sim A_X^k(J, U, h, n) \Leftrightarrow A_X^k(I \sqcup J, U, h, n)$ is also a k-differentiable atlas

is an equivalence relation. More over, the equivalence class of A_X^k is partially ordered under the relation \subset and has a unique maximal element still denoted by A_X^k .

We are ready to define what is called a *k*-differentiable manifold.

Definition 0.4.

- Let (X, A_X^k) be in the category of topological spaces with *k*-differentiable atlases and let A_X^k is a maximal atlas on *X*. A maximal atlas on *X* we call a *k*-differentiable structure on *X* and we define *k*-differentiable manifold to be a pair (X, A_X^k) of a topological space with a *k*-differentiable structure on it.
- A morphism $\phi : (X, A_X^k) \to (Y, A_Y^k)$ of k-differentiable manifolds is a morphism in the the category of topological spaces with k-differentiable atlas.

Definition 0.5. Let $A_X^k(I, U, h, n)$ be a *k*-differentiable manifold and let $X' \subset X$ open in *X*. A map $f : X' \to \mathbb{R}$ is said to be a *k*-differentiable map if for every $i \in I$ the map $f \circ h_i : h_i^{-1}(X_i \cap X') \to \mathbb{R}$ is a *k* differentiable.

Definition 0.6. Let $U \subset \mathbb{R}^n$ open in \mathbb{R}^n . The sheaf of *k*-differentiable functions C_U^k on U is the sheaf defined

 $C_U^k(V) = \{ f : V \to \mathbb{R} \mid f \text{ is a } k \text{-differentiable map} \}$

for every $V \subset U$ open in U. For $W \subset V \subset U$ open in U the restriction maps are given by the usual restrictions functions; that is $\rho_W^V(f) = f|_W$ for every $f \in C_U^k(V)$.

Definition 0.7. We define a category \mathscr{P} whose objects are the pairs (X, \mathcal{F}_X) where X is a topological space and \mathcal{F}_X is a sheaf of \mathbb{R} -algebras on X which is a subsheaf of sheaf of \mathbb{R} -valued functions.

A morphism $(f, f^*) : (X, \mathcal{F}_X) \to (Y, \mathcal{F}_Y)$ in \mathscr{P} consists of a continuous map fand the morphism $f^* : \mathcal{F}_Y \to f_*\mathcal{F}_X$ of sheaves of \mathbb{R} -algebras on Y induced by fand is defined by

$$f_V^*: \mathcal{F}_Y(V) \to f_*\mathcal{F}_X(V), \quad s \mapsto s \circ f.$$

Identity of an object (X, \mathcal{F}_X) is $(1_X, 1_X^*)$ is given by continuous map $1_X : X \to X$ and the composition $(f, f^*) \circ (g, g^*) = (f \circ g, (f \circ g)^*)$. **Definition 0.8.** A *k*- differentiable manifold is an object $(M, C_M^k) \in \mathscr{P}$ such that for every $p \in M$ there exists an open subset M_p of M, an integer n_p , an open subset U_p of \mathbb{R}^{n_p} and an isomorphism $(h_p, h_p^*) : (U_p, C_{U_p}^k) \to (M_p, C_M^k|_{M_p})$ in \mathscr{P} .

A morphism of k- differentiable manifolds $(f, f^*) : (M, C_M^k) \to (M', C_{M'}^k)$ is a morphism in \mathscr{P} .

So we have another, I must say much better, way of defining a manifold. To distinguish is from \mathcal{M}_{at} we denote it by \mathcal{M}_{Sh} . Now we shall show that two categories are isomorphic.

Theorem 0.9. The categories \mathcal{M}_{at} and \mathcal{M}_{Sh} are isomorphic.

Proof. Let $(X, A_X^k(I, U, h, n))$ in \mathcal{M}_{at} . Consider the sheaf of functions on \mathcal{R}_X^k on X defined as follows:

$$\mathcal{A}^k(X') = \{ f : X' \to \mathbb{R} \mid f \text{ is a } k \text{-differentiable map} \}$$

for every $X' \subset X$ open in X and restrictions being usual restrictions of functions. \mathcal{R}_X^k is clearly a sheaf and we shall show that (X, \mathcal{R}_X^k) is an object of \mathcal{M}_{Sh} . To show that, the required data is available from the data of $A_X^k(I, U, h, n)$. All we need to show that for an arbitrary $i \in I$

$$(h_i, h_i^*) : (U_i, C_{U_i}^k) \to (X_i, \mathcal{H}_X^k|_{X_i})$$
 is an isomorphism in \mathscr{P} ;

that is, we need to prove that for arbitrary $X' \subset X_i$ open,

$$h_{iX'}^*: \mathcal{A}_X^k \Big|_{X_i}(X') \to h_{i*}C_{U_i}^k(X'), \quad f \mapsto f \circ h_i$$

is a well defined isomorphism. X' open in X_i and X_i open in X gives X' open in X which further gives $\mathcal{R}_X^k|_{X_i}(X') = \mathcal{R}_X^k(X')$. By definition $f \in \mathcal{R}_X^k(X')$ means that $f \circ h_i \in C_{U_i}^k(h_i^{-1}(X')) = h_{i*}C_{U_i}^k(X')$; that is, $h_{iX'}^*$ well defined. The morphism of k algebras $h_{iX'}^*$ clearly an injection since h_i is a homeomorphism and it is a surjection as $g \in h_{i*}C_{U_i}^k(X')$ is the image of $g \circ h_i^{-1}$ which clearly is in $\mathcal{R}_X^k(X')$. So we have a map

$$E: \operatorname{Ob}(\mathscr{M}_{at}) \to \operatorname{Ob}(\mathscr{M}_{Sh}), \quad (X, A_X^k) \mapsto (X, \mathscr{R}_X^k).$$

Now let $\phi : (X, A_X^k(I, U, h, n)) \to (Y, A_Y^k(J, V, g, m))$ is a morphism in \mathcal{M}_{at} . We shall prove that $(\phi, \phi^*) : (X, \mathcal{R}_X^k) \to (Y, \mathcal{R}_Y^k)$ is well defined morphism in \mathscr{P} . ϕ is surely continuous so we just need to show that $\phi^* : \mathcal{R}_Y^k \to \phi_* \mathcal{R}_X^k$ is well defined. that is, we need to show that for arbitrary open subset $Y' \subset Y$ the morphism $\phi_{Y'}^* : \mathcal{R}_Y^k(Y') \to \phi_* \mathcal{R}_X^k(Y')$ which maps $f \mapsto f \circ \phi$ is well defined. For the coming statements please keep in mind that, for $A \subset B$ and a map $l : B \to \mathbb{R}$ when we,

abusing the notation, write $l : A \to \mathbb{R}$ we actually mean $l|_A : A \to B$. Now observe the following:

$$\begin{split} f \in \mathcal{R}_{Y}^{k}(Y') \Leftrightarrow \forall j \in J \quad f \circ g_{j} : g_{j}^{-1}(Y_{j} \cap Y') \to \mathbb{R} \text{ is differentiable} \\ \Rightarrow \forall (i, j) \in I \times J \quad f \circ g_{j} \circ g_{j}^{-1} \circ \phi \circ h_{i} : h_{i}^{-1}(X_{i} \cap \phi^{-1}(Y_{j} \cap Y')) \to \mathbb{R} \\ \text{ is differentiable since } g_{j}^{-1} \circ \phi \circ h_{i} \text{ is differentiable, as is } \phi \text{ given} \\ \Leftrightarrow \forall (i, j) \in I \times J \quad f \circ \phi \circ h_{i} : h_{i}^{-1}(X_{i} \cap \phi^{-1}(Y_{j} \cap Y')) \to \mathbb{R} \\ \text{ is differentiable} \\ \Leftrightarrow \forall i \in I \quad f \circ \phi \circ h_{i} : h_{i}^{-1}(X_{i} \cap \phi^{-1}(Y')) \to \mathbb{R} \text{ is differentiable} \\ \Leftrightarrow f \circ \phi \in \mathcal{R}_{Y}^{k}(\phi^{-1}(Y')) = \phi_{*}\mathcal{R}_{X}^{k}(Y'). \end{split}$$

In the equivalences above we proved that if a continuous map $\phi : X \to Y$ of topological space induces a morphism $\phi : (X, A_X^k) \to (Y, A_Y^k)$ in \mathcal{M}_{at} then it also induces a morphism $(\phi, \phi^*) : (X, \mathcal{R}_X^k) \to (Y, \mathcal{R}_Y^k)$ in \mathcal{M}_{Sh} . Thus we have a map

$$E: \operatorname{Hom}_{\mathscr{M}_{at}}((X, A_X^k), (Y, A_Y^k) \to \operatorname{Hom}_{\mathscr{M}_{Sh}}((X, \mathcal{H}_X^k), (Y, \mathcal{H}_Y^k)), \quad \phi \mapsto (\phi, \phi^*)$$

 $E(\phi) \circ E(\psi) = (\phi, \phi^*) \circ (\psi, \psi^*) = (\phi \circ \psi, (\phi \circ \psi)^*) = E(\phi \circ \psi)$ and $E(1_X) = (1_X, 1_X^*)$. So we have a functor $E : \mathcal{M}_{at} \to \mathcal{M}_{Sh}$. It remains to prove that it is a it is an isomorphism. Lets first prove that the functor is full. Choose an arbitrary $i \in I$ and $j \in J$ we shall prove that $g_j^{-1} \circ \phi \circ h_i : h_i^{-1}(X_i \cap \phi^{-1}(Y_j)) \to V_j$ is differentiable as required for ϕ to be a morphism of morphism in \mathcal{M}_{at} . Let, for integers $1 \leq r \leq m_j$, $\pi_r : V_j \to \mathbb{R}$ denote the projection on *r*-th coordinate. $\pi_r \circ g_j^{-1} \in \mathcal{H}_Y^k(Y_j)$ which implies $\phi_{Y_j}^*(\pi_r \circ g_j^{-1}) = \pi_r \circ g_j^{-1} \circ \phi \in \phi_* \mathcal{A}_X(Y_j) = \mathcal{A}_X(\phi^{-1}(Y_j))$. By definition this means that $\pi_r \circ g_j^{-1} \circ \phi \circ h_i : h_i^{-1}(X_i \cap \phi^{-1}(Y_j)) \to \mathbb{R}$ is differentiable. Since that holds for every *r*, we have $g_j^{-1} \circ \phi \circ h_i : h_i^{-1}(X_i \cap \phi^{-1}(Y_j)) \to \mathbb{R}^{m_j}$ is differentiable, and clearly we can restrict the codomain to V_j to get the required. It is clear that *E* is also faithful; so we have that *E* is fully faithful. To prove that *E* is an Isomorphism of categories we also need to prove that

$$E: \operatorname{Ob}(\mathscr{M}_{at}) \to \operatorname{Ob}(\mathscr{M}_{Sh}), \quad (X, A_X^k) \mapsto (X, \mathcal{H}_X^k)$$

is a bijection. To prove that it is injective lets assume that $E(A_X^k(I, U, h, n)) = E(A_X^k(J, U, h, n))$. Which means that $1_X \in \text{Hom}_{\mathcal{M}_{al}}(A_X^k(I, U, h, n), A_X^k(J, U, h, n))$ But we have already discusses that it means $A_X^k(I \sqcup J, U, h, n)$ is also an atlas and that contradicts the maximality of $A_X^k(I, U, h, n)$ and $A_X^k(I, U, h, n)$ unless they are same.