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Quotients of schemes by finite group actions
Let G be a finite group acting (from the left) on a scheme X, meaning that for all g ∈ G
we have an automorphism ρ(g) of X, with ρ(1G) = idG and ρ(gh) = ρ(g)ρ(h) ∀g, h ∈ G.
We would like to understand whether, or under what condition, we can “pass to the
quotient G\X” and, in that case, what kind of object we obtain.

To make this precise, by categorical quotient of X by the action of G we mean a
scheme Y , together with a morphism q : X → Y which is G-invariant, i.e. q ◦ ρ(g) = q
∀g ∈ G, and such that every G-invariant map q′ : X → Y ′ factors uniquely through q (i.e.
there exists a unique map q̄ : Y → Y ′ such that q′ = q̄ ◦ q).

It may well happen that such a categorical quotient exists, but with very little to
do with what we expect from our geometric idea of quotient; for instance, it might not
separate the orbits. The idea, then, is to construct an object in the bigger category of
locally ringed spaces, which will be the categorical quotient of X by G in this category;
in other words, we build a locally ringed space Y satisfying the same universal property
as above, but for morphisms between locally ringed spaces. This object will have the
desired geometric properties and, if it turns out to be a scheme, then we call it the
geometric quotient of X by the action of G. When this is the case, since the category of
schemes is a full subcategory of that of locally ringed spaces (by definition of a morphism
of schemes), Y will also be the categorical quotient of X by G in the category of schemes.
The construction goes as follows.

• Let Y := G\X as sets, with the quotient topology, and let q : X → G\X = Y be
the canonical projection.

• For V ⊆ Y open, let U := q−1(V ) ⊆ X; U is open in X and it is G-stable (i.e.
ρ(g)(U) ⊆ U ∀g ∈ G), hence G acts (from the right) on OX(U) = q∗OX(V ), via
ρ(g)# : OX(U)→ OX(U), for g ∈ G.

Let OY (V ) := OX(U)G :=
{
f ∈ OX(U)

∣∣∣ ρ(g)#(f) = f ∀g ∈ G
}
, the subring of

G-invariants.
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Then, OY is a subsheaf of rings of q∗OX (mainly because ρ(g)# commutes with the
restrictions of OX , for g ∈ G). Moreover, (Y,OY ) is a locally ringed space, with q
a morphism of locally ringed spaces (on the sheaves it is just the inclusion), and
q : X → Y is the categorical quotient of X by G, in the category of locally ringed
spaces (this is an exercise, see the hint at the end). We will denote Y by G\X.

In the affine case, this construction gives a particularly nice result; namely, it gives
back an affine scheme.

Proposition 1. With notation as above, if X = SpecA is an affine scheme, then
Y = G\X ∼= SpecAG, where AG is the subring of invariants for the (right) G-action on
A (via ρ(g)# =, g ∈ G). The quotient map q : X → Y is the one induced by the inclusion
AG ⊆ A and it is integral, closed and surjective.

Proof. For all a ∈ A, let a ·g denote ρ(g)#(a); the polynomial
∏
g∈G(X−a ·g) ∈ AG[X] is

monic and vanishes at a. Thus, q is integral. The fact that q is also closed and surjective
is a general fact about integral morphisms (see [3, 5.10]).

If p, p′ ∈ SpecA lie in the same orbit, then q(p) = p ∩ AG = p′ ∩ AG = q(p′), hence
the continuous map |q| : |SpecA| → |SpecAG| factors as | SpecA| → G\|SpecA| |q̄|−→
| SpecAG|. On the other hand, if p, p′ ∈ SpecA are such that p∩AG = p′ ∩AG, then, for
all x ∈ p, we have N(x) :=

∏
g∈G x · g ∈ p ∩AG = p′ ∩AG ⊆ p′, hence p ⊆

⋃
g∈G g · p′, so

p ⊆ g ·p′ for some g ∈ G (see [3, 1.11(i)]), but then p = g ·p′. Thus, |q̄| is a homeomorphism
(the inverse is continuous because q is closed).

Finally, for all f ∈ AG, we have (AG)f ∼= (Af )G (this is an exercise, namely [3,
ex5.12]), hence OY ∼= OSpecAG .

The way to generalize the above result to arbitrary scheme is given in the following
corollary.

Corollary 2. Let X be a scheme with an action by a finite group G, such that every
orbit is contained in an open affine subset of X. Then G\X is a scheme.

Proof. The trick is to find, for all x ∈ X, a G-stable open affine subset U ⊆ X containing
the orbit G·x. Then, for y ∈ G\X, if we take U = SpecA containing the orbit represented
by y as above, we have, by the last proposition, q(U) ∼= SpecAG (here q : X → G\X is
the projection; note that q(U) = G\U by construction), with q(U) open in G\X.

As for the first part, let U0 = SpecA be an affine open subset of X containing the
orbit G · x and define U1 :=

⋂
g∈G g · U0. U1 is open, G-stable and contains G · x. Let

I ⊆ A be an ideal defining the closed subset U0 \ U1 of U0 = SpecA. Let p1, . . . , pn ∈ U0
be the prime ideals corresponding to the points of G ·x. Let a ∈ I \

⋃n
i=1 pi (if I ⊆

⋃n
i=1 pi,

then I ⊆ pi for some i, i.e. pi ∈ V (I) = U0 \ U1, contradicting G · x ⊆ U1). Let, finally,
U2 := D(a) = SpecAa ⊆ U1, so that G · x ⊆ U2, and define U3 :=

⋂
g∈G g · U2. Since

U2 is affine, as well as every g · U2 (because U2 ⊆ U1 ⊆ U0, with U1 G-stable) and U0 is
separated (because affine), then U3 is affine. It is also open, G-stable and it contains the
orbit G · x.
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Remark 3. When X is projective over a scheme S and G acts on X over S, then the
hypothesis of the preceding corollary is automatically satisfied. This follows from the
fact that a finite set of points in the projective space, over any filed, is always contained
in an open affine subset.

Example 4. Here we will take for granted some basic notions in invariant theory. Let
R be a ring, n ≥ 1 an integer, A := R[x1, . . . , xn], G := Sn the symmetric group on
n elements, acting on A via permutations of the xi’s (for σ ∈ G, σ(xi) = xσ(i)). Then
B := AG = R[e1, . . . , en], where e1, . . . , en are the elementary symmetric polynomials
(ek =

∑
1≤ji<···<jk≤n xj1 · · ·xjk). Since e1, . . . , en are algebraically independent over R,

we have B ∼= A. Therefore, if X := SpecA = AnR, then X/G ∼= SpecB ∼= X.

Remark 5. All the above discussion can be put in the more general context of a group
scheme acting on a scheme. Indeed, a finite group G can be seen as a group scheme over a
base field k as G :=

∐
g∈G Spec k ∼= Spec

∏
g∈G k, where the group law of G induces maps

m : G×k G→ G (multiplication), e : Spec k → G (neutral element), i : G→ G (inverse),
satisfying the group axioms. Since G×kX =

(∐
g∈G Spec k

)
×kX ∼=

∐
g∈G(Spec k×kX) ∼=∐

g∈GX, an action ρ : G ×k X → X is just a set of maps ρ(g) : X → X, for g ∈ G,
satisfying the axioms of an action.

In the general case of a group scheme G acting on a scheme X over a basis S, the
fact that it may happen that, as topological spaces, |G×S X| 6= |G| ×|S| |X|, forces the
construction of the geometric quotient to be done in the category of ringed spaces, where
such an equality holds.

Proposition 6. Let R be a Noetherian ring, X a scheme of finite type over R, G a
finite group acting on X over R, in such a way that the conditions of corollary 2 are
satisfied. Then G\X is of finite type over R and the projection π : X → G\X is finite.

Proof. First reduce to the case of X = SpecA affine, with A finitely generated over R
(cover X by G-stable affine opens as in the proof of the corollary).

Now let x1, . . . , xn generate A over R. Let C ⊆ AG be the R-algebra generated by
the coefficients of the polynomials

∏
g∈G(X − xi · g), for i = 1, . . . , n. Since C is finitely

generated over R, which is a Noetherian ring, C is Noetherian too. Moreover, A is
integral and finitely generated over C, hence it is finite over C. But then AG ⊆ A is also
finite over C, hence finitely generated over R. Moreover, the fact that A is finite over C
implies that A is finite over AG as well.

Proposition 7. Let X be a scheme over a ring R, G a finite group acting on X over R,
in such a way that the conditions of corollary 2 are satisfied. If R′ is a flat R-algebra,
then G\(X ×SpecR SpecR′) ∼= (G\X)×SpecR SpecR′.1

Proof. For X = SpecA affine, consider the exact sequence of R-modules:

0→ AG →A→
∏
g∈G

A

a 7→ (a · g − a)g∈G.
1Note that the action of G on X pulls back to an action on X ×Spec R Spec R′.
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By flatness, the sequence remains exact after tensoring with ⊗RR′, i.e. AG ⊗R R′ ∼=
(A⊗R R′)G (the G-action on A⊗R R′ is given by g ⊗ idR′ , for g ∈ G).

In the general case, reduce to X affine as before.

Symmetric Powers of curves

As an example of the above construction, let k be a field and C a smooth projective
geometrically irreducible curve over k. On the product Cn = C ×k · · · ×k C, we have an
action of the symmetric group Sn, given by permutations of the components (σ ∈ Sn
acts via (prσ(1), . . . , prσ(n)) : Cn → Cn). As C is projective of finite type over k, the
preceding results ensure that C(n) := Sn\Cn is a scheme of finite type over k, called the
n-th symmetric power of C.

Example 8. We have (P1
k)(n) ∼= Pnk .

The idea behind this is that for any k-algebra A we can construct a map (P1
k)n(A) =

(P1
k(A))n → Pnk(A) in the following way. For any point (P1, . . . , Pn) ∈ (P1

k(A))n we can
write, locally on SpecA, Pi = [ai, bi] (homogeneous coordinates in A), for i = 1, . . . , n.2
We can then map (P1, . . . , Pn) to the point of Pnk(A) corresponding to the homogeneous
coordinates given by the coefficients of the polynomial

∏n
i=1(biX − aiY ) ∈ A[X,Y ]n

(again locally; one has indeed to check that these pieces glue to a map SpecA→ Pnk). By
Yoneda lemma and the fact that the functor of points of a scheme is determined by its
values on affine schemes, this yields a map (P1

k)n → Pnk . By construction, this map is
Sn-invariant and hence yields a morphism (P1

k)(n) → Pnk . Then one proves that this is an
isomorphism.

Proposition 9. With notation as above, C(n) is smooth, projective, of dimension n.

Proof (idea). C(n) is smooth if and only if (C(n))k̄ = C(n) ×k Spec k̄ is regular (k̄ an
algebraic closure of k). But k → k̄ is flat, hence (C(n))k̄ ∼= (Ck̄)(n) by proposition 7. More-
over, regularity can be checked on closed points. However, since k̄ is algebraically closed,
the closed points of (Ck̄)(n) are exactely the k̄-valued points (Ck̄)(n)(k̄) ∼= Sn\(Ck̄)n(k̄),
where the last isomorphism is because (Ck̄)(n) = Sn\(Ck̄)n is also a topological quotient.
Now, if x = (P1, . . . , P1, . . . , Pr, . . . , Pr) ∈ (Ck̄)(n)(k̄), with Pi occurring mi ≥ 1 times
(i = 1, . . . , r), we have ÔCk̄,Pi

∼= k̄[[ti]] and Ô(Ck̄)n,x
∼= k̄[[t1,1, . . . , t1,m1 , . . . , tr,1, . . . , tr,mr ]].

One then proves that ̂O(Ck̄)(n),y
∼= k̄[[e1,1, . . . , e1,m1 , . . . , er,1, . . . , er,mr ]], where y is the

image of x in Sn\(Ck̄)n = (Ck̄)(n) and ei,1, . . . , ei,mi are the elementary symmetric poly-
nomials in ti,1, . . . , ti,mi (i = 1, . . . , r). Thus, ̂O(Ck̄)(n),y is regular, hence so is O(Ck̄)(n),y

(see [3, 11.24]).
The rest of the proposition is proved using the previous example.

2 A map Spec A→ P1
k does not necessarily factor through an affine component of P1

k, but it does locally
on Spec A. Each local piece of our map will then correspond to a k-linear homomorhism k[x0/x1]→ C
or k[x1/x0]→ C, with C a localization of A, i.e. to homogeneous coordinates [c0 : c1] in C.
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Extra
Hint. For y ∈ Y and x ∈ X mapping to y, there is a natural map OY,y → (q∗OX)y →
OX,x, which is in fact the map induced by q on the stalks. Let mc be the contraction of
the maximal ideal m of OX,x in OY,y. If f ∈ OY,y \mc, then its image in the residue field
k(x) = OX,x/m is non-zero. Say f comes from a section f ∈ OY (V ) = OX(q−1(V ))G
for some V ⊆ Y open. Then D(f) ⊆ q−1(V ) is an open neighbourhood of x and, since
f is G-invariant, it is G-stable, so D(f) = q−1(V ′), V ′ = q(D(f)) ⊆ Y open. Now,
f ∈ OX(D(f))× ∩ OX(D(f))G = (OX(D(f))G)× = OY (V ′)×, hence f ∈ O×Y,y. Thus,
OY,y is local with maximal ideal mc and the map OY,y → OX,x is a local homomorphism
of local rings.

Comment. These notes are based on [1] and claim no originality.
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