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In this talk I will explain what abelian varieties are and introduce torsion
subgroups on abelian varieties. k is always a field, and Var; always denotes
the category of varieties over k. That is to say, geometrically integral sepa-
rated schemes of finite type with a morphism to k. Recall that the product
of two A, B € Vary, is just the fibre product over k: A x; B.

Definition 1. Let C be a category with finite products and a terminal
object 1 € C. An object G € C is called a group object if G comes equipped
with three morphism; namely a “unit” map

e:1—G,
a “multiplication” map
m:GxG—G
and an “inverse” map
i:G—G

such that .
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commutes, which tells us that m is associative, and such that

G Y9, oy

GxG—"—=G

commutes, which tells us that e is indeed the neutral “element”, and such

that o
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commutes, which tells us that ¢ is indeed the map that sends “elements”
to inverses. Here we use A : G — G x G to denote the diagonal map
coming from the universal property of the product G x G. The map €’ is
the composition G — 1 5 G.

Now specialize to C = Vary. The terminal object is then 1 = (Spec(k) i,
Spec(k)), and giving a unit map e : 1 — G for some scheme G over k is
equivalent to giving an element e € G(k).

Remark 2. Since we view schemes as representable sheaves of sets, defi-
nition (1] is equivalent to saying that for a group object G there exists a
factorization
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When one hears the term abelian variety, one might take a guess at a
straightforward definition: it is a group object in Vary which is abelian. It
turns out that this is not the correct definition.

Definition 3. An abelian variety is a group object A € Vary which is
proper as a variety.

Notice that we don’t even require A to be abelian. This will follow
automatically.

Definition 4. Let A, B be abelian varieties and let f : A — B be a mor-

phism. Then f is called a homomorphism if the diagram

AXA%BXB

mAl lmB

commutes.

Definition 5. Let A be an abelian variety and a € A(k) a point. We define
the (right) translation by a, denoted 7, as the morphism 7, := m4o(id4, a’).

So, translation 7, is given by

AN, g g Ay g,

The following lemma plays a central role for abelian varieties. It paves
the way for much of the results. The lemma can also be found in [2, Theorem
1.1] and [3, Lemma 1.12].



Lemma 6 (Rigidity). Let X,Y,Z € Vary and assume that X is complete.
Suppose a morphism f : X xY — Z is given with the property that there
exists ay € Y(k) and a z € Z(k) such that f o (idx,y) = z. Then f factors
through the projection pry : X XY — Y. That is, there exists a morphism
g:Y — Z such that f = gopry.

Proof. Without loss of generality k = k. Pick any point #* € X (k) and
define g: Y — Z by g = fo(z*idy). I claim that this is the g that we seek.
Since X x Y is a variety, it is reduced (i.e. all stalks of the structure sheaf
have no nilpotents). So it suffices to prove that f = g o pry on k-rational
points. Let U C Z be an affine open around z and let V = pry f~1Z\ U.
Then f=1Z \ U is closed, and since X is complete, pry is a closed map.
Hence V is closed. If we take any point w ¢ V, then f(X x {w}) C U. Now
since X is complete and U is affine, f must be constant on X x {w}. So if
we restrict f to the non-empty open set X x (Y \ V), then f = gopry. But
X xY isirreducible, so X x (Y \ V) is dense. So f = gopry everywhere. []

Corollary 7. Let f : X — Y be a morphism of abelian varieties. Then
f = Tfex o h for some homomorphism h : X =Y.

Proof. [3, Proposition 1.14] or [2, Corollary 1.2]. Here’s a proof sketch: f
sends ex to fex, so after composing with the translation 7;, r., we may
assume that f sends ey to ey. Let ¢ be the difference of the two maps

XxX - ™ex

W |

Y XY~ ¥

and apply the rigidity lemma to ¢. O

Corollary 8. Fvery abelian variety is abelian.

Proof. [2, Corollary 1.2] or [3| Corollary 1.14]. Both proofs use the fact that
the inverse map of a group object GG is a homomorphism if and only if G is
abelian. ]

Hence from here on out we write the group law additive.

Definition 9. Let A be an abelian variety, n € Z~g. Then the regular map
na: A— Ais defined on pointsas P—~n-P=P+...P. If n =0, we set
na:=0. If n <0, then n = —n/ for some n’ > 0. We then set nyg :=ig0n/;.
On points, this is just P +— —(P + ...+ P).

Definition 10. Let f : A — B be a homomorphism between abelian vari-
eties. We say f is an isogeny if f is surjective and ker f has dimension 0.
Here, ker f is defined to be the fibre of f over 0 in the sense of algebraic
spaces.



Definition 11. Let A be an abelian variety and L an invertible sheaf on A.
We say L is symmetric if (—=1)% L = L.

Theorem 12. Let n € Z. For every invertible sheaf L on an abelian variety

A we have
HZL o Ln(n+1)/2 ® (—1)2[;”(”_1)/2.

In particular, if L is symmetric, then ny L = ",

Proof. [2, Corollary 5.4] or [3, Corollary 2.12]. Both references make use of
the “Theorem of the Cube”, which is, for instance, [3, Theorem 2.7]. This
theorem tells you that given a line bundle L on A, a complicated combination
of tensors of this line bundle is trivial on the “cube” A x A x A. O

We defined abelian varieties to be complete group objects. This implies
that they are projective.

Theorem 13. Every abelian variety is projective.

Proof. [2, Theorem 6.4]. A very rough proof sketch is to construct a divisor
D on A, and then proving that 3 - D provides an embedding of A into P™,
for some n. O

The theorem that follows is crucial. It can be found in [2, Theorem 7.2].

Theorem 14. Let A be an abelian variety of dimension g and n > 0. Then
na is an isogeny of degree n?9. Moreover, if char(k) = 0 then ny is always
étale, and if char(k) > 0, then char(k) tn <= ny4 is étale.

Proof. There exists a very ample invertible sheaf L on A [2, 6.4, 6.6]. Now
(=1)a : A — A is an isomorphism, so (—1)%L is again very ample. Hence
L ® (—1)%L is also ample. Now we calculate

(DA (L@ (=1)4L) = (=1)4L @ (=1)4(=1)4L
(4L ® L
L

® (—1)%L.

12

[as

Indeed, (—1)a(—1)4 = 14. So the sheaf L ® (—1)%L is also symmetric.
Denote this sheaf by L again. Then n)L = L’ by theorem again
ample. Let K = kerny. Then (n%L)|x is a trivial bundle which is still
ample. But if V' is any irreducible variety, then Oy being ample implies
that V is a point. It follows that K must consist of a finite number of
points, i.e. K is O-dimensional. So n4 is an isogeny.

Now we determine its degree. Choose an ample symmetric divisor D
on A. Then degny - (D)4 = (n%yD)¢, by [1, 12.10]. But n* D is linearly
equivalent to n?- D and so (n*D)J = n?9-(D)J. We conclude that degn =
n?9.



To show that n4 is étale we look at the tangent spaces at the unit
element 0 (written additively) of A. This is sufficient, since we can always
use translations 7,. Let d : A — 9114 , be the derivation. Denote by TpA
the tangent space of A at 0. If f,g: A — B are any two homomorphisms of
abelian varieties, then

d(f +B 9)o = (df)o +1,58 (dg)o,

in other words f +— (df)p is a homomorphism. This is not a completely
trivial fact; so it’s an exercise to check that. In the meantime we conclude
that d(na)o = n (multiplication by the scalar n in TpA). It’s now clear that
this is invertible when char(k) = 0 or, when char(k) > 0, if and only if n is
not zero in k. O

Definition 15. Let k be separably closed and let char(k) { n, n > 0. Let
A be an abelian variety. We define the n-torsion subgroup A, to be the
pullback of n4 along the unique homomorphism 0 — A, as in

A, ——
A

As a representable sheaf, A,, is fully described by the group A, (k) (see
3, 10.1, 4.48, 3.26]).

By theorem [14) A, (k) has order n?9. This holds for any m | n, so by the
structure theorem for finite abelian groups,

O

nA
—

A (k) = (Z/nZ)>.

Definition 16. Let k be separably closed. Fix a prime ¢ # char(k). We
define the Tate module of A (with respect to ¢) as

Ty A := lim Apn (k).
—

This is an inverse limit. What this means is that the elements of TyA
are infinite sequences (a1, as,...) such that a, € A(k) and 44 - ap, = an—1,
4 -a1 = 0. We have that

Ty A = lim Apn (k)
yi
~ 13 nrz\ 29
= lgn (z)e"7)
29
~ (13 n
= <l£nZ/€ Z)

_ 729
=7



Exercise 1. Show that the usual properties of homomorphisms in Grp
carry over to group objects. That is, show that f(e4) = ep and show that
ipof = foiusif f: A— Bisahomomorphism between group objects A, B
in some category C. State and prove the first isomorphism theorem.

Exercise 2. Show that the affine line together with addition is a group
object with a commutative group law, but is not an abelian variety.

Exercise 3. Show that in fact a, € A, (k) for all n > 0 instead of just
an € A(k).

Exercise 4. Show that the map f ~— (df)o from the proof of theorem |14]is
a homomorphism.

Exercise 5. Let f : A — B be a morphism between abelian varieties and
choose a prime ¢ { char(k). Construct a homomorphism 7y f : TyA — T;B of
Zg-modules and show that your construction is functorial.

Exercise 6. Let E be the elliptic curve over F17 given by

E:y? =23+ 13z + 14.

Over Fi7 we know that T3E =2 Zg. Determine all the torsion points over

7.
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