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1 Introduction and motivating examples

Today, we are going to talk about Grothendieck topologies. A Grothendieck topology is something that
(generalizes/axiomatizes) the notion of an open cover of a topological space.

1.1 Set Theory

All the categories we work with will be small. If you really want to know how to get a small (and nice)
category of schemes, here is a reference [Sta16, Tag 000H].

1.2 Sheaves on a topological space

The first motivating example, and the example to keep in mind during the rest of the lecture, is that of
sheaves on a topological space. Let X be a topological space, then there is a partially ordered set of open
sets Op(X), which can be viewed as a category. Recall that a presheaf on X is precisely a presheaf on
this category Op(X), i.e., a contravariant functor Op(X)→ Set.

Let F be a presheaf, then we call F a sheaf if for every open set U and every open cover {Uα}α∈A of U
the following holds:

• For all s ∈ F (U) such that s
∣∣
Uα

= t
∣∣
Uα

for all α then s = t;

• If sα ∈ F (Uα) for all α and sα
∣∣
Uα,β

= sβ
∣∣
Uα,β

then there is an s ∈ F (U) such that s
∣∣
Uα

= sα (this s

is unique by the first property).

Equivalently, the following sequence of sets is an equalizer

F (U)
∏
α

F (Uα)
∏
β,γ

F (Uβ,γ),
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where the parallel arrows are defined as follows: For every pair (β, γ) we have maps∏
α∈A Uα Uβ

Uγ Uβ,γ

pβ

pγ

which induces two maps into
∏
β,γ F (Uβ,γ).The proof of this will be an exercise. In order to generalize

this definition, we remark that the (fiber-) product of two open sets in the category Op(X) is precisely
the intersection.

Sometimes, things that we expect/would like to be sheaves are not sheaves. To be more precise, if we
have two sheaves of modules F ,G on a scheme, then their tensor product is in general not a sheaf. Of
course there is a solution to this problem, which a functor which takes presheaves to sheaves!

We denote by Pre(X) the category of presheaves on X and by Shv(X) the category of sheaves (morphisms
of sheaves are defined to be morphisms of presheaves). This means that we have a fully faithful functor
i : Shv(X) → Pre(X). The sheafification functor L is the left-adjoint of this inclusion, i.e., there is a
natural bijection (with A ∈ Pre(X) and B ∈ Shv(X))

homPre(X)(A, i(B))↔ homShv(X)(L(A), B).

Furthermore, sheafification commutes with finite limits( [Sta16, Tag 00WJ]).

Now a real life example: Consider OP1(−1)⊗OP1(1). If we sheafify we get OP1 but on global sections we
get {0} ⊗ k2 = 0 which are not the global sections of OP1 .

2 Definition and Examples of Grothendieck Topologies

Definition 1. Let C be a category, then a Grothendieck topology on C is the data:

• For every object X ∈ C, a set τ(X) whose elements are sets of morphisms {Uα → X}, we call
such a set a cover of X.

These should satisfy the following properties:

GI If f : Y → X is an isomorphism, then {f : Y → X} is a cover of X.

GII If {Uα → X} is a cover of X and {Vαβ → Uα} are covers of Uα for every α then the collection
of composites {Vαβ → X} is a cover of X.

GIII If f : Y → X is a morphism in C and {Uα → X} is a cover of X, then

Y ×X Uα

exists and {Y ×X Uα → Y } is a cover of Y .

A Grothendieck site is a small category C together with a Grothendieck topology on C.
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It will be an exercise to check that for a topological space X, the category Op(X) of open sets, together
with open covers form a Grothendieck topology. This immediately gives us a Grothendieck topology on
the category of opens of a scheme (consider the underlying topological space with the Zariski topology)
with we will call the Zariski (Grothendieck-)topology on X.

It is good to note, that an open cover {Ui} of a topological space X is ’the same’ as a family jointly
surjective open embeddings {Ui → X} (this will be made precise later). This then allows us to define
a Grothendieck topology on the category of topological spaces. A cover of X is just a jointly surjective
collection of open immersions. It is clear that the composition of an open immersion is again an open
immersion, but some work has to be done for the fiber product. Note that Top is not a site since it is
not a small category.

2.1 Examples of sites

Definition 2. For X a scheme we define an (Zariski/étale) cover of X to be a family {Uα → X} of
jointly surjective open immersions/étale morphisms. If C = Sch this defines a Grothendieck topology on
C.
Remark 1. As we saw last week, any flat morphisms of finite presentation is open, hence étale morphisms
are open, which means any Zariski cover is an étale cover.

Checking the axioms of a Grothendieck topology entails checking that these classes of morphisms contain
isomorphisms and are closed under composition and fiber products.

• It is clear that the open immersions are closed under composition and contain isomorphisms. For
base change see ([Vak] exercise 7.1.B).

• It is clear that isomorphisms are étale. Composition was one of the exercises last week, base change
will be an exercise this week.

Of course, we might only be interested in the covers of a single scheme. So let S ∈ Sch be a scheme, then
we want to define a category of ’coverings of S’ which will replace the category of open sets on S.

As an intermediate step, we consider the comma category Sch/S with the comma-topology (see exercise
4). In this category, objects are maps X → S and morphisms are commuting triangles, covers of X → S
are just covers of X. This is commonly called the big Zariski/étale site of X (depending on what topology
we start with on Sch).

If we started with the Zariski topology, then we can also consider SZariski: Objects are open immersions
X → S and morphisms are just morphisms of schemes over S (making the obvious triangle commute).
Coverings are jointly surjective open immersions. This category is in fact equivalent to the category
Op(S), the category of opens of the underlying topological space! (and the equivalence of categories
’preserves coverings’)

Sketch of proof. Every open subset U of a scheme S determines a unique open subscheme U ↪−→ S and if
V ⊂ U then there is a unique morphism V ↪−→ U . Reversely, every open immersion X → S induces an
isomorphisms between X and an open subscheme of S. A morphism U → V induces an inclusion U ⊂ V
(thought of as open subschemes of S).
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We can do the same construction with the étale topology on Sch/S. We take the subcategory Sétale of
Sch/S of étale morphisms X → S which is usually called the small étale site over S (this name has
nothing to do with small categories). In Table 1 we have collected the above examples.

Category Objects Morphisms Coverings

Top Topological spaces Continuous maps Topological covers

Top/X Continuous Maps S → X Continuous maps /X Topological covers /X

XTop Open Immersions S → X Continuous maps /X Topological covers /X

Sch Schemes Morphisms of schemes Zariski covers

Sch/S Morphisms Y → S Morphisms of schemes /S Zariski covers /S

SZariski Open immersions Y → S Morphisms of schemes /S Zariski covers /S

Sch Schemes Morphisms of schemes Étale covers

Sch/S Morphisms Y → S Morphisms of schemes /S Étale covers /S

Sétale Étale maps Y → S Morphisms of schemes /S Étale covers /S

Table 1: In this table, we have collected a number of examples of sites, most of them related to schemes. If we
replace the word étale by fppf we get three extra examples. For more, see [Sta16, Tag 020K].

2.2 The small étale site of a field

Let k be a field, it might be interesting to consider the site (Spec k)étale. It turns out that we can
completely classify schemes with an étale morphisms to Spec k:

Proposition 1. ([Sta16, Tag 03PC]) Let k be a field. A morphism of schemes U → Spec(k) is étale
if and only if ∼=

∐
i∈I Spec ki such that for each i ∈ I the ring ki is a field which is a finite separable

extension of k.

Proof. Omitted, makes for a nice exercise.

2.3 Sheaves

Definition 3. Let C be a category with a Grothendieck topology, a sheaf on C is a presheaf F such
that for every cover {Uα → X} the following is an equalizer diagram of sets:

F (X)
∏
α

F (α)
∏
β,γ

F (Uβ ×X Uγ).

• If we are working with a topological space, and C is the category of opens with the induced
Grothendieck Topology then this is just the old notion of sheaf we had.

• If C = Sch with the Zariski topology, then any scheme is a sheaf. What does this mean? If we
have a scheme S, then the functor hom(−, S) is a sheaf. Which means that if we have a scheme X
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with an open cover {Uα}α∈A and morphisms {Uα → S}αinA that agree on overlaps, then there is a
unique morphisms X → S.

• More generally, if C = Sch with the fpff topology, then any scheme is a sheaf! This is a theorem by
Grothendieck, a readable proof is in [Vis05] (Theorem 2.55). Note that étale covers are fppf, hence
schemes are sheaves for the étale topology.

More generally, we call a site subcanonical if every representable functor is a sheaf. In exercise 4/5 we
will see that this notion is well behaved with respect to taking comma categories.

• On the site Sétale we can define a functor to the category of rings sending an object

(f : X → S) 7→ Γ(X,OX),

Proving that this is a sheaf is not easy, and relies on the following result:

Proposition 2 ([Mil13] Proposition 6.6). In order to verify that a presheaf F on Sétale is a sheaf, it
suffices to check that F satisfies the sheaf condition for Zariski open coverings and for étale coverings
V → U (consisting of a single map) with V and U both affine.

• If F is a coherent sheaf of modules on S, then we can define a presheaf on Sétale by

(f : X → S) 7→ Γ(X, f∗F)

and this can be shown to be a sheaf using the proposition above.

3 Sheafification

The following result is expected. The proof used smallness in an essential way. If there is enough time I
might say something about it.

Proposition 3. ([Sta16, Tag 00W1]) Let C be a small category equipped with a Grothendieck topology,
then the inclusion functor

Shv(C)
i
↪−→ Pre(C)

has a left adjoint L (called sheafification), i.e., there is a natural bijection

homPre(C)(X, i(Y ))↔ homShv(C)(L(X), Y ).

Furthermore, sheafification commutes with finite limits.
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4 Exercises

1. Let X be a topological space, show that a presheaf on X is a sheaf if and only if the following sequence
of sets is an equalizer

F (U)
∏
α

F (Uα)
∏
β,γ

F (Uβ,γ)

(Hint: the first property means precisely that the map F (U) →
∏
α F (Uα) is injective, the second

property means that F (U) is isomorphic to the subset of
∏
α F (Uα) where the parallel arrows agree.)

2. Let X be a topological space, show that category Op(X) is a Grothendieck site where we take covers
to be open covers.

3. Show that étale morphisms are preserved under base change. (Hint: The property of a morphisms
being étale is local on the target so you can assume the target is affine.)

4. Let C be a site and let X be an object in C. Consider the comma category (C/X) where the objects
are arrows C → X and the morphisms commutative triangles

A A′

X.

Let A→ X be an object of C/X, a collection of morphisms

Uα A

X,

in C/X is called a covering if {Uα → A} is a covering in the Grothendieck topology on C. Show
that this induces a Grothendieck topology on (C/X), it is called the slice topology.

5. Prove the following Proposition (c.f. [Vis05], Proposition 2.59)

Proposition 4. If C is a sub-canonical site and S ∈ C, then (C/S) is a sub-canonical site
(with the slice topology).

6. Prove (or look at a proof of) Proposition 1
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