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We shall closely follow two chapters of the Stacks project [dJ+16], which
can be found under 0A2M and 03RH.

In this talk X is an projective smooth curve of genus g over an alge-
braically closed field k = k̄. Furthermore we assume char(k) - n.

Recollection

The Jacobian of the curve X is denoted by Pic0(X) and the kernel of the
multiplication-by-n map is isomorphic to (Z/nZ)2g.

We have the Kummer sequence 0→ µn,X → Gm,X
()n→ Gm,X → 0 and it’s

long exact sequence of cohomology

0 µn(k) k× k×

H1(Xet, µn) Pic(X) Pic(X)

H2(Xet, µn) H2(Xet,Gm) H2(Xet,Gm)

H3(Xet, µn) H3(Xet,Gm) ...

()n

δ
()n

δ
()n

δ

1 Fundamental sequence

Let j : µ→ X the inclusion of the generic point, ix : x→ X the inclusion of
a closed point and X0 the set of closed points.

Theorem 1. There is a short exact sequence of sheaves on Xet

0 Gm,X j∗Gm,µ

⊕
x∈X0 ix∗Z 0.

We refer to this sequence as the fundamental sequence.

Proof. Let U → X an etale morphism and as U is the union of smooth,
connected curves (see 03PC) we can assume U to be connected, hence irre-
ducible. Then we have the exact sequence

0 Γ(U,O×U ) k(U)×
⊕

x∈U0 ix∗Z,
div

which gives rise to the sequence
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0 Γ(U,O×U ) Γ(µ×X U,O×µ×XU
)

⊕
x∈U0 Γ(x×X U,Z)

and this is the same as

0 Gm,X(u) j∗Gm,µ(U)
(⊕

x∈X0 ix∗Z
)

(U).

Only exactness at the last position remains, but recall that U is a nonsingular
curve. Moreover, for a morphism of sheaves surjectivity and local surjectivity
are equivalent. As a Zariski covering is also an etale covering, if a map is
locally surjective for the Zariski topology it is also locally surjective for the
etale topology. Nikitas showed the local surjectivity for the map j∗Gm,µ →⊕

x∈X0 ix∗Z, so we obtain the result.

We will use this Theorem to show that Hp(X,Gm) = 0 for p > 1 by
showing that the higher cohomology of j∗Gm,µ and ix∗Z vanishes and for this
result, we need some results from Galois cohomology.

2 Galois cohomology

Definition. Two finite central simple algebras A1, A2 over K are similar iff
there are m,n ≥ 1 such that Mat(n×n,A1) ∼= Mat(m×m,A2) as k-algebras.

Definition. The Brauer Group of a field K is the set Br(K) of similarity
classes of finite central simple algebras over K.

One can read more about the Brauer groups in Chapter 11 of the Stack
project (Tag 073W [dJ+16]) or section 50.60 (Tag 03R1 [dJ+16]), we will
only use the fact that they exist.

Proposition 2. Let K be a field with separable algebraic closure Ksep. As-
sume that for any finite extension K ′ of K we have Br(K ′) = 0. Then

1. Hq(Gal(Ksep/K), (Ksep)×) = 0 for all q ≥ 1, and

2. Hq(Gal(Ksep/K),M) = 0 for any torsion Gal(Ksep/K)-module M and
any q ≥ 2.

For a proof see Chapter II, Section 3 of [Ser02].

Definition. A field K is called Cr if for every 0 < dr < n and every f ∈
K[T1, ..., Tn]d, there exist a = (a1, · · · , an) with ai ∈ K not all zero, such that
f(a) = 0.

Theorem 3. If a field K is C1 then Br(K) = 0.
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Proof. We will use the fact that every element of Br(K) contains a unique
central division K-algebra up to isomorphism. Let D be a finite dimensional
division algebra over K with center K, then another fact about central simple
algebras is that

D ⊗K Ksep ∼= Matd(K
sep).

Moreover, the determinant det : Matd(K
sep)→ Ksep descends to a homoge-

neous degree d map
det : D → K.

Now we use that K is C1 and thus for d > 1 there is a nonzero x ∈ D such
that det(x) = 0, but that would imply that x is not invertible, which is a
contradiction. So D has degree 1, hence Br(K) = 0.

Theorem 4 (Tsens theorem). The function field of a variety of dimension
r over an algebraically closed field k is Cr.

For a proof see Tag 03RD [dJ+16].

Corollary 5. Let C be a curve over an algebraically closed field k. Then the
Brauer group of the function field of C is zero, that is Br(k(C)) = 0.

Out last Lemma of this section relies strongly on Corollary 5 and Propo-
sition 2.

Lemma 6. Let k ⊂ K a field extension of transcendence degree 1. Then for
all q ≥ 1, Hq(Spec(K)et,Gm) = 0.

Proof. There is the result Hq(Spec(K)et,Gm) = Hq(Gal(Ksep/K), (Ksep)×)
and thus by Proposition 2 we only have to look at finite field extensions K ′ of
K. Br preserves colimits and we can write K ′ as the colimit over L such that
k ⊂ L is finitely generated, of transcendence degree 1 and a subextension
L ⊂ K ′. But these L correspond to the function fields of curves over k and
thus by Corollary 5 we have Br(K ′) = colim 0

3 Completing the sequences

Lemma 7. For any p ≥ 1 we have

1. Rpj∗Gm,µ = 0,

2. Hp(Xet, j∗Gm,µ) = 0, and

3. Hp(Xet,
⊕

x∈X0 ix∗Z) = 0
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Proof. The proof of 1. uses Lemma 6 and for the details see Tag 03RJ [dJ+16].
For 2. we need to use the Leray spectral sequence

Ep,q
2 = Hp(Xet, R

qj∗Gm,µ)⇒ Hp+q(µ,Gm,µ),

which vanishes for p + q ≥ 1 by Lemma 6. The desired result is obtained
using q = 0. For 3. we use that X is quasi-compact and quasi-separated and
thus cohomology commutes with direct products. Now we can reduce to the
case Hp(Xet, ix∗Z) = 0 and note that ix is finite, hence Rqix∗Z = 0 for q > 0
(Tag 03QP [dJ+16]). Again we have to use the Leray spectral sequence and
get

Hp(Xet, ix∗Z) = Hp(xet,Z).

Now recall that x is a closed point, in other words is the spectrum of an
algebraically closed field.

Corollary 8. For p ≥ 2 we have Hp(Xet,Gm) = 0.

Proof. Applying Lemma 7.2. and Lemma 7.3. to the long exact sequence of
cohomology coming from the fundamental sequence.

Lemma 9. Let X be a smooth projective curve of genus g over k. Then
there are canonical identifications

Hq(Xet, µn) =


µn(k) if q = 0,

Pic0(X)[n] if q = 1,

Z/nZ if q = 2,

0 if q ≥ 3.

Proof. The results for q ∈ {0, 1} we have see in previous talks. Furthermore
using Corollary 8 we get the result for q ≥ 3 immediately:

0 µn(k) k× k×

Pic0(X)[n] Pic(X) Pic(X)

H2(Xet, µn) 0 0

H3(Xet, µn) 0 ...

()n

δ
()n

δ1
()n

δ
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We know that H2(Xet, µn) ∼= coker δ1 and then consider the commutative
diagram with exact rows and columns and apply the snake lemma

0 Pic0(X)[n] ker ()n 0

0 Pic0(X) Pic(X) Z 0

0 Pic0(X) Pic(X) Z 0

0 coker ()n Z/nZ 0

∼=

δ()n

deg

()n n

deg

∼=
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