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1 Profinite Groups

Definition 1. Let X ∈ Top be a topological space. We call X a profinite
space if X is homeomorphic to a limit of a diagram in Top consisting of
finite discrete spaces.

Lemma 2. Let X ∈ Top be a topological space. The following are equiva-
lent.

1. X is a profinite space.

2. X is Hausdorff, compact and totally disconnected.

Proof. See [2, Tag 08ZY].

If G ∈ Grp is a group, consider the collection of all normal subgroups of
finite index H of G. If H,H ′ ∈H , we define H ≤ H ′ ⇐⇒ H ′ ⊆ H (note
the reversal). This gives us a projective system (G/H)H∈H , and the limit
in Top, where each G/H is endowed with the discrete topology, is denoted
by

Ĝ := lim
H∈H

G/H.

Definition 3. If G is a group, we call Ĝ the profinite completion.

The object Ĝ is a topological group. The multiplication in Ĝ is given by
(gH ·H) ·(g′H ·H) = (gH · g′H ·H). Moreover, the multiplication and inverse
maps are continuous.

Example 4. The profinite completion of Z is Ẑ = limn>0 Z/nZ. Here,
the projective system is partially ordered by divisibility of natural numbers.
Explicitly, elements of Ẑ are of the form (an)n>0 such that an ∈ Z/nZ
for each n > 0 and where an ≡ am mod m whenever m | n. If p is a
prime number, then we recover the p-adic integers from the projective limit
limn>0 Z/pnZ = Zp.

We have a natural homomorphism G→ Ĝ given by g 7→ (g ·H).
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2 Finite Étale Morphisms

Lemma 5. Let f : X → Y be a morphism of schemes. The following are
equivalent.

1. f is finite.

2. f is proper with finite fibres.

3. f is universally closed, separated, locally of finite type and has finite
fibres.

Proof. See [2, Tag 02LS].

If X is a scheme, we denote by OX its structure sheaf. If P ∈ X is a
point, then P corresponds to some prime P ∈ SpecA for some open affine
SpecA. The stalk is denoted by OX,P . This is a local ring, and its residue
field is denoted by κ(P ) := OX,P /POX,P .

Recall that if f : X → Y is a morphism, then the fibre of f at P ∈ Y is
given by pulling back; i.e. XP := X ×Y Spec(κ(P )).

Theorem 6. Let R be a ring and M an R-module. The following are
equivalent.

1. M is a finitely generated projective R-module.

2. M is finitely presented and for every maximal ideal m ( A, the Rm-
module Mm is free.

3. There exists a collection (fi)i∈I of elements of R such that
∑

i∈I fi·R =
R and each Rfi-module Mfi is free of finite rank.

Proof. See [1, Theorem 4.6]

Remark 7. The third condition in theorem 6 says that the sheaf associated
to M on SpecR is locally free of finite rank.

Let M be a finitely generated projective R-module. From theorem 6 it
follows that if we take a prime p ∈ SpecR, then the Rp-module Mp is free.
Moreover we can define a function

rankR(M) : SpecR→ Z

which maps a prime p to the rank of Mp over Rp. It is locally constant,
hence continuous.

Remark 8. If SpecR is connected, for instance if R is a domain, then the
rank function is constant.
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Now let f : X → S be a finite and locally free morphism of schemes.
Denote by sp(S) the underlying topological space of a scheme S. If SpecA is
an open affine in S with f−1(SpecA) = SpecB, then we obtain a continuous
rank function

[B : A] : sp(SpecA)→ Z

just as in the above construction. If these rank functions overlap on opens,
then they coincide. So they glue. Hence they give rise to a continuous
function on the underlying space of S. So we have a well-defined continuous
map

deg(f) : sp(S)→ Z.

Lemma 9. Let f : X → Y be a morphism of schemes over S. If X and Y
are étale over S, then f is étale.

Proof. See [2, Tag 02GW]

3 Construction of π1(S, s)

Given any functor F : C → D, the natural isomorphisms F → F give us a
set Aut(F ). Composition of natural transformations then endows Aut(F )
with a group structure. If D = Set, then we obtain for every X ∈ C a
natural left action

Aut(F )× FX → FX, (η, x) 7→ ηX(x). (1)

Every Aut(FX) is also a group, hence
∏

X∈C Aut(FX) is a group. Moreover,
we have a natural group homomorphism

Aut(F )→
∏
X∈C

Aut(FX), η 7→ (ηX)X∈C . (2)

If some η ∈ Aut(F ) is in the kernel, then it is “pointwise” the identity
and so η itself is the identity natural transformation. Hence the above map
is an injection. Let us see what happens when we endow every FX with
the discrete topology and every Aut(FX) with the compact-open topology.
Recall that this means that for a given σ ∈ Aut(FX) a fundamental system
of neighborhoods for σ is given by the sets

US(σ) := {τ : FX → FX | τ |S = σ|S} ,

where S ⊆ FX is a finite subset. In the case that FX is finite, this is simply
the discrete topology. This will be our interesting case.

The reason for choosing this rather complicated topology is that the
action maps of eq. (1) become continuous maps.

Then
∏

Aut(FX) becomes a topological space. Recall that a profinite
space is by definition a topological space which is compact, Hausdorff and
totally disconnected (the only connected components are the singletons).
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Lemma 10. The homomorphism from eq. (2) identifies Aut(F ) with a
closed subgroup of

∏
Aut(FX). In particular, if every FX is finite, then

Aut(F ) is a profinite group.

Proof. See [2, Tag 0BMR]

Fix a scheme S and an algebraically closed field Ω. By FetS we denote
the category whose objects are finite étale morphisms X → S and whose
morphisms are commutative diagrams

X Y

S

.

Now fix a geometric point s : Spec(Ω) → S. Let Xs := X ×S Spec(Ω).
Denote by Fibs(X) the underlying set of the scheme Xs. Given a morphism
X → Y in FetS , we obtain a set-theoretic function Fibs(X)→ Fibs(Y ). We
have thus found a functor

Fibs : FetS → Set.

Let’s call it the fibre functor at the geometric point s. By the above, we may
enrich this functor as

Fibs : FetS → Aut(Fibs)-set,

where set denotes the category of finite sets (not to be confused with Set),
and Aut(Fibs)-set denotes the category of finite sets equipped with a con-
tinuous Aut(Fibs) action.

Definition 11. Given a connected scheme S and a geometric point s :
Spec(Ω) → S, the étale fundamental group π1(S, s) is defined to be the
automorphism group Aut(Fibs) of the fibre functor Fibs.

Lemma 12. Let Y
f−→ X

g−→ S be morphisms of schemes. If g ◦ f is finite
and g is separated, then f is finite. If moreover g ◦ f and g are finite étale,
then so is f .

Proof. See [3, Lemma 5.3.2], or one of Bas’ exercises from the previous
week.

The following proposition plays a key role.

Proposition 13. If Z → S is a connected S-scheme and f, g : Z → X are
two S-morphisms to a finite étale S-scheme X with f ◦ z = g ◦ z for some
geometric point z : Spec(Ω)→ Z, then f = g.
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Proof. See [3, Corollary 5.3.3].

Given a morphism of schemes f : X → S, define AutS(X) to be the
group of scheme automorphisms of X preserving f . Our convention is that
automorphisms act from the left. For a geometric point s : Spec(Ω) → S
there is a natural left action of AutS(X) on the geometric fibre Xs = X ×S

Spec(Ω) coming from base change from its action on X.

Proposition 14. If f : X → S is a connected finite étale morphism, then
the nontrivial elements of AutS(X) act without fixed points on each geomet-
ric fiber. As a consequence, AutS(X) is finite.

Proof. See [3, Corollary 5.3.4].

Definition 15. Let f : X → S be a connected finite étale morphism. Then
we call f a Galois cover if AutS(X) acts transitively on geometric fibres.

The topological group π1(S, s) is profinite. For every X → S in FetS ,
The action of π1(S, s) on Fibs(X) is continuous.

Theorem 16. Let S be a connected scheme and s : Spec(Ω)→ S a geomet-
ric point. The functor

FetS → π1(S, s)-set, (X → S) 7→ Fibs(X)

is an equivalence of categories. Here, connected finite étale morphisms cor-
respond to sets with transitive π1(S, s) action and Galois covers to finite
quotients of π1(S, s).

Proof. See [3, Theorem 5.4.2]. The proof is three pages later.

Unfortunately, the fibre functor Fibs is not representable. However, it is
so-called pro-representable. This means that there exists an inverse system
S̃ := (Si)i∈I of finite étale morphisms fi : Si → S indexed by a directed
partially ordered set I and for each finite étale morphism g : X → S an
isomorphism

Fibs(X) ∼= lim
→i∈I

Hom(Si, X),

functorially in X.

Proposition 17. The fibre functor Fibs is pro-representable.

Proof. [3, Proposition 5.4.6].

We call S̃ “the” universal covering scheme of S. It is possible to choose
S̃ so that each Si is Galois over S. If the action is transitive, then the degree
of the morphism is equal to the order of AutS(Si). So we have another way
to determine π1(S, s), namely via the pro-representability

π1(S, s) = AutS(S̃) := lim
←i∈I

AutS(Si).

5



4 Examples

Example 18. Let k be any field and let S = Spec(k). Then a connected
finite étale morphism X → S corresponds to a separable field extension
k → L. This is [2, Tag 00U3]. The choice of a geometric point s amounts
to the choice of an algebraically closed field Ω. For a geometric point s the
fibre functor maps a connected cover X = SpecL to the underlying set of
X ×S Spec(Ω) = Spec(L⊗k Ω). This is a finite set indexed by the k-algebra
homomorphisms L→ Ω. But the image of each such homomorphism lies in
the separable closure ksep ⊂ Ω. Let k̃ be a projective system consisting of
finite separable field extensions (Li)i∈I . Then k̃ pro-represents Fibs, that is

π1(S, s) = Autk(k̃) = lim
←i∈I

Gal(ki/k) = Gal(ksep/k).

Example 19 (IV.2.5.3 of Hartshorne). Let k be an algebraically closed field
of characteristic 0. We will show that π1(SpecP1

k, 0) = 1. Let f : X → P1
k

be a finite etale morphism. We may assume that X is connected. By base
change and smoothness of f , the scheme X is smooth over k. Moreover X
is proper over k because f is finite. Hence X is a curve. Using now that f
is separable, we may apply Hurwitz’ theorem. The theorem states that

2g(X)− 2 = deg(f) ·
(
2g(P1

k)− 2
)

+ degR,

where
R =

∑
P∈X

length(ΩX/P1
k
)P · P

is the “ramification divisor”. Again since f is étale, f is unramified. There-
fore degR = 0. Moreover the genus of P1

k is zero. So the formula reduces
to

2g(X)− 2 = −2 deg(f).

The only possible solution is g(X) = 0, deg(f) = 1. Hence X ∼= P1
k and f

is an isomorphism. Every finite étale covering is trivial, so the fundamental
group is trivial.

Example 20. Let k be an algebraically closed field and set S = A1
k \ {0}.

In the topological case, (k = C), we would have a universal cover C → C∗
given by z 7→ ez. But there is no such finite étale map! We do have the finite
étales given by fn : S → S, z 7→ zn for a given n ∈ Z>0, with deg(fn) = n.
This defines a projective system. We have

AutS

(
S

fn−→ S
)

= µn(k),

the group of n-th roots of unity in k. If ζ ∈ µn(k) is a primitive n-th root
of unity, then the action is given by z 7→ ζz. So we find

π1(A1 \ {0}, s) = lim
←n

µn(k) ∼= Ẑ.
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5 Exercises

Exercise 1. Determine which of the following morphisms are etale.

1. The normalization C[t] → C[x, y]/(y2 − x3). Recall that the normal-
ization is given by t 7→ (t2, t3).

2. C[t]→ C[x, y]/(y2 − x2 − x3) given by t 7→ (t2 − 1, t3 − t).

3. A2
C → A2

C given by (x, y) 7→ (x, x · y).

4. The inclusion C[t2, t3]→ C[t].

5. The inclusion Q→ Q[x]/(x2 − 4).

6. The inclusion Q→ Q[x]/(x2 + 4).

7. The inclusion Q→ Q[x]/(x2).

8. The inclusion F3 → F9.

Exercise 2. Show that A1
Q( 3√2) → A1

Q is not etale.

Exercise 3. Let A = C[x] → C[x, y]/(y − x2) = B be the inclusion. Show
that Spec(B)→ Spec(A) is etale everywhere except at one point.

Exercise 4. Let X = Spec (C[x, y]/(f)), where f = y3 − 3y + 2x and let
Y = A1

C. Show that the projection X → Y is etale everywhere except at
two points.

Exercise 5. Let k be a field and n a positive integer. Use the Jacobian
criterion to show that A1

k → A1
k, x 7→ xn is étale at no point of A1

k if
char(k) | n and otherwise it is étale at all x 6= 0.

Exercise 6. Show that the affine line over an algebraically closed field has
trivial fundamental group.
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