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The talk of today has two goals: Finding elliptic curves with CM by
a certain ring R; Finding an example such that H1(E/C,Z) is can not be
algebraically defined.

1 Elliptic curves

Definition. An elliptic curve (E,O) is an projective smooth curve E of
genus 1 with a distinguished point O ∈ E. We often denote an elliptic curve
only by E. We say that E is an elliptic curve over a field K is it as a curve
is defined over K and O ∈ E(K).

For this talk we are only interested in elliptic curves E over C and
so if not specified we assume it is. Then we define some quantities for
a1, a3, a2, a4, a6 ∈ K.

b2 = a2
1 + 4a4,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3a

2
4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j =
c3

4

∆

Definition. The quantity ∆ we call as the discriminant and the quantity j
we call the j-invariant.

If E is an elliptic curve over K, then by theorem 3.1 of [Sil86] there are
a1, a3, a2, a4, a6 ∈ K with non-zero discriminant such that E is given by the
equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Definition. An morphism ϕ of two elliptic curves E1, E2 over K is an mor-I.1
phism of curves such that ϕ(O1) = O2. An ismorphism of curves is an
isomorphism of curves such that ϕ(O1) = O2.

Theorem. Let E1, E2 be two elliptic curves with respectively j-invariantI.2
j1, j2. Then we have that E1(K̄) and E2(K̄) are isomorphic if and only
if j1 = j2. Furthermore if j0 ∈ K̄ the there is an elliptic curve E0 defined
over K(j0) with j-invariant j0.
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Proof. Proposition III.1.4. of [Sil86].

Remark. An morphism ϕ : E1 → E2 is either surjective (φ(E1) = E2) and
finite or constant (φ(E1) = O2).

Definition. The degree of the constant morphism we set as 0. The degree
of an non constant morphism ϕ : E1 → E2 is the degree [K̄(E1) : ϕ∗K̄(E2)]
of the field extension of the function fields. Let respectively degs(ϕ), degi(ϕ)
be the separable degree or the inseparable degree of this extension.

Remark. • Let ϕ1 : E1 → E2, ϕ2 : E2 → E3 be morphisms, then:

deg(ϕ1) · deg(ϕ2) = deg(ϕ1 ◦ ϕ2)

• Let ϕ : E1 → E2 an morphism, then for all Q ∈ E2 we have

degs(ϕ) = ϕ−1(Q).

Furthermore for all P ∈ E1 holds

degi(ϕ) = eϕ(P ).

• Let ϕ, ψ : E1 → E2 morphisms, then (ϕ + ψ)(Q) = ϕ(Q) + ψ(Q)I.3
for Q ∈ E1 defines addition law on the set Hom(E1, E2) of mor-
phisms. If we take E1 = E2 we can even define a mulitplication law
(ϕψ)(Q) = (ϕ(ψ(Q)) on Hom(E,E) = End(E). We set Aut(E) =
{σ ∈ End(E)| deg σ = 1}.

• Let n ∈ Z then the multiplication-by-n map [n] : E → E is an mor-
phism of degree n2.

Definition. Let E be an elliptic curve over C, then we say that E hasI.4
complex multiplication iff there is an σ ∈ End(E) such that σ is not the
multiplication-by-n morphism for all n ∈ Z. In other words, End(E) 6∼= Z.

Example. Let E/C given by the relationI.5

y2 = x3 − x.

Now the map [i] : E → E, (x : y : z) 7→ (−x : iy : z) is well defined,
rational in the coordinates and sends O to O, thus an morphism. Note that
[i] ◦ [i] = [−1] and thus [i] 6= [n] for n ∈ Z. So we have that Z[i] ⊂ End(E),
but this turns out to be the complete endomorphism ring.

Theorem. The endomorphism ring End(E) is either isomorphic to Z or isI.6
an order R in an imaginary quadratic extension of Q. In the latter case we
say that E has CM by R.

Proof. See Theorem VI.5.5 of [Sil86].
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2 Lattices

Definition. An subset Λ of C is a lattice in C if there are w1, w2 ∈ C∗, suchII.1
that w1/w2 6∈ R and Λ = w1Z + w2Z.

We look at two families of series given a lattice Λ, first the weierstrass
℘-function and it’s derivative:

℘(z; Λ) =
1

z2
+

∑
w∈Λ,w 6=0

1

(z − w)2
− 1

w2

℘′(z) = −2
∑
w∈Λ

1

(z − w)3
.

and secondly the eisenstein series of weight 2n:

G2n(Λ) =
∑

w∈Λ,w 6=0

w−n

These functions will help us demonstrate the correspondences between elliptic
curves and lattices.

Theorem (Uniformization Theorem). Set g2 = 60G4(Λ) and g3 = 140G6(Λ).
For z ∈ C/Λ the weierstrass ℘-function and it’s derivative satisfy the relation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

and the discriminant ∆(Λ) = g3
2 − 27g2

3 doesn’t vanish. Now we can defineII.3

E/C to be an elliptic curve with j-invariant 1728
g32
∆

, like the one given by the
polynomial

Y 2 = 4X3 − g2X − g3.

Furthermore the map

G : C/Λ→ E(C), z 7→ [℘(z), ℘′(z), 1]

is an isomorphism of Riemann surfaces that is also a group homomorphism.

Proof. See Theorem 2.4 and 2.5 in [Ste91] or see Theorem 3.8 [Rho07].

Theorem. Let E/C be an elliptic curve over C. Then H1(E,Z) is isomor-II.3
phic to a lattice Λ in C. We have that there is an complex analytic map of
lie groups, that is the inverse to the map given in 2 and is given by

F : E(C)→ C/Λ, P 7→
∫ P

O

dx

y
(mod Λ)
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Proof. See Proposition VI.5.2 and VI.5.6 of [Sil86].

Theorem. Let E1, E2 elliptic curves, with corresponding lattices Λ1,Λ2. ThereII.4
is an morphism φ : E1 → E2 if and only if there is an α ∈ C∗ such that
αΛ1 ⊂ Λ2. Likewise, is there an isomorphism φ : E1 → E2 if and only if
there is an α ∈ C∗ such that αΛ1 = Λ2.

Proof. See Corollary VI.4.1.1 of [Sil86].

Theorem. There is an equivalence of categories between elliptic curves withII.4
morphism and lattices in C with maps Hom(Λ1,Λ2) = {α ∈ C : αΛ1 ⊂ Λ2}.

Proof. See Theorem VI.5.3 of [Sil86].

3 CM by ring of integers

Now we have more then enough theory to find an elliptic curve with CM.

Definition. The class group Cl(R) of an ring of integers of an number field
is defined as

{fractional ideal}
{principal fractional ideals}

and denote the number of class in CL(R) as h(R).

Lemma. Let K be an imaginary quadratic extension of Q and OK its ringIII.1
of integers (i.e. maximal order). Then every ideal of OK is a lattice in
C and thus correspond to an elliptic curve. Moreover ideals corresponds to
isomorphic elliptic curves if and only if the ideals are in same equivalence
class in the class group.

Exercise. Prove this lemma.

The second goal was to find elliptic curves that demonstrate thatH1(E,Z)
can not be algebraically defined

Corollary. The class number h(OK) of OK is also the number of isomor-III.2
phism classed of elliptic curves with CM by OK.

Theorem. The If Λ is an fractional ideal in OK, then:III.3

1 j(Λ) ∈ Q̄ and [Q(j)(Λ) : Q] = [K(j(Λ)) : K].

2 K(j(Λ)) is the maximal unramified abelian extension of K.

3 If [Λ1], ..., [Λh(OK)] are the different classes of Cl(OK) then j(Λ1), ..., j(Λh(OK))
are the Gal(K̄/K) conjugates of the class of [Λ].
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Proof. See Theorem 11.2 in Appendix C of Silverman.

So if we take R = Z[
√
−5], the ring of integers of Q(

√
−5] with h(R) = 2.III.4

Then (1) and (2,
√
−5 + 1) are representatives of the two classes in the class

group of R. We will work with the lattices Λ1 = Z +
√
−5Z = (1) and

Λ2 = Z + 1+
√
−5

2
Z = 1

2
(2,
√
−5 + 1). To find the j-invariant we will use

q-expansion of the the eisenstein series for lattices of the form Z + τZ:II.2

G2n(τ) = 2ζ(2n) + 2
(2πi)2n

(2n− 1)!

∞∑
k=1

k2n−1qk

1− qk
,

where q = e2πiτ and ζ is the riemann zeta finction. I used Sage to find an
approximation of the g2 and g3 for both lattices and the curve itself.

E1 : y2 = x3 + ax+ b

E2 : y2 = x3 + σ(a)x+ σ(b)

with a = −1071214510080
√

5−2395312128000 and b = −901828270977187840
√

5−
2016549312397312000 and σ an automorphism of C such that σ(

√
5) = −

√
5

and σ(
√
−5) =

√
−5.

Now we can define an isomorphism σ̄ : C[x, y]/(−y2 + x3 + ax + b) →
C[x, y]/(−y2 + x3 + σ(a)x + σ(b)) where on C we apply the automorphism
σ, x 7→ x and y 7→ y.

Now H1(E1,Z) can’t algebraically be defined, since then there would beVI.1
an induced isomorphism of H1(E1,Z) as module over End(E1) to H1(E2,Z)
as module over End(E2), but recall End(E1) ∼= Z[

√
−5] ∼= End(E2), that

σ|End(E1) = IdZ[
√
−5] and that H1(E1,Z) ∼= Λ1 is free over Z[

√
−5] but

H1(E2,Z) ∼= Λ1 is not.

Exercise. Find an elliptic curve that doesn’t have CM.

Exercise. Find the elliptic curve E with CM by a maximal order, such that
# Aut(E) = 6, are there any such elliptic curves with # Aut(E) > 6

Exercise. There are 13 elliptic curves defined over Q with CM, find 9 of
them.
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