Torsion Subgroups of Abelian Varieties

Raoul Wols

April 19, 2016

In this talk I will explain what abelian varieties are and introduce torsion subgroups on abelian varieties. k is always a field, and $\mathbf{V a r}_{k}$ always denotes the category of varieties over k. That is to say, geometrically integral separated schemes of finite type with a morphism to k. Recall that the product of two $A, B \in \mathbf{V a r}_{k}$ is just the fibre product over $k: A \times_{k} B$.

Definition 1. Let \mathbf{C} be a category with finite products and a terminal object $1 \in \mathbf{C}$. An object $G \in \mathbf{C}$ is called a group object if G comes equipped with three morphism; namely a "unit" map

$$
e: 1 \rightarrow G
$$

a "multiplication" map

$$
m: G \times G \rightarrow G
$$

and an "inverse" map

$$
i: G \rightarrow G
$$

such that

commutes, which tells us that m is associative, and such that

commutes, which tells us that e is indeed the neutral "element", and such that

commutes, which tells us that i is indeed the map that sends "elements" to inverses. Here we use $\Delta: G \rightarrow G \times G$ to denote the diagonal map coming from the universal property of the product $G \times G$. The map e^{\prime} is the composition $G \rightarrow 1 \xrightarrow{e} G$.

Now specialize to $\mathbf{C}=\operatorname{Var}_{k}$. The terminal object is then $1=(\operatorname{Spec}(k) \xrightarrow{\text { id }}$ $\operatorname{Spec}(k))$, and giving a unit map $e: 1 \rightarrow G$ for some scheme G over k is equivalent to giving an element $e \in G(k)$.
Remark 2. Since we view schemes as representable sheaves of sets, definition 1 is equivalent to saying that for a group object G there exists a factorization

When one hears the term abelian variety, one might take a guess at a straightforward definition: it is a group object in $\mathbf{V a r}_{k}$ which is abelian. It turns out that this is not the correct definition.

Definition 3. An abelian variety is a group object $A \in \operatorname{Var}_{k}$ which is proper as a variety.

Notice that we don't even require A to be abelian. This will follow automatically.

Definition 4. Let A, B be abelian varieties and let $f: A \rightarrow B$ be a morphism. Then f is called a homomorphism if the diagram

commutes.
Definition 5. Let A be an abelian variety and $a \in A(k)$ a point. We define the (right) translation by a, denoted τ_{a}, as the morphism $\tau_{a}:=m_{A} \circ\left(\mathrm{id}_{A}, a^{\prime}\right)$.

So, translation τ_{a} is given by

$$
A \xrightarrow{\left(\mathrm{id}_{A}, a^{\prime}\right)} A \times A \xrightarrow{m_{A}} A .
$$

The following lemma plays a central role for abelian varieties. It paves the way for much of the results. The lemma can also be found in [2, Theorem 1.1] and [3, Lemma 1.12].

Lemma 6 (Rigidity). Let $X, Y, Z \in \operatorname{Var}_{k}$ and assume that X is complete. Suppose a morphism $f: X \times Y \rightarrow Z$ is given with the property that there exists $a y \in Y(k)$ and $a z \in Z(k)$ such that $f \circ\left(\mathrm{id}_{X}, y\right)=z$. Then f factors through the projection $\operatorname{pr}_{Y}: X \times Y \rightarrow Y$. That is, there exists a morphism $g: Y \rightarrow Z$ such that $f=g \circ \operatorname{pr}_{Y}$.

Proof. Without loss of generality $k=\bar{k}$. Pick any point $x^{*} \in X(k)$ and define $g: Y \rightarrow Z$ by $g=f \circ\left(x^{*}, \mathrm{id}_{Y}\right)$. I claim that this is the g that we seek. Since $X \times Y$ is a variety, it is reduced (i.e. all stalks of the structure sheaf have no nilpotents). So it suffices to prove that $f=g \circ \mathrm{pr}_{Y}$ on k-rational points. Let $U \subset Z$ be an affine open around z and let $V=\operatorname{pr}_{Y} f^{-1} Z \backslash U$. Then $f^{-1} Z \backslash U$ is closed, and since X is complete, pr_{Y} is a closed map. Hence V is closed. If we take any point $w \notin V$, then $f(X \times\{w\}) \subset U$. Now since X is complete and U is affine, f must be constant on $X \times\{w\}$. So if we restrict f to the non-empty open set $X \times(Y \backslash V)$, then $f=g \circ \mathrm{pr}_{Y}$. But $X \times Y$ is irreducible, so $X \times(Y \backslash V)$ is dense. So $f=g \circ \operatorname{pr}_{Y}$ everywhere.

Corollary 7. Let $f: X \rightarrow Y$ be a morphism of abelian varieties. Then $f=\tau_{f e_{X}} \circ h$ for some homomorphism $h: X \rightarrow Y$.

Proof. [3, Proposition 1.14] or [2, Corollary 1.2]. Here's a proof sketch: f sends e_{X} to $f e_{X}$, so after composing with the translation $\tau_{i_{X}} f e_{X}$ we may assume that f sends e_{X} to e_{Y}. Let φ be the difference of the two maps

and apply the rigidity lemma to φ.
Corollary 8. Every abelian variety is abelian.
Proof. [2, Corollary 1.2] or [3, Corollary 1.14]. Both proofs use the fact that the inverse map of a group object G is a homomorphism if and only if G is abelian.

Hence from here on out we write the group law additive.
Definition 9. Let A be an abelian variety, $n \in \mathbb{Z}_{>0}$. Then the regular map $n_{A}: A \rightarrow A$ is defined on points as $P \mapsto n \cdot P=P+\ldots P$. If $n=0$, we set $n_{A}:=0$. If $n<0$, then $n=-n^{\prime}$ for some $n^{\prime}>0$. We then set $n_{A}:=i_{A} \circ n_{A}^{\prime}$. On points, this is just $P \mapsto-(P+\ldots+P)$.

Definition 10. Let $f: A \rightarrow B$ be a homomorphism between abelian varieties. We say f is an isogeny if f is surjective and ker f has dimension 0 . Here, $\operatorname{ker} f$ is defined to be the fibre of f over 0 in the sense of algebraic spaces.

Definition 11. Let A be an abelian variety and L an invertible sheaf on A. We say L is symmetric if $(-1)_{A}^{*} L \cong L$.

Theorem 12. Let $n \in \mathbb{Z}$. For every invertible sheaf L on an abelian variety A we have

$$
n_{A}^{*} L \cong L^{n(n+1) / 2} \otimes(-1)_{A}^{*} L^{n(n-1) / 2}
$$

In particular, if L is symmetric, then $n_{A}^{*} L \cong L^{n^{2}}$.
Proof. [2, Corollary 5.4] or [3, Corollary 2.12]. Both references make use of the "Theorem of the Cube", which is, for instance, [3, Theorem 2.7]. This theorem tells you that given a line bundle L on A, a complicated combination of tensors of this line bundle is trivial on the "cube" $A \times A \times A$.

We defined abelian varieties to be complete group objects. This implies that they are projective.

Theorem 13. Every abelian variety is projective.
Proof. [2, Theorem 6.4]. A very rough proof sketch is to construct a divisor D on A, and then proving that $3 \cdot D$ provides an embedding of A into \mathbb{P}^{n}, for some n.

The theorem that follows is crucial. It can be found in [2, Theorem 7.2].
Theorem 14. Let A be an abelian variety of dimension g and $n>0$. Then n_{A} is an isogeny of degree $n^{2 g}$. Moreover, if $\operatorname{char}(k)=0$ then n_{A} is always étale, and if $\operatorname{char}(k)>0$, then $\operatorname{char}(k) \nmid n \Longleftrightarrow n_{A}$ is étale.

Proof. There exists a very ample invertible sheaf L on A [2, 6.4, 6.6]. Now $(-1)_{A}: A \rightarrow A$ is an isomorphism, so $(-1)_{A}^{*} L$ is again very ample. Hence $L \otimes(-1)_{A}^{*} L$ is also ample. Now we calculate

$$
\begin{aligned}
(-1)_{A}^{*}\left(L \otimes(-1)_{A}^{*} L\right) & \cong(-1)_{A}^{*} L \otimes(-1)_{A}^{*}(-1)_{A}^{*} L \\
& \cong(-1)_{A}^{*} L \otimes L \\
& \cong L \otimes(-1)_{A}^{*} L
\end{aligned}
$$

Indeed, $(-1)_{A}(-1)_{A}=1_{A}$. So the sheaf $L \otimes(-1)_{A}^{*} L$ is also symmetric. Denote this sheaf by L again. Then $n_{A}^{*} L \cong L^{n^{2}}$ by theorem 12 , again ample. Let $K=\operatorname{ker} n_{A}$. Then $\left.\left(n_{A}^{*} L\right)\right|_{K}$ is a trivial bundle which is still ample. But if V is any irreducible variety, then \mathcal{O}_{V} being ample implies that V is a point. It follows that K must consist of a finite number of points, i.e. K is 0 -dimensional. So n_{A} is an isogeny.

Now we determine its degree. Choose an ample symmetric divisor D on A. Then $\operatorname{deg} n_{A} \cdot(D)^{g}=\left(n_{A}^{*} D\right)^{g}$, by [1, 12.10]. But $n_{A}^{*} D$ is linearly equivalent to $n^{2} \cdot D$ and so $\left(n_{A}^{*} D\right)^{g}=n^{2 g} \cdot(D)^{g}$. We conclude that $\operatorname{deg} n_{A}=$ $n^{2 g}$.

To show that n_{A} is étale we look at the tangent spaces at the unit element 0 (written additively) of A. This is sufficient, since we can always use translations τ_{a}. Let $d: A \rightarrow \Omega_{A / k}^{1}$ be the derivation. Denote by $T_{0} A$ the tangent space of A at 0 . If $f, g: A \rightarrow B$ are any two homomorphisms of abelian varieties, then

$$
d\left(f+_{B} g\right)_{0}=(d f)_{0}+_{T_{0} B}(d g)_{0},
$$

in other words $f \mapsto(d f)_{0}$ is a homomorphism. This is not a completely trivial fact; so it's an exercise to check that. In the meantime we conclude that $d\left(n_{A}\right)_{0}=n$ (multiplication by the scalar n in $T_{0} A$). It's now clear that this is invertible when $\operatorname{char}(k)=0$ or, when $\operatorname{char}(k)>0$, if and only if n is not zero in k.

Definition 15. Let k be separably closed and let $\operatorname{char}(k) \nmid n, n>0$. Let A be an abelian variety. We define the n-torsion subgroup A_{n} to be the pullback of n_{A} along the unique homomorphism $0 \rightarrow A$, as in

As a representable sheaf, A_{n} is fully described by the group $A_{n}(k)$ (see [3, 10.1, 4.48, 3.26]).

By theorem 14, $A_{n}(k)$ has order $n^{2 g}$. This holds for any $m \mid n$, so by the structure theorem for finite abelian groups,

$$
A_{n}(k) \cong(\mathbb{Z} / n \mathbb{Z})^{2 g} .
$$

Definition 16. Let k be separably closed. Fix a prime $\ell \neq \operatorname{char}(k)$. We define the Tate module of A (with respect to ℓ) as

$$
T_{\ell} A:=\lim _{\leftarrow} A_{\ell^{n}}(k) .
$$

This is an inverse limit. What this means is that the elements of $T_{\ell} A$ are infinite sequences $\left(a_{1}, a_{2}, \ldots\right)$ such that $a_{n} \in A(k)$ and $\ell_{A} \cdot a_{n}=a_{n-1}$, $\ell_{A} \cdot a_{1}=0$. We have that

$$
\begin{aligned}
T_{\ell} A & =\lim _{\leftarrow} A_{\ell^{n}}(k) \\
& \cong \lim _{\leftarrow}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2 g} \\
& \cong\left(\lim _{\leftarrow} \mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2 g} \\
& =\mathbb{Z}_{l}^{2 g} .
\end{aligned}
$$

Exercise 1. Show that the usual properties of homomorphisms in Grp carry over to group objects. That is, show that $f\left(e_{A}\right)=e_{B}$ and show that $i_{B} \circ f=f \circ i_{A}$ if $f: A \rightarrow B$ is a homomorphism between group objects A, B in some category C. State and prove the first isomorphism theorem.

Exercise 2. Show that the affine line together with addition is a group object with a commutative group law, but is not an abelian variety.

Exercise 3. Show that in fact $a_{n} \in A_{n}(k)$ for all $n>0$ instead of just $a_{n} \in A(k)$.

Exercise 4. Show that the map $f \mapsto(d f)_{0}$ from the proof of theorem 14 is a homomorphism.

Exercise 5. Let $f: A \rightarrow B$ be a morphism between abelian varieties and choose a prime $\ell \nmid \operatorname{char}(k)$. Construct a homomorphism $T_{\ell} f: T_{\ell} A \rightarrow T_{\ell} B$ of \mathbb{Z}_{ℓ}-modules and show that your construction is functorial.

Exercise 6. Let E be the elliptic curve over \mathbb{F}_{17} given by

$$
E: y^{2}=x^{3}+13 x+14
$$

Over $\overline{\mathbb{F}}_{17}$ we know that $T_{3} E \cong \mathbb{Z}_{3}^{2}$. Determine all the torsion points over \mathbb{F}_{17}.

References

[1] James S. Milne. Algebraic geometry (v5.00). \qquad 2005.
[2] James S. Milne. Abelian varieties (v2.00). www.jmilne.org/math/, 2008.
[3] Ben Moonen and Gerard van der Geer. Abelian varieties (preliminary version). www.math.ru.nl/~bmoonen/BookAV, 2016.

