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1 Constructible sheaves

1.1 Constructible sheaves

We will start with a de�nition and properties of contructible sheaves. For
simplicity, we will assume X is a Noetherian scheme.

De�nition 1.1. Let F be a sheaf of abelian groups on Xet. We call F con-
structible if there exists a �nite surjective family of locally closed subschemes
fi : Xi → X such that F|Xi = f−1

i (F) is locally �nite constant for all i.

Remark 1.2. If X where not Noetherian, then the family Xi → X had to
be a family of constructible subschemes. But with Noetherian spaces, this is
always the case.

Lemma 1.3. The category of constructible sheaves is a strong Serre subcat-
egory of AbX . That is, for each exact sequence...

0→ F → G → H → 0

... the sheaf G is constructible if and only if F and H are.

Proof. Exercise.

In the next couple of lemmas, we will develop an important class of
constructible sheaves, what in fact are the building blocks of constructible
sheaves.

Lemma 1.4. Let U → X be an Étale morphism. Assume that U be quasi-
separated and quasi-compact (Noetherian or a�ne, for example). Then there
exists a �nite family of locally closed subsheaves Xi → X such that U ×X

Xi → Xi is �nite Étale.

Proof. See Stacks Project, Chapter 50.69, Tag 095J.
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Lemma 1.5. Let f∗ : U → X be �nite Étale. If F is a locally constant sheaf
of �nite rank on Uet, then so is f∗(F).

Proof. This follows from the fact that a �nite Etale morphism is locally
(w.r.t. the Etale topology) of the form n.U → U (see Stacks Project, tag
04HK)

This gives us immediately a class of constructible sheaves.

Corollary 1.6. For any U → X Étale, with U being quasi-separated and
quasi-compact, the sheaf jU,!(Z/nZ) is constructible.

1.2 Torsion sheaves

This chapter shows that whenever we want to show a result about cohomol-
ogy for constructible sheaves, that it su�ces to show it for a rather limited
class of constructible sheaves.

De�nition 1.7. A sheaf F on Xet torsion if F = colimn ker(n : F → F).
That is, for each U → X, we have that each element of F(U) is locally
torsion.

Theorem 1.8. Every torsion sheaf F is a �ltered colimit of constructible
sheaves.

Proof. For each a�ne U → X, let z ∈ F(U) be of �nite order, say n. This
yields a natural morphism jU,!(Z/nZ)→ F mapping 1 to z on U . The image
is constructible by Lemma 1.3, as it is a quotient of the source. If we add
�nite "unions" of those images (which are constructible by Lemma 1.3), we
get a directed diagram of constructible sheaves. The limit is F .

Since cohomology commutes with �ltered limits, it follows that we can
compute cohomology for torsion sheaves out of cohomology of constructible
sheaves. But we can make our job even easier! In order to do so, we have to
use some results for abelian categories.

De�nition 1.9. Let C be an Abelian category, and T : C → Ab be an
additive functor. We call T e�aceable if for each object A ∈ C, and each
x ∈ T (A), there exists a monomorphism u : A→M such that T (u)(x) = 0.

Lemma 1.10. The functor Hq(X,−) on the category of constructible sheaves
is e�aceable for all q > 0.

Proof. Let F be a constructible sheaf. Consider the Godement resolution
G =

∏
Ω i∗(FΩ). This has natural embedding F → G. As with skyscraper

sheaves, we have that Hq(i∗(FΩ)) = 0 and hence Hq(G) = 0. Unfortunately,
we don't know if G is constructible.
However, G torsion, so it is a �ltered colimit of its constructible subsheaves.
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Since F is also a contructible subsheaf, it follows that G is a �ltered limit
of constructible subsheaves containing F . So looking at the construction
of the colimit, x ∈ Hq(F) will be mapped to 0 in some Hq(H) for some
constructible subsheaf H ⊆ G. So Hq is e�aceable.

Lemma 1.11. Let C be an Abelian category. Let T, T ′ : C → Ab be two
δ-functors, and let Ψ : T → T ′ be a morphism of δ-functors. Let ξ ⊆ C be
a collection of objects, and suppose that each object of C is a subobject of an
element of ξ. Also, suppose that T q is e�aceable for all q > 0. Then the
following are equivalent:

1. The function Ψq(A) is an isomorphism for all q > 0, A ∈ C

2. The function Ψ0(M) is bijective, and Ψq(M) is surjective for all q > 0,
for all M ∈ ξ.

3. The function Ψ0(A) is bijective for all A ∈ C, and T ′q is also e�aceable
for all q > 0.

Before we head into the nice result, we need an alternate de�nition.

Lemma 1.12. (Alternate de�nition for constructible sheaves) A sheaf F is
constructible if there exists an embedding F →

∏
i πi∗(Z/niZ), with Xi → X

a �nite surjective family of �nite morphisms.

Proof. Omitted.

Corollary 1.13. Let X0 → X be an inclusion of schemes, and suppose
that for all �nite schemes Y → X the canonical map Hq(X0,Z/nZ) →
Hq(Y0,Z/nZ) is bijective for q = 0 and surjective for q = 0. Then for all
constructible F on X, the canonical map Hq(X,F) → Hq(X0, i

−1(F)) is
bijective.

Proof. Take the category of constructible sheaves, and consider T q = Hq(X,−), T ′q =
Hq(X0, i

−1(F)), and let ξ be the collection of sheaves in the form π∗(Z/nZ),
with π : Y → X being a �nite morphism. Since f∗ is exact if f is �-
nite, we have Hq(Y,Z/nZ) = Hq(X,π∗(Z/nZ)) for all q and the same for
X0, Y0. That sheaves in the form π∗(Z/nZ) are constructible follows from
the alternate de�nition, and that any constructible sheaf can be embedded
in products of those sheaves is equivalent to that de�nition.

Naturally, with Theorem 1.8, this generalizes to arbitrary torsion sheaves!

2 Proper base change theorem

We want to prove the following:

3



Theorem 2.1. Let f : X → S be a proper morphism of schemes, and let
g : S′ → S be any morphism of schemes. This gives us the following Carte-
sian diagram of arrows:

X ′ S′

X S

f ′

g′ g

f

Then for any torsion F on Xet, we have that the canonical map Rq(g−1f∗)(F)→
Rq(f ′∗g

′−1)(F) is an isomorphism.

The proof is very long. As such, I will only show where constructible
sheaves take place, so we can reduce to a simpler case.

2.1 Reduction to Special Fibres

Lemma 2.2. It su�ces to prove Theorem 2.1 for F constructible.

Lemma 2.3. It su�ces to prove Theorem 2.1 under the assumption that S′

is a geometric point (we call it Ω), and S is a�ne (from now on, we call
X0 = X ′).

Proof. Exercise. Hint: This relies on the fact that exactness can be checked
on the stalks.

For the following de�nition, it is convenient to restrict to a spaces case
of a�ne rings, namely strict Henselizations of rings. Under an algebraic
geometric standpoint, these are de�ned naturally:

De�nition 2.4. Let R be a ring, and let Ω→ S := Spec R be a geometric
point. The strict Henselization of R , called RΩ at Ω is the stalk of the
structure sheaf of R at Ω. This comes with a natural map R→ RΩ. A ring
is strictly Henselian if it is the strict Henselization of a ring.

Those Henzelian rings pack nice properties, which go beyond the scope
of this presentation.

Lemma 2.5. It su�ces to prove Theorem 2.1 under the assumption that,
in addition to previous lemma, that S is Henselian, with Ω mapping to the
closed point.

Proof. Omitted. This relies on properties of Henzelian rings.
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The beauty lies in the fact that we are now able to make the description
of the right derived functors more familiar. Since sheaves on Ω are nothing
but abelian groups, we �nd that f ′∗ : AbX0 → AbΩ coincides with the global
section functor. But since S is the spectrum of the strict henzelisation of
a ring at Ω, it follows that S has no nontrivial Étale neighborhoods at Ω.
So the functor g−1 : AbS → AbS′ is also the global section functor. In
particular, we have that g−1f∗ : AbX → AbS′ is a global section functor.
Since g′−1 is exact, we �nd that the theorem reduces to:

Lemma 2.6. In order to prove Theorem 2.1, it su�ces to prove that Hq(X,F)→
Hq(X0, i

−1(F)) is bijective. Here is X0 the geometric �bre of the closed point
Ω→ S, where X → S is proper, and S is strictly Henselian.

This is where the constructibility part comes in! With Theorem 1.8 and
Corollary 1.13, we gain the following result:

Lemma 2.7. In order to prove Theorem 2.1, it su�ces to prove that Hq(X,Z/nZ)→
Hq(X0,Z/nZ) is bijective for q = 0, and surjective for q > 0. Here is X0

the geometric �bre of the closed point Ω → S, where X → S is proper, and
S is strictly Henselian.

2.2 Further steps (Sketch)

In order to prove the theorem further, we rely on Chow's lemma:

Lemma 2.8. Suppose X is proper over S. Then there exists a scheme
X → X over S that is locally projective. The morphism X → X is birational
and surjective.

The idea is to break X into a projective open U → X, and a closed set
of lower dimension. Doing this repeatedly, we may assume that X → S is
locally projective. This assumption can be reduced the the assumption that
the map is of the form Pn

S → S. From there, the assumption can be reduced
to X being a curve by using the rational maps, and blow-ups. This puts us
into the familiar terrain of curves; albeit over a strictly Henselian ring, as
opposed to a �eld. From there, we have that Hq(X0, f

−1(F)) = 0 for q > 3,
so this leaves us to three cases to be threated separately.
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