

Topics in Algebraic Geometry, spring 2016

Elliptic curves over ${\mathbb C}$ with ${\mathbf C}{\mathbf M}$

Author: J.E.F. Rood

February 24, 2016

The talk of today has two goals: Finding elliptic curves with CM by a certain ring R; Finding an example such that $H_1(E/\mathbb{C},\mathbb{Z})$ is can not be algebraically defined.

1 Elliptic curves

Definition. An *elliptic curve* (E, O) is an projective smooth curve E of genus 1 with a distinguished point $O \in E$. We often denote an elliptic curve only by E. We say that E is an elliptic curve over a field K is it as a curve is defined over K and $O \in E(K)$.

For this talk we are only interested in elliptic curves E over \mathbb{C} and so if not specified we assume it is. Then we define some quantities for $a_1, a_3, a_2, a_4, a_6 \in K$.

$$b_{2} = a_{1}^{2} + 4a_{4},$$

$$b_{4} = 2a_{4} + a_{1}a_{3},$$

$$b_{6} = a_{3}^{2} + 4a_{6}$$

$$b_{8} = a_{1}^{2}a_{6} + 4a_{2}a_{6} - a_{1}a_{3}a_{4} + a_{2}a_{3}^{2}a_{4}^{2},$$

$$c_{4} = b_{2}^{2} - 24b_{4},$$

$$c_{6} = -b_{2}^{3} + 36b_{2}b_{4} - 216b_{6},$$

$$\Delta = -b_{2}^{2}b_{8} - 8b_{4}^{3} - 27b_{6}^{2} + 9b_{2}b_{4}b_{6},$$

$$j = \frac{c_{4}^{3}}{\Delta}$$

Definition. The quantity Δ we call as the *discriminant* and the quantity j we call the *j*-invariant.

If E is an elliptic curve over K, then by theorem 3.1 of [Sil86] there are $a_1, a_3, a_2, a_4, a_6 \in K$ with non-zero discriminant such that E is given by the equation:

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

- **I.1** Definition. An morphism φ of two elliptic curves E_1, E_2 over K is an morphism of curves such that $\varphi(O_1) = O_2$. An ismorphism of curves is an isomorphism of curves such that $\varphi(O_1) = O_2$.
- **I.2** Theorem. Let E_1, E_2 be two elliptic curves with respectively *j*-invariant j_1, j_2 . Then we have that $E_1(\bar{K})$ and $E_2(\bar{K})$ are isomorphic if and only if $j_1 = j_2$. Furthermore if $j_0 \in \bar{K}$ the there is an elliptic curve E_0 defined over $K(j_0)$ with *j*-invariant j_0 .

Proof. Proposition III.1.4. of [Sil86].

Remark. An morphism $\varphi : E_1 \to E_2$ is either surjective $(\phi(E_1) = E_2)$ and finite or constant $(\phi(E_1) = O_2)$.

Definition. The degree of the constant morphism we set as 0. The degree of an non constant morphism $\varphi : E_1 \to E_2$ is the degree $[\bar{K}(E_1) : \varphi^* \bar{K}(E_2)]$ of the field extension of the function fields. Let respectively $\deg_s(\varphi)$, $\deg_i(\varphi)$ be the separable degree or the inseparable degree of this extension.

Remark. • Let
$$\varphi_1 : E_1 \to E_2, \varphi_2 : E_2 \to E_3$$
 be morphisms, then:

$$\deg(\varphi_1) \cdot \deg(\varphi_2) = \deg(\varphi_1 \circ \varphi_2)$$

• Let $\varphi: E_1 \to E_2$ an morphism, then for all $Q \in E_2$ we have

$$\deg_s(\varphi) = \varphi^{-1}(Q).$$

Furthermore for all $P \in E_1$ holds

$$\deg_i(\varphi) = e_{\varphi}(P).$$

- Let $\varphi, \psi : E_1 \to E_2$ morphisms, then $(\varphi + \psi)(Q) = \varphi(Q) + \psi(Q)$ for $Q \in E_1$ defines addition law on the set $\operatorname{Hom}(E_1, E_2)$ of morphisms. If we take $E_1 = E_2$ we can even define a multiplication law $(\varphi\psi)(Q) = (\varphi(\psi(Q)) \text{ on } \operatorname{Hom}(E, E) = \operatorname{End}(E)$. We set Aut(E) = $\{\sigma \in \operatorname{End}(E) | \deg \sigma = 1\}.$
 - Let $n \in \mathbb{Z}$ then the multiplication-by-n map $[n] : E \to E$ is an morphism of degree n^2 .
- **I.4** Definition. Let E be an elliptic curve over \mathbb{C} , then we say that E has complex multiplication iff there is an $\sigma \in \text{End}(E)$ such that σ is not the multiplication-by-n morphism for all $n \in \mathbb{Z}$. In other words, $\text{End}(E) \not\cong \mathbb{Z}$.
- **I.5** Example. Let E/\mathbb{C} given by the relation

$$y^2 = x^3 - x.$$

Now the map $[i] : E \to E, (x : y : z) \mapsto (-x : iy : z)$ is well defined, rational in the coordinates and sends O to O, thus an morphism. Note that $[i] \circ [i] = [-1]$ and thus $[i] \neq [n]$ for $n \in \mathbb{Z}$. So we have that $\mathbb{Z}[i] \subset \operatorname{End}(E)$, but this turns out to be the complete endomorphism ring.

I.6 Theorem. The endomorphism ring $\operatorname{End}(E)$ is either isomorphic to \mathbb{Z} or is an order R in an imaginary quadratic extension of \mathbb{Q} . In the latter case we say that E has CM by R.

Proof. See Theorem VI.5.5 of [Sil86].

I.3

2 Lattices

II.1 Definition. An subset Λ of \mathbb{C} is a *lattice in* \mathbb{C} if there are $w_1, w_2 \in \mathbb{C}^*$, such that $w_1/w_2 \notin \mathbb{R}$ and $\Lambda = w_1\mathbb{Z} + w_2\mathbb{Z}$.

We look at two families of series given a lattice Λ , first the *weierstrass* \wp -function and it's derivative:

$$\wp(z;\Lambda) = \frac{1}{z^2} + \sum_{w \in \Lambda, w \neq 0} \frac{1}{(z-w)^2} - \frac{1}{w^2}$$
$$\wp'(z) = -2\sum_{w \in \Lambda} \frac{1}{(z-w)^3}.$$

and secondly the eisenstein series of weight 2n:

$$G_{2n}(\Lambda) = \sum_{w \in \Lambda, w \neq 0} w^{-n}$$

These functions will help us demonstrate the correspondences between elliptic curves and lattices.

Theorem (Uniformization Theorem). Set $g_2 = 60G_4(\Lambda)$ and $g_3 = 140G_6(\Lambda)$. For $z \in \mathbb{C}/\Lambda$ the weierstrass \wp -function and it's derivative satisfy the relation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

II.3 and the discriminant $\Delta(\Lambda) = g_2^3 - 27g_3^2$ doesn't vanish. Now we can define E/\mathbb{C} to be an elliptic curve with *j*-invariant $1728\frac{g_2^3}{\Delta}$, like the one given by the polynomial

$$Y^2 = 4X^3 - g_2X - g_3.$$

Furthermore the map

$$G:\mathbb{C}/\Lambda\to E(\mathbb{C}), z\mapsto [\wp(z),\wp'(z),1]$$

is an isomorphism of Riemann surfaces that is also a group homomorphism.

Proof. See Theorem 2.4 and 2.5 in [Ste91] or see Theorem 3.8 [Rho07]. \Box

II.3 Theorem. Let E/\mathbb{C} be an elliptic curve over \mathbb{C} . Then $H_1(E,\mathbb{Z})$ is isomorphic to a lattice Λ in \mathbb{C} . We have that there is an complex analytic map of lie groups, that is the inverse to the map given in 2 and is given by

$$F: E(\mathbb{C}) \to \mathbb{C}/\Lambda, P \mapsto \int_O^P \frac{dx}{y} \pmod{\Lambda}$$

Proof. See Proposition VI.5.2 and VI.5.6 of [Sil86].

II.4 **Theorem.** Let E_1, E_2 elliptic curves, with corresponding lattices Λ_1, Λ_2 . There is an morphism $\phi: E_1 \to E_2$ if and only if there is an $\alpha \in \mathbb{C}^*$ such that $\alpha \Lambda_1 \subset \Lambda_2$. Likewise, is there an isomorphism $\phi : E_1 \to E_2$ if and only if there is an $\alpha \in \mathbb{C}^*$ such that $\alpha \Lambda_1 = \Lambda_2$.

Proof. See Corollary VI.4.1.1 of [Sil86].

II.4 **Theorem.** There is an equivalence of categories between elliptic curves with morphism and lattices in \mathbb{C} with maps $\operatorname{Hom}(\Lambda_1, \Lambda_2) = \{ \alpha \in \mathbb{C} : \alpha \Lambda_1 \subset \Lambda_2 \}.$

Proof. See Theorem VI.5.3 of [Sil86].

3 CM by ring of integers

Now we have more then enough theory to find an elliptic curve with CM.

Definition. The class group Cl(R) of an ring of integers of an number field is defined as

{fractional ideal} {principal fractional ideals}

and denote the number of class in CL(R) as h(R).

III.1 **Lemma.** Let K be an imaginary quadratic extension of \mathbb{Q} and \mathcal{O}_K its ring of integers (i.e. maximal order). Then every ideal of \mathcal{O}_K is a lattice in $\mathbb C$ and thus correspond to an elliptic curve. Moreover ideals corresponds to isomorphic elliptic curves if and only if the ideals are in same equivalence class in the class group.

Exercise. Prove this lemma.

The second goal was to find elliptic curves that demonstrate that $H_1(E,\mathbb{Z})$ can not be algebraically defined

- III.2 **Corollary.** The class number $h(\mathcal{O}_K)$ of \mathcal{O}_K is also the number of isomorphism classed of elliptic curves with CM by \mathcal{O}_K .
- III.3 **Theorem.** The If Λ is an fractional ideal in \mathcal{O}_K , then: 1 $j(\Lambda) \in \overline{\mathbb{Q}}$ and $[\mathbb{Q}(j)(\Lambda) : \mathbb{Q}] = [K(j(\Lambda)) : K].$
 - **2** $K(j(\Lambda))$ is the maximal unramified abelian extension of K.
 - **3** If $[\Lambda_1], ..., [\Lambda_{h(\mathcal{O}_K)}]$ are the different classes of $Cl(\mathcal{O}_K)$ then $j(\Lambda_1), ..., j(\Lambda_{h(\mathcal{O}_K)})$ are the $\operatorname{Gal}(K/K)$ conjugates of the class of $[\Lambda]$.

Proof. See Theorem 11.2 in Appendix C of Silverman.

III.4 So if we take $R = \mathbb{Z}[\sqrt{-5}]$, the ring of integers of $\mathbb{Q}(\sqrt{-5}]$ with h(R) = 2. Then (1) and $(2, \sqrt{-5} + 1)$ are representatives of the two classes in the class group of R. We will work with the lattices $\Lambda_1 = \mathbb{Z} + \sqrt{-5}\mathbb{Z} = (1)$ and $\Lambda_2 = \mathbb{Z} + \frac{1+\sqrt{-5}}{2}\mathbb{Z} = \frac{1}{2}(2, \sqrt{-5} + 1)$. To find the *j*-invariant we will use *q*-expansion of the the eisenstein series for lattices of the form $\mathbb{Z} + \tau\mathbb{Z}$:

$$G_{2n}(\tau) = 2\zeta(2n) + 2\frac{(2\pi i)^{2n}}{(2n-1)!} \sum_{k=1}^{\infty} \frac{k^{2n-1}q^k}{1-q^k},$$

where $q = e^{2\pi i \tau}$ and ζ is the riemann zeta function. I used Sage to find an approximation of the g_2 and g_3 for both lattices and the curve itself.

$$E_1: y^2 = x^3 + ax + b$$
$$E_2: y^2 = x^3 + \sigma(a)x + \sigma(b)$$

with $a = -1071214510080\sqrt{5} - 2395312128000$ and $b = -901828270977187840\sqrt{5} - 2016549312397312000$ and σ an automorphism of \mathbb{C} such that $\sigma(\sqrt{5}) = -\sqrt{5}$ and $\sigma(\sqrt{-5}) = \sqrt{-5}$.

Now we can define an isomorphism $\bar{\sigma} : \mathbb{C}[x, y]/(-y^2 + x^3 + ax + b) \to \mathbb{C}[x, y]/(-y^2 + x^3 + \sigma(a)x + \sigma(b))$ where on \mathbb{C} we apply the automorphism $\sigma, x \mapsto x$ and $y \mapsto y$.

Now $H_1(E_1, \mathbb{Z})$ can't algebraically be defined, since then there would be an induced isomorphism of $H_1(E_1, \mathbb{Z})$ as module over $\operatorname{End}(E_1)$ to $H_1(E_2, \mathbb{Z})$ as module over $\operatorname{End}(E_2)$, but recall $\operatorname{End}(E_1) \cong \mathbb{Z}[\sqrt{-5}] \cong \operatorname{End}(E_2)$, that $\sigma_{|\operatorname{End}(E_1)} = \operatorname{Id}_{\mathbb{Z}[\sqrt{-5}]}$ and that $H_1(E_1, \mathbb{Z}) \cong \Lambda_1$ is free over $\mathbb{Z}[\sqrt{-5}]$ but $H_1(E_2, \mathbb{Z}) \cong \Lambda_1$ is not.

Exercise. Find an elliptic curve that doesn't have CM.

Exercise. Find the elliptic curve E with CM by a maximal order, such that $\# \operatorname{Aut}(E) = 6$, are there any such elliptic curves with $\# \operatorname{Aut}(E) > 6$

Exercise. There are 13 elliptic curves defined over \mathbb{Q} with CM, find 9 of them.

References

[Rho07] R.C. Rhoades. Classifying elliptic curves. 2007.

[Sil86] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.

[Ste91] P. Stevenhagen. *Elliptic Functions*. UvA, 1991.

VI.1