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1 Introduction and Statement of the Main Theorem

Today we will prove that schemes are sheaves in the étale topology. However, with a little additional work
we can show something more general, namely that schemes are sheaves in the fpqc topology. Clearly, we
will first have to define the fpqc topology and show that all étale covers are fpqc-covers.

The fpqc topology is sometimes defined incorrectly, so to avoid confusion I have included the incorrect
definition:

Definition 1. (WRONG!) A morphism of schemes f : X → Y is called quasi-compact if Y can be
covered by affine open subsets {Vi}i∈I such that f−1(Vi) is quasi-compact, for all i ∈ I. A morphisms
of schemes {Ui → V }i∈I is called an fpqc cover is the map

⋃
i∈I → Y is flat, surjective and quasi-

compact.

This seems like a perfectly fine definition, except that Zariski open covers are not fpqc covers! Indeed,
the inclusion of an open subscheme U → X doesn’t need to be quasi-compact (even if X is affine! See
[Vak] Exercise 3.6.G (b)). The correct definition is more complicated:

Proposition 1 (Proposition 2.33 [Vis05]). Let f : X → Y be a surjective morphism of schemes, then
the following are equivalent

1. Every quasi-compact open subset of Y is the image of a quasi-compact open subset of X.

2. There exists a covering {Vi} of Y by open affine subschemes, such that each Vi is the image of
a quasi-compact open subset of X.

3. Given a point x ∈ X, there exists an open neighborhood U of x in X, such that the image f(U)
is open in Y , and the restriction U → f(U) of f is quasi-compact.

4. Given a point x ∈ X, there exists a quasi-compact open neighborhood U of x in X, such that
the image f(U) is open and affine in Y .

Definition 2. A collection of morphisms {Ui → V }i∈I is called an fpqc (fidèlement plate quasi-
compacte) cover if the map U =

⋃
i∈I Ui → V is flat, surjective and satisfies the equivalent conditions

of Proposition 1.
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We are now in the position to state the main theorem that we will prove today:

Theorem 1 (Grothendieck). A representable functor on (Sch/S) is a sheaf in the fpqc topology.

The proof consists of a some commutative algebra, which we will do at the end. At the heart of the proof
lies a technical Lemma, which is an interesting result in itself, we will proceed with the Lemma in the
next section.
Remark 1. An fppf cover is an fpqc cover, so this theorem implies that schemes are sheaves in the fppf
topology and hence in the étale topology (exercise).

2 A Technical Lemma

We start by proving the following Lemma

Lemma 1 ([Vis05], Lemma 2.60). Let S be a scheme, F : Sch/S → Set a contravariant functor.
Suppose that F satisfies the following two conditions.

(a) F is a sheaf in the Zariski Topology.

(b) Whenever V → U is faithfully flat morphism of affine S-schemes, the diagram

FU FV F (V ×U V )

is an equalizer.

Then F is a sheaf in the fpqc topology.

We will follow [Vis05] for the proof. The author has merely tried to clarify some details, the exposition
and notation is almost the same.

2.1 Reduction to the case of a single morphism

Let {Ui → U}i∈I be an fpqc cover over S. We define V =
∐
i∈I Ui and let F : V → U be the map induced

by the universal property of the coproduct. This gives us a new fpqc cover {V → U}. We want to show
that checking the sheaf property for the first cover is equivalent to checking the sheaf property for the
second cover.

Note that the inclusions Ui → V are open immersions (essentially by definition of the disjoint union of
schemes) hence we have a Zariski cover {Ui → V }i∈I . By hypothesis (a) we know that F is a Zariski
sheaf, hence the following sequence is an equalizer.

F (V )
∏
i∈I

F (Ui)
∏

(j,k)∈I2
F (Uj ×V Uk).
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However, the the fiber products Uj ×V Uk are just the intersection of Uj and Uk inside the disjoint union.
In other words, there are empty unless j = k. This implies that we have a bijection

F (V )↔
∏
i∈I

F (Ui).

Now, we can consider the diagram

F (U) F (V ) F (V ×U V )

F (U)
∏
i∈I

F (Ui)
∏

(j,k)∈I2
F (Uj ×U Uk).

(1)

Now, we use the fact that fiber products commute with disjoint unions to see that

V ×U V ∼=

(∐
i

Ui

)
×U

(∐
i

Ui

)
∼=
∐
i,j

Uj ×U Uk.

By a similar argument as above, the maps {Uj ×U Uk → V ×U V } form a Zariski cover, hence

F (V ×U V ) ∼=
∏

(j,k)∈I2
F (Uj ×U Uk).

Now all columns of (1) are bijections, so the bottom row is an equalizer if and only if the top row is an
equalizer. Therefore we can check the sheaf condition on coverings consisting of a single morphism. It is
important to realize that both uniqueness of gluing and gluing can be checked on coverings consisting of
a single morphism separately.

2.2 Seperatedness

Now let f : V → U be an fpqc morphism, we want to show that the map

F (U)→ F (V )

is injective. Take an open affine cover {Ui}i∈I of U and use fpqc-property to produce an open cover
{Vi}i∈I of V with Vi quasi-compact and F (VI) = Ui. Now choose a finite open affine cover {Vi,α}α∈Ai for
each Vi . Now using these covers we can factor the map F (U)→ F (V ) as

F (U) F (V )

∏
i∈I F (Ui)

∏
i∈I,α∈Ai

F (Vi,α).
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Once again, the columns are injective since F is a sheaf for the Zariski topology. We are left to show
injectivity of the bottom map. This is equivalent to showing injectivity of

F (Ui)→
∏
α∈Ai

F (Vi,α)

for all i. But, since F is a Zariski sheaf we know that

∏
α∈Ai

F (Vi,α) ∼= F

∐
α∈Ai

Vi,α


and since Ai is finite for all i, we know that

∐
α∈Ai

Vi,α is affine. By hypothesis (b) of the lemma, we get
that

F (Ui)→ F (
∐
α∈Ai

Vi,α)

is injective.

2.3 The case of a morphism from a quasi-compact scheme onto an affine scheme

Let f : V → U be a faithfully flat morphism with V quasi compact and U affine and let b ∈ F (V ) such
that the arrows

F (V ) F (V ×U V )
π∗1

π∗2

agree. We want to find a ∈ F (U) that maps to b under F (f) : F (U)→ F (V ). Since V is quasi compact
we can take a finite affine open cover V1, . . . , Vn of V . The fact that V → U is an fpqc cover translates
into the fact that

∐n
i=1 Vi → U is an fpqc cover (since this is local on the target). Now

∐n
i=1 Vi is affine

so using using hypothesis (b) of the Lemma, we get an equalizer diagram

F (U)
∏
i∈I F (Vi)

∏
i,j Vi ×U Vj .

π∗1

π∗2

Now both arrows still agree on (b1, · · · , bn) where bi := b
∣∣
Vi

and so there is an element a ∈ F (U) mapping

to (b1, · · · , bn). Since F is a Zariski sheaf, the fact that (Ff)(a)
∣∣
Vi

= bi for all i implies that (Ff)(a) = b.

2.4 The case of a morphism to an affine scheme

Let f : V → U be an fpqc morphism with U affine and let b ∈ F (V ) such that the arrows

F (V ) F (V ×U V )
π∗1

π∗2

agree. We want to find a ∈ F (U) that maps to b under F (f) : F (U)→ F (V ).

Choose an open cover of V by quasi-compact open subschemes {Vi} such that all maps f
∣∣
Vi

: Vi → U are

surjective (we claim that this is possible). Then by the fact that fpqc is source-local we see that Vi → U
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is an fpqc cover with Vi quasi-compact. Hence by the previous step we get (unique!) elements ai in F (U)
that map to bi := b

∣∣
Vi

for all i. However, we also get elements ai,j in F (U) that map to bi,j := b
∣∣
Vi∪Vj

since Vi ∪ Vj → U is also an fpqc cover.

Now, the map Vi → U factors through the inclusion Vi → Vi ∪ Vi → U hence the map

F (U)→ F (Vi)

factors through F (Vi ∪ Vj). Since the restriction of bi,j to Ui is bi we get (by uniqueness of ai!) that
ai = ai,j = aj .

Proof of claim: Let x ∈ V and let Vx be an affine open neighborhood of x (which is automatically quasi
compact). Next, let W be a quasi compact oepn subset ofV with image U , then {W ∪ Vx}x∈V is an open
cover of V by quasi-compact open subsets that surject onto U .

2.5 The general case

Let f : V → U be an arbitrary fpqc morphism, let {Ui}i∈I be an affine open cover of U and let Vi =
f−1(Ui). By the previous step, the maps Vi → Ui induce equalizers

F (Ui) F (Vi) F (Vi ×Ui Vi),

which then induces a big equalizer∏
i F (Ui)

∏
i F (Vi)

∏
i,j F (Vi ×Ui Vi).

We can now put the sequence we are interested in as the top row of a commuting diagram

F (U) F (V ) F (V ×U V )

∏
i F (Ui)

∏
i F (Vi)

∏
i,j F (Vi ×Ui Vi)

∏
i,j F (Ui ×U Uj)

∏
i,j F (Vi ×V Vj).

Once again, the left and middle columns are equalizers because F is a sheaf in the Zariski topology. The
middle row is an equalizer by the discussion above. Since we already know that F is separated, we can
do a diagram chase to show that the top row is an equalizer.

Informally, the following happens: Take x ∈ F (V ) such that the parallel arrows agree, then we get y in∏
i F (Vi) such that the parallel arrows agree, hence by the equalizer property we obtain z ∈

∏
i F (Ui)

mapping to y.

Now, if we can show that the parallel arrows going down agree on z, we are done since the first column is
an equalizer. But this is immediate from the fact that the bottom row is injective and the middle column
an equalizer.
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3 Proof of the Main Theorem

3.1 The Affine case

We start with a result from commutative algebra:

Lemma 2. Let f : A→ B be a faithfully flat morphisms of rings, i.e., the map SpecB → SpecA is
faithfully flat. Then the following sequence

0 A B B ⊗A B
f e1−e2

is exact.
Corollary 1. This proves Theorem 1 in the case that X is affine. By Lemma 1 we only have to check
the sheaf property for faithfully flap maps SpecB → SpecA. Now write X = SpecR, then we know
that hX(−) ∼= Sch(−, X) ∼= Sch(−,SpecR) ∼= Ring(R,−) and the functor Ring(R,−) is left exact.
The Lemma now implies that the sequence

0 Ring((R,A) Ring((R,B) Ring((R,B ⊗A B)
f e1−e2

is exact, which is equivalent to saying that

Ring(R,A) Ring((R,B) Ring((R,B ⊗A B)e1

e2

is an equalizer diagram (exercise).

Proof of Lemma 2. Since the map f : A → B is faithfully flat, we know that it is injective. Indeed, we
know for any ideal I of A that I ⊗A B = IB since B is flat. Now the fact that 0 = ker(f)B = ker f ⊗A B
implies (by faithfull flatness) that ker f = 0.

Furthermore, it is clear that (e1 − e2) ◦ f = 0 since the map f makes B into an A module. To be precise,
we know that 1 ⊗ f(a) = f(a) ⊗ 1 by the construction of B ×A B as an A-module. This implies that
Im f ⊂ ker(e1 − e2).

Last, we show that ker(e1 − e2) ⊂ Im f . Assume first that there is a section g : B → A, i.e., a map
such that g ◦ f : A → A is the identity. Then take an element b ∈ ker(e1 − e2), then we can apply
g × 1B : B ×A B → A×A B = B and see

1⊗ b = b⊗ 1

g(1)⊗ b = g(b)⊗ 1,

hence

f(1⊗ b) = f(g(b)⊗ 1) = b,

so b ∈ Im f .
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Now, such a section might not exist, but we can check exactness after tensoring with B (since B is
faithfully flat over A). In other words, it suffices to check exactness of the sequence

0→ B → B ⊗A B → B ⊗A B ⊗A B.

We can fit this sequence into a diagram

0 B B ⊗A B (B ⊗A B)⊗B (B ⊗A B)

0 B B ⊗A B (B ⊗A B)⊗A B.

f⊗1B e′1−e′2

φ

f⊗1B (e1−e2)⊗1B

The top row is exact because there is a section (which is just the multiplication map). The bottom row is
exact because the top row is exact and because φ is an isomorphism (follows from general nonsense).

3.2 The General Case

Let X be a scheme and choose an affine open cover {Xi}i∈I of X. By Lemma 1 we only have to check the
sheaf condition for faithfully flat maps h : V → U of affine schemes U, V . We start by showing injectivity
of the map

Sch(U,X)→ Sch(V,X).

Take two morphisms f, g : U → X such that the composites V → U → X agree. Since h is surjective, we
know that f, g agree as functions of sets. Now set Ui = f−1(Xi) = g−1(Xi) and Vi = h−1(Ui). Since Xi

is affine, we can apply Corollary 1 which shows that the following map is injective

Sch(Ui, Xi)→ Sch(Vi, Xi)

This means in particular that f
∣∣
Ui

= g
∣∣
Ui

for all i, which implies that f = g.

Next, we show existence of gluing. Let g ∈ Sch(V,X) such that both arrows

Sch(V,X) Sch(V ×U V,X)
π1

π2

agree. In other words, we take a morphism

g : V → X

such that the composites

V ×U V V X
π1

π2 g

agree. We want to show that there is a morphism f ∈ Sch(U,X) such that g = f ◦h, i.e., something that
makes the diagram commute

V U

X.

g

h

f
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Define Vi = g−1(Xi) and Ui = h(Vi). We know that Vi is open in V and since h is a quotient morphisms,
it is open, so Ui is also open ([Sta16, Tag 02JY]). We know that the composites

Vi ×Ui Vi Vi Xi
π1

π2 g|Vi

agree. Since Xi is affine we know that the g
∣∣
Vi

factor uniquely through fi : Ui → Xi (using that Vi → Ui
is fpqc). We know that

fi
∣∣
Ui,j

= fj
∣∣
Ui,j

since we can find a quasicompact open Vi,j mapping fpqc to Ui,j such that g(Vi,j ⊂ Xi. This implies that
g
∣∣
Vi,j

factors uniquely through fi,j : Ui,j → Xi, hence fi
∣∣
Ui,j

= fi, j and similarly with i, j reversed.

The above implies that the fi glue together to a morphism f : U → X such that g = f ◦ h. This shows
that

Sch(U,X) Sch(V,X) Sch(V ×U V,X)
π2

π1

is an equalizer diagram, which is what we wanted to show.

References

[Sta16] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2016.

[Vak] Ravi Vakil. MATH 216: Foundations of Algebraic Geometry. http://math.stanford.edu/

~vakil/216blog/.

[Vis05] Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory. In Fundamen-
tal algebraic geometry, volume 123 of Math. Surveys Monogr., pages 1–104. Amer. Math. Soc.,
Providence, RI, 2005. http://homepage.sns.it/vistoli/descent.pdf.

8

http://stacks.math.columbia.edu
http://math.stanford.edu/~vakil/216blog/
http://math.stanford.edu/~vakil/216blog/
http://homepage.sns.it/vistoli/descent.pdf


4 Exercises

1. Show that any fppf covering is an fpqc covering (hint: use that fppf morphisms are open).

2. Show that fpqc covers form a Grothendieck topology on Sch using Proposition 1.

3. Show that fiber products commute with disjoint unions in the category of schemes. To be precise,
consider a family of schemes {Ui}i∈I with morphisms fi : Ui → V and a scheme W with a morphisms
g : W → V . Show that

∐
i∈I

(Ui ×V W ) ∼=

(∐
i∈I

Ui

)
×V W.

(a) Let A, {Bi}i∈I be locally ringed spaces (or schemes). Show that there is a natural bijection
between

hom(A,
∐
i

Bi)↔ {Partitions of A into disjoint open sets {Ai} and morphisms Ai → Bi}.

(b) Use this, together with the universal property of the fiber product, to show that the functors

Sch

(
−,
∐
i∈I

(Ui ×V W )

)

and

Sch

(
−,

(∐
i∈I

Ui

)
×V W

)

are naturally isomorphic, then apply the Yoneda Lemma.

4. ([Vak] Exercise 9.4.D, [Vis05] Lemma 2.6.2) Let f1 : X1 → Y and f2 : X2 → Y be morphisms of
schemes. Let x1 and x2 be points of X1 and X2 respectively such that f1(x1) = f2(x2). Show that
there exists a point z in the fibered product X1 ×Y X2 such that π1(z) = x1 and π2(z) = x2. You
may end up showing that for any fields k1 and k2 containing k3, the ring k1 ⊗k3 k2 is nonzero, and
using the Axiom of Choice to find a maximal ideal in k1 ⊗k3 k2.

5. Let R be a ring and let f : A→ B and g1, g2 : B → C be morphisms of R-modules. Show that

A B C
f

g1

g2

is an equalizer diagram if and only if

0 A B C
f g1−g2

is an exact sequence (both in the category of R-modules).
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