Assignment AAG Fall 2011.

December 8, 2011

- 1. Let (X, \mathcal{O}) be in (LRS).
 - (a) Give a bijection between the set of open and closed subsets U of X, and the set of idempotents in $\mathcal{O}(X)$.
 - (b) Does this also work in (RS)?
 - (c) Let A be a ring. Give a bijection between the set of open and closed subsets U of Spec(A), and the set of idempotents in A.
- 2. Let (X, C_X^{∞}) be a real smooth manifold as in Lecture 1. Let k be in $\mathbb{Z}_{\geq 0}$.
 - (a) Give a definition of the sheaf C_X^k of functions on opens of X that are k times differentiable with continuous derivatives.
 - (b) The inclusion $C_X^{\infty} \to C_X^k$ gives a morphism in $(LRS_{\mathbb{R}})$ from (X, C_X^k) to (X, C_X^{∞}) that we denote by f. Let \mathcal{E} be a locally free C_X^{∞} -module, not necessarily of finite rank. Show that the natural morphism of C_X^{∞} -modules $\phi \colon \mathcal{E} \to f_* f^* \mathcal{E}$ is injective.
 - (c) What is the maximal open subset of X on which ϕ is an isomorphism?
 - (d) Give an example of an X and an \mathcal{E} such that X is connected and \mathcal{E} is not free.
- 3. Let k be a field. We know that the category with objects pairs (V, φ) with V a k-vector space and φ in End_k(V) and with morphisms k-linear maps f: V → V' such that φ' ∘ f = f ∘ φ is isomorphic to the category of k[x]-modules: the multiplication by x is φ. This is particularly useful for finite dimensional V, because we have a classification of k[x]-modules that are finite dimensional as k-vector spaces and we know the morphisms between such. But now we also know that k[x]-mod is equivalent to QCoh(A¹_k).
 - (a) Let V be a finite dimensional k-vector space and let φ be in End_k(V). Let F be the quasi-coherent O-module on A¹_k given by (V, φ). Describe the stalks of F. Give some advantages of looking at (V, φ) and at k[x]-modules in this more geometric way. For example, is it now easier to see when Hom((V, φ), (V', φ')) is zero?
 - (b) Let V be a finite dimensional k-vector space and φ and ψ be two commuting endomorphisms. Then view V as a k[x, y]-module and describe the stalks of the quasicoherent O-module on A²_k that corresponds to (V, φ, ψ).

- 4. Give an example of an \mathcal{O} -module \mathcal{F} on a scheme X such that \mathcal{F} is not quasi-coherent. Try to make the underlying set of X as small as possible.
- 5. Let k be field. Let X be the closed subscheme of \mathbb{A}^3_k given by the equation $xy z^2 = 0$. Let 0 denote the closed point given by the equations x = 0, y = 0 and z = 0. Let $U = X - \{0\}$.
 - (a) Show that X is integral, and that U is smooth over k. This implies that U is regular (you do not need to prove that).
 - (b) Prove that $\mathcal{O}_X(U) = \mathcal{O}_X(X)$. Hint: use the cover $U = D(x) \cup D(y)$.
 - (c) Let f be in $\mathcal{O}_X(X)$. Show that $\mathcal{O}_X(D(f) \{0\}) = \mathcal{O}_X(D(f))$. Hint: use the cover of $D(f) - \{0\}$ by D(xf) and D(yf), write the usual complex for $\mathcal{O}_X(D(f) - \{0\})$, and note that it is the localisation by f for the complex for $\mathcal{O}_X(U) = \mathcal{O}_X(X)$.
 - (d) Let L be an invertible O_X-module, such that L|_U is free. Show that L is free. Hint: let s ∈ L(U) be a generator. Observe that L is free in a neigborhood of 0 and use the previous part. Conclude that Pic(X) → Pic(U) is injective.
 - (e) Example II.6.5.2 of [H] says that Pic(U) = Cl(U) = Cl(X) = Z/2Z, generated by the ideal generated by y and z (recall from Lecture 11 that Pic(U) = Cl(U) because U is locally factorial). Use the same arguments to show that Pic(U) = Pic(V), where V = Spec(O_{X,0}) − {0}.
 - (f) Show that $\operatorname{Pic}(X) \to \operatorname{Pic}(U) \to \operatorname{Pic}(V)$ is zero. Conclude that $\operatorname{Pic}(X)$ is zero.
- 6. Let n be in $\mathbb{Z}_{\geq 1}$. Let O_n be the covariant functor from (Ring) to (Grp) sending A to the subgroup of $\operatorname{GL}_n(A)$ consisting of the g with $g^t \cdot g = 1$.
 - (a) Show that O_n (as functor from (Ring) to (Set)) is representable by a ring H. Let now O_n denote the affine scheme Spec(H) that represents this functor (compare the discussion of GL_n in Lecture 5).
 - (b) Let M_n be the scheme such that for any ring A the set $M_n(A)$ is the set of n by n matrices with coefficients in A. Let M_n^+ be the scheme such that $M_n^+(A)$ is the set of g in $M_n(A)$ such that $g^t = g$. Show that M_n is isomorphic to \mathbb{A}^{n^2} and M_n^+ is isomorphic to $\mathbb{A}^{n(n+1)/2}$.
 - (c) Let $f: \operatorname{GL}_n \to \operatorname{M}_n^+$ be given by $g \mapsto g^t \cdot g$ (for every A, for every g in $\operatorname{GL}_n(A)$). Show that $\operatorname{O}_n \to \operatorname{Spec}(\mathbb{Z})$ is the pullback of f via the point 1 in $\operatorname{M}_n^+(\mathbb{Z})$.
 - (d) Show that the restriction of f over Z[1/2] is smooth, using the criterion of formal smoothness and local finite presentation (Lecture 12). Here are a few hints. Let I→A → A as in the definition of formally smooth, h in M_n⁺(A) with image h in M_n⁺(A), and g in GL_n(A) such that g^t·g = h. Let g₀ be any element in GL_n(A) with image g in GL_n(A) (show that it exists!). Show that g^t₀·g₀ = h + a = for some a in M_n(A) with all coefficients in I, and that a^t = a. Then consider all possible g in GL_n(A) with image g: they are the g = g₀ + g₀b = g₀(1 + b) with b in M_n(A) with

all coefficients in I. Then compute, using that $(hb)^t = b^t h$, that you may divide by 2, and that you may try to find a solution with hb symmetric.

- (e) Show that the restriction to $\operatorname{Spec}(\mathbb{Z}[1/2])$ of the \mathbb{Z} -scheme O_n is smooth over $\operatorname{Spec}(\mathbb{Z}[1/2])$. (Prove first that smoothness is preserved under base change.)
- (f) Show that the fibre over \mathbb{F}_2 of O_n is not smooth.
- (g) On the positive side, one can show (you don't have to) that the relative codimension over \mathbb{Z} of O_n in GL_n is $(n^2 n)/2$ and that therefore O_n is a complete intersection over \mathbb{Z} .
- (a) Let n and r be in Z_{≥1} and let k be a field. Let E = ⊕^r_{i=1}O(d_i) and E' = ⊕^r_{i=1}O(d'_i) be two direct sums of r invertible O-modules on Pⁿ_k. Show that they are isomorphic if and only if the sequences d and d' are equal up to permutation.
 - (b) Recall from Lecture 15 that on any ringed space (X, O) and any O_X-module F and for any i ∈ Z_{≥0} we have Extⁱ(O, F) = Hⁱ(X, F). Recall also that H¹(P¹_k, O(-2)) is of dimension 1 as k-vector space. Now give explicitly a short exact sequence of O-modules 0 → O(-2) → E → O → 0 on P¹_k that is not split.
 - (c) Can you relate this short exact sequence to the closed immersion 0: $\text{Spec}(k) \to \mathbb{A}_k^2$?