
AAG, LECTURE 13

If
0→ F1 → F2 → F3 → 0

is a short exact sequence of sheaves on a topological space X then we have an exact
sequence

0→ F1(X)→ F2(X)→ F3(X)

but it is not necessarily the case that F2(X)→ F3(X) is surjective. (The surjectiv-
ity of F2 → F3 implies something weaker: that for any f ∈ F3(X) and x ∈ X there
is an open x ∈ U ⊂ X and a g ∈ F2(U) so that g 7→ f|U . These g’s are not unique,
since we can change them by sections of F1, so one should not expect them to glue
to a global section of F2.) In this lecture I will define groups Hn(X,F) indexed by
non-negative integers n and depending functorially on F , called sheaf cohomology
groups. They have the following properties. First of all H0(X,F) = F(X) and to
any short exact sequence as above there is an associated exact sequence

0→ F1(X)→ F2(X)→ F3(X)→ H1(X,F1)→ H1(X,F2)→ H1(X,F3)→ H2(X,F1)→ · · ·
called the long exact sequence.

Today: generalities (homological algebra in the framework of abelian categories)
and definition of sheaf cohomology groups (roughly: Hartshorne III.1, III.2). Next
week: cohomology of quasi-coherent sheaves on schemes (roughly: Hartshorne III.3,
III.4, III.5). In the final lecture Bas Edixhoven will prove Serre duality, a funda-
mental result about cohomology of quasi-coherent sheaves on smooth projective
schemes.

Todays generalities are useful not only in algebraic geometry but also in topology,
analytic geometry, differential geometry, number theory . . .

Will skip many proofs, but strongly recommend you look them up and verify
them. This is theory you might be using a lot in the future.

1. Complexes

Let A be an abelian category. Typical examples: Ab(X) for a topological space
X and OX −Mod for a ringed space (X,OX). A complex in A is a sequence

· · · d
−1

−→ A−1
d−1

−→ A0 d0

−→ A1 d1

−→ · · ·
such that for all n we have dn ◦ dn−1 = 0. Short notation: d ◦ d = 0.

More precisely, our notion of complex is that of a cochain complex. There is also
a notion of chain complex in which the maps go the other way, and the indices are
usually written by subscripts in stead of superscripts.

The complexes in A form a category Kom(A). A map f from a complex A to a
complex B is a commutative diagram

· · · d−−−−→ A−1
d−−−−→ A0 d−−−−→ A1 d−−−−→ · · ·yf−1

yf0

yf1

· · · d−−−−→ B−1
d−−−−→ B0 d−−−−→ B1 d−−−−→ · · ·
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The category Kom(A) is itself abelian.
By the “d ◦ d = 0” property we have im dn−1 ⊂ ker dn for all n. (Better: a

factorization An−1 → im dn−1 → ker dn → An.) We define

Hn(A) =
ker dn

im dn−1
.

The objects Hn(A) are called the cohomology objects of the complexA. The complex
A is exact (forms an exact sequence) if and only if Hn(A) = 0 for all n.

Warning. Do not confuse Hn(A) for a complex of sheaves A with the still-to-be-
defined Hn(X,F) for a sheaf F . The former is a sheaf itself (or an object of A),
the latter is an abelian group.

For every n we have that Hn is a functor from Kom(A) to A.
The following theorem is a kind of super-snake-lemma.

Theorem 1 (The long exact sequence). To a short exact sequence 0→ A→ B →
C → 0 in Kom(A) one can associate an exact sequence

· · · → Hn−1(C)→ Hn(A)→ Hn(B)→ Hn(C)→ Hn+1(A) · · ·

in A, which is functorial in the short exact sequence.

Proof. Exercise. The snake lemma is the case where the complexes A, B, C are
“concentrated in degrees 0 and 1”, meaning that An = Bn = Cn = 0 unless n ∈
{0, 1}. The general case can be proved similarly. �

2. Homotopies

Let A and B be complexes and f, g maps from A to B:

· · · d−−−−→ An−1 d−−−−→ An d−−−−→ An+1 d−−−−→ · · ·

fn−1

ygn−1 fn

ygn
fn+1

ygn+1

· · · d−−−−→ Bn−1 d−−−−→ Bn d−−−−→ Bn+1 d−−−−→ · · ·
A homotopy h from f to g is a collection of maps (hn : An → Bn−1)n such that
for all n we have fn − gn = dhn + hn+1d (or shorter: “f − g = dh + hd”). If there
exists a homotopy from f to g then we say that f and g are homotopic. (This is
an equivalence relation). Note that we do not demand that h commutes with the
differentials.

Theorem 2. If f and g are homotopic, then for all n they induce the same map
Hn(A)→ Hn(B).

Proof. We will pretend the objects of A are modules over some ring, and therefore
have “elements” with which we can do “diagram chasing”. One can justify this
using the Freyd embedding theorem which says that any abelian category is a full
subcategory of the category of modules over some ring, or one can try to do the
same argument without referring to elements. (Good luck!) For all a in

Hn(A) =
ker(d : An → An+1)

im(d : An−1 → An)

we have (fn − gn)(a) = dhna + hnda. But da = 0 since a ∈ ker d and dhna = 0 in
Hn(B) since it is in im d. We conclude that fn(a) = gn(a) in Hn(B). �
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A map f : A → B is called a homotopy equivalence if there is a g : B → A so
that fg is homotopic with idB and gf is homotopic with idA. The above theorem
now immediately implies

Corollary 1. If f is a homotopy equivalence then f induces an isomorphism
Hn(A)→ Hn(B) for all n.

The converse is not always true, being a homotopy equivalence is a very strong
condition!

A and B are called homotopy equivalent if there exists a homotopy equivalence
A→ B. (Again, this is an equivalence relation.)

3. Injective resolutions

Let M be an object of A. A resolution of M is an exact sequence

0→M → A0 → A1 → · · ·
in A. It is often convenient to see this as a map of complexes. Denote by M [0] the
complex with

M [0]n =

{
M if n = 0,

0 if n 6= 0.

It is concentrated in degree 0. Then the above exact sequence gives rise to a map
of complexes M [0]→ A.

Note that

Hn(M [0]) = Hn(A) =

{
M if n = 0

0 otherwise.
An object I of A is called injective if the following equivalent conditions hold:
(1) given an injective map f : M ↪−→ N in A and a map h : M → I there is a

g : N → I such that h = gf ;
(2) the functor Hom(−, I) : A → Ab is exact.

Examples 3.1. (Exercise: verify these!)
(1) in the category of vector spaces over a field k all objects are injective;
(2) Q and Q/Z are injective in the category Ab of abelian groups;
(3) if R is a commutative ring then HomAb (R,Q/Z) is an injective R-module.

Note that the abelian groups Q and Q/Z are not finitely generated, and the
R-module Hom(R,Q/Z) can be really huge! This is a general theme: “injective”
and “finite generation” don’t mix very well.

An injective resolution of an object M in A is a resolution M [0]→ A where for
all n we have that An is an injective object of A.

Theorem 3 (Maps to injective resolutions). Let f : M → N be a map in A. Let
M [0] → A be a resolution and N [0] → I an injective resolution. Then there is a
map of complexes g : A→ I such that the diagram

M [0] −−−−→ Ayf

yg

N [0] −−−−→ I

commutes and any two such maps g1 and g2 are homotopic.
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Proof. We’ll do existence, for uniqueness modulo homotopy, see Gelfand-Manin,
Introduction to homological algebra, Theorem 1.1.3 and the following remarks.

We construct g inductively. In the diagram

M −−−−→ A0yf

N −−−−→ I0

the map M → A0 is injective, so from the definition of injective object we find
there is a map g0 : A0 → I0 making the square commute. Now consider the induced
diagram

A0/M −−−−→ A1yg0

I0/N −−−−→ I1

Again, the top map is injective so we find a map g1 : A1 → I1 making the square
commute. Repeating this we construct the desired g. �

Corollary 2 (Injective resolutions are unique up to homotopy). If M [0]→ I and
M [0]→ J are injective resolutions of M then I and J are homotopy equivalent.

Proof. Apply the theorem to idM in both directions. We obtain f : I → J and
g : J → I. But the uniqueness implies that fg is homotopic with idJ and gf with
idI . �

4. Left exact functors

A functor F : A → B of abelian categories is additive if for all objects M,N of
A the induced map

HomA(M,N)→ HomB(FM,FN)

is a homomorphism of abelian groups. An additive functor F is left exact if for all
short exact sequences

0→M1 →M2 →M3 → 0

in A the induced sequence

0→ FM1 → FM2 → FM3

is exact.

Examples 4.1. (Exercise: verify that these are indeed left exact!)

(1) (X a topological space). Ab(X)→ Ab: F 7→ F(X);
(2) ((X,O) a ringed space). O −Mod→ Ab: F 7→ F(X);
(3) (R a ring and I an ideal). R−Mod→ Ab,M 7→M [I] = {m ∈M : Im = 0};
(4) (N is an object in A). A → Ab: M 7→ HomA(N,M).

This looks like a lot of examples, but really the first three are special cases of
the last: take N to be ZX , O, R/IR respectively.
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5. Derived functors and cohomology

From now on we assume that all objects of the abelian category A have an
injective resolution. This is the case for all the examples we have considered so
far. It is however not the case for category of finitely generated abelian groups (the
category of coherent sheaves on SpecZ). In general one should be careful not to
impose too many “finiteness conditions”.

Let F : A → B a left exact functor and assume that every object of A has an
injective resolution. We will construct functors RnF : A → B for all n ≥ 0. These
are called the derived functors of F .

For every object M of A choose an injective resolution M [0] → IM . If A is a
complex in A define FA to be the complex

· · · → FA−1 → FA0 → FA1 → · · ·

in B. Now consider for every M in A and n ∈ Z≥0 the object Hn(FIM ) of B.

Proposition 1.

(1) M 7→ Hn(FIM ) is a functor;
(2) if (M [0] → JM )M is a second collection of injective resolutions then the

functors M 7→ Hn(FIM ) and M 7→ Hn(FJM ) are isomorphic.

Proof. Let M → N be a map in A. Then by Theorem 3 we can choose a compatible
map IM → IN . This induces a map FIM → FIN which in turn induces maps
Hn(FIM ) → Hn(FIM ). The map IM → IN is unique up to homotopy, so also the
induced map FIM → FIN is unique up to homotopy, and we conclude that the map
Hn(FIM )→ Hn(FIN ) only depends on the map M → N . It is straightforward to
check that this indeed defines a functor.

For the second part, apply Theorem 3 to idM and the resolutions M [0] → IM
and M [0]→ JM to obtain a canonical isomorphism Hn(FI)→ Hn(FJ). �

We will from now on suppose a choice of (M → IM )M has been made, write
RnF (M) = Hn(FIM ) and simply call RnF the n-th derived functor of F .

The most important properties are the following:

Theorem 4.

(1) the functor R0F is isomorphic with the functor F ;
(2) if F is exact then RnF (M) = 0 for all n > 0 and all M ;
(3) if M is injective then RnF (M) = 0 for all n > 0;
(4) for every short exact sequence 0 → M1 → M2 → M3 → 0 there is a long

exact sequence

0→ FM1 → FM2 → FM3 → R1F (M1)→ R1F (M2)→ R1F (M3)→ R2F (M1)→ · · ·

which depends functorially on the short exact sequence.

We can now define the cohomology groups mentioned in the introduction. For a
topological space X the functor

Γ(X,−) : Ab(X)→ Ab: F 7→ Γ(X,F) = F(X)

is left exact, and one defines Hn(X,F) = RnΓ(X,F).
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6. Acyclic resolutions

Because of their uniqueness modulo homotopy, injective resolutions are very
useful for theoretical purposes. But because injective objects are typically huge,
they are usually completely useless for computations. Fortunately, one can often
compute derived functors using more manageable resolutions.

Let F : A → B be a left exact functor. Then an object N of A is called F -acyclic
if RiF (N) = 0 for all i ≥ 1. An F -acyclic resolution of an object M in A is a
resolution

M [0]→ A

where An is F -acyclic for all n.

Theorem 5. If F : A → B is left exact, M an object of A and M [0] → A an
F -acyclic resolution of M then there are natural isomorphisms

RnF (M) = Hn(FA)

for all n.

Proof of special case. Just to give some idea, assume A is concentrated in degree 0
and 1. In other words, we have a short exact sequence

0→M → A0 → A1 → 0

and the associated long exact sequence becomes

0→ FM → FA0 → FA1 → R1F (M)→ R1FA0 = 0

and therefore we indeed have RnF (M) = Hn(FA). �

Proposition 2. If (X,O) is a RS and M an injective O-module then M is Γ(X,−)-
acyclic as object in Ab(X).

Proof. See Hartshorne III.2.4 and III.2.5. �

Corollary 3. The right derived functors of

O −Mod→ Ab: F 7→ Γ(X,F)

are the sheaf cohomology groups Hn(X,F).
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