
AAG, LECTURE 14

Today: mostly cohomology of quasi-coherent sheaves on schemes. Main refer-
ence: Hartshorne III.3, III.4, III.5, but we’ll do a few things differently.

1. Vanishing theorem

The following is very useful in sheaf cohomology on schemes. (But not in more
“topological” settings like differential geometry).

Theorem 1. If X is a noetherian topological space of dimension n and F a sheaf
of abelian groups on X then Hi(X,F) = 0 for all i > n.

Proof. See Hartshorne III.2.7. �

2. Flasque sheaves

An abelian sheaf F on a topological space X is called flasque (or flabby) if for
every inclusion U ⊂ V the restriction map F(V )→ F(U) is surjective.

Here are some properties of flasque sheaves (see Hartshorne, exercise II.1.15,
lemma III.2.4, lemma 3.4):

(1) if F is flasque and 0 → F → A → B → 0 exact then for any open U the
sequence 0→ F(U)→ A(U)→ B(U)→ 0 is exact;

(2) if F and G are flasque and 0 → F → G → Q → 0 is exact then also Q is
flasque;

(3) injective sheaves are flasque;
(4) if I is an injective A-module then Ĩ is a flasque sheaf on SpecA.

Theorem 2. Flasque sheaves are acyclic for Γ(X,−).

Proof. (See Hartshorne, III.2.5) Let F be a flasque sheaf on X. Choose an injection
F ↪−→ I into an injective sheaf and let Q be the quotient. Then by the above
properties we find that also I and Q are flasque, and we find that

0→ F(X)→ I(X)→ Q(X)→ 0

is exact.
We now show that for all flasque sheaves F on X and all p > 0 we have

Hp(X,F) = 0, by induction on p. For p = 1 use the long exact sequence, the
fact that I(X)→ Q(X) is surjective, and the fact that H1(X, I) = 0 (because I is
injective) to obtain H1(X,F) = 0.

For p > 1, note that Hp−1(X, I) = Hp(X, I) = 0 so we get from the long exact
sequence an isomorphism

Hp−1(X,Q)→ Hp(X,F)

but since Q is also flasque, we find Hp(X,F) = 0 by the induction hypothesis. �

In particular, we may compute sheaf cohomology by flasque resolutions.

Proposition 1. If (X,O) is a RS and I is an injective O-module, then I is flasque.
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As a corollary we see that the derived functors of global sections on the category
of sheaves of abelian groups, and on the category of O-modules coincide.

Corollary 1. The functors Hn(X,−) are the right derived functors of Γ(X,−) : O−
Mod→ Ab.

3. The Cech complex

Let U = (Ui)i∈I be an open covering of a topological space X. We write

Ui1···in := Ui1 ∩ Ui2 · · · ∩ Uin .
For any p ≥ 0 and any sheaf F in Ab(X) we define

Čp(U ,F) =
∏

v∈Ip+1

F(Uv).

Also, define maps
d : Čp(U ,F)→ Čp+1(U ,F)

as follows:

(ds)i0i1···ip =

p+1∑
j=0

(−1)psi0···îj ···ip .

Then it is a combinatorial exercise to check that d2 = 0 and hence that

Č(U ,F) =
[
· · · → 0→ Č0(U ,F)→ Č1(U ,F)→ · · ·

]
is a complex of abelian groups.

Proposition 2. H0(Č(U ,F)) = F(X).

Proof. Exercise: this is just a reformulation of the sheaf property. �

There is a sheaf-theoretic version of the Cech complex. For any open V ⊂ X
denote by f : V → X the inclusion. Then define

Cp(U ,F) =
∏

v∈Ip+1

f∗F|Uv

These form a complex C(U ,F) of sheaves on X with the property that Γ(X, C) = Č.
Note that there is a natural map F → C0(U ,F) given by sending a section s to

its restrictions on all the components.

Proposition 3. F [0]→ C(U ,F) is a resolution of F .

Proof. We need to show that (∗)
0→ F → C0 → C1 → · · ·

is exact. Exactness at F and C0 follows from the sheaf property of C. To show
exactness at Cp we can restrict to showing exactness on stalks. So take x ∈ X.
Choose a j ∈ I so that x ∈ Uj . Define for all p a map

hp : Cpx → Cp−1x

defined by
(hpα)i0i1...ip−1

= αji0...ip−1
.

Note that this makes sense: for V a small enough neighborhood of x we have

Ui0...ip−1
∩ V = Uji0...ip−1

∩ V.
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Now compute that hd + dh = id, so that the identity map from (∗) to itself is
homotopic with zero, hence (∗) has trivial cohomology groups, hence is exact. �

Corollary 2. For all p there is a natural map Hp(Č(U ,F))→ Hp(X,F), functorial
in F .

Proof. As we have seen last week, there is a morphism of complexes from any
resolution to an injective resolution, in particular we have a map from the Cech
resolution C to an injective resolution I of the sheaf F . Taking global sections and
then cohomology gives the desired maps. Since the map C → I is unique up to
homotopy, the resulting maps Hp(Č(U ,F))→ Hp(X,F) are well-defined.

Functoriality follows from the uniqueness modulo homotopy of C → I. �

Another corollary of the proposition is

Corollary 3. If F is flasque then for all p > 0 we have Hp(Č(U ,F)) = 0.

Proof. Since F is flasque all the Cp(U ,F) are flasque, so the Čech resolution is an
acyclic resolution, so its cohomology is the sheaf cohomology of F , but this is trivial
since F is acyclic. �

4. Alternating and ordered Čech complex

These are variations on the Čech complex that are sometimes more suitable for
computations.

An element s ∈ Čp(U ,F) is called alternating if the following properties hold:

(1) si0···ip = 0 if two indices are equal;
(2) sσ(i0)···σ(ip) = ε(σ)si0···ip for all permutations σ of the indices.

If s is alternating then so is ds, so the alternating s form a sub-complex denoted
Č′(U ,F). This is sometimes called the alternating Čech complex.

Proposition 4. The natural map of complexes Č′(U ,F) → Č(U ,F) induces an
isomorphism on the cohomology groups.

Instead of working with the alternate one can also choose an ordering on the
index set I of the covering U = (Ui)i∈I , and note that s is determined by the si0···ip
with i0 < · · · < ip. In other words, the composition

Čp(U ,F) ↪−→ Č′p(U ,F) −� Č′′p(U ,F) =
∏

i0<···<ip

F(Ui)

is an isomorphism. One thus obtains a complex Č′′ isomorphic with Č′. This is
sometimes called the ordered Čech complex. It is this last version that is used in
Hartshorne.

The advantage of Č′ and Č′′ over Č is that for finite covers they form complexes
of finite length. For example, if U = (U, V ) then Č′′ is the complex

· · · → 0→ F(U)×F(V )→ F(U ∩ V )→ 0→ · · ·

where the map sends a pair s, t to s|U∩V − t|U∩V . (Exercise: verify this!)
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5. Cohomology of quasi-coherent sheaves

Theorem 3. Let X be a separated noetherian scheme, F a quasi-coherent sheaf of
OX-modules and U a cover of X consisting of affine opens. Then for all p the map
Hp(Č(U ,F))→ Hp(X,F) is an isomorphism.

We do not need that X is separated, only that all intersections of affine opens in
U are also affine open. Also, the theorem is true without the Noetherian hypothesis,
see Stacks project, Coherent cohomology, paragraph 2.

The following is a crucial ingredient:

Proposition 5. If X is an affine scheme and 0 → F → A → B → 0 is an
exact sequence of OX-modules with F quasi-coherent, then 0→ F(X)→ A(X)→
B(X)→ 0 is exact.

Proof. See Hartshorne, II.5.6. �

Proof of Theorem 3. For p = 0 this follows from the sheaf property. Let F be quasi-
coherent and (Ui)i a finite open affine cover. For every i choose an embedding
F(Ui) → Ii with Ii an injective OX(Ui)-module. Then F → G = ⊕if∗Ĩi is an
embedding in a quasi-coherent flasque sheaf. Let Q be the quotient, so that

0→ F → G → Q → 0

is exact. Note that Q is itself quasi-coherent. By the lemma we find a short exact
sequence

0→ Č(U ,F)→ Č(U ,G)→ Č(U ,Q)→ 0

of Cech complexes. Since G is flasque, the higher cohomology of Č(U ,G) vanishes,
and we find H1(Č(U ,F)) = 0 because G(X)→ Q(X) is surjective (since F is quasi-
coherent). Moreover, we find isomorphisms Hp−1(Č(U ,Q)) → Hp(Č(U ,F)) which
allow us to prove the theorem for p > 1 by induction. (Using the fact that Q is
itself quasi-coherent!) �

6. Cohomology of quasi-coherent sheaves on affine schemes

A very important corollary to Theorem 3 is:

Corollary 4. If X is a noetherian affine scheme and F a quasi-coherent sheaf on
X, then Hp(X,F) = 0 for all p > 0.

Also true without noetherian hypothesis. Closely related to the theorem (one
could also first prove the corollary and then deduce the theorem from it).

Proof. Take the trivial open affine cover (X) of X. �

7. Cohomology of O(n) on Pr

In this section we do a fundamental computation: we compute the cohomology
groups of O(n) on Pr. For a graded module M we denote by Mn the part which is
homogeneous of degree n. In the theorem below, the grading is given by

deg xe00 x
e1
1 · · ·xerr = e0 + · · ·+ er.
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Theorem 4. Let A be a ring, r ≥ 1 and S := A[x0, . . . , xr]. Let n ∈ Z. Then

Hp(PrA,O(n)) =


Sn if p = 0(

1
x0···xr

A[ 1
x0
, . . . , 1

xr
]
)
n

if p = r

0 otherwise

Corollary 5. If −r − 1 < n then O(n) is an acyclic sheaf on PrA.

Example 7.1. The table below contains the ranks of the freeA-modules Hp(P1,O(n)):

n · · · −3 −2 −1 0 1 2 · · ·
rk H0(P1,O(n)) · · · 0 0 0 1 2 3 · · ·
rk H1(P1,O(n)) · · · 2 1 0 0 0 0 · · ·

Proof of Theorem 4. (See Stacks project, Coherent cohomology, paragraph 10.)
The case p = 0 was done in Lecture 10. For the general case, we will do a Čech
computation, using the ordered variant (but we will drop the double accent from
the notation).

Let Ui be the affine open D+(xi). Then U = (Ui)0≤i≤r is an affine open cover
of PrA. Use the standard ordering on I = {0, . . . , r}. Let C be the ordered Čech
complex for the sheaf O(n) with respect to this cover. Then we have

Cp =
⊕

i0<···<ip

A[x0, · · · , xr,
1

xi0 · · ·xip
]n

Note that all the R-modules that occur have a grading by Zr+1 by declaring the
monomial xe = xe00 · · ·xe

r

r to be homogeneous of degree e ∈ Zr+1. Since the
differential respects the grading, our complexes composes as a sum of homogeneous
components

C =
⊕
e

C(e)

where e runs over those e ∈ Zr+1 with e0 + · · · + er = n. We can now verify the
theorem component by component, we just need to show that

Hp(C(e)) =


S(e) if p = 0

1
x0···xr

A[ 1
x0
, . . . , 1

xr
](e) if p = r

0 otherwise.

All modules in this formula are free of rank 1 (generated by xe) or 0.
We first make C(e) more explicit. We have

Cp(e) =
⊕

i0<···<ip

Cp(e, i0 · · · ip)

where

Cp(e, i0 · · · ip) =

{
A · xe if ej < 0⇒ j ∈ {i0, . . . , ip}
0 otherwise

Now one can check that

Cp−1(e)→ Cp(e)→ Cp+1(e)
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is exact if 0 < p < r, and that

Hr(C(e)) = coker(Cr−1(e)→ Cr(e))

is free of rank 1 (generated by the image of xe) if all the ei are negative, and trivial
otherwise. �

8. Cohomology of coherent sheaves on projective schemes

Theorem 5 (Serre). Let A be a noetherian ring, X be a scheme over A and
f : X → PrA a closed immersion of A-schemes. Let F be a coherent sheaf of OX-
modules.

(1) for all p we have that Hp(X,F) is a finitely generated A-module;
(2) there exists an N ∈ Z so that for all n ≥ N and all p > 0 we have

Hp(X,F ⊗OX
f∗OPr (n)) = 0.

Note that the projectivity can not be dropped from (1)! Clearly H0(Ar
A,OAr )

is not a finitely generated A-module if r > 0. More general version of (1), due to
Grothendieck: if f : X → Y is a proper morphism of schemes and F a coherent
sheaf of OX -modules then for every p the OY -module Rpf∗OX is coherent.

Example: X = Pr, and F = OX(q), then we have seen in the previous section
that (i) holds, and that for (ii) we can take N = −r − q.

Another example: if X is projective over a field k then Γ(X,OX) is finite-
dimensional.

Proof. f∗F is a coherent sheaf on PrA, and for all p and n we have

Hp(Pr, f∗F ⊗O(n)) = Hp(X,F ⊗ f∗O(n)).

(For example, because their Čech complexes for the standard affine open cover of
Pr, resp. the intersection of this open cover with X coincide). So we may assume
X = Pr and f = id.

By the computation from the previous section, we know that the theorem holds
for any sheaf which is a finite direct sum of line bundles of the form OPr (q).

To prove (i), use descending induction on p. For p > r the cohomology group is
trivial (use the standard affine open cover of Pr, and the ordered Cech complex to
see this). In particular it is finitely generated.

Assume the theorem holds for some p and for all coherent sheaves F on Pr. For
every coherent sheaf F there is a short exact sequence

0→ A→ B → F → 0

where B is a finite direct sum of various O(q)’s. It follows that also A is coherent.
The long exact sequence gives an exact sequence of A-modules

· · · → Hp−1(Pr,B)→ Hp−1(Pr,F)→ Hp(Pr,A)→ · · · .

The module on the right is finitely generated by the induction hypothesis, the
module on the left is finitely generated because B is a finite sum of O(q)’s, so since
the ring A is noetherian the module in the middle is also finitely generated.

To prove (ii) we use the same kind of induction. Twisting the short exact se-
quence 0→ A→ B → F → 0 gives an exact sequence of A-modules

· · · → Hp−1(Pr,B ⊗O(n))→ Hp−1(Pr,F ⊗O(n))→ Hp(Pr,A⊗O(n))→ · · · .
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For n sufficiently large the module on the left is trivial because B is a finite sum of
O(q)’s, and for n sufficiently large the module on the right is trivial by the induction
hypothesis. �
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