Torsion Subgroups of Abelian Varieties

Raoul Wols

April 19, 2016

In this talk I will explain what abelian varieties are and introduce torsion subgroups on abelian varieties. k is always a field, and \mathbf{Var}_k always denotes the category of varieties over k. That is to say, geometrically integral separated schemes of finite type with a morphism to k. Recall that the product of two $A, B \in \mathbf{Var}_k$ is just the fibre product over $k: A \times_k B$.

Definition 1. Let \mathbf{C} be a category with finite products and a terminal object $1 \in \mathbf{C}$. An object $G \in \mathbf{C}$ is called a *group object* if G comes equipped with three morphism; namely a "unit" map

$$e: 1 \to G,$$

a "multiplication" map

$$m:G\times G\to G$$

and an "inverse" map

$$i: G \to G$$

such that

$$G \times G \times G \xrightarrow{\operatorname{id}_G \times m} G \times G$$

$$\downarrow^{m \times \operatorname{id}_G} \qquad \qquad \downarrow^m$$

$$G \times G \xrightarrow{m} G$$

commutes, which tells us that m is associative, and such that

$$\begin{array}{c} G \xrightarrow{(e, \mathrm{id}_G)} G \times G \\ (\mathrm{id}_G, e) \downarrow & & \downarrow m \\ G \times G \xrightarrow{m} G \end{array}$$

commutes, which tells us that e is indeed the neutral "element", and such that

commutes, which tells us that *i* is indeed the map that sends "elements" to inverses. Here we use $\Delta : G \to G \times G$ to denote the diagonal map coming from the universal property of the product $G \times G$. The map e' is the composition $G \to 1 \xrightarrow{e} G$.

Now specialize to $\mathbf{C} = \mathbf{Var}_k$. The terminal object is then $1 = (\operatorname{Spec}(k) \xrightarrow{\operatorname{id}} \operatorname{Spec}(k))$, and giving a unit map $e : 1 \to G$ for some scheme G over k is equivalent to giving an element $e \in G(k)$.

Remark 2. Since we view schemes as representable sheaves of sets, definition 1 is equivalent to saying that for a group object G there exists a factorization

When one hears the term abelian variety, one might take a guess at a straightforward definition: it is a group object in \mathbf{Var}_k which is abelian. It turns out that this is not the correct definition.

Definition 3. An abelian variety is a group object $A \in \operatorname{Var}_k$ which is proper as a variety.

Notice that we don't even require A to be abelian. This will follow automatically.

Definition 4. Let A, B be abelian varieties and let $f : A \to B$ be a morphism. Then f is called a *homomorphism* if the diagram

$$\begin{array}{c} A \times A \xrightarrow{f \times f} B \times B \\ m_A \downarrow \qquad \qquad \downarrow m_B \\ A \xrightarrow{f} B \end{array}$$

commutes.

Definition 5. Let A be an abelian variety and $a \in A(k)$ a point. We define the *(right) translation by a*, denoted τ_a , as the morphism $\tau_a := m_A \circ (\mathrm{id}_A, a')$.

So, translation τ_a is given by

$$A \xrightarrow{(\mathrm{id}_A, a')} A \times A \xrightarrow{m_A} A.$$

The following lemma plays a central role for abelian varieties. It paves the way for much of the results. The lemma can also be found in [2, Theorem 1.1] and [3, Lemma 1.12]. **Lemma 6** (Rigidity). Let $X, Y, Z \in \mathbf{Var}_k$ and assume that X is complete. Suppose a morphism $f : X \times Y \to Z$ is given with the property that there exists a $y \in Y(k)$ and a $z \in Z(k)$ such that $f \circ (\mathrm{id}_X, y) = z$. Then f factors through the projection $\mathrm{pr}_Y : X \times Y \to Y$. That is, there exists a morphism $g : Y \to Z$ such that $f = g \circ \mathrm{pr}_Y$.

Proof. Without loss of generality $k = \overline{k}$. Pick any point $x^* \in X(k)$ and define $g: Y \to Z$ by $g = f \circ (x^*, \operatorname{id}_Y)$. I claim that this is the g that we seek. Since $X \times Y$ is a variety, it is reduced (i.e. all stalks of the structure sheaf have no nilpotents). So it suffices to prove that $f = g \circ \operatorname{pr}_Y$ on k-rational points. Let $U \subset Z$ be an affine open around z and let $V = \operatorname{pr}_Y f^{-1}Z \setminus U$. Then $f^{-1}Z \setminus U$ is closed, and since X is complete, pr_Y is a closed map. Hence V is closed. If we take any point $w \notin V$, then $f(X \times \{w\}) \subset U$. Now since X is complete and U is affine, f must be constant on $X \times \{w\}$. So if we restrict f to the non-empty open set $X \times (Y \setminus V)$, then $f = g \circ \operatorname{pr}_Y$. But $X \times Y$ is irreducible, so $X \times (Y \setminus V)$ is dense. So $f = g \circ \operatorname{pr}_Y$ everywhere. \Box

Corollary 7. Let $f : X \to Y$ be a morphism of abelian varieties. Then $f = \tau_{fe_X} \circ h$ for some homomorphism $h : X \to Y$.

Proof. [3, Proposition 1.14] or [2, Corollary 1.2]. Here's a proof sketch: f sends e_X to fe_X , so after composing with the translation $\tau_{i_X fe_X}$ we may assume that f sends e_X to e_Y . Let φ be the difference of the two maps

$$\begin{array}{c} X \times X \xrightarrow{m_X} X \\ f \times f \downarrow & \qquad \qquad \downarrow f \\ Y \times Y \xrightarrow{m_Y} Y \end{array}$$

and apply the rigidity lemma to φ .

Corollary 8. Every abelian variety is abelian.

Proof. [2, Corollary 1.2] or [3, Corollary 1.14]. Both proofs use the fact that the inverse map of a group object G is a homomorphism if and only if G is abelian.

Hence from here on out we write the group law additive.

Definition 9. Let A be an abelian variety, $n \in \mathbb{Z}_{>0}$. Then the regular map $n_A : A \to A$ is defined on points as $P \mapsto n \cdot P = P + \ldots P$. If n = 0, we set $n_A := 0$. If n < 0, then n = -n' for some n' > 0. We then set $n_A := i_A \circ n'_A$. On points, this is just $P \mapsto -(P + \ldots + P)$.

Definition 10. Let $f : A \to B$ be a homomorphism between abelian varieties. We say f is an isogeny if f is surjective and ker f has dimension 0. Here, ker f is defined to be the fibre of f over 0 in the sense of algebraic spaces.

Definition 11. Let A be an abelian variety and L an invertible sheaf on A. We say L is symmetric if $(-1)^*_A L \cong L$.

Theorem 12. Let $n \in \mathbb{Z}$. For every invertible sheaf L on an abelian variety A we have

$$n_A^*L \cong L^{n(n+1)/2} \otimes (-1)_A^*L^{n(n-1)/2}.$$

In particular, if L is symmetric, then $n_A^*L \cong L^{n^2}$.

Proof. [2, Corollary 5.4] or [3, Corollary 2.12]. Both references make use of the "Theorem of the Cube", which is, for instance, [3, Theorem 2.7]. This theorem tells you that given a line bundle L on A, a complicated combination of tensors of this line bundle is trivial on the "cube" $A \times A \times A$.

We defined abelian varieties to be complete group objects. This implies that they are projective.

Theorem 13. Every abelian variety is projective.

Proof. [2, Theorem 6.4]. A very rough proof sketch is to construct a divisor D on A, and then proving that $3 \cdot D$ provides an embedding of A into \mathbb{P}^n , for some n.

The theorem that follows is crucial. It can be found in [2, Theorem 7.2].

Theorem 14. Let A be an abelian variety of dimension g and n > 0. Then n_A is an isogeny of degree n^{2g} . Moreover, if char(k) = 0 then n_A is always étale, and if char(k) > 0, then $char(k) \nmid n \iff n_A$ is étale.

Proof. There exists a very ample invertible sheaf L on A [2, 6.4, 6.6]. Now $(-1)_A : A \to A$ is an isomorphism, so $(-1)_A^*L$ is again very ample. Hence $L \otimes (-1)_A^*L$ is also ample. Now we calculate

$$(-1)^*_A (L \otimes (-1)^*_A L) \cong (-1)^*_A L \otimes (-1)^*_A (-1)^*_A L$$
$$\cong (-1)^*_A L \otimes L$$
$$\cong L \otimes (-1)^*_A L.$$

Indeed, $(-1)_A(-1)_A = 1_A$. So the sheaf $L \otimes (-1)_A^* L$ is also symmetric. Denote this sheaf by L again. Then $n_A^* L \cong L^{n^2}$ by theorem 12, again ample. Let $K = \ker n_A$. Then $(n_A^* L)|_K$ is a trivial bundle which is still ample. But if V is any irreducible variety, then \mathcal{O}_V being ample implies that V is a point. It follows that K must consist of a finite number of points, i.e. K is 0-dimensional. So n_A is an isogeny.

Now we determine its degree. Choose an ample symmetric divisor D on A. Then deg $n_A \cdot (D)^g = (n_A^* D)^g$, by [1, 12.10]. But $n_A^* D$ is linearly equivalent to $n^2 \cdot D$ and so $(n_A^* D)^g = n^{2g} \cdot (D)^g$. We conclude that deg $n_A = n^{2g}$.

To show that n_A is étale we look at the tangent spaces at the unit element 0 (written additively) of A. This is sufficient, since we can always use translations τ_a . Let $d : A \to \Omega^1_{A/k}$ be the derivation. Denote by T_0A the tangent space of A at 0. If $f, g : A \to B$ are any two homomorphisms of abelian varieties, then

$$d(f +_B g)_0 = (df)_0 +_{T_0B} (dg)_0,$$

in other words $f \mapsto (df)_0$ is a homomorphism. This is not a completely trivial fact; so it's an exercise to check that. In the meantime we conclude that $d(n_A)_0 = n$ (multiplication by the scalar n in T_0A). It's now clear that this is invertible when char(k) = 0 or, when char(k) > 0, if and only if n is not zero in k.

Definition 15. Let k be separably closed and let $char(k) \nmid n, n > 0$. Let A be an abelian variety. We define the *n*-torsion subgroup A_n to be the pullback of n_A along the unique homomorphism $0 \rightarrow A$, as in

As a representable sheaf, A_n is fully described by the group $A_n(k)$ (see [3, 10.1, 4.48, 3.26]).

By theorem 14, $A_n(k)$ has order n^{2g} . This holds for any $m \mid n$, so by the structure theorem for finite abelian groups,

$$A_n(k) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}.$$

Definition 16. Let k be separably closed. Fix a prime $\ell \neq \operatorname{char}(k)$. We define the *Tate module* of A (with respect to ℓ) as

$$T_{\ell}A := \lim A_{\ell^n}(k).$$

This is an inverse limit. What this means is that the elements of $T_{\ell}A$ are infinite sequences (a_1, a_2, \ldots) such that $a_n \in A(k)$ and $\ell_A \cdot a_n = a_{n-1}$, $\ell_A \cdot a_1 = 0$. We have that

$$T_{\ell}A = \lim_{\leftarrow} A_{\ell^n}(k)$$

$$\cong \lim_{\leftarrow} (\mathbb{Z}/\ell^n \mathbb{Z})^{2g}$$

$$\cong \left(\lim_{\leftarrow} \mathbb{Z}/\ell^n \mathbb{Z}\right)^{2g}$$

$$= \mathbb{Z}_l^{2g}.$$

Exercise 1. Show that the usual properties of homomorphisms in **Grp** carry over to group objects. That is, show that $f(e_A) = e_B$ and show that $i_B \circ f = f \circ i_A$ if $f : A \to B$ is a homomorphism between group objects A, B in some category **C**. State and prove the first isomorphism theorem.

Exercise 2. Show that the affine line together with addition is a group object with a commutative group law, but is not an abelian variety.

Exercise 3. Show that in fact $a_n \in A_n(k)$ for all n > 0 instead of just $a_n \in A(k)$.

Exercise 4. Show that the map $f \mapsto (df)_0$ from the proof of theorem 14 is a homomorphism.

Exercise 5. Let $f : A \to B$ be a morphism between abelian varieties and choose a prime $\ell \nmid \operatorname{char}(k)$. Construct a homomorphism $T_{\ell}f : T_{\ell}A \to T_{\ell}B$ of \mathbb{Z}_{ℓ} -modules and show that your construction is functorial.

Exercise 6. Let *E* be the elliptic curve over \mathbb{F}_{17} given by

$$E: y^2 = x^3 + 13x + 14.$$

Over $\overline{\mathbb{F}}_{17}$ we know that $T_3 E \cong \mathbb{Z}_3^2$. Determine all the torsion points over \mathbb{F}_{17} .

References

- James S. Milne. Algebraic geometry (v5.00). www.jmilne.org/math/, 2005.
- [2] James S. Milne. Abelian varieties (v2.00). www.jmilne.org/math/, 2008.
- [3] Ben Moonen and Gerard van der Geer. Abelian varieties (preliminary version). www.math.ru.nl/~bmoonen/BookAV, 2016.