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1 Locally isomorphic sheaves

Sheaves on a topological space (or more generally on a site) are objects that allow us to speak of how
you can glue things locally to define something globally. Then, it is almost a tautology that in order to
define a morphism between sheaves it is enough to define a family of morphisms on a covering in such a
way they are compatible. In other words we have:

Proposition 1.1. Let C be a site and X ,Y P ShpCq be two sheaves of sets (or groups, rings, etc.). Then
the two presheaves HompX ,Yq, IsompX ,Yq, defined by:

HompX ,Yq :Cop Ñ Set

X ÞÑ HomShpC{XqpX|X ,Y|Xq

IsompX ,Yq :Cop Ñ Set

X ÞÑ IsomShpC{XqpX|X ,Y|Xq

(where the associations on the arrows are understood) are sheaves.

Definition 1.1. Two sheaves X ,Y over a site C are said to be locally isomorphic if for every object X
of C there exists a covering tUi Ñ XuiPI such that @i P I X|Ui

� Y|Ui
.

Example 1.1. Let A be an algebra over a field k with unity, associative, not necessarily commutative,
finitely generated as k-module. A is said to be central simple if k � ZpAq (the center of A) and it doesn’t
have two-sided ideals, beside t0u and A.
There is a canonical sheaf associated to the algebra A on (Specpkqqét, namely the unique one such thatpApLq :� LbkA for every finite separable field extension k � L. Since every central simple algebra is split
by a finite separable extension, the sheaves associated to algebras of same degree are locally isomorphic.
If k is a field, the quaternion algebra associated to k is given by the algebra with basis t1, i, j, ku where
i2 � �1, j2 � �1, k � ij � �ji. It is a central simple algebra, moreover it is a division algebra.

Example 1.2. Consider pX,Oq a scheme, then locally free sheaves of rank n are locally isomorphic,
indeed by definition they are defined as sheaves locally isomorphic toOn. This example can be generalized
to locally free sheaves over a ringed site where a ringed site is a pair pC,Oq with C a site and O a sheaf
of rings over it.

Exercise 1.1. let Y Ñ X a finite étale cover, then it is locally trivial.

Hint: proceed by induction on the degree of the covering. Consider the base change along the same
map f ; you can consider the section given by the diagonal map ∆ : Y Ñ Y �X Y , it is an open immersion
then...

Torsors

Let G be a sheaf of groups on a site C; a left-action of G on a sheaf of sets X is a natural trans-
formation, say α : G � X Ñ X , s.t. for every object U in C, αpUq defines an action of GpUq on
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X pUq. Consider the category of sheaves of sets with a G-action: its objects are pX , αq with X and
α as above; a morphism between two objects pX , αq and pY, βq is given by a morphism of sheaves
f : X Ñ Y compatible with the G-action; in other words @U in C there is a commutative diagram:

GpUq � X pUqαU //

idpUq�fpUq

��

X pUq

fpUq

��
GpUq � YpUq

βU // YpUq
Similarly one can define sheaves of sets with a right-action for a sheaf of group; from now on, if not

stated differently, by torsors we will mean left-torsors and by action left-action.

Definition 1.2. Let pX , αq the pair given by a sheaf of sets with a G-action α, then pX , αq is said to be
a G-torsor if for every object X in C, there exists a covering tUi Ñ X uiPI such that @i P I pX|Ui

, αiq is
isomorphic to pG|Ui

,m|Ui
q, where m|Ui

denotes the (left-)action given by the multiplication.
Equivalently, a sheaf of sets X with a G-action is a G-torsor if for every object X in C the action

of GpXq on X pXq is free and transitive and there exists a covering tUi Ñ XuiPI such that for every
i P I X pUiq �� H.

Remark 1.1. • Notice that a G-torsor X on a topological space X is trivial if and only if X pXq �� H.

• the category of G-torsors is a groupoid: every morphism is an isomorphism.

Example 1.3. If X and Y are locally isomorphic sheaves, then IsompX ,Yq is naturally a bi-torsor with
the sheaves of groups AutpX q, AutpYq acting on the right and left respectively.

Definition 1.3. Given two sheaves of sets on a site C, X with a right G-action and Y with a left
G�action, we can consider the (left-)action of G on the product given for every object X by:

pG � X � YqpXq ÑpX � YqpXq
pg, x, yq ÞÑpxg�1, gyq

Then we define the sheaf contracted product of X and Y, denoted X bG Y (or in the literature X ^G Y),
to be the sheafification of the presheaf defined as the quotient by the action of G:

Cop Ñ Sets

X ÞÑ X pXq � YpXq{ �

i.e. the quotient by the equivalence relation defined by pxg, yq � px, gyq @g P GpXq.

Remark 1.2. • If we fix the sheaf X , then X bG defines a functor.

• the contracted product can be characterized by meaning of a universal property; namely, @f :
X � Y Ñ Z morphism of sheaves, s.t. for every object U @g P GpUq fpUqpxg, yq � fpUqpx, gyq
then there exists a unique morphism ϕ : X bG Y Ñ Z s.t. ϕ � p � f , where p : X � Y Ñ X bG Y
is the quotient map.

Example 1.4. • Let pX,OXq a ringed site, then the functor:

tGLn,X -torsorsu Ñ tlocally free OX -modules of rank nu

T ÞÑ T bGLn,X
OnX

defines an equivalence of categories with quasi-inverse given by:

E ÞÑ IsompOnX , Eq

(where the associations on the arrows are the obvious ones.)
To see this, notice that the morphism of sheaves f ,defined for every U , by

fpUq : IsompOn, EqpUq �OnpUq Ñ EpUq
pϕ, sq ÞÑ ϕpUqpsq

factors through the contracted product and it is easy to check that locally it defines an isomorphism.
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• If f : H Ñ G is a morphism of sheaves of groups, then H acts on G and the contracted product
defines a functor between the categories of torsors:

f� : tH-torsorsu Ñ tG-torsorsu

T ÞÑ T bH G

The first cohomology group:

The language of torsors allows us to give a description of the first cohomology set:

Theorem 1.1. Let pC,Oq be the ringed site with C Xét or XZar with the relative sheaf of rings; let F
be an O-module, then there is a natural bijection:

H1pC,Fq � tF-torsorsu{ �

Proof. (sketch)
I will split the proof in two steps: in the first one I’ll show that H1pC,Fq � Ext1pO,Fq and in the second
one I’ll show a bijection between Ext1pO,Fq and tF-torsorsu{ �.
Recall that Ext1pO,Fq is defined to be the group of extensions of O by F , i.e. Ext1pO,Fq � t0 Ñ F Ñ
E Ñ O Ñ 0u{ �, where the law group is defined by the Baer sum and the neutral element is given by
the split sequence. In order to prove the first step, recall consider an the exact sequence:

0 Ñ F Ñ I Ñ QÑ 0

where I is injective. Since the functor ΓpC, q : ShpCq can be rewritten as HompO, q proving the claim is
equivalent to show that:

0 Ñ HompO,Fq Ñ HompO, Iq ϕ
Ñ HompO, Qq Ψ

Ñ Ext1pO,Fq Ñ 0

is exact, i.e. that there exists a morphism Ψ such that the pair (Ext1pO,Fq,Ψq �cokernelpϕq. For a
morphism O Ñ Q define Ψpfq to be the exact sequence obtained by the pull-back along f :

0 // F //

id

��

P //

��

O //

f

��

0

0 // F // I // Q // 0
It is easy to see that Ψpfq is a split exact sequence if and only if f factorizes through I, i.e. it lies in

the image of ϕ. Moreover Ψ can be checked to be surjective. This concludes the first step.
In order to show the second step, I will define α : Ext1pO,Fq Ñ tF-torsorsu{ � and its inverse.

Consider an exact sequence s : o Ñ F Ñ E Ñ O Ñ 0, then since it is locally split, E is locally
isomorphic to F ` O; let’s define αpsq � IsomExtpF ` O, Eq where the action of F is induced by the
morphism F Ñ AutpF ` Oq, which associates to every element f the morphism represented by the
matrix: �

id f
0 id




To define β : tF-torsorsu{ �Ñ Ext1pO,Fq, the inverse of α, consider an F-torsor T and the split
exact sequence 0 Ñ F Ñ F `O Ñ O Ñ 0, then let define βpT q to be the exact sequence:

0 Ñ T bF F Ñ T bF pF `Oq Ñ F bF O Ñ 0

where the action on F `O is the same as above and the one on F and O is the trivial one. α and β so
defined are inverse each other.

Remark 1.3. The map f� described in the previous example induces the map between the cohomology
sets H1pC, Hq Ñ H1pC,Gq

In general, for a sheaf of (not necessarily commutative) groups G, the first cohomology group H1pC,Gq
is a pointed set, it has the distinguished element given by the isomorphism class of the trivial torsor
pG,mq.
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We conclude with an example of a non-trivial twist of Ga.

Example 1.5. Let k be a field of characteristic 2 and let a P k an element that is not a square; then
the polynomial fpxq � y2z� x3 � ax2z defines a cubic curve Ea � P2

k. Notice that it is a singular curve,
indeed it has a cusp at the point p0 : 0 : 1q. The non-singular points of Ensa are isomorphic to Ga, but
only after a base change to a k-algebra containing a square root of a, in particular the isomorphism is
not realized over any separable extension of k. To see this last statement, notice that a non-trivial twist
of Ga over Specpkqét would give a non-trivial torsor of AutpGaq � Gm (as sheafs over Specpkqét), but
it’s known by Hilbert’s theorem 90 that H1pGmq � 0.

References:
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