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In this talk I will explain what abelian varieties are and introduce torsion
subgroups on abelian varieties. k is always a field, and Vark always denotes
the category of varieties over k. That is to say, geometrically integral sepa-
rated schemes of finite type with a morphism to k. Recall that the product
of two A,B ∈ Vark is just the fibre product over k: A×k B.

Definition 1. Let C be a category with finite products and a terminal
object 1 ∈ C. An object G ∈ C is called a group object if G comes equipped
with three morphism; namely a “unit” map

e : 1→ G,

a “multiplication” map
m : G×G→ G

and an “inverse” map
i : G→ G

such that

G×G×G G×G

G×G G

idG×m

m×idG m

m

commutes, which tells us that m is associative, and such that

G G×G

G×G G

(e,idG)

idG(idG,e) m

m

commutes, which tells us that e is indeed the neutral “element”, and such
that

G G×G

G×G G

(idG,i)◦∆

e′
(i,idG)◦∆ m

m
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commutes, which tells us that i is indeed the map that sends “elements”
to inverses. Here we use ∆ : G → G × G to denote the diagonal map
coming from the universal property of the product G × G. The map e′ is
the composition G→ 1

e−→ G.

Now specialize to C = Vark. The terminal object is then 1 = (Spec(k)
id−→

Spec(k)), and giving a unit map e : 1 → G for some scheme G over k is
equivalent to giving an element e ∈ G(k).

Remark 2. Since we view schemes as representable sheaves of sets, defi-
nition 1 is equivalent to saying that for a group object G there exists a
factorization

Grp

Sch/k Sets

forget

G

When one hears the term abelian variety, one might take a guess at a
straightforward definition: it is a group object in Vark which is abelian. It
turns out that this is not the correct definition.

Definition 3. An abelian variety is a group object A ∈ Vark which is
proper as a variety.

Notice that we don’t even require A to be abelian. This will follow
automatically.

Definition 4. Let A,B be abelian varieties and let f : A → B be a mor-
phism. Then f is called a homomorphism if the diagram

A×A B ×B

A B

f×f

mA mB

f

commutes.

Definition 5. Let A be an abelian variety and a ∈ A(k) a point. We define
the (right) translation by a, denoted τa, as the morphism τa := mA◦(idA, a

′).

So, translation τa is given by

A
(idA,a′)−−−−−→ A×A mA−−→ A.

The following lemma plays a central role for abelian varieties. It paves
the way for much of the results. The lemma can also be found in [2, Theorem
1.1] and [3, Lemma 1.12].
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Lemma 6 (Rigidity). Let X,Y, Z ∈ Vark and assume that X is complete.
Suppose a morphism f : X × Y → Z is given with the property that there
exists a y ∈ Y (k) and a z ∈ Z(k) such that f ◦ (idX , y) = z. Then f factors
through the projection prY : X × Y → Y . That is, there exists a morphism
g : Y → Z such that f = g ◦ prY .

Proof. Without loss of generality k = k. Pick any point x∗ ∈ X(k) and
define g : Y → Z by g = f ◦ (x∗, idY ). I claim that this is the g that we seek.
Since X × Y is a variety, it is reduced (i.e. all stalks of the structure sheaf
have no nilpotents). So it suffices to prove that f = g ◦ prY on k-rational
points. Let U ⊂ Z be an affine open around z and let V = prY f

−1Z \ U .
Then f−1Z \ U is closed, and since X is complete, prY is a closed map.
Hence V is closed. If we take any point w 6∈ V , then f(X ×{w}) ⊂ U . Now
since X is complete and U is affine, f must be constant on X × {w}. So if
we restrict f to the non-empty open set X × (Y \V ), then f = g ◦prY . But
X×Y is irreducible, so X×(Y \V ) is dense. So f = g◦prY everywhere.

Corollary 7. Let f : X → Y be a morphism of abelian varieties. Then
f = τfeX ◦ h for some homomorphism h : X → Y .

Proof. [3, Proposition 1.14] or [2, Corollary 1.2]. Here’s a proof sketch: f
sends eX to feX , so after composing with the translation τiXfeX we may
assume that f sends eX to eY . Let ϕ be the difference of the two maps

X ×X X

Y × Y Y

f×f

mX

f

mY

,

and apply the rigidity lemma to ϕ.

Corollary 8. Every abelian variety is abelian.

Proof. [2, Corollary 1.2] or [3, Corollary 1.14]. Both proofs use the fact that
the inverse map of a group object G is a homomorphism if and only if G is
abelian.

Hence from here on out we write the group law additive.

Definition 9. Let A be an abelian variety, n ∈ Z>0. Then the regular map
nA : A→ A is defined on points as P 7→ n · P = P + . . . P . If n = 0, we set
nA := 0. If n < 0, then n = −n′ for some n′ > 0. We then set nA := iA ◦n′A.
On points, this is just P 7→ −(P + . . .+ P ).

Definition 10. Let f : A → B be a homomorphism between abelian vari-
eties. We say f is an isogeny if f is surjective and ker f has dimension 0.
Here, ker f is defined to be the fibre of f over 0 in the sense of algebraic
spaces.
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Definition 11. Let A be an abelian variety and L an invertible sheaf on A.
We say L is symmetric if (−1)∗AL

∼= L.

Theorem 12. Let n ∈ Z. For every invertible sheaf L on an abelian variety
A we have

n∗AL
∼= Ln(n+1)/2 ⊗ (−1)∗AL

n(n−1)/2.

In particular, if L is symmetric, then n∗AL
∼= Ln2

.

Proof. [2, Corollary 5.4] or [3, Corollary 2.12]. Both references make use of
the “Theorem of the Cube”, which is, for instance, [3, Theorem 2.7]. This
theorem tells you that given a line bundle L on A, a complicated combination
of tensors of this line bundle is trivial on the “cube” A×A×A.

We defined abelian varieties to be complete group objects. This implies
that they are projective.

Theorem 13. Every abelian variety is projective.

Proof. [2, Theorem 6.4]. A very rough proof sketch is to construct a divisor
D on A, and then proving that 3 ·D provides an embedding of A into Pn,
for some n.

The theorem that follows is crucial. It can be found in [2, Theorem 7.2].

Theorem 14. Let A be an abelian variety of dimension g and n > 0. Then
nA is an isogeny of degree n2g. Moreover, if char(k) = 0 then nA is always
étale, and if char(k) > 0, then char(k) - n ⇐⇒ nA is étale.

Proof. There exists a very ample invertible sheaf L on A [2, 6.4, 6.6]. Now
(−1)A : A → A is an isomorphism, so (−1)∗AL is again very ample. Hence
L⊗ (−1)∗AL is also ample. Now we calculate

(−1)∗A (L⊗ (−1)∗AL) ∼= (−1)∗AL⊗ (−1)∗A(−1)∗AL
∼= (−1)∗AL⊗ L
∼= L⊗ (−1)∗AL.

Indeed, (−1)A(−1)A = 1A. So the sheaf L ⊗ (−1)∗AL is also symmetric.

Denote this sheaf by L again. Then n∗AL
∼= Ln2

by theorem 12, again
ample. Let K = kernA. Then (n∗AL)|K is a trivial bundle which is still
ample. But if V is any irreducible variety, then OV being ample implies
that V is a point. It follows that K must consist of a finite number of
points, i.e. K is 0-dimensional. So nA is an isogeny.

Now we determine its degree. Choose an ample symmetric divisor D
on A. Then deg nA · (D)g = (n∗AD)g, by [1, 12.10]. But n∗AD is linearly
equivalent to n2 ·D and so (n∗AD)g = n2g · (D)g. We conclude that deg nA =
n2g.
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To show that nA is étale we look at the tangent spaces at the unit
element 0 (written additively) of A. This is sufficient, since we can always
use translations τa. Let d : A → Ω1

A/k be the derivation. Denote by T0A
the tangent space of A at 0. If f, g : A→ B are any two homomorphisms of
abelian varieties, then

d(f +B g)0 = (df)0 +T0B (dg)0,

in other words f 7→ (df)0 is a homomorphism. This is not a completely
trivial fact; so it’s an exercise to check that. In the meantime we conclude
that d(nA)0 = n (multiplication by the scalar n in T0A). It’s now clear that
this is invertible when char(k) = 0 or, when char(k) > 0, if and only if n is
not zero in k.

Definition 15. Let k be separably closed and let char(k) - n, n > 0. Let
A be an abelian variety. We define the n-torsion subgroup An to be the
pullback of nA along the unique homomorphism 0→ A, as in

An 0

A A
nA

As a representable sheaf, An is fully described by the group An(k) (see
[3, 10.1, 4.48, 3.26]).

By theorem 14, An(k) has order n2g. This holds for any m | n, so by the
structure theorem for finite abelian groups,

An(k) ∼= (Z/nZ)2g.

Definition 16. Let k be separably closed. Fix a prime ` 6= char(k). We
define the Tate module of A (with respect to `) as

T`A := lim
←
A`n(k).

This is an inverse limit. What this means is that the elements of T`A
are infinite sequences (a1, a2, . . .) such that an ∈ A(k) and `A · an = an−1,
`A · a1 = 0. We have that

T`A = lim
←
A`n(k)

∼= lim
←

(Z/`nZ)2g

∼=
(

lim
←

Z/`nZ
)2g

= Z2g
l .
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Exercise 1. Show that the usual properties of homomorphisms in Grp
carry over to group objects. That is, show that f(eA) = eB and show that
iB ◦f = f ◦ iA if f : A→ B is a homomorphism between group objects A,B
in some category C. State and prove the first isomorphism theorem.

Exercise 2. Show that the affine line together with addition is a group
object with a commutative group law, but is not an abelian variety.

Exercise 3. Show that in fact an ∈ An(k) for all n > 0 instead of just
an ∈ A(k).

Exercise 4. Show that the map f 7→ (df)0 from the proof of theorem 14 is
a homomorphism.

Exercise 5. Let f : A → B be a morphism between abelian varieties and
choose a prime ` - char(k). Construct a homomorphism T`f : T`A→ T`B of
Z`-modules and show that your construction is functorial.

Exercise 6. Let E be the elliptic curve over F17 given by

E : y2 = x3 + 13x+ 14.

Over F17 we know that T3E ∼= Z2
3. Determine all the torsion points over

F17.
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