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1 Shea��cation

In this section, we will discuss how a shea��cation works on ANY small site.
The presheaves we will discuss are presheaves of sets. But once this construc-
tion is done, one can immediately guess how this would work on presheaves
of (abelian) groups and of (commutative) rings. The shea��cation will be
done in two steps: �rst we will turn presheaves into separated presheaves,
and then we will turn separated presheaves into (actual) sheaves.

1.1 Separated sheaves

De�nition 1.1. Let C be a site. A presheaf on F on C is called separated if
for any object U ∈ C, and any covering (Ui)i, the restriction map F(U) →∏

iF(Ui) is injective.

De�nition 1.2. Let F be a presheaf on C. The separated presheaf associ-
ated to F is a separated presheaf Fs, equipped with a morphism F → Fs

satisfying the following universal property: for each morphism F → G with
G being separated, there exists a unique Fs → G such that the following
triangle commutes:

F Fs

G

Theorem 1.3. The separated presheaf associated to F exists, and is given
by Fs(U) = F(U)/ ∼, with s, t ∈ F(U) being equivalent if there exists a
covering (Ui)i such that s|Ui = t|Ui for each i.

Proof. See Exercise 3.1.

1



1.2 Shea��cation of separated sheaves

From now on, we will assume C to be a small site.

De�nition 1.4. Let F be a presheaf on C. The shea��cation of F is a sheaf
F+, equipped with a morphism F → F+ satisfying the following universal
property: for each morphism F → G with G being a sheaf, there exists a
unique F+ → G such that the following triangle commutes:

F F+

G

Theorem 1.5. Let F be a separated presheaf. Then F has a shea��cation
given by:

F+(U) = {(si, Ui)i : si ∈ F(Ui); (Ui)i covers U ; si|Ui×UUi′ = si′ |Ui×UUi′ for all i, i′}/ ∼

Here we have that (si, Ui)i and (tj , Vj)j are equivalent if si|Ui×UVj = tj |Ui×UVj

for all i, j.

Combining Theorem 1.3 and Theorem 1.5 gives us the following result:

Corollary 1.6. Let F be any presheaf on C. Then F has a shea��cation
F → F+.

We know that shea��cation preserves colimits; this is because because the
shea��cation functor is a left adjoint functor. However, does shea��cation
also preserve limits? Not quite. However, shea��cation does preserve limits
of �nite diagrams. To prove this, it su�ces to prove that shea��cation
preserves equalizers and �nite products. This will be proven in Exercise 3.2.

2 Existence of injectives

We �rst need to know in which abelian category we will construct those
injectives.

De�nition 2.1. Let C be a ringed site, i.e. a a site equipped with a sheaf
of rings. A sheaf of abelian groups F on C is called a C-module if for each
object, F(U) has the structure of a C(U)-module, and the structure is com-
patible with restrictions. We call this category ModC .
A morphism F → G of sheaves of abelian groups is called a C-module mor-
phism if on each U , F(U)→ G(U) is also a C(U)-module morphism.

Remark 2.2. If we equip C with the shea��cation of the constant presheaf
Z, then we will obtain the category AbC of all sheaves of abelian groups on
C.
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While it is true that above category has enough injectives for any site,
we will only concider a limited class of sites, namely the small Étale sites:
sites in the form Xet, with X a scheme. On such site, we have the notion
of a stalk, which allows us to mimic the case of topological spaces almost
completely.

2.1 Pushforward and inverse image sheafs

In this section, we generalize the notion of inverse immage sheafs and push-
forwards sheafs. This construction works for any functor of sites that is con-
tinuous, but for simplicity, we shall limit ourselves to morphisms of schemes.
We shall start with the de�nition for pushforward sheafs:

De�nition 2.3. Let f : X → Y be a morphism of schemes, and let F be a
sheaf on Xet. Then the pusforward sheaf f∗(F) on Yet is given by:

f∗(F)(U) = F(U ×Y X)

The case for inverse image sheafs is more complicated, but still somewhat
familiar to the case of topological spaces.

De�nition 2.4. Let f : X → Y be a morphism of schemes, and let F be a
sheaf on Yet. Fix an Étale morphism U → X, and consider the diagram of
pairings (V,Φ), where V → Y is an Étale morphism, and Φ : U → V is a
morphism such that the following diagram commutes:

U V

X Y

Φ

f

The arrows in the the diagram (V,Φ)→ (W,Ψ) are morphisms V →W that
are compatible with Φ and Ψ.
On this diagram, we can apply F by putting F(V,Φ) = F(V ). Let p(U) be
the colimit of this diagram. This gives a presheaf p. The inverse image sheaf
f−1(F) is the sheaf associated to the presheaf.

Much like with topological spaces, we get the following identi�cation.

Lemma 2.5. Let f : X → Y be a morphism of schemes. There exists a
functorial isomorphism:

Hom (f−1(F),G) ∼= Hom (F , f∗(G))
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2.2 Stalks

We will now apply our previous de�nition to a special kind of schemes, where
the Étale structure is very easy.

De�nition 2.6. Let Φ : x = Spec k → X be a geometric point, and let F
be a sheaf of Abelian groups on Xet. Then the stalk Fx of F at x is given
by Φ−1(F).

This has has a very convenient property of determining exactness:

Theorem 2.7. Let F ,G,H be sheaves of abelian groups on Xet. The follow-
ing are equivalent:

(1) The sequence

0→ F → G → H → 0

is exact

(2) The sequence

0→ Fx → Gx → Hx → 0

is exact for each geometric point x→ X.

Now lets take a look at the category of Abelian groups on xet, with
x = Spec k. We know that all Étale coverings are in the form

∐
i x→ x, and

morphisms between the coverings are nothing but maps between the index
sets. As such, we get the following result:

Lemma 2.8. All sheaves of Abelian groups xet are of the form
∐

i∈I Ω 7→ xI .
As a result, we can identify the category Abxet with Ab, by looking at the
section of x → x. Likewise, if C is a sheaf of rings of xet, then ModC ∼=
ModR, with R = C(x→ x).

So stalks can now been seen as Abelian groups as well. The following
lemma gives an explicit description of them, which is also useful for proving
Theorem 2.7.

Lemma 2.9. Let x→ X be a geometric point, and let F be a sheaf on Xet.
Then, under above identi�cation, Fx is the set of triplets [s, U,Φ], where
U → X is an Étale morphism, s ∈ F(U), and Φ : x → U is an arrow
compatible with x → X and U → X. We have that [s, U,Φ] = [t, V, ψ] is
there exists a W → U and W → V , along with a compatible x → W such
that s|W = t|W .
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2.3 Existence of injectives

As with the case of topological spaces, we will rely on the following result of
the Commutative algebra.

Lemma 2.10. Let R be a ring. Then ModR has enough injectives.

This �nally allows us to prove the existence of injectives, immitating
Hartshorn's proof for the topological case.

Theorem 2.11. Let X be a scheme, and let C be a sheaf of rings. Then the
category ModXet has enough injectives.

Proof. Let F be a C-module. Let fx : x → X be a geometric point. From
Lemma 2.9 and Lemma 2.10, it follows that ModCx has enough injectives.
So let Fx → Ix be an embedding into an injective object. This induces a
morphism F → fx∗(Ix) by Lemma 2.5. Let I =

∏
x fx∗(Ix). We will prove

that I is injective, and that the induced morphism F → I is also injective.
We will start proving that I is injective. Since products of injective objects
are alwas injective, it su�ces to prove that fx∗(Ix) is injective for any geo-
metric point x → X. Let 0 → K → G → H → 0 be an exact sequence of
C-modules. We have to prove that the following sequence is exact.

0→ Hom (K, fx∗(Ix))→ Hom (G, fx∗(Ix))→ Hom (H, fx∗(Ix))→ 0

But by Lemma 2.5, this is the same as saying that the following sequence is
exact, for all x:

0→ Hom (Kx, Ix)→ Hom (Gx, Ix)→ Hom (Hx, Ix)→ 0

By Theorem 2.7, we know that 0 → Kx → Gx → Hx → 0 is exact. As Ix is
injective, above sequence is therefore exact as well. So fx∗(Ix) is injective.
It remains to prove that F → I is injective. Now let U → X be Étale, and
let s ∈ F(U) be nonzero. Let 〈s〉 ⊆ F be the subsheaf generated by s. This
is nonzero, so by Theorem 2.7, it follows that there exists a geometric point
x→ X such that 〈s〉x 6= 0. The morphism 〈s〉x → Ix is injective, so nonzero,
so the morphism 〈s〉 → fx∗(Ix) is nonzero as well. So we must have that
s 6→ 0 by F(U) → fx∗(Ix)(U), and therefore also by F(U) → I(U). This
proves that F → I is injective.

3 Exercises

Exercise 3.1. Prove Theorem 1.3.

Exercise 3.2. Prove that the shea��cation of preserves equalizers and �nite
products, using our construction.
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Exercise 3.3. Give an example of a (big) category, and a sheaf of presheafs
(of sets) that is impossible to shea�fy.

Exercise 3.4. Give an example of a ring R, a and a prime p ∈ Spec R
such that OSpec R,p 6= Rp. Here is x = Spec κp → X the geometric point
corresponding to p, and OSpec R the sheaf of global sections.

Exercise 3.5. Is it possible to shea�fy presheafs on small Étale sites using
stalks (using Lemma 2.9 as a de�nition)?

Exercise 3.6. Prove Theorem 2.7. (Hint: Look at how this has been proven
in the case of topological spaces. Use Lemma 2.9)
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